8,528 research outputs found

    From 4D medical images (CT, MRI, and Ultrasound) to 4D structured mesh models of the left ventricular endocardium for patient-specific simulations

    Get PDF
    With cardiovascular disease (CVD) remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD) simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time) with 1-to-l vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT) by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume

    Deformable Shape Completion with Graph Convolutional Autoencoders

    Full text link
    The availability of affordable and portable depth sensors has made scanning objects and people simpler than ever. However, dealing with occlusions and missing parts is still a significant challenge. The problem of reconstructing a (possibly non-rigidly moving) 3D object from a single or multiple partial scans has received increasing attention in recent years. In this work, we propose a novel learning-based method for the completion of partial shapes. Unlike the majority of existing approaches, our method focuses on objects that can undergo non-rigid deformations. The core of our method is a variational autoencoder with graph convolutional operations that learns a latent space for complete realistic shapes. At inference, we optimize to find the representation in this latent space that best fits the generated shape to the known partial input. The completed shape exhibits a realistic appearance on the unknown part. We show promising results towards the completion of synthetic and real scans of human body and face meshes exhibiting different styles of articulation and partiality.Comment: CVPR 201

    Learning to Reconstruct Texture-less Deformable Surfaces from a Single View

    Get PDF
    Recent years have seen the development of mature solutions for reconstructing deformable surfaces from a single image, provided that they are relatively well-textured. By contrast, recovering the 3D shape of texture-less surfaces remains an open problem, and essentially relates to Shape-from-Shading. In this paper, we introduce a data-driven approach to this problem. We introduce a general framework that can predict diverse 3D representations, such as meshes, normals, and depth maps. Our experiments show that meshes are ill-suited to handle texture-less 3D reconstruction in our context. Furthermore, we demonstrate that our approach generalizes well to unseen objects, and that it yields higher-quality reconstructions than a state-of-the-art SfS technique, particularly in terms of normal estimates. Our reconstructions accurately model the fine details of the surfaces, such as the creases of a T-Shirt worn by a person.Comment: Accepted to 3DV 201

    Variational Autoencoders for Deforming 3D Mesh Models

    Full text link
    3D geometric contents are becoming increasingly popular. In this paper, we study the problem of analyzing deforming 3D meshes using deep neural networks. Deforming 3D meshes are flexible to represent 3D animation sequences as well as collections of objects of the same category, allowing diverse shapes with large-scale non-linear deformations. We propose a novel framework which we call mesh variational autoencoders (mesh VAE), to explore the probabilistic latent space of 3D surfaces. The framework is easy to train, and requires very few training examples. We also propose an extended model which allows flexibly adjusting the significance of different latent variables by altering the prior distribution. Extensive experiments demonstrate that our general framework is able to learn a reasonable representation for a collection of deformable shapes, and produce competitive results for a variety of applications, including shape generation, shape interpolation, shape space embedding and shape exploration, outperforming state-of-the-art methods.Comment: CVPR 201

    Towards Efficient Modelling Of Macro And Micro Tool Deformations In Sheet Metal Forming

    Get PDF
    During forming, the deep drawing press and tools undergo large loads, and even though they are extremely sturdy\ud structures, deformations occur. This causes changes in the geometry of the tool surface and the gap width between the tools.\ud The deep drawing process can be very sensitive to these deformations. Tool and press deformations can be split into two\ud categories. The deflection of the press bed-plate or slide and global deformation in the deep drawing tools are referred to as\ud macro press deformation. Micro-deformation occurs directly at the surfaces of the forming tools and is one or two orders\ud lower in magnitude.\ud The goal is to include tool deformation in a FE forming simulation. This is not principally problematic, however, the FE\ud meshes become very large, causing an extremely large increase in numerical effort. In this paper, various methods are\ud discussed to include tool elasticity phenomena with acceptable cost. For macro deformation, modal methods or ’deformable\ud rigid bodies’ provide interesting possibilities. Static condensation is also a well known method to reduce the number of DOFs,\ud however the increasing bandwidth of the stiffness matrix limits this method severely, and decreased calculation times are not\ud expected. At the moment, modeling Micro-deformation remains unfeasible. Theoretically, it can be taken into account, but\ud the results may not be reliable due to the limited size of the tool meshes and due to approximations in the contact algorithms

    Geometry-Aware Network for Non-Rigid Shape Prediction from a Single View

    Get PDF
    We propose a method for predicting the 3D shape of a deformable surface from a single view. By contrast with previous approaches, we do not need a pre-registered template of the surface, and our method is robust to the lack of texture and partial occlusions. At the core of our approach is a {\it geometry-aware} deep architecture that tackles the problem as usually done in analytic solutions: first perform 2D detection of the mesh and then estimate a 3D shape that is geometrically consistent with the image. We train this architecture in an end-to-end manner using a large dataset of synthetic renderings of shapes under different levels of deformation, material properties, textures and lighting conditions. We evaluate our approach on a test split of this dataset and available real benchmarks, consistently improving state-of-the-art solutions with a significantly lower computational time.Comment: Accepted at CVPR 201
    • …
    corecore