1,319 research outputs found

    Dynamic Resource Management in Virtualized Data Centres

    Get PDF
    In the last decade, Cloud Computing has become a disruptive force in the computing landscape, changing the way in which software is designed, deployed and used over the world. Its adoption has been substantial and it is only expected to continue growing. The growth of this new model is supported by the proliferation of large-scale data centres, built for the express purpose of hosting cloud workloads. These data centres rely on systems virtualization to host multiple workloads per physical server, thus increasing their infrastructures\u27 utilization and decreasing their power consumption. However, the owners of the cloud workloads expect their applications\u27 demand to be satisfied at all times, and placing too many workloads in one physical server can risk meeting those service expectations. These and other management goals make the task of managing a cloud-supporting data centre a complex challenge, but one that needs to be addressed. In this work, we address a few of the management challenges associated with dynamic resource management in virtualized data centres. We investigate the application of First Fit heuristics to the Virtual Machine Relocation problem (that is, the problem of migrating VMs away from stressed or overloaded hosts) and the effect that different heuristics have, as reflected in the performance metrics of the data centre. We also investigate how to pursue multiple goals in data centre management and propose a method to achieve precisely that by dynamically switching management strategies at runtime according to data centre state. In order to improve system scalability and decrease network management overhead, we propose architecting the management system as a topology-aware hierarchy of managing elements, which limits the flow of management data across the data centre. Finally, we address the challenge of managing multi-VM applications with placement constraints in data centres, while still trying to achieve high levels of resource utilization and client satisfaction

    Clustering composite SaaS components in Cloud computing using a Grouping Genetic Algorithm

    Get PDF
    Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA

    Autonomic Cloud Computing: Open Challenges and Architectural Elements

    Full text link
    As Clouds are complex, large-scale, and heterogeneous distributed systems, management of their resources is a challenging task. They need automated and integrated intelligent strategies for provisioning of resources to offer services that are secure, reliable, and cost-efficient. Hence, effective management of services becomes fundamental in software platforms that constitute the fabric of computing Clouds. In this direction, this paper identifies open issues in autonomic resource provisioning and presents innovative management techniques for supporting SaaS applications hosted on Clouds. We present a conceptual architecture and early results evidencing the benefits of autonomic management of Clouds.Comment: 8 pages, 6 figures, conference keynote pape

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    On the Optimality of Virtualized Security Function Placement in Multi-Tenant Data Centers

    Get PDF
    Security and service protection against cyber attacks remain among the primary challenges for virtualized, multi-tenant Data Centres (DCs), for reasons that vary from lack of resource isolation to the monolithic nature of legacy middleboxes. Although security is currently considered a property of the underlying infrastructure, diverse services require protection against different threats and at timescales which are on par with those of service deployment and elastic resource provisioning. We address the resource allocation problem of deploying customised security services over a virtualized, multi-tenant DC. We formulate the problem in Integral Linear Programming (ILP) as an instance of the NP-hard variable size variable cost bin packing problem with the objective of maximising the residual resources after allocation. We propose a modified version of the Best Fit Decreasing algorithm (BFD) to solve the problem in polynomial time and we show that BFD optimises the objective function up to 80% more than other algorithms
    • …
    corecore