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Abstract

In the last decade, Cloud Computing has become a disruptive force in the computing land-
scape, changing the way in which software is designed, deployed and used over the world. Its
adoption has been substantial and it is only expected to continue growing. The growth of this
new model is supported by the proliferation of large-scale data centres, built for the express
purpose of hosting cloud workloads. These data centres rely on systems virtualization to host
multiple workloads per physical server, thus increasing their infrastructures’ utilization and
decreasing their power consumption. However, the owners of the cloud workloads expect their
applications’ demand to be satisfied at all times, and placing too many workloads in one phys-
ical server can risk meeting those service expectations. These and other management goals
make the task of managing a cloud-supporting data centre a complex challenge, but one that
needs to be addressed.

In this work, we address a few of the management challenges associated with dynamic
resource management in virtualized data centres. We investigate the application of First Fit
heuristics to the Virtual Machine Relocation problem (that is, the problem of migrating VMs
away from stressed or overloaded hosts) and the effect that different heuristics have, as reflected
in the performance metrics of the data centre. We also investigate how to pursue multiple goals
in data centre management and propose a method to achieve precisely that by dynamically
switching management strategies at runtime according to data centre state. In order to improve
system scalability and decrease network management overhead, we propose architecting the
management system as a topology-aware hierarchy of managing elements, which limits the
flow of management data across the data centre. Finally, we address the challenge of managing
multi-VM applications with placement constraints in data centres, while still trying to achieve
high levels of resource utilization and client satisfaction.

Keywords: data center management, virtualized infrastructure management, cloud man-
agement, energy management, SLA management, application management.
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Chapter 1

Introduction

Computing today is in the midst of a paradigm shift. This shift is twofold: first, applications
are no longer developed to be installed on individual users’ computers, but to be installed on
remote servers and accessed through the Internet; and second, the remote servers hosting these
applications are typically not owned by the application providers themselves, but by data cen-
tre1 providers renting their computing infrastructure on a pay-per-usage basis. This paradigm,
known as Cloud Computing, has been widely adopted by the Information Technology (IT)
world, and is expected to continue to grow in usage [1, 2, 3, 4]. For example, Cisco has pre-
dicted that by 2017 nearly two thirds of all workloads will be processed in the cloud [5].

Cloud Computing comes in three forms: Software as a Service (SaaS), Platform as a Ser-

vice (PaaS), and Infrastructure as a Service (IaaS). In SaaS, the (application) client pays for the
use of an application. Clients do not purchase a license and install the application, but rather
buy a subscription that enables them to access and use the application remotely through a web
browser. Continuous application execution (i.e., availability), configuration and maintenance
falls under the responsibility of the application provider, as well as the provision of any ancil-
lary services, such as billing and security. Some well known examples of SaaS are Salesforce
[6], Google Apps [7] and Basecamp [8].

In the PaaS flavour of Cloud Computing, the traded resource is a software (or application)

stack. This resource consists of a set of software subsystems or components needed to perform
a task without further external dependencies. A classic example of such a resource is the
LAMP software stack, which consists of the GNU/Linux operating system, the Apache web
server, the MySQL database management system, and the PHP programming language, and
it is commonly used to deploy a web service. Examples of PaaS are Google App Engine [9],
Microsoft Azure [10] and dotCloud Platform [11].

1A data centre can be thought of, in essence, as a collection of physical servers connected through a high
speed, high bandwidth network.

1



2 Chapter 1. Introduction

Finally, in IaaS, clients rent computers – physical or virtual – and storage capacity from
infrastructure providers. These computers are bare platforms consisting of little more than an
operating system; clients have to build their desired software stack. In addition, clients are
responsible for their computers’ execution and maintenance, but in exchange for this increased
level of responsibility they get more freedom and control over their platform than they would
otherwise get under PaaS. Common examples of IaaS are Amazon Web Services [12], Google
Compute Engine [9] and Microsoft Azure [10].

Regarding IaaS-type clouds, there exist three models to be aware of: public, private and
hybrid clouds. This distinction does not respond to technical differences, but rather to business
or functional ones; more specifically, to who has access to the cloud. A public cloud, for ex-
ample, can be accessed by the general public. That is, a company owns the cloud and provides
IaaS to the public. On the other hand, a private cloud can only be accessed by the company’s
employees. In this case, the cloud is for internal use only, not to be rented to the public. Lastly,
a hybrid cloud represents a compromise between the previous two models: the company owns
its own private cloud, but relies on public clouds for specific tasks or to handle unexpected
increases in workload.

Our research focuses on the management of IaaS-type data centres (or clouds), either public
or private. An IaaS-type data centre can be thought of, in essence, as a collection of physical
servers connected through a high speed, high bandwidth network. Though real data centres are
more complex than that, this simplified model will be used throughout this work.

Running a data centre incurs expenses (e.g., infrastructure acquisition, maintenance, ad-
ministration, utilities), of which power consumption is one of the highest; studies have shown
that data centres are high power consumers [13]. Given that physical servers are on average
poorly utilized [14] and that a typical physical server can consume 50% to 70% of its peak
power usage while idle [15], it is important for data centres to maximize their infrastructure’s
utilization, so as to make the most out of every powered on server and in doing so reduce power
consumption. Thus, maximizing resource utilization is one of the main goals of a data centre
management system.

One of the key features of Cloud Computing is the illusion of “infinite” resource availabil-
ity, which guarantees clients that their workloads will be able to scale as much as needed any
time. Data centres achieve this illusion through the use of virtualization. System virtualization
is a software technique that enables the simultaneous execution of multiple computer systems
in a single physical machine [16]. This feat is achieved by means of a hypervisor (or virtual
machine monitor), which is a layer of software that runs directly on hardware. The hypervi-
sor can create virtual machines (VM) within which operating systems can be installed, and
allocates the underlying hardware resources to the VMs as an operating system would do (for
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applications) in a non-virtualized environment. Virtual machines can be instantiated (and de-
stroyed) quickly, enabling applications running in the data centre to scale their size on-demand
(by adding or removing VMs) to meet their workloads’ needs. It is this ability to host sev-
eral computer systems per physical server paired with fast VM instantiation that enables data
centres to simulate infinite resource capacity.

The use of virtualization results in an additional benefit: by co-locating multiple client
workloads per host, data centres are able to increase their resource utilization. Moreover, by
oversubscribing resources (i.e., promising more resources in total to the group of co-located
VMs in a host than the host actually possesses), data centres can achieve a substantial increase
in resource utilization. This strategy, however, poses a problem. Given the dynamic nature of
workloads’ resource demand [17], tightly loading a host can be problematic: if at any time the
total resource demand of co-located VMs were to exceed the actual capacity of their host, one
or more VMs would have their resource requirements unfulfilled, thus causing Service Level

Agreement (SLA)2 violations. Since these violations usually have a penalty attached to them
(i.e., a monetary compensation to be paid by the data centre provider to the workload owner),
it is important for data centres to minimize their occurrence. This requirement then defines
another main goal in data centre management: minimizing SLA violations.

There may be many other management goals to consider, such as minimizing VM mi-
grations or network overhead, as well as functional requirements for the management system
itself, such as the ability to adapt to changing data centre conditions, pursue multiple manage-
ment goals, or handle complex workload requirements (e.g., placement constraints, Quality of
Service objectives), and also non-functional requirements, such as scalability, fault tolerance,
and autonomy. This situation suggests that designing a management system for an IaaS-type
data centre is not trivial and, as we will discuss below, there are many research challenges that
need to be addressed.

In the next section, we provide some background by discussing the concept of Virtual

Machine Management (with respect to data centres) and the operations it comprehends. In
Section 1.2, we present four open research challenges in the area of dynamic management of
virtualized data centres. Finally in Section 1.3, we present the research contributions of this
work and provide an outline for this manuscript.

2A contract between the workload owner and the data centre provider specifying the conditions upon which the
service is provided, the minimum service-level expectations (or guarantees), and the penalties (if any) associated
to breaches in the contract.
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1.1 Virtual Machine Management

A VM is a software implementation of a physical computer within which a computer system
(i.e., operating system plus user space libraries and applications) can be deployed. VMs are
subject to basic management operations, such as creation, suspension and termination. VMs
can have their resource allocation modified dynamically, although the extent to which this
operation is supported varies between systems virtualization technologies. In addition, VMs
can be live migrated, that is, moved from one host to another (compatible) host, experiencing
only minimal downtime in the process. These operations are considered low-level management
operations.

VM management is typically associated with the execution of the following high-level man-
agement operations3:

1. VM Placement. When new application deployment requests arrive at the data centre,
hosts must be selected to instantiate the VMs that compose the application.

2. VM Relocation. When a host is stressed (i.e., close to running out of spare resources to
allocate to its VMs), one or more of its VMs must be (live) migrated away, so as to free
resources. For each VM migration, a physical server must be found to become the new
host of the migrated VM. We call this physical server the target host, while the stressed
host is referred to as source host.

3. VM Consolidation. It is the process of relocating VMs in the data centre, so as to
concentrate workloads into as few hosts as possible.

The VM Placement operation consists of mapping a set of VMs that are currently not
instantiated in the data centre into a set of hosts. This can be done in several ways. The first
and most basic approach is to allocate to each VM enough resources to satisfy their hosted
workload’s peak demand4 and allocate those resources in an exclusive manner (i.e., resources
allocated to one VM are not shared with any other VM co-located in the same host). The
challenge of placing a VM would then be a matter of finding a host with enough spare resources
to satisfy the VM’s resource allocation (for peak demand). We will call this approach Static

Allocation Peak Demand. (The term static is used to indicate that the mapping of VMs to hosts
never changes.)

The benefit of the Static Allocation Peak Demand approach is that it is simple and straight-
forward, and that it satisfies the service guarantees in the workloads’ SLAs by allocating

3Though resource reallocation (at host-level) and VM replication (i.e., the instantiation of a copy of a given
VM) are sometimes brought under the umbrella of VM management, we will not consider them in this work.

4Assuming that we can learn in advance what the workload’s peak demand is.
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enough resources for the workloads to meet their peak demand. However, it is easy to see
that this approach does not make for an efficient use of resources and can lead to high power
consumption. As an example, consider the following scenario: there are two servers with a
single quad-core CPU each and eight VMs to place, whose peak demand is one CPU core.
According to this approach, we map four VMs into each server. Now, if the VMs are running
at peak demand, the servers will present a resource utilization of 100%. However, if we assume
an average demand of 50% for the VMs, which is considered to be a high average demand5,
the servers will only present a resource utilization of 50%. In other words, 50% of the poten-
tial of each server is wasted. A better placement would have seen all eight VMs mapped into
one of the servers, keeping the second server powered off (or suspended), thus reducing power
consumption.

An evident first improvement to the previous approach would then be to allocate VMs
with enough resources to satisfy their hosted workload’s average demand. However, if re-
sources were allocated in an exclusive manner, the workloads would have their SLAs violated
whenever their resource demand exceeded 50%. Therefore, resources should be allocated in
a non-exclusive manner (i.e., resources are oversubscribed), meaning that workloads use only
the amount of resources they need at each point in time, freeing the rest of their assigned (but
unused) allocation for other co-located VMs to use if their current demand exceeds their given
allocation. We will call this approach Static Allocation Average Demand.

This approach will work well most of the time, with the low demand of one VM allowing
another VM to use resources in excess of its assigned allocation. This approach is more power
efficient than Static Allocation Peak Demand and likely satisfies the service guarantees in the
workloads’ SLAs to a high degree. However, a high degree of satisfaction does not mean total
satisfaction, and the data centre would incur SLA penalties in those occasions in which service
guarantees are not met. As an example, consider the scenario described above, though now
all eight VMs are mapped into one server. This arrangement will work well as long as the
demand of each VM stays at or below 50%, or if any increase in resource demand is matched
by a corresponding decrease in resource demand of the same or greater magnitude. However,
the moment this equilibrium is broken, total demand (of the VMs) will exceed total available
capacity (of the host) and SLA violations will ensue.

There is therefore a need for an approach that maps VMs into hosts, leveraging resource
oversubscription and dynamic resource allocation to grant each VM the resources it needs at
each point in time, and that is able to handle those instances in which the combined demand
of co-located VMs exceeds the resource capacity of the host – we refer to these instances as
stress situations. This latter problem could be dealt with by migrating one (or more) of the co-

5Data centre servers are estimated to see an average utilization of 5% to 20%. [14]
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located VMs to a different host, thus freeing resources in the stressed host (to be allocated to
the remaining VMs), and allowing the migrated VM(s) to continue running on their new host.
The migrations could be performed live (i.e., without stopping the VMs6), causing minimal
downtime to the VMs’ workloads. We will call this approach Dynamic Allocation, to indicate
that the mapping of VMs to hosts can be modified at runtime.

The Dynamic Allocation approach includes then not only VM Placement, but also VM
Relocation. This approach addresses two challenges: first, selecting hosts in which to place
incoming VMs (i.e., VMs not yet instantiated in the data centre), and second, selecting VMs to
migrate away from stressed hosts and selecting target hosts in which to place those migrated
VMs. In both situations, the set of available hosts includes hosts already loaded with VMs and
also empty hosts (which may be powered on or not). This form of management provides much
flexibility, but comes with an associated cost in terms of resource utilization overhead for the
hosts involved in VM migrations and service disruption for the migrated VMs.

One disadvantage of Dynamic Allocation as discussed so far is that by relocating VMs in
response to stress situations, this approach spreads load across the data centre, resulting after
some time in servers hosting only a few VMs, thus lowering overall resource utilization. This
issue can be addressed by performing VM Consolidation as part of Dynamic Allocation. VM
Consolidation is a re-mapping process that aims to place all VMs in the data centre into as
few hosts as possible. This process has an associated cost in terms of VM migrations, but it
increases overall resource utilization and may empty hosts that can then be suspended (or pow-
ered off) to save power. In this way, Dynamic Allocation becomes a VM management approach
consisting of three processes: VM Placement, VM Relocation and VM Consolidation.

Given the nature of our target environment (i.e., an IaaS-type data centre), where the num-
ber of client workloads is constantly changing and so is the resource demand of the workloads
themselves [17], we focus our research on dynamic approaches to VM management.

1.2 Research Challenges

In this section, we describe some of the open research challenges associated with dynamic VM
management in data centres; namely, Virtual Machine Relocation (Section 1.2.1), Multi-goal

Management Strategies (Section 1.2.2), Management Systems’ Architecture (Section 1.2.3),
and Multi-VM Application Management (Section 1.2.4).

6VMs are actually frozen for a short period of time during live migration to complete the copy of the VMs’
memory footprint.It is this freeze time what causes the minimal downtime experienced by the VMs.
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1.2.1 Virtual Machine Relocation

In dynamic VM management, VMs are mapped and re-mapped into hosts according to current
data centre state. The VM Relocation operation is part of that process. The VM Relocation
problem can be summarized as follows: given a set of stressed hosts and a set of non-stressed
host, find a sequence of VM migrations from hosts in the first set into hosts in the second set,
so that the stress situations are terminated.

Formal Problem Definition

Let H = {h1, . . . , hx} be a set of hosts and R = {cpu,mem, bw} be the set of resources available
in a host. For each host h ∈ H, Cr

h denotes the resource capacity of host h, that is, the total
amount of resource r ∈ R available in h.

Let V = {v1, . . . , vx} be a set of VMs. For each VM v ∈ V , Cr
v denotes the resource needs of

VM v, and S r
v(t) denotes the resource usage of VM v at time t, so that:

0 < S r
v(t) ≤ Cr

v

VMs are mapped or placed into hosts, however, a VM can only be mapped into a single
host at any given time. We use the following formulas to express that:

pv,h(t) =

1 if v ∈ V is mapped into h ∈ H at time t

0 otherwise

if ∃ hi ∈ H : pv,hi(t) = 1⇒ ∀h j ∈ H\hi pv,h j(t) = 0

There is an additional placement rule to prevent mapping more VMs into a host than the
host can sustain given its resource capacity. However, we first need to define how to calculate
the resource usage of a host, S r

h(t), and its resource utilization, Ur
h(t):

S r
h(t) =

∑
v∈V

S r
v(t) ∗ pv,h(t)

Ur
h(t) =

S r
h(t)
Cr

h

, Ur
h(t) ∈ [0, 1]

The placement rule mentioned above can now be expressed as follows:

∀h ∈ H : S r
h(t) ≤ Cr

h

which is equivalent to the following expression:
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∀h ∈ H : Ur
h(t) ≤ 1

Hosts can be in active or suspended state. Hosts in active state have at least one VM mapped
into them; otherwise, they are suspended to conserve power.

activeh(t) =

1 if Nh(t) > 0

0 otherwise

suspendedh(t) = ¬activeh(t)

where Nh(t) denotes the number of VMs mapped into host h ∈ H at time t.

Active hosts are further classified as stressed or non-stressed. A host is resource stressed
(or in a resource stress situation) when the hosted VMs’ combined demand for that resource
reaches or exceeds the total capacity of the host. In this situation, the host is unable to satisfy
the resource demand of the hosted VMs, negatively affecting their performance. A host with
enough resources to satisfy the VMs’ combined demand may still be considered stressed if
the utilization level is so high that the host is unable to accommodate any further increases in
the VMs’ resource demand. A resource utilization threshold τ ∈ [0, 1] is used to determine
whether a host is stressed or not.7

stressedh(t) =

1 if Ur
h(t) ≥ τ

0 otherwise

non − stressedh(t) = activeh(t) ∧ ¬stressedh(t)

VMs can be migrated (i.e., transferred) from one host to another. A VM migration m is
denoted by the ternary < hi, v, h j >, where hi, h j ∈ H and v ∈ V . hi is referred to as the source

host, pv,hi(t) = 1, and h j is referred to as the target host, pv,h j(t + 1) = 1.

The VM Relocation problem can be succinctly described as follows: given a set of stressed
hosts, a set of non-stressed hosts and a set of suspended hosts, find a set of VM migrations that
will terminate the stress situations. The problem can be formally described as finding a set of
VM migrations M with the following property:

M = {m : pv,hi(t) = 1∧ stressedhi(t)∧ pv,h j(t + 1) = 1∧¬stressedhi(t + 1)∧¬stressedh j(t + 1)}

7Threshold value would depend on the physical servers’ resource capacity and the data centre’s business
objectives.
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while at time t + 1 all constraints previously defined are still satisfied.

The VM Relocation problem presents similarities with the bin packing problem8, which is
known to be NP-hard [19]: there is a set of VMs with different resource needs (a set of items

with their corresponding weights) that have to be mapped into non-stressed hosts (packed into

bins) so as to maximize the overall resource utilization of the set of hosts (so as to minimize

the number of bins used). Given this similarity and the fact that greedy heuristics for the bin
packing problem are known to achieve near optimal solutions (one such heuristic being First

Fit Decreasing (FFD) [20, 21]), research has been conducted applying greedy heuristics for
the bin packing problem to the VM Relocation problem. Most frequently, the heuristic used
is FFD. This heuristic sorts the items in the set in decreasing order by weight, and one by one
places each item in order into the first bin in which they fit. Applied to the VM Relocation
problem, this heuristic would minimize the number of active hosts in the data centre.

However, there is a problem with this approach. While the goal of the bin packing problem
is to place the items in the set into the least number of bins, the VM Relocation problem may
have other goals to consider (or even prioritize) other than minimizing the number of active
hosts; e.g., minimizing the number of SLA violations, or minimizing the number of migrations
needed to solve the problem. Therefore, a heuristic that works in one context may not perform
equally well in a different context.

It is important to determine whether the order in which heuristics for the VM Relocation
problem consider VMs and hosts for migration has any effect in the long-term management
goals of a data centre, as reflected in diverse metrics such as power consumption, SLA viola-
tions, and number of migrations.

1.2.2 Multi-goal Management Strategies

The management operations introduced in Section 1.1 can be carried out in many ways. We
use the term management policy (or simply policy) to refer to any such implementation of
a management operation. A management strategy is a set of policies that determines how
each of the main management operations are carried out across the data centre. In this way, a
management strategy defines the behaviour of the data centre management system.

Management strategies are designed with a given purpose, a management goal to strive for.
This goal can be any number of things. The two most commonly studied goals in the litera-
ture are: (i) minimizing power consumption; and (ii) minimizing SLA violations. However,
these two goals are often in conflict. In order to minimize power consumption, load has to be
consolidated into as few hosts as possible and every host without VMs assigned to it should

8Though differences exist that make VM Relocation more complex [18].
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be powered off or suspended. This approach does save power, but results in active hosts with
high resource utilization, which increases the risk of having stress situations (as a consequence
of sudden increases in VMs’ resource demand), which may result in increased SLA violations.
Conversely, minimizing SLA violations requires load to be spread across the data centre, leav-
ing active hosts with a significant amount of spare resources available to handle sudden spikes
in demand. This approach does minimize the risk of having stress situations (and thus SLA
violations), but it results in many hosts being active, thus increasing power consumption.

Designing a management strategy to achieve both of these goals is difficult, as improving
performance towards one goal typically results in degradation of performance towards the other
goal. Thus, the design of management strategies tends to focus on defining a single goal
to pursue, or on defining several goals, but prioritizing them in such a way that one goal is
considered the primary goal and all others are considered secondary. Designing dual- or multi-
goal management strategies remains an open problem.

1.2.3 Management Systems’ Architecture

As mentioned before, a data centre can be thought of, in essence, as a collection of hosts con-
nected through a high-speed, high-bandwidth network. A management system is required to
administer this infrastructure, mapping VMs to hosts and powering hosts on and off as needed.
The architecture of the management system determines important properties of the system,
such as scalability, quality of management decisions, and degree of management overhead.
Different architectures offer different trade-offs between these properties.

Centralized systems consist of a single, high-level manager governing over a collection of
low-level managers, each assigned a managed element. Low-level managers gather monitoring
data and send it to the central manager, which results in high bandwidth usage. The central
manager has a global view of the system, thus being able to make management decisions that
span the whole data centre. However, this concentration of management power is also the
limiting factor on the scalability of the system.

Distributed systems, on the other hand, consist solely of a collection of low-level man-
agers, each making decisions for its corresponding managed element. There is little (if any)
information sharing between managers, so the data flow is minimal, but that also results in
managers having a very limited (or localized) view of the system. The level of independence
of the managers provides unlimited scalability to the system.

Decentralized (or hierarchical) systems try to strike a balance between the previous two
architecture models, achieving better scalability than a centralized system, without having the
limited system view of a distributed system. A hierarchical system is organized in levels. The
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lowest level consists of managers assigned each to a managed element, and each level above
that consists of managers assigned responsibility over a disjointed subset of the managers in
the level below. Data is collected at every level of the hierarchy, but only a summary of the data
makes it to the next level up, reducing overall data flow. Managers possess data about every
manager and managed element enclosed in their area, but not beyond it. This enables them
to make informed decisions concerning the data centre area under their control, and increases
scalability by decentralizing management responsibilities.

Choosing what architecture model to use when designing a data centre management sys-
tem is heavily influenced by the properties sought after in the management system. In addition,
since the architecture of the systems affects the design of management policies and strategies,
choosing a model requires careful consideration. Centralized systems (and centralized algo-
rithms) tend to be easier to design than distributed ones, and it is easier as well to analyze and
undestand their runtime behaviour, given that all management decisions have origin in a sin-
gle manager, are based on a global view of the system, and encompass the whole data centre.
However, given the large-scale of today’s data centres (scale that is only expected to grow),
systems’ scalability is becoming increasingly important [22].

1.2.4 Multi-VM Application Management

Today, most applications deployed in the Cloud consist of multiple components. These com-
ponents run in their own dedicated servers, but work together to provide a service. A prevalent
example of this type of applications is a multi-tier web application, consisting of Web, Appli-
cation and Database tiers, each tier hosted in a separate VM [23].

While managing single-VM applications in the data centre is a well-studied problem, man-
aging multi-VM applications is not. Multi-VM applications can sometimes have, in addition
to their basic resource requirements, a special set of requirements referred to as placement

constraints. For example, an application may require some of its components to be co-located
in the same host (or the same hardware rack or cluster) for performance reasons, while an-
other application may require its components to be placed far apart in the data centre for high
availability purposes.

These placement constraints significantly add to the complexity of VM management. Now,
the management system not only has to address the challenge of meeting each application’s
resource requirements, but it also has to be cognizant of the location of every component of a
multi-VM application and the rules that regulate their position with respect to each other.
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1.3 Thesis Outline

In Chapter 2, we address the VM Relocation problem (Section 1.2.1). We hypothesize that the
order in which VMs and hosts are considered for migration has an impact on data centre perfor-
mance (as reflected by performance metrics such as power consumption and SLA violations),
which is relevant given that some outcomes may be more desirable than others depending on
data centres’ current state or business goals. We design and evaluate a set of First Fit-based
policies for VM Relocation, which prioritize VMs and hosts in different ways. We present
simulation results showing that the policies achieve different levels of performance in various
metrics according to data centre state (i.e., load-level).

Chapter 3 focuses on the issue of Multi-goal Management Strategies (Section 1.2.2). In or-
der to pursue two opposing goals (namely, minimizing SLA violations and minimizing power
consumption) with one management strategy, we propose the use of a meta-strategy that dy-
namically switches between two single-goal management strategies according to data centre
state. We hypothesize that this arrangement may achieve a better balance between the two
desired goals. We present three methods to dynamically switch management strategies, and
evaluate these methods through simulation. Results suggest that dynamic strategy switching
offers overall improved performance over single management strategies.

We address the issue of Management Systems’ Architecture (Section 1.2.3) in Chapter
4, by proposing a hierarchical, topology-aware management system for large-scale data cen-
tres. We leverage the topology of the data centre network to create a hierarchy of (autonomic)
managers. We define a set of aggregate metrics at various levels in the hierarchy to convey
system state information to higher management levels, and define managers’ responsibilities
and interactions – expressed in the form of management policies and strategies. By making the
hierarchy topology-aware, we limit the flow of management data across the data centre. We
hypothesize that this organization will result in a more efficient use of the data centre, greatly
reducing network traffic. The system is evaluated through simulation. The results confirm that
management data flow across the data centre is greatly reduced.

In Chapter 5, we present our work on Multi-VM Application Management (Section 1.2.4).
We propose two management strategies designed to manage multi-VM applications with place-
ment constraints in data centres. These management strategies aim to increase infrastructure’s
utilization (and thus reduce power consumption) while at the same time minimizing SLA vi-
olations. While one of the management strategies enforces placement constraints at all times,
the other allows for a temporary violation of placement constraints. The two management
strategies are evaluated through simulation in multiple scenarios. Results suggest that both
strategies are able to achieve high levels of infrastructure utilization and SLA achievement,
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while satisfying applications’ placement constraints, and that temporarily violating constraints
does not provide any advantage, though it does add cost (in terms of degradation of application
performance).

In Chapter 6, we present a discussion of our work, where we summarize our findings and
consider their implication. We also enumerate a series of limitations that affect our work, and
suggest potential directions of future work. We end the chapter by stating our conclusions.

Finally in Appendix A, we present DCSim (Data Centre Simulator), a tool that we devel-
oped to simulate virtualized data centres operating as Infrastructure as a Service (IaaS) clouds.
The simulator is flexible and can be easily extended, enabling researchers to quickly evaluate
data centre management algorithms and techniques at a speed and scale not possible in real
environments. This tool is free and open source software (FOSS) and its code is available on
GitHub [24].
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Chapter 2

An Analysis of First Fit Heuristics for VM
Relocation

In dynamic VM management, VMs are mapped and re-mapped into hosts according to current
data centre state. The VM Relocation operation is part of that process and its responsibility
is to deal with stress situations. The VM Relocation problem can be summarized as follows:
given a set of stressed hosts and a set of non-stressed host, find a sequence of VM migrations
from hosts in the first set into hosts in the second set, so that the stress situations are terminated.

The VM Relocation problem presents similarities with the bin packing problem1, which is
known to be NP-hard [3]. There is a set of VMs with varying resource demands (items with
their associated weights) that have to be mapped into hosts (packed into bins) in such a way
that the overall resource utilization is maximized (the number of bins used is minimized). It
has been shown that greedy heuristics for the bin packing problem have near optimal solutions,
one such heuristic being First Fit Decreasing (FFD) [4, 5]. This heuristic consists of sorting
the items in decreasing order by weight, and sequentially placing them into the first bin in
which they fit. Applied in the context of virtualized data centres, this heuristic would result in
minimizing the number of active hosts.

However, while the goal of the bin packing problem is to place a set of items (VMs) in
the least number of bins (hosts), the VM Relocation problem may have additional goals for
which to strive, such as minimizing the number of Service Level Agreement (SLA) violations
or minimizing the number of migrations used. These goals may even take priority over maxi-
mizing resource utilization, depending on the situation or the data centre’s business goals. For
that reason, an heuristic that works well under one situation or business strategy, may not work
well under a different situation.

0This chapter is based on work published in [1].
1Though differences exist that make VM Relocation more complex [2].
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The order in which a heuristic for the VM Relocation problem considers VMs and hosts can
affect the final set of migrations produced. Therefore, different heuristics that prioritize VMs
and/or hosts based on different criteria may produce better assignments (and achieve better
long-term outcomes) when considering their particular goals, associated with the data centre’s
management strategy.

In this work, we evaluate and compare a set of relocation policies, all variations on a First

Fit heuristic [6], where the difference between policies lies in the order in which VMs and hosts
are considered as migration candidates and migration targets, respectively.

The remainder of this chapter is organized as follows: Section 2.1 discusses related work
in the area, Section 2.2 describes our assumptions and the relocation policies designed, Section
2.3 presents experiments and results, and Section 2.4 presents conclusions and future work.

2.1 Related Work

The management of virtualized data centres presents several research challenges. The most
basic or fundamental of them are how to implement the core management operations of VM
Placement, VM Relocation and VM Consolidation (introduced in Section 1.1), and also how
to perform resource reallocation at host-level (that is, dynamically reallocating resources to the
VMs in a host, so as to meet their resource demand). In this section, we present some works in
the literature that address these problems.

2.1.1 VM Placement

The problem of mapping VMs into hosts is referred to in the literature as VM Placement, static
server consolidation, or simply resource allocation. Its difficulty resides in finding a mapping
that ensures individual VMs are allocated enough resources to satisfy their demand, while at
the same time maximizing resource utilization.

Bobroff et al. [7] implemented a First Fit Decreasing heuristic that periodically re-calculated
the mapping of a set of VMs into a set of empty hosts, based on the VMs’ forecasted demand.
Their goal was to minimize the average number of active hosts, while providing probabilistic
SLA guarantees for the VMs.

Cardosa et al. [8] developed a VM placement algorithm that leveraged the CPU alloca-
tion features min , max , and shares present in modern hypervisors to negotiate the tradeoff

between VMs’ performance (tied to CPU allocation) and overall power consumption.

Speitkamp and Bichler [9] proposed a static server consolidation approach that combined
data analysis to characterize variations in real-world workload traces, and an LP-relaxation-
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based heuristic to optimally map VMs into hosts.

Stillwell et al. [10] worked on mapping a set of static workloads into hosts, optimizing
the VMs’ resource allocation for performance and fairness. They proposed and evaluated an
extensive set of algorithms, finally identifying a vector (or multi-dimensional) bin packing
algorithm that achieved close to optimal solutions to the problem.

2.1.2 VM Relocation

The problem of determining which VM to migrate and to which host to migrate it when a
stress situation occurs has also been studied. Khanna et al. [11] addressed the VM Reloca-
tion problem by developing a mathematical optimization model to select VMs and hosts for
migration. They implemented an heuristic that sorted VMs in increasing order by CPU and
memory utilization - to minimize migration costs - and sorted hosts in increasing order by
residual capacity (i.e., available resources) - to maximize resource utilization. The authors did
not consider any additional sorting strategies, nor the impact of their heuristic in the number of
migrations issued.

Wood et al. [12] implemented in their management system Sandpiper a First Fit Decreasing
heuristic that sorted hosts in increasing order by resource utilization. Their goal was not,
however, to evaluate the efficiency of their heuristic, but to compare two mechanisms for VM
monitoring.

Gmach et al. [13] developed a fuzzy logic-based controller as part of their proposed man-
agement system. The controller not only issued migrations when a host became stressed (VM
Relocation), but also when a host became underutilized (Dynamic Server Consolidation). The
target host for a migration was the least loaded host with enough resources to fit the VM. How-
ever, it was not clear how the VMs were selected for migration. The purpose of this work was
to present the management system as a whole, thus the controller was not described in detail.

Beloglazov and Buyya [14] proposed algorithms and heuristics to deal both with stressed
and underutilized hosts. In the case of stressed hosts, their algorithm selected for migration
the VMs with the least memory allocation and selected as many VMs as needed to bring the
hosts’ CPU utilization down to an acceptable level. When hosts were underutilized, all their
VMs were selected for migration. The target host selection was based on a Best Fit Decreasing
heuristic: the migrating VMs were sorted in decreasing order by CPU utilization and placed
in the host that provided the least increase in power consumption due to the allocation of the
incoming VM. The use of a Best Fit approach makes target sorting strategies irrelevant at the
cost of having to consider every single host in the data centre for each VM that has to be placed.
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2.1.3 Resource Reallocation

On the topic of dynamic VM provisioning, Gmach et al. [15] developed and compared four
different resource reallocation policies, with the goal of minimizing the number of active hosts
while providing Quality of Service to the VMs. The authors concluded that work-conserving
policies with dynamically set weights offered the best results.

Pokluda et al. [16] focused on dynamic memory management. They developed a policy-
based framework that would reallocate memory among the VMs co-located in a host to meet
the VMs’ changing demand. The system could also trigger VM migrations were the local
memory adjustments insufficient to deal with the stress situation.

2.2 VM Relocation

In this section we describe the assumptions and limitations we defined to work with the VM
Relocation problem (Subsection 2.2.1), and the relocation policies we designed to test our
hypothesis (Subsection 2.2.2).

2.2.1 Assumptions and Limitations

In order to limit the scope of the VM Relocation problem as defined in Section 1.2.1, we have
defined the following assumptions and limitations:

1. The set of physical servers is homogeneous (in terms of resource capacity and power
consumption).

2. Hosts’ utilization level calculation is based only on CPU utilization.

3. The virtual machines are independent from each other (i.e., no dependencies).

Item 1 proposes that all physical servers be homogeneous in terms of their resource capacity
and power consumption (effectively making all hosts equal under these two factors). Therefore,
when selecting source or target hosts, resource capacity (as in total number of CPU cores, total
memory, etc) and power consumption can be safely ignored in the decision process.

Item 2 proposes that CPU be the only resource considered when determining the utilization
level of a host. Therefore, whether a host is stressed or not will depend solely on its CPU uti-
lization level. A host could have all its memory allocated and in use, and still not be considered
stressed (i.e., memory stress is not considered a stress situation). Nonetheless, memory and
bandwidth needs are still taken into account when trying to place or relocate a VM, although
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simply as a last minute check that the target host has enough resources to meet the needs of the
incoming VM. In this study, both memory and bandwidth will be constant and the same values
for all VMs, effectively reducing the number of dimensions in the problem.

Item 3 proposes that there be no dependencies between VMs. Dependencies may impose
restrictions of the form “virtual machine x must to be hosted together with virtual machine

y” or “virtual machines x and y cannot be hosted in the same physical server (or even rack

or cluster).” Removing these restrictions simplifies the problem by making it easier to select
VMs to relocate and target hosts for those relocations.

Although these assumptions and limitations do simplify the VM Relocation problem, the
remaining problem is still challenging. Many factors still remain to be considered and priori-
tized when searching for relocations, such as size (CPU utilization level) of the VMs, utiliza-
tion level of the source and target hosts before and after relocation, relocation overhead on the
source and target hosts, number of concurrent relocations per host, and number of active hosts
in the data centre.

2.2.2 Policies

The relocation policies are based on a First Fit heuristic [6]. This heuristic consists of taking
the items that need to be placed, one at a time, and assigning them to the first bin in which they
fit. The relocation policies differ from each other in the order in which they consider the VMs
(items) and the target hosts (bins) for their migrations.

In order to distinguish between hosts, we use the active host classification introduced in
Section 1.2.1, though refined as follows. Active hosts are classified as stressed, partially-

utilized or underutilized, based on their resource utilization level. Two thresholds define the
division between categories: stress and minUsage (high and low level thresholds, respec-
tively). Since we only consider CPU to calculate the utilization level of a host (as per Item 2 in
Section 2.2.1), the thresholds are renamed as stressCPU and minUsageCPU . The categories are
formalized as follows:

• Underutilized: hosts with CPU utilization in the range [0,minUsageCPU];

• Partially-utilized: hosts with CPU utilization in the range (minUsageCPU , stressCPU];

• Stressed: hosts with CPU utilization in the range (stressCPU , 1].

Suspended hosts form a category of their own, Suspended.

The relocation policies have to find sets of VM relocations. Each relocation consists of
three elements: a source host, a candidate VM, and a target host. Source hosts are selected
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from among Stressed hosts, candidate VMs are selected from among the VMs hosted in the
selected source hosts, and target hosts are selected from among Suspended, Underutilized
and Partially-utilized hosts.

1: classify hosts in categories
2: filter and sort source hosts
3: sort target hosts
4: for each source host do
5: filter and sort candidate VMs
6: for each candidate VM do
7: for each target host do
8: try to migrate VM to host
9: if success then

10: record migration
11: move on to next source host
12: end if
13: end for
14: end for
15: end for
16: return list of migrations

Algorithm 1: First Fit heuristic.

As mentioned before, the relocation policies are based on a First Fit heuristic (see Algo-
rithm 1). The first step (line 1) in the heuristic classifies the hosts in their respective categories.
The second step (line 2) removes from among the source hosts those hosts that are currently
involved in relocations. Once the relocations are completed, the utilization level of the hosts
will change and the stress situations may cease to exist. If the stress situations persist, they
will be addressed in the next cycle. The remaining hosts are then sorted in decreasing order by
CPU utilization. This sorting process is common to all policies (except Random, introduced
below).

The third step (line 3) sorts the target hosts. We defined three different ways of combining
the categories from which a target host is to be selected:

1. Increasing: sort Partially-utilized and Underutilized hosts in increasing order by CPU
utilization. Consider Underutilized, Partially-utilized and Suspended hosts, in that order;

2. Decreasing: sort Partially-utilized and Underutilized hosts in decreasing order by CPU
utilization. Consider Partially-utilized, Underutilized and Suspended hosts, in that order;

3. Mixed: sort Partially-utilized hosts in increasing order by CPU utilization and Underuti-
lized hosts in decreasing order by CPU utilization. Consider Partially-utilized, Underuti-
lized and Suspended hosts, in that order.
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Policies VM Sorting Target Sorting

FFDI Decreasing Increasing

FFDD Decreasing Decreasing

FFDM Decreasing Mixed

FFII Increasing Increasing

FFID Increasing Decreasing

FFIM Increasing Mixed

Table 2.1: VM Relocation Policies

The fifth step (line 5) filters and sorts the VMs hosted in the selected source host. Only
VMs with equal or greater CPU load than the CPU load by which the host is stressed are
considered as migration candidates. If no VM satisfies this criteria, all the VMs are considered.
This filtering is done to improve the chances of selecting for migration a VM that will bring
the source host’s utilization level below the stressCPU threshold. After filtering, the VMs are
sorted in one of two ways:

1. Decreasing: sort VMs in decreasing order by CPU load;2

2. Increasing: sort VMs in increasing order by CPU load.

The eighth step (line 8) checks whether the selected target host has enough spare resources
to accept the migration of the selected candidate VM. If this check turns positive, the migration
is recorded (line 10) and the process moves on to the next source host (line 11). Be it noted
that at most one migration is issued for each source host.

By exhaustively combining the two sorting strategies for migration candidates and the three
sorting strategies for target hosts, we obtain six different relocation policies (shown in Table
2.1).

We implemented a seventh policy, Random, which randomizes the order in which source
hosts, migration candidates and target hosts are considered. This policy was added as a bench-
mark.

A final note regarding host selection in these policies: a host cannot be selected both as
migration source and target. Hosts can be source for one migration at a time, but can be
target for several migrations concurrently (as long as they have enough resources to satisfy the
resource requirements of all incoming VMs).

2Be it noted that CPU load is not the same as CPU utilization. The first term refers to the actual number of
CPU shares in use, while the second term refers to the ratio of CPU shares in use over total allocated CPU shares.
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2.3 Evaluation

We used the simulation framework DCSim [17, 18] to conduct our experiments. Though sim-
ulations do not capture the whole complexity of real-world environments, they allow for repli-
cable testing environments (very important when comparing algorithms), enable large-scale
experiments, and significantly reduce the real-time duration of experiments.

Subsection 2.3.1 discusses the configuration of the simulation environment, Subsection
2.3.2 describes the experiments’ design, Subsection 2.3.3 lists and explains the reported met-
rics, and Subsection 2.3.4 presents the results.

2.3.1 Simulator Configuration

DCSim (Data Centre Simulator) is an extensible data centre simulation framework, designed
to provide an easy framework for developing and experimenting with data centre management
techniques and algorithms [18]. Several components in DCSim have to be extended or imple-
mented to evaluate alternative management policies. We worked with DCSim, version 12.01,
in these experiments.

In DCSim, a data centre has a VM Placement Policy to map VMs into hosts at creation
time, a VM Consolidation Policy to perform server consolidation, and a VM Relocation Policy
to relocate VMs away from stressed hosts.

In our experiments we use a simple VM Consolidation Policy that migrates VMs from
underutilized hosts to partially-utilized or higher-loaded underutilized hosts. The use of a
VM Consolidation policy was necessary to allow for stress situations to continue occurring
throughout the simulation. Any solution to the VM Relocation problem, by definition, attempts
to dissipate stress situations by migrating VMs away from stressed hosts. Unless the number of
hosts in the set is so small that VMs are simply migrated in circles, the VM Relocation policy
will unavoidably spread the load (VMs) across the data centre. Server consolidation policies
exist to remedy this situation, and in this particular case, to better allow us to compare the VM
Relocation policies introduced in Section 2.2.2.

Policies are also used in DCSim to manage the allocation (and reallocation) of resources
among the hosted VMs. Static Resource Managers allocate resources to VMs upon placement
in the host and do not alter the allocation at any further point. Dynamic Resource Managers,
on the other hand, perform an initial allocation based on the resource request of the VMs and
then dynamically adjust the allocation to match the VMs’ resource utilization.

In our experiments, we use an oracle-like CPU Manager. This manager is a special kind of
dynamic CPU Manager with perfect knowledge about the VMs’ resource needs at any given
time and can therefore compute a perfect allocation. The use of this CPU Manager allows us to
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perform resource reallocation in real time to meet the resource needs of the VMs without over-
provisioning them. Also, the oracle nature of this manager helps us to prevent ineffective CPU
allocation policies from affecting (and obscuring) the results of the VM Relocation policies
under study.

2.3.2 Experimental Design

We designed four sets of seven experiments to evaluate the relocation policies. Every exper-
iment in a set used the same data centre configuration, but a different VM Relocation policy.
Each experiment lasted 10 simulation days and was repeated 5 times. Results were averaged.

For the first set of experiments, the data centre was configured with 100 hosts, and was set
to run the VM Relocation process every 10 minutes and the VM Consolidation process every
24 hours. The data centre hosted 300 VMs, initially provisioned to meet their peak demand.
(When provisioned for peak demand, a host can only fit 3 VMs, so 300 is the maximum number
of VMs that can be placed in this data centre.)

The second, third and fourth sets of experiments utilized the same data centre configuration,
but hosted 400, 4523 and 500 VMs, respectively, which were initially provisioned to meet their
average demand.

The hosts in these experiments had 4 CPU cores with 1000 CPU shares each (for a total of
4000 CPU shares per host) and 8GB of memory. Bandwidth and storage were not considered
in these experiments. Each host was restricted to at most two concurrent outgoing migrations.
The stressCPU threshold was set at 85% and the minUsageCPU threshold at 50%. There were
400 CPU shares reserved by the CPU Manager to cover migration overhead (200 shares * 2
concurrent migrations), thus effectively reducing the CPU shares available for allocation to
3600.

Each VM was attached to a separate instance of one of four Application Models, with an
equal number of VMs attached to each type of model. All four Application Models worked in a
similar way, but used different workload traces as input. The first two used the ClarkNet HTTP
trace and the EPA HTTP trace available from the Internet Traffic Archive [19]. The second
two used the Google Cluster Data trace [20]. Google Cluster Data is divided into four job
types, from which we extracted the first two as individual workload traces. For each workload
trace, we used the total number of incoming requests in 100 second intervals as the workload
level, which was normalized to the range [0, 1]. Workload traces that were shorter than the
simulation time were looped, and each virtual machine started the trace at a randomly chosen
offset time value to differentiate them from each other. The virtual machines were placed in

3452 VMs were used instead of 450, so as to have an equal number of VMs associated to each of the four
available Application Models.
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the hosts by the VM Placement Policy in a randomized order, with a different random order for
each execution of the simulation.

VMs were limited to a maximum CPU need of 1000 shares (equal to 1 core of the hosts
described above), calculated using the formula 100 + 900 ∗ workload. In the experiment in
which VMs’ initial allocation was set to peak, the allocation was 1000 CPU shares. When it
was set to average, the allocation was the average workload level of the trace to which the VM
was attached. Memory needs for the VMs were fixed at 1GB, and bandwidth and storage were
not considered.

2.3.3 Metrics

In order to compare the relocation policies, we used the following set of metrics provided by
DCSim:

• Active Hosts (Hosts): The average number of hosts powered on. The higher the value,
the more physical hosts are being used to run the workload.

• Average Active Host Utilization (Host Util.): The average CPU utilization of all pow-
ered on hosts. The higher the value, the more efficiently resources are being used.

• Power Consumption (Power): Power consumption is calculated for each host, and the
total kilowatt-hours consumed during the simulation are reported. Suspended hosts are
assumed to have negligible power consumption. Hosts’ power consumption is modelled
as a linear function that defines a fixed power consumption when the CPU is idle and
scales linearly with CPU utilization:

250 watts + 250 watts ∗ host.utilization (2.1)

• Dropped Requests (SLA). The average number of requests that had to be dropped due
to VMs not having their resource demand met. It is used as a measure of SLA violation.

• Number of Migrations (Migs.): The number of VM migrations triggered during the
simulation. Typically, a lower value is preferable, since fewer migrations means less
network overhead.

2.3.4 Results and Discussion

The results of the experiments are presented in Tables 2.2, 2.3, 2.4 and 2.5. Results were
averaged over 5 repetitions of each experiment. The first day of simulation time was discarded
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to eliminate the influence of the initial VM placement and allow the system to stabilize before
collecting metrics. Figure 2.1 shows the results of the second experiment.

Policies Hosts Host Util. Power SLA Migs.
FFDI 70.2 61.5% 6,142.9 0.6% 480
FFDD 64.8 63.5% 6,002.7 0.9% 681
FFDM 65.6 62.8% 6,046.5 0.8% 577
FFII 79.7 63.3% 6,029.7 0.6% 530
FFID 61.5 67.6% 5,715.3 1.7% 1,755
FFIM 64.3 64.3% 5,953.5 0.8% 766
Random 72.9 53.3% 6,760.6 0.7% 909

Table 2.2: Exp. 1 – 300 VMs

Policies Hosts Host Util. Power SLA Migs.
FFDI 88.6 65.3% 7,879.6 0.6% 478
FFDD 84.7 67.5% 7,696.4 0.8% 737
FFDM 86.4 66.4% 7,781.8 0.7% 585
FFII 82.9 68.8% 7,610.8 0.7% 814
FFID 78.0 72.5% 7,300.6 1.7% 2,315
FFIM 84.7 67.8% 7,684.2 0.7% 826
Random 93.0 59.2% 8,397.6 0.7% 1,015

Table 2.3: Exp. 2 – 400 VMs

Policies Hosts Host Util. Power SLA Migs.
FFDI 99.6 65.1% 8,917.2 0.6% 513
FFDD 95.6 67.4% 8,699.5 0.8% 865
FFDM 97.8 66.3% 8,810.5 0.7% 669
FFII 92.8 69.4% 8,550.0 0.8% 960
FFID 88.4 72.3% 8,262.0 1.6% 2,527
FFIM 95.6 67.8% 8,682.7 0.7% 929
Random 99.3 65.2% 8,917.2 0.6% 652

Table 2.4: Exp. 3 – 452 VMs

Policy FFDI used consistently the most hosts, consumed the most power, and achieved
the lowest host utilization. On the other hand, it also achieved the best service (i.e., lowest
percentage of dropped requests) and required the least number of migrations.

Policy FFID behaved opposite to FFDI. It achieved consistently the highest host utiliza-
tion and used the least hosts; consequently, it also reported the lowest power consumption.
However, it paid the price dropping the most requests and triggering the most migrations.
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Policies Hosts Host Util. Power SLA Migs.
FFDI 100.0 71.4% 9259.0 1.1% 1,242
FFDD 100.0 71.4% 9255.4 1.2% 1,540
FFDM 100.0 71.4% 9255.9 1.2% 832
FFII 100.0 71.4% 9258.2 1.1% 1,665
FFID 97.5 72.6% 9110.4 1.7% 3,114
FFIM 100.0 71.3% 9254.5 1.2% 1,371
Random 100.0 71.4% 9258.4 1.1% 1,324

Table 2.5: Exp. 4 – 500 VMs

Policies FFII, FFIM and FFDD achieved average results (between FFDI and FFID), not
excelling under any particular metric. FFDM followed one step behind in terms of using less
hosts, less power and achieving higher utilization, but it performed fewer migrations in doing
so.

The Random policy behaved – predictably – random. It did not excel in any category, but
it did not trigger the most migrations and it did achieve good service.

This results show that no one policy scored best in every metric, which is to be expected
when considering conflicting goals, such as minimizing the number of active hosts and mini-
mizing the number of dropped requests.

The experiments also show that the policies succeeded to different extents depending on
the scenario and the metrics observed. For example, policy FFDM used consistently more
hosts and consumed more power than policies FFII and FFIM. However, in the last experi-
ment, FFDM achieved similar results under both metrics, while issueing 50-60% the number
of migrations.

With regard to the sorting strategies used, we can make a few observations. By sorting
VMs in decreasing order (policies FFD), the first VMs to be considered for migration (and
likely migrated) are high-load VMs. Consequently, source hosts see a significant drop in their
CPU utilization (up to 25% if the VM was using one whole core) and more hosts are activated
due to the difficulty of finding target hosts that can receive a high-load VM.

On the other hand, by sorting VMs in increasing order (policies FFI), low-load VMs4 are
considered first. These VMs have a smaller impact on the source hosts’ utilization (thus keep-
ing utilization high) and its likely easier to find a partially-utilized host that can receive them.
The downside of this situation is that since source hosts are kept highly utilized and partially-
utilized hosts see an increase in their utilization with the arrival of migrated VMs, both source
and target hosts are at a higher risk of becoming stressed again in the near future, therefore

4Though in most cases, these VMs would have enough load to terminate the stress situation; otherwise, they
would have been filtered out.
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Figure 2.1: Exp. 2 – 400 VMs
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causing more migrations in the long run.

From the viewpoint of the target hosts sorting strategies, an anomaly is observed. Policies
FFDI and FFII are the most liberal, looking for suitable target hosts among the lowest utilized
hosts first, while policies FFDD and FFID are the most conservative, trying to migrate VMs to
highly utilized hosts first. Finally, policies FFDM and FFIM represent a compromise, searching
for suitable hosts among the lowest partially-utilized hosts first, thus trying to keep an overall
high utilization without being too conservative. This observation appears to hold true for the
FFD policies and FFID. However, policies FFII and FFIM seem to have switched roles, the
former using less hosts and achieving higher utilization than the latter.

Another interesting observation is that the highest host utilization achieved in these experi-
ments was only 72.6% when the stress threshold (and therefore the utilization goal) was set to
85%. A careful analysis of the restrictions and resource allocation policies in place inform us
that the maximum host utilization that the management policies could have achieved is 76.5%.
This conclusion follows from two premises. First, that the maximum CPU shares available
for allocation in a host is 3600 (as indicated in Section 2.3.2). Second, that the CPU Manager
Oracle allocates CPU to VMs in such a way that the VMs’ utilization is 85% of their CPU al-
location. Therefore, even if a host has 3600 CPU shares allocated, only 3060 would normally
be in use, which is equivalent to a utilization of 76.5%. Therefore, even if utilization could
actually increase up to 90% (i.e., using the 3600 CPU shares allocated), it would be completely
dependent upon the workload of the hosted VMs; the management policies would not be able
to force the utilization higher by placing more VMs into the host.

This work presents a series of shortcomings. Some of these shortcomings were purpose-
fully introduced as assumptions or limitations to limit the scope of the VM Relocation problem
(see Section 2.2.1). Other shortcomings were imposed by the simulation framework.5

First of all, the cost (or overhead) of VM migrations. Migrations impose an overhead in
both source and target hosts. In this experiments, only CPU overhead was accounted for (the
CPU Manager considered a fixed overhead of 200 CPU shares per migration in both hosts).
Memory and bandwidth overhead was ignored at the hosts, and bandwidth overhead on the
networking infrastructure was equally neglected, assuming a dedicated network for migrations.

Second, no delay or cost was associated to the host activation and suspension processes,
enabling migrations to suspended hosts to start immediately.

Third, DCSim provided an advantage that would not hold true in a real-world scenario: the
data centre management system (and policies) possessed perfect knowledge of the utilization
levels of hosts and VMs at all times. In a real system, status information would be sent period-
ically from hosts to management system, with two consequences: first, the information would

5Several of these shortcomings have been addressed already in a newer version of DCSim.
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not be always up-to-date, and second, the status update messages would introduce an overhead
in the networking infrastructure, whose extent would depend on the amount of information
transferred and the frequency of such transmissions.

Finally, we do not compare our policies directly with First Fit heuristics proposed by other
researchers. However, it is easy to recognize similarities between some of our heuristics and
those of other authors: for example, policy FFID matches the heuristic described in [11], while
policy FFDI matches the heuristic described in [12] (see Section 2.1 for more details on these
heuristics).

2.4 Conclusions and Future Work

The goal of this work was to determine whether changing the order in which a relocation
policy considered the candidate VMs and target hosts for migration resulted in better outcomes
(in terms of data centre performance metrics), depending on the situation or the data centre’s
business goals.

The experimental results (see Section 2.3) showed that no one policy scored best in every
metric, and that the policies succeeded to different extents depending on the scenario and the
metrics observed.

These results demonstrate that one single policy will not satisfy all goals and that by tweak-
ing the VM and host sorting strategies better trade-offs can be achieved. Most importantly, the
results suggest that dynamically switching between policies may offer better overall results.

As future work, we plan to focus on removing the assumptions and limitations introduced
in Section 2.2.1, as well as the shortcomings described in Section 2.3.4, and evaluating the
merits of dynamically switching between policies. Another avenue of research could be to
look into fuzzy logic-based controllers for the tasks of target host and candidate VM selection.
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Chapter 3

Switching Data Centre Management
Strategies at Runtime

As discussed in Chapter 1, managing a virtualized data centre is a complex task and there
are multiple goals that a management system could pursue. A management strategy is a set
of policies that determines how each of the main VM Management operations are carried out
across the data centre. In this way, a management strategy defines the behaviour of the data
centre management system.

In this work, we focus on two of the most commonly studied management goals in the area:
(i) minimizing power consumption; and (ii) minimizing Service Level Agreement (SLA) viola-
tions. These goals are often in conflict. Minimizing power consumption is usually approached
by reducing the number of hosts in use (and thus powered on). This is achieved by placing
as many VMs on a single host as possible. However, sudden increases in workload are more
likely to result in a shortage of resources (i.e., a stress situation) and therefore lead to a high
number of SLA violations. Conversely, minimizing SLA violations typically requires VMs
to be spread across more hosts, often each having a significant amount of unused resources
available to handle spikes in demand. This, however, results in higher power consumption.
Designing a management strategy to achieve both of these goals is therefore difficult, as im-
proving performance towards one goal typically results in degradation of performance towards
the other. Design of management strategies often focuses on achieving a single goal, or on pri-
oritizing goals such that a single goal is considered the primary goal and others are considered
secondary, e.g., [2, 3, 4, 5].

Within a dynamic environment there may be times when one management strategy is more
appropriate than another. We propose an approach to dynamically switch between management
strategies where each has a primary focus on a single goal; in this case, one strategy to minimize

0This chapter is based on work published in [1].
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SLA violations and another to minimize power consumption. By doing so, we aim to achieve
better performance in attaining both goals. The main contributions of this work are three novel
methods of dynamically switching between single-goal management strategies, and a method
of comparing the performance of strategies that aim to achieve more than one goal.

The remainder of this chapter is organized as follows: Section 3.1 reviews related work
in this area, Sections 3.2 and 3.3 describe the management strategies and strategy switching
approaches we explored, respectively. Section 3.4 presents experiments and evaluation, and
finally, Section 3.5 concludes and discusses future work.

3.1 Related Work

Several works in the area have approached the problem of placing VMs in a data centre stat-
ically. These works assume VMs’ service demand to be static, or to be variable but exhibit a
periodic cycle, and perform a one-time mapping (i.e., a static allocation) of a set of VMs into
a set of empty hosts by different methods. Cardosa et al. [6] relied on a Best Fit heuristic that
leveraged the CPU allocation features min, max, and shares present in modern hypervisors.
Speitkamp and Bichler [7] showed that the problem could be reduced to the multidimensional
bin packing problem, which is NP-hard, and then proposed a Linear Programming relaxation-
based heuristic, combined with data analysis to characterize variations in workload traces.
Stillwell et al. [8] framed the problem as a constrained optimization problem and formulated
it as a Mixed Integer Linear Program, which required exponential time to calculate an exact
solution. They then proposed and evaluated an extensive set of algorithms, finally settling for
a vector bin packing algorithm that achieved close to optimal solutions to the problem.

Other static approaches have considered variable and aperiodic service demand, but have
addressed the problem by statically allocating VMs to hosts and periodically re-calculating the
complete mapping. Such is the case of Bobroff et al. [3], who used a First Fit Decreasing
heuristic for the task. In most cases, these static approaches aimed to minimize the average
number of active hosts, or to increase host or data centre utilization, and in that way minimize
power consumption.

Research in dynamic management of virtualized data centres focuses on one of the three
management operations (i.e., VM Placement, VM Relocation or VM Consolidation), or a com-
bination of them. Most solutions focus on pursuing a single goal, or on pursuing multiple goals,
but prioritizing one goal over all others. Wood et al. [4] addressed the VM Relocation problem
using a First Fit Decreasing heuristic that spread load across hosts and thus aimed to reduce
SLA violations. Keller et al. [9] studied variants of a First Fit heuristic to address the VM Re-
location problem, showing that the order in which VMs and hosts are considered for migration
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impacts data centre performance metrics, such as power consumption and SLA violations.

Several works address VM Relocation and VM Consolidation together. In most cases, they
focus primarily on minimizing power consumption and then on minimizing SLA violations.
Khanna et al. [2] implemented a First Fit heuristic that migrated the least loaded VMs (in terms
of CPU and memory usage) into the highest loaded hosts. Verma et al. [5] relied on a First Fit
Decreasing heuristic that placed VMs in the most power efficient servers first. Beloglazov and
Buyya [10] proposed a Best Fit Decreasing heuristic that selected for migration the VMs with
the smallest memory footprint and placed them in the host that provided the least increase in
power consumption.

The main difference between this work and the cited ones is that the solution proposed here
focuses on pursuing at the same time two different (and opposing) goals – namely minimizing
SLA violations and minimizing power consumption – without prioritizing one goal over the
other.

As indicated in [8], optimization models have limited applicability in this context, given
that calculating a solution can take several hours – e.g., [8] notes that finding an exact solution
to a small problem instance took under an hour. For this reason, most works in the area turn
to heuristics. As shown above, much of the existing work on dynamic management uses some
form of First Fit heuristics, though occasionally alternatives are proposed, such as fuzzy logic-
based controllers, e.g., [11].

Some heuristics make use of cost functions derived from optimization models to solve a
problem. One approach is to combine multiple objectives (i.e., minimizing power consump-
tion and minimizing SLA violations) into a single objective function, assigning weights to each
objective, and use said function to choose VMs and target hosts for migration. The challenge
with this approach resides in choosing appropriate weights. If both objectives are equally im-
portant, then the same weights could be applied to each objective. However, the effectiveness
of such an approach depends on the level of load in the data centre, which changes dynami-
cally. For example, when there is little load, using equal weights may result in higher power
consumption than needed. In that situation, a heavier weight should be associated to the power
objective, so as to consolidate load and reduce power consumption. This suggests that the
weights should be variable and adaptable to current data centre state.

Alternatively, cost could be assigned to SLA violations and power consumption and the
objective would be to minimize cost. This approach presents two challenges. First, assigning
constant cost would be ineffective. For example, the cost of power consumption varies as the
day progresses. Second, reducing SLA violations to a monetary cost may result on the system
causing many SLA violations (if power costs are high), introducing the possibility of alienating
clients who may take their business elsewhere.
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3.2 Management Strategies

This section presents three management strategies that are representative of those found in the
literature. The strategies presented assume frequent monitoring. Calculations are performed
on monitored values over a sliding window of time, referred to as the monitoring window.

3.2.1 Terminology

This section presents the terms and metrics used in the description of management strategies.

• SLA Violation: An SLA violation occurs when resources required by a VM are not
available to it, as this situation leads to a degradation in performance. The percentage of
required CPU not available in the SLA violation is denoted by s.

• Data Centre Utilization: The overall utilization of the data centre is calculated as the
percentage of total CPU capacity in the data centre that is currently in use.

• CPU Shares: We quantify the capacity of a CPU as CPU shares, where each CPU core
has a specific number of shares which represents its computing power. In our work, the
number of shares assigned to each core is based on its frequency, with 1GHz = 1000
shares.

• Power Efficiency: For a host, h, the power efficiency, ph, is the amount of processing
being performed per watt of power. This is measured in CPU-shares-per-watt (cpu/watt).
The calculation of the power efficiency of a single host is presented in Equation 3.1:

ph =
cpuInUseh

powerConsumptionh
(3.1)

where cpuInUseh is the number of CPU shares currently in use across all cores in the
host, and powerConsumptionh is the current power consumption in watts of the host. As
an active host machine consumes a significant amount of power even when under little
or no CPU load (i.e., very low power efficiency) increased host utilization corresponds
with increased power efficiency for that host. This metric is used to calculate the power
efficiency for the entire data centre, pdc, calculated as

pdc =

∑
h∈hosts

cpuInUseh∑
h∈hosts

powerConsumptionh

(3.2)
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such that hosts is the collection of all hosts in the data centre.

• Maximum Power Efficiency: This metric represents the best power efficiency a host
can achieve, calculated as the power efficiency of the host at maximum CPU utilization.

• Optimal Power Efficiency: Optimal Power Efficiency, popt
dc , represents the best possible

power efficiency achievable at the data centre level, given the current workload and set of
host machines available. The best power efficiency would be achieved by placing VMs
in such a way that each host is 100% utilized, with the most power efficient hosts being
filled first. We first calculate the total CPU-in-use across the data centre. We order the
available hosts by maximum power efficiency, and allocate the CPU-in-use to hosts such
that each host is allocated 100% of its CPU capacity. We calculate popt

dc to be the power
efficiency of the data centre given this allocation.

3.2.2 Host Classification

Each time a management operation takes place, hosts are classified into categories based on
their power state: on, suspended or off. Powered on hosts are further classified as stressed,
partially-utilized or underutilized, based on their CPU utilization level. Hosts may transition
between these states based either on changes in workload of the hosted VMs, or migrations
performed by the management operations. Two threshold values are used for categorization:
stressCPU and minUsageCPU . Classification is based on the hosts average CPU utilization over
the last monitoring window (measurements collected every 2 minutes over a sliding window of
size 5). Categories are defined as follows:

• Stressed: hosts with average CPU utilization in the range (stressCPU , 1];

• Partially-utilized: hosts with average CPU utilization in the range
(minUsageCPU , stressCPU];

• Underutilized: hosts with average CPU utilization in the range [0,minUsageCPU];

• Empty: hosts that do not currently have any VM assigned to them. Hosts in suspended
or off power state are included in this category.

It should be noted that VM Relocation policies make the determination of whether a host is
stressed in a slightly different way based on how the most recent measurements of host utiliza-
tion are considered. This stress check may mark as partially-utilized a host that is considered
stressed under this classification, or vice versa. More information on this issue is presented in
Section 3.2.3.
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3.2.3 Power and SLA Strategies

Power and SLA are single-goal strategies, which means that all management decisions are
geared towards achieving a single, primary goal. Single-goal strategies may pursue secondary
goals, but always give them lower priority than the primary goal.

In the next subsections, we will describe the VM Placement, VM Relocation and VM Con-
solidation policies that comprise these two strategies. Much of the existing work on dynamic
management uses some form of First Fit heuristics. The work described in Stillwell et al. [8]
(for static workloads) and Keller et al. (for dynamic workloads) [9] studied variants of First Fit
heuristics to find that they work best in practice. The Power and SLA strategies are based on
such heuristics and are representative of other work on dynamic resource management.

The strategies use different values for the stressCPU threshold: the Power strategy uses 95%
and the SLA strategy used 85%. The lower threshold for the SLA strategy allows for additional
resources to be available for workload variations. Both strategies use the minUsageCPU thresh-
old at 60%.

VM Placement

This management operation runs each time a new VM creation request is received, and selects
a host in which to instantiate the VM. The VM Placement policy for the Power strategy (see
Algorithm 2) first classifies hosts in their respective categories (line 3): stressed (z), partially-
utilized (p), underutilized (u) and empty (e). The policy then sorts each host category (lines 4-
5): p and u are sorted in decreasing order first by maximum power efficiency and then by CPU
utilization, and e is sorted in decreasing order first by maximum power efficiency and then by
power state. This sorting method ensures that the placement focuses on power efficiency over
any other considerations. The policy then builds a list of target hosts by concatenating p′, u′

and e′ (line 6). Finally, following a First Fit approach, the policy assigns the VM to the first host
in target with enough capacity to host the VM (lines 7-12). The method hasCapacity(VM)
checks whether the host can meet the resource requirements indicated in the VM creation
request (line 8) without the host becoming stressed.

The VM Placement policy for the SLA strategy differs from the Power strategy’s policy in
the way p and u are sorted: p is sorted in increasing order first by CPU utilization and then
by maximum power efficiency and u is sorted in decreasing order first by CPU utilization and
then by maximum power efficiency. This sorting method ensures that the placement focuses on
spreading load across the hosts, leaving spare resources to handle spikes in resource demand,
over any other considerations.
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1: Input: V M
2: Output: –
3: z, p, u, e = classifyHosts(hosts)
4: p′, u′ = sortPowerEffThenUtil(p, u)
5: e′ = sortPowerEffThenState(e)
6: target = concatenate(p′, u′, e′)
7: for host in target do
8: if host.hasCapacity(V M) then
9: host.deploy(V M)

10: break
11: end if
12: end for

Algorithm 2: Power strategy’s VM Placement policy.

VM Relocation

This management operation runs frequently over short intervals of time, so as to detect stress
situations as soon as possible. For both strategies, the interval is set to 10 minutes. This op-
eration determines which hosts are experiencing a stress situation and attempts to resolve the
situations by migrating one VM from each stressed host to a non-stressed host. The VM Relo-
cation policy for the Power strategy (see Algorithm 3) first classifies hosts in their respective
categories (line 1), performing a stress check on all hosts to determine whether or not they
are stressed. The policy determines that a host is stressed if its CPU utilization has remained
above the stressCPU threshold all of the time over the last CPU load monitoring window. The
resulting host categories are: stressed (z), partially-utilized (p), underutilized (u) and empty
(e). The policy then sorts each host category (line 2-4): z is sorted in decreasing order by CPU
utilization, p and u are sorted in decreasing order first by maximum power efficiency and then
by CPU utilization, and e is sorted in decreasing order first by maximum power efficiency and
then by power state. The policy then builds a list of target hosts by concatenating p′, u′ and e′

(line 6). Following a First Fit heuristic, the policy selects one VM from each host h in source

and a corresponding host in target to which to migrate the VM (lines 7-22). For each host h

in source, the policy filters out the VMs with less CPU load than the CPU load by which h is
stressed and sorts the remaining VMs in increasing order by CPU load (line 8). If the list of
remaining VMs is empty, all VMs are considered and sorted in decreasing order by CPU load.
The method migrate(h,VM,host) initiates a migration (line 13).

The VM Relocation policy for the SLA strategy differs from the Power strategy’s policy in
the way p and u are sorted: p is sorted in increasing order first by CPU utilization and then
by maximum power efficiency and u is sorted in decreasing order first by CPU utilization and
then by maximum power efficiency. In addition, the policy performs a different stress check: a
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1: z, p, u, e = classifyHosts(hosts)
2: z′ = sortUtil(z)
3: p′, u′ = sortPowerEffThenUtil(p, u)
4: e′ = sortPowerEffThenState(e)
5: source = z′

6: target = concatenate(p′, u′, e′)
7: for h in source do
8: vms = filterAndSort(h.vms)
9: success = FALSE

10: for V M in vms do
11: for host in target do
12: if host.hasCapacity(V M) then
13: migrate(h, V M, host)
14: success = TRUE
15: break
16: end if
17: end for
18: if success then
19: break
20: end if
21: end for
22: end for

Algorithm 3: Power strategy’s VM Relocation policy.
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host is stressed if its last two monitored CPU load values are above the stressCPU threshold or
its average CPU utilization over the last CPU load monitoring window exceeds stressCPU .

VM Consolidation

This management operation runs less frequently than VM Relocation, given that its purpose
is to consolidate the load that VM Placement and VM Relocation have spread across the data
centre. The interval is set to 4 hours for the SLA strategy (as shown in [11]) and to 1 hour
for the Power strategy, aiming in the latter case to achieve and sustain a higher degree of
consolidation. This operation consolidates load in the data centre by migrating VMs away
from underutilized hosts (and suspending or powering them off) and into partially-utilized
hosts. The VM Consolidation policy for the Power strategy (see Algorithm 4) first classifies
hosts in their respective categories (line 1): stressed (z), partially-utilized (p), underutilized
(u), and empty (e), and powers off e (line 2). The policy then sorts p and u in decreasing order
first by maximum power efficiency and then by CPU utilization (line 3) and builds a list of
target hosts by concatenating p′ and u′ (line 4). Afterwards, the policy sorts u again, but this
time in increasing order first by power efficiency and then by CPU utilization, and uses that list
as source (line 5). Following a First Fit heuristic, the policy attempts to vacate every host h in
source by migrating their VMs into hosts in target (lines 6-16). For each host h in source, the
policy sorts its VMs in decreasing order first by overall resource capacity (memory, number
of CPU cores, core capacity) and then by CPU load (line 7). Given that source and target

are not disjunct, measures have to be taken to avoid using a host both as source and target for
migrations.

The VM Consolidation policy for the SLA strategy differs from the Power strategy’s policy
in the way p and u are sorted: first, p is sorted in increasing order first by CPU utilization and
then by maximum power efficiency and u is sorted in decreasing order first by CPU utilization
and then by maximum power efficiency, and then, u is sorted in increasing order by CPU
utilization.

3.2.4 Hybrid Strategy

We designed a dual-goal strategy as a combination of the Power and SLA strategies; the Hybrid
strategy consists of the VM Placement and VM Relocation policies of the SLA strategy and
the VM Consolidation policy of the Power strategy. Furthermore, the stress check performed
by the VM Relocation policy represents a compromise between the checks of SLA and Power:
it determines that a host is stressed only if its average CPU utilization over the last monitoring
window exceeds the stressCPU threshold. The thresholds stressCPU and minUsageCPU were set
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1: z, p, u, e = classifyHosts(hosts)
2: powerOff(e)
3: p′, u′ = sortPowerEffThenUtil(p, u)
4: target = concatenate(p′, u′)
5: source = sortPowerEffThenUtil(u)
6: for h in source do
7: vms = sort(h.vms)
8: for V M in vms do
9: for host in target do

10: if host.hasCapacity(V M) then
11: migrate(h, V M, host)
12: break
13: end if
14: end for
15: end for
16: end for

Algorithm 4: Power strategy’s VM Consolidation policy.

to 90% and 60% respectively.

3.3 Dynamic Strategy Switching

Dynamic Strategy Switching (DSS) refers to changing between strategies at run-time in re-
sponse to changing data centre state. DSS periodically performs an evaluation of data centre
metrics monitored between executions to determine if the strategy currently in use (the active

strategy) should be changed. In this section, we present three different DSS meta-strategies.

3.3.1 SP-DSS

The SLA-Power Thresholds (SP-DSS) meta-strategy uses the SLA violation (s) and power ef-
ficiency ratio (per) metrics to evaluate whether the active strategy should be switched. The
power efficiency ratio is calculated as the ratio of optimal power efficiency (popt

dc ) to current
power efficiency (pdc) over the last hour. A strategy switch is triggered when the metric re-
lated to the goal of the active strategy (i.e., s for the SLA strategy, per for the Power strategy)
is below a normal (i.e., acceptable) threshold (snorm or pernorm), while the metric related to
the inactive strategy exceeds a high threshold (shigh or perhigh). See Algorithm 5 for details.
Switching strategies in this manner allows the data centre to respond to a situation in which
performance in one metric has deteriorated, by activating the strategy that focuses on optimiz-
ing it.
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1: if activeS trategy == Power S trategy then
2: if per < pernorm & s > shigh then
3: Switch to S LA S trategy
4: end if
5: else if activeS trategy == S LA S trategy then
6: if s < snorm & per > perhigh then
7: Switch to Power S trategy
8: end if
9: end if

Algorithm 5: SP-DSS Switching Conditions.

3.3.2 Goal-DSS

We define two goals, s = 0% and pdc = popt
dc , to evaluate performance with respect to the s and

p metrics. By calculating the distance to these goals, it is possible to determine towards which
goal the system is performing worst and thus switch to the strategy that would improve achieve-
ment of that goal. The Distance to Goals (Goal-DSS) meta-strategy is based on this principle.
Evaluating whether or not the active strategy should be switched requires the calculation of
two metrics that represent the distance to those goals. These are presented in Equations 3.3 and
3.4.

slaDist =
s

sworst
(3.3)

where s is the current SLA violation percentage and sworst is an operator-defined parameter that
indicates the worst acceptable SLA violation percentage, and

powerDist = 1 −
pdc − pworst

popt
dc − pworst

(3.4)

pworst = popt
dc ∗ pC (3.5)

where pworst is the worst acceptable power efficiency, and pC is an operator-defined parameter
that indicates how large a deviation from the optimal power efficiency is acceptable.

Calculating the distances in this manner is necessary in order to equate values of s with
values of p, based on the parameters sworst and pC. These two values are considered equiva-
lent in terms of distance to their respective goals. At each iteration of the strategy switching
mechanism, the strategy for which the corresponding distance is greater is selected to become
active. See Algorithm 6 for details.
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1: if activeS trategy == Power S trategy then
2: if slaDist > powerDist then
3: Switch to S LA S trategy
4: end if
5: else if activeS trategy == S LA S trategy then
6: if powerDist > slaDist then
7: Switch to Power S trategy
8: end if
9: end if

Algorithm 6: Goal-DSS Switching Conditions.

3.3.3 Util-DSS

Through experimentation, two key situations in which one strategy had an advantage over
the other became apparent. When overall data centre utilization is growing, increasing the
stress on host machines, the SLA strategy is more effective as it places greater emphasis on
preventing SLA violations. Conversely, when utilization is decreasing or stable, thus increasing
the likelihood of hosts becoming underutilized, the Power strategy is more effective as it can
quickly make changes to conserve power. Data centre utilization is defined as the percentage
of CPU shares in use across the entire data centre.

The Data Centre Utilization Trends (Util-DSS) meta-strategy is designed to exploit this
pattern. It uses the rate of change of overall data centre utilization, m, to determine appropriate
times to switch strategies. Measurements of the overall data centre utilization are taken at reg-
ular intervals. Linear regression over the last n data centre utilization measurements provides
the rate of change, m, over a window of time. The value mS LA defines a threshold for m over
which a switch is made to the SLA strategy. Similarly, the value mPower defines a threshold for
m under which the Power strategy is set to be active. See Algorithm 7 for details.

1: if activeS trategy == Power S trategy then
2: if m > msla then
3: Switch to S LA S trategy
4: end if
5: else if activeS trategy == S LA S trategy then
6: if m < mpower then
7: Switch to Power S trategy
8: end if
9: end if

Algorithm 7: Util-DSS Switching Conditions.
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3.4 Evaluation

This section presents our experimental approach, results and discussion.

3.4.1 Strategy Evaluation and Comparison

In order to evaluate the effectiveness of the strategies, two metrics are used: power efficiency
(p) and SLA violation (s). Comparing strategies based only on the use of these two metrics is
problematic. If one strategy were to perform well with respect to SLA violations at the expense
of power, and another performed well with respect to power at the expense of SLA violations,
it is difficult to conclude which strategy is preferable. The decision depends in part upon the
relative change in each area as well as the importance placed on each metric by the data centre
operators based on their business objectives, the relative costs of power and SLA violations
and the potential for lost revenue due to poor application behaviour.

In order to determine whether DSS can offer improved results over a single strategy, we
propose a method of evaluating the performance of a strategy based on experimental results.
We use the SLA and Power strategies as benchmarks, with their SLA violation and power
efficiency results serving as baseline measurements with which to evaluate other strategies. The
SLA strategy provides the bounds for the best SLA violation value (sbest = sS LA) and the worst
power efficiency (pworst = pS LA), while the Power strategy provides the worst SLA violation
(sworst = sPower) and best power efficiency (pbest = pPower). Values from a candidate strategy,
i, are then normalized using these bounds to produce the normalized vector, vi, represented by
[snorm, pnorm]. The values snorm and pnorm are defined in Equation 3.6.

snorm =
(si−sbest)

(sworst−sbest)

pnorm =
(pbest−pi)

(pbest−pworst)

vi = (snorm, pnorm)

(3.6)

where pnorm is the normalized power efficiency and snorm is the normalized SLA violation.

Note that pbest > pworst, but sbest < sworst, so the normalization equations differ to reflect
this. Once we have the normalized vector, vi, we calculate its L2-norm, |vi|, and use this as an
overall score (scorei) for the candidate strategy.

scorei = |vi| =

√
s2

norm + p2
norm (3.7)

where a smaller score is considered better, as it represents a smaller distance to the best bounds
of each metric (defined by sbest and pbest). The SLA and Power strategies always achieve a
score of 1 by definition, as they achieve the best score in one metric and the worst in the other.
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Scores less than 1 indicate that overall performance of the candidate strategy has improved
relative to the baseline strategies.

Note that this score is only valid for a single experiment in which all factors except for
the active management strategy remain constant. In our work, we vary the workload pattern
experienced by the data centre. As such, the baselines and score must be calculated separately
for each workload pattern. The average final score across all experiments can then be used
to evaluate the strategy. We use this method to evaluate and compare competing management
strategies.

3.4.2 Experimental Setup

We conduct our experimentation by simulation using DCSim [12]. Our simulated data centre
consists of 200 host machines, of which there are an equal number of two types: small and
large. The small host is modelled after the HP ProLiant DL380G5, with 2 dual-core 3GHz
CPUs and 8 GB of memory. The large host is modelled after the HP ProLiant DL160G5, with
2 quad-core 2.5GHz CPUs and 16GB of memory. Cores in the large host have 2500 CPU
shares, and cores in the small host have 3000 CPU shares. The power consumption of both
hosts is calculated using results from the SPECPower benchmark [13]. The maximum power
efficiency of the large host (85.84 cpu/watt) is roughly double that of the small host (46.51
cpu/watt).

Three VM sizes are created: small requires 1 virtual core with at least 1500 CPU shares and
512MB of memory, medium requires 1 virtual core with at least 2500 CPU shares and 512MB
of memory, and large requires 2 virtual cores with at least 2500 CPU shares each and 1GB of
memory.

Hosts are modelled to use a work-conserving CPU scheduler, as available in major virtu-
alization technologies. That is, any CPU shares not used by a VM can be used by another.
No maximum cap on CPU is set for VMs. In the case of CPU contention, VMs are assigned
shares in a round-robin fashion until all shares have been allocated. No dynamic voltage and
frequency scaling (DVFS) is considered. Memory is statically allocated and not overcommit-
ted.

During a VM migration, an SLA violation of 10% of CPU utilization is added to migrating
VMs, and an additional CPU overhead of 10% of the migrating VMs CPU utilization is added
to both the source and target host [10].

Measurements of metrics used by management policies, such as host CPU utilization and
SLA violation, are drawn from each host every 2 minutes and evaluated by the policy over a
sliding window of 5 measurements.
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Strategy Param. Value
SP-DSS pernorm 0.004
SP-DSS perhigh 0.006
SP-DSS snorm 1.15
SP-DSS shigh 1.3

Goal-DSS sworst 0.01
Goal-DSS pC 0.83
Util-DSS mS LA 0.00255
Util-DSS mpower 0.00255

Table 3.1: DSS Tuning Parameters

3.4.3 Workload

A data centre experiences a highly dynamic workload, driven by VM arrivals and departures,
as well as dynamic workloads and resource requirements of VMs. We generate random work-

load patterns to evaluate our strategies, where a workload pattern consists of a set of VMs
with specific start and stop times, each with dynamic trace-driven resource requirements. Each
VM is driven by one of 5 individual traces: the ClarkNet, EPA, and SDSC traces [14], and two
different job types from the Google Cluster Data trace [15]. The normalized rate of incoming
requests, in 100 second intervals, is calculated for each trace. The request rates are used to
define the current workload of each VM, with the CPU resource requirements of the VM cal-
culated as a linear function of the current rate. Each VM starts its trace at a randomly selected
offset time.

The number of VMs within the data centre is also varied dynamically to simulate the arrival
and departure of VMs. A base of 600 VMs is created within the first 40 hours and remain run-
ning throughout the entire experiment, to maintain a reasonable minimum level of load. After
2 simulated days, new VMs begin to arrive at a changing rate, and terminate after about 1 day.
The arrival rates are generated such that on a fixed interval of once per day, the total number of
VMs in the data centre is equal to a randomly generated number uniformly distributed between
600 and 1600. The maximum number of VMs, 1600, was chosen because beyond that point,
the SLA strategy is forced to deny admission of some incoming VMs due to insufficient avail-
able resources. This continues for 10 simulated days at which point the experiment terminates.
Data from the first 2 days of simulation are discarded to allow the simulation to stabilize before
recording results.
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3.4.4 Strategy Switching Tuning Parameters

Each DSS strategy has some tuning parameters that must be configured to provide the best
possible results, as described in Section 3.3. The first of these is the frequency with which the
strategy switching algorithm is run. We evaluated the meta-strategies over multiple frequency
values and found 1 hour to be an appropriate frequency for evaluating a strategy switch. Each
DSS strategy looks at a set of data centre metrics sampled by a monitor over a certain window
size: SP-DSS and Goal-DSS sample every 5 minutes and use a window size of 6 samples; Util-
DSS samples every 20 minutes and uses a window size of 6. Util-DSS uses a longer monitoring
frequency and window size in order to ignore minor fluctuations in data centre utilization and
focus on longer term trends. This helps identify periods of real change in overall utilization,
and avoid thrashing between strategies. For the remaining DSS tuning parameters, each com-
bination of values was evaluated over a set of 5 randomly generated workload patterns, and the
values that resulted in the best score were chosen. Table 3.1 contains the values of the best
performing of all parameters defined in Section 3.3.

3.4.5 Metrics

• Average Active Host Utilization (Host Util.): the average CPU utilization of powered
on hosts.

• Power Consumed (Power): the total power consumed by all hosts, measured in kWh.

• Power Efficiency (PwrEff): is pdc over the entire simulation.

• SLA Violation (SLA): s over the entire simulation.

• Number of Migrations (Migrations): the number of VM migrations triggered by the
management strategies.

• Number of Strategy Switches (Switches): the number of times that the active strategy
was changed.

3.4.6 Results and Discussion

The results of the experiments are presented in Table 3.2. Each management strategy was
evaluated with the same set of 100 randomly generated workload patterns. Each experiment
was repeated only once per workload pattern, as the simulation is deterministic. Results were
averaged across all workload patterns. In addition to reporting the metrics listed in Section
3.4.5, we report the normalized SLA and power values for each strategy, as well as the score.
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Figure 3.1: Strategy Scores

Figure 3.1 presents a graphical representation of the scores. The benchmark strategies (SLA
and Power) both achieve a score of 1, by the definition of the score in Section 3.4.1. The angle
of the line from the origin to each point gives an indication of how fairly the strategy behaved
towards each goal, with a 45 degree angle representing a perfect balance between SLA and
power.

Analysis of Variance was performed on the score results, as well as paired t-tests for each
pair of management strategies. The resulting scores for each management strategy were found
to be significantly different from each other.

All three DSS meta-strategies, as well as Hybrid, achieved better scores than the single-
goal SLA and Power strategies. Util-DSS achieved the lowest score, followed by SP-DSS,
then Goal-DSS, and finally Hybrid. The meta-strategies improved the score by about 40%
when compared to Power and SLA, and by about 7-12% when compared to Hybrid. Util-DSS
and SP-DSS each slightly favoured one of the goals, with Util-DSS favouring power and SP-
DSS favouring SLA. Goal-DSS behaved fairly towards both goals. Hybrid, on the other hand,
was considerably more skewed towards SLA than power, potentially limiting its usefulness in
a practical application. The improved overall performance, as well as the balanced treatment of
each goal, may therefore favour the selection of DSS over Hybrid. Among the meta-strategies,
Util-DSS showed to be the most effective, though Goal-DSS was the most balanced.
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All meta-strategies triggered 31 to 33% more migrations than the Hybrid strategy. While
migration overhead was taken into consideration and reflected in the SLA violation and host
utilization metrics, further work investigating the effect of migrations on networking should be
conducted to determine if this migration count is acceptable. The increase in migration count
from Hybrid to DSS is likely a side-effect of switching between strategies with different stress

thresholds. The Power strategy efficiently pushes the utilization of a large number of hosts to
a high value, just below its stress threshold. A switch to the SLA strategy at this point causes
a large number of hosts to be considered stressed, as its stress threshold is below the current
utilization achieved by the Power strategy. Thus, a spike in migrations is triggered. This also
causes a spike in SLA violations due to migration overhead. It may be possible to introduce a
mechanism to mitigate this effect and thus lower the DSS meta- strategy migration count. Such
a mechanism may also result in an overall better score for the meta-strategies.

SP-DSS switched strategies the least number of times, followed by Util-DSS and Goal-
DSS. This may be an indication that Util-DSS and Goal-DSS performed some strategy switches
that did not contribute to improving performance towards the intended goals (possibly exhibit-
ing a thrashing behaviour), and should be investigated.

3.5 Conclusions and Future Work

The development of data centre management strategies that can simultaneously pursue oppos-
ing goals, such as maximizing power efficiency and minimizing SLA violations, is a difficult
task. In this work, we proposed dynamically switching between two strategies, each designed
to achieve a single goal, to better adapt to changing data centre conditions. We developed three
meta-strategies to perform dynamic strategy switching, and evaluated them through simula-
tion. The meta-strategies improve overall performance by about 40% when compared to either
of the single-goal strategies, and by 7-12% when compared to a hybrid strategy designed to
pursue both goals simultaneously.

There are several directions for future work. Regarding DSS, the meta-strategies’ behaviour
when switching between strategies could be improved, so as to avoid spikes in migrations. DSS
could also be applied separately to subsets of hosts, such as individual racks or clusters. Finally,
threshold values and tuning parameters could be learned rather than fixed.

Networking overhead was not considered in this work. In the future, we intend to develop
networking metrics to be used in our evaluations of management policies and strategies. An-
other topic of interest is the inclusion of constraints and affinity rules to help in determining
the placement of VMs on hosts, as discussed by Gulati et al. [16].

Currently, our work relies only on CPU measurements to determine the level of load of



54 Chapter 3. Switching Data CentreManagement Strategies at Runtime

a host or VM, with other resources used only as a constraint on placement. In the future,
load calculation should take into consideration memory and bandwidth, in addition to CPU
(e.g.,[17]).

Future work could incorporate forecasting of VMs’ resource demand, such as done by
Bobroff et al. [3]. This would have an effect in the detection of stress situations, and in VM
and host selection for migration.

Finally, this work essentially assumes a central manager for all decision making. Other
architectural models could be explored, such as that presented by Zhu et al. [18].
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Chapter 4

A Hierarchical, Topology-aware Approach
to Dynamic VM Management

As mentioned earlier, a data centre can be thought of, in essence, as a collection of hosts con-
nected through a high-speed, high-bandwidth network. A management system is required to
administer this infrastructure, mapping VMs to hosts and powering hosts on and off as needed.
The architecture of the management system determines important properties of the system,
such as scalability, quality of management decisions, and degree of management overhead.
Different architectures offer different trade-offs between these properties.

Most resource management systems are designed for a cluster, do not appear to scale be-
yond a single cluster and are typically centralized [2]. The assumption of a centralized manager
is often reflected in proposed dynamic resource management systems (e.g., [3, 4, 5]). These
systems, however, may not be able to cope with the scale of large data centres so as to sat-
isfy realistic demands [6, 7]. In addition, by treating the entire data centre as a single pool
of resources, management data (including communication and VM migrations) is sent across
the network without considering the overhead, resulting in an inefficient use of data centre
resources.

In this work, we investigate a hierarchical approach to data centre management. Hierar-
chical approaches offer increased scalability at the expense of having only a partial view of
the system [8]. We divide the management domain into scopes of management, each encom-
passing a subset of managed elements, and encapsulating management data and management
actions within itself. We leverage the topology of the data centre network to define scopes; the
scopes are host, rack, cluster and data centre. By making the hierarchy topology-aware, we
limit the flow of management data across the data centre. We hypothesize that this organization
will result in a more efficient use of the data centre, greatly reducing network traffic.

0This chapter is based on work published in [1].

57



58 Chapter 4. A Hierarchical, Topology-aware Approach to Dynamic VM Management

Challenges in using a hierarchical approach to dynamic data centre management include
the following: (i) Defining a set of metrics to represent the system state of racks and clusters.
A cluster manager could send information about all of its hosts to the data center manager, but
that would represent a large amount of data to be transmitted and analyzed; (ii) Determining the
responsibilities of managers and the interactions between them. Both challenges are addressed
in this work.

The remainder of this chapter is organized as follows: Section 4.1 reviews related work in
this area, Section 4.2 discusses the proposed management system, and Section 4.3 describes
the management strategies and policies implemented. Section 4.4 presents and discusses ex-
perimental results, and Section 4.5 concludes and suggests directions of future work.

4.1 Related Work

Most work on data centre management focuses on centralized approaches to dynamic VM man-
agement. In these works, a single, central manager makes decisions using global knowledge
of the state of every component in the data centre. Some of these works assume VM resource
demand to be static and perform a static allocation of a set of VMs into a set of empty hosts,
using best fit heuristics, linear programming or vector bin packing algorithms [9, 10, 3]. Other
works, however, do not make this assumption (i.e., work with dynamic VM demand) and use
fuzzy logic-based controllers, first fit heuristics or greedy hill-climbing techniques to perform
dynamic reallocation of host resources to VMs [11, 4, 5, 2].

Some research has been done, nonetheless, on hierarchical approaches to data centre man-
agement. Zhu et al. [12] proposed the use of a hierarchy of resource controllers: a node
controller performed resource reallocation among co-located workloads in a host, a pod con-
troller migrated workloads between hosts in its pod (to prevent stress situations), and a pod
set controller migrated workloads between pods to improve their individual performance. The
system relied on a variety of techniques, such as fuzzy logic-based controllers, genetic algo-
rithms and trace-based analysis. Feller et al. [7] developed a VM management framework for
private IaaS clouds that consisted of a 3-level hierarchy of managers (host, cluster and data cen-
tre levels) for increased scalability, and offered fault-tolerance through replication and failure
recovery mechanisms. Moens et al. [6] proposed the use of a hierarchical management system
for clouds, where nodes were organized in a B-Tree structure. Their goal was to investigate
how a centralized application placement algorithm could be adapted to run on a hierarchical
context. In a follow-up work, Moens et al. [8] presented a scalable framework to build and
manage hierarchical management systems.

Our work differs from the current literature in that we propose to leverage the topology
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Figure 4.1: Target data centre infrastructure and management scopes.

of the data centre network to build the management system’s hierarchy, thus limiting the flow
of management data across the network. We also focus on the definition of aggregate metrics
to convey system state information across management levels. In addition, we develop proto-
cols (expressed as management strategies and policies) for the managers at different levels to
collaborate in the execution of management operations, such as placement and consolidation.

4.2 Hierarchical Management

In this section we describe the target data centre infrastructure (Section 4.2.1) and the proposed
management system’s architecture (Section 4.2.2). We also discuss the collection of monitoring
data, the definition of aggregate metrics, and the communication of status data (Section 4.2.3).

4.2.1 Data Centre Infrastructure

The target infrastructure consists of a collection of clusters, each cluster being a collection of
racks, and each rack a collection of physical servers (see Figure 4.1). Virtual machines (VMs)
are hosted in physical servers (or hosts), where they are allocated resources to run.

There are two networks in the data centre: the data network and the management network.
The data network is used by VMs for applications’ communication, while the management
network is reserved for management data (i.e., communication and VM migrations). Both
networks have the same architecture. The hosts in a rack are connected to the networks through
two switches – one per network – placed inside the rack. The racks in a cluster are connected
to each other through a cluster-level switch, and the cluster-level switches are connected to a
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central switch at data centre-level. From now on, when we talk about the data centre network,
we will be referring to the management network.

4.2.2 System Architecture

The idea behind using a hierarchical approach to management is to logically group sets of hosts
and manage each set as a unit, encapsulating detailed monitoring and management actions
within the unit as much as possible. In addition, the elements at each level are grouped again
to form the elements of the level above. These results in the creation of scopes of management,
which limits the spread of management data across the data centre. Monitoring data is collected
within each scope and a summary of the data is shared with the upper-level management. VM
migrations, as much as possible, are also restricted to their own scope.

We decided to leverage the organization of the data centre network by using hosts, racks
and clusters to delimit management scopes. In addition, the data centre as a whole forms a
large, all-encompassing management scope.

Each management scope has an autonomic manager associated to it. Each manager has a
set of policies and a knowledge base. Events received by the manager may trigger the execution
of one or more policies, and the execution of policies may result in actions or further events be-
ing triggered. The knowledge base is updated with information sent to the manager in the form
of events and by the policies’ execution. Host managers form the lowest level of the hierarchy
(Level 0). Above the host managers are rack managers (Level 1) and above rack managers are
cluster managers (Level 2). The data centre manager forms the top of the hierarchy (Level 3).

Communication between managers occurs both periodically (monitoring) and as needed (in
response to events). Messages travel vertically up and down the hierarchy and, less frequently,
horizontally. (Management communication is covered in more detail in Sections 4.2.3 and 4.3.)

4.2.3 Monitoring Data, Aggregate Metrics and Status Updates

Host managers periodically collect monitoring data from hosts and (hosted) VMs. The col-
lected data includes resource utilization (CPU, memory, network bandwidth and storage) of
each VM and of the host itself, host power consumption, and the number of current incoming
and outgoing VM migrations. This information is packaged and sent to the manager of the
rack to which the host belongs in the form of a status update.

Rack managers process the status updates sent by the various host managers within their
scope and update their knowledge base with the information received. In time, the rack man-
agers process the information in their knowledge base and create a status update message to
send to their corresponding cluster manager. The status update includes the number of active,
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suspended and powered off hosts in the rack, the rack’s power consumption (calculated as the
sum of the hosts’ power consumption, plus the power consumption of the two switches in the
rack), and the amount of spare resources available in the least loaded active host in the rack
(max spare capacity metric).

The purpose of the max spare capacity metric is to convey, in a single metric, the largest
number of spare resources available in one of the rack’s hosts. In this way, when a decision has
to be made regarding the placement or migration of a VM, it is possible to determine whether
a rack will have enough space available – in any of its active hosts – to fit the VM. In addition,
the max spare capacity metric was designed to be a single, unitless value. This is achieved by
defining a standard VM size measure (similar to defining a standard measure of “volume”) and
calculating the number of standard VMs that could fit in the given spare capacity. For example,
if a host currently had 3 free CPU cores and 5 GB of memory and the standard VM size were 1
CPU core and 2 GB of memory, then the host’s max spare capacity metric would have a value
of 2.5.

The status updates sent by the managers of the racks that form a cluster are received and
processed by that cluster’s manager. The information contained in the status updates is used
to update the cluster manager’s knowledge base. The cluster manager also composes periodic
status updates, which are sent to the data centre manager. These status updates include the
number of active racks, the cluster’s power consumption, the amount of spare resources avail-
able in the least loaded active host in the cluster (max spare capacity metric), and the number
of inactive hosts in the rack with the most active hosts (min inactive hosts metric).

The purpose of the min inactive hosts metric is to be able to identify the cluster that contains
the rack closest to becoming completely active (i.e., all its hosts are active), so that if a new
host must be started, it is started in that rack. (See Assumption #3 in Section 4.3.1 for more
details.)

The frequency with which host managers send status updates is higher than that with which
rack managers send status updates, which in turn is higher than that of cluster managers.

4.3 Management Strategies and Policies

Managers are responsible for performing management operations within their assigned scope
and for interacting with other managers when collaboration is necessary. In this section, we
describe the management strategies and policies designed to perform the following data centre
management operations:

• VM Placement. When a new VM creation request arrives in the data centre, a host must
be selected to instantiate the VM.
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• VM Relocation. When a host is stressed (i.e., close to running out of spare resources
to allocate to its VMs), one or more of its VMs must be migrated away, so as to free
resources. For each VM migration, a physical server must be found to become the new
host of the migrated VM – we call this physical server the target host.

• VM Consolidation. The process of relocating VMs in the data centre, so as to concen-
trate the VMs into as few hosts as possible.

As explained in Section 4.2.2, there are four levels of management in the system: host-
level (Level 0), rack-level (Level 1), cluster-level (Level 2), and data centre-level (Level 3).
The management strategies consist of policies running at one or more levels. Managers in the
same level run the same set of policies.

4.3.1 Assumptions

Several assumptions inform the design of the management strategies in the system. These
assumptions are listed and described next.

Assumption 1. CPU utilization alone provides a good enough indicator of host power
consumption. Thus, power consumption can be calculated based on CPU utilization.

Assumption 2. Network switch power consumption is constant and independent of net-
work traffic.

Assumption 3. Computing entities work more efficiently, in terms of power consumption,
when operating at high levels of resource utilization.

The last assumption rests in two observations: first, hosts are more power efficient the
higher their utilization1, and second, racks and clusters consume power, due to their network-
ing infrastructure, with independence of the load of their hosts. From these observations, it
follows that by consolidating load in the least number of hosts, racks and clusters, power con-
sumption can be reduced. With that in mind, the management strategies focus on increasing
the utilization level of hosts, racks and clusters and choose (placement and migration) target
hosts accordingly.

4.3.2 VM Placement

The VM Placement strategy consists of policies running at three levels: rack, cluster and data
centre. New VM creation requests are received by the data centre manager, who must choose
a cluster to which to forward the request (actually, the request is forwarded to the cluster’s

1A server can consume between 50% and 70% of its peak power usage when idle [13].
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manager). The cluster manager in turn must choose a rack (within the cluster) to which to
forward the request. The selected rack’s manager, upon reception of the VM creation request,
selects one of its hosts to instantiate the VM and sends the appropriate message to the host.

When a manager receives an Application (or VM) Placement request, the following proce-
dure is followed:

1. If there are no active computing entities in its management scope, the manager selects
the most power efficient entity2, activates it, and forwards the VM Placement request to
said entity.

2. If there is only one active entity, the manager checks if said entity can accommodate the
VM (i.e., has enough spare or inactive resources). If so, it forwards the request to the
entity; otherwise, the manager activates the next most power efficient entity.

3. If there are several active entities, the manager searches for a target entity among subsets
of equally power efficient entities, trying first to identify the entity with the most spare
capacity (biggest max spare capacity value). If said capacity is not enough to accommo-
date the VM, then the manager searches for the entity with the most loaded rack (smallest
min inactive host value).

4. If after parsing the list of active entities none has been identified as a feasible target, then
the manager activates the next most power efficient entity left.

At rack-level, the Placement policy implements a greedy algorithm to select the first non-
stressed host with enough spare capacity to take the VM without exceeding a given threshold
– host’s target utilization threshold. (This policy is described in detail in [14].)

4.3.3 VM Relocation

The VM Relocation strategy, like the VM Placement strategy, consists of three policies, running
at Levels 1, 2 and 3. In contrast to the VM Placement process, the VM Relocation process
always begins at rack-level. A rack manager detects that one of its hosts is stressed and tries
to migrate one of the host’s VMs to another host in the rack. If a suitable target host is found,
the VM migration is issued and the relocation process terminated. However, if no target host is
found within the scope, then a search for a suitable target host beyond the local scope is started.

At rack-level, the VM Relocation process consists of two steps. The first step consists of
a greedy algorithm that attempts to migrate a VM away from its stressed host and into a non-
stressed host. (This policy is described in detail in [14].) If that fails, the manager requests

2The entity that can perform the most processing per watt of power, measured as CPU-shares-per-watt.
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assistance from the cluster-level manager to find a suitable target host in a different rack. For
that purpose, the rack manager selects a VM and sends its information to the cluster manager
in the form of a VM Relocation request.

A cluster manager can receive a VM Relocation request from two different sources: a local
rack manager or the data centre manager. In the first case, the manager of one of the racks in
the cluster requests assistance to migrate a VM away from the rack. In the second case, the
data centre manager requests assistance on behalf of another cluster manager to migrate a VM
into the (local) cluster.

The process followed by the cluster manager to find a suitable target rack to which to
migrate the VM is similar to the VM Placement process. The only difference is that additional
measures are taken to avoid selecting as target the rack whose manager sent the VM Relocation
request – if said request was indeed sent by a local rack manager.

If all of the racks in the cluster are active and no suitable target rack is found, then the
manager forwards the VM Relocation request to the data centre manager (if the request had
come from a local rack manager), or the manager sends a request reject message to the data
centre manager (if the request had come from the data centre manager).

At data center-level, the VM Relocation process is similar to the VM Placement process,
with additional measures taken to avoid selecting as relocation target the cluster that sent the
VM Relocation request. If all the clusters in the data centre are active and no suitable target
cluster is found, then the data centre manager sends a request reject message directly to the
rack manager that had sent the original VM Relocation request.

4.3.4 VM Consolidation

The VM Consolidation strategy consists of a single policy running at rack-level (Level 1). This
means that the consolidation process concerns itself with the hosts and VMs contained within
a rack; no VM migrations occur between racks due to consolidation.

This policy implements the VM Consolidation process using a greedy algorithm. VMs
are migrated out of underutilized hosts and into hosts with higher utilization. (This policy is
described in detail in [14].)

4.4 Evaluation

We evaluate our work through experimentation with the simulation tool DCSim [15, 16]. The
experimental setup is described in detail in Section 4.4.1, while the experimental design is
described in Section 4.4.2. Section 4.4.3 describes the metrics collected and Section 4.4.4
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presents and discusses the results.

4.4.1 Experimental Setup

Our simulated data centre consists of 5 homogeneous clusters, each containing 4 racks, and
each rack containing 10 hosts. Three clusters consist of hosts modelled after the HP ProLiant
DL380G5, with 2 dual-core 3GHz CPUs (3000 CPU shares per core) and 8 GB of memory.
The other two clusters consists of hosts modelled after the HP ProLiant DL160G5, with 2 quad-
core 2.5GHz CPUs (2500 CPU shares per core) and 16GB of memory. Hosts are modelled to
use a work-conserving CPU scheduler, which means that CPU shares not used by one VM can
be used by another VM. Caps on CPU usage are not supported. If the total CPU demand of
co-located VMs exceeds the CPU capacity of their host, CPU shares are distributed among the
VMs in a fair-share manner. Memory is statically allocated and is not overcommitted.

In this work, we consider a host to be stressed if its CPU utilization exceeds 90% (non-
stressed otherwise), while a host with CPU utilization below 60% is considered underutilized.
Hosts’ target utilization is set at 85%.

Network switches were modelled after the power measurement study by Mahadevan et al.
[17]. Rack switches have 48 1-Gpbs ports and exhibit a power consumption of 102 Watts.
Cluster and data centre switches have 48 1-Gpbs ports and exhibit a power consumption of 656
Watts.

We define three different VM sizes: small requires 1 virtual core with a minimum of 1500
CPU shares and 512MB of memory, medium requires 1 virtual core with a minimum of 2500
CPU shares and 512MB of memory, and large requires 2 virtual cores with a minimum of
2500 CPU shares each and 1GB of memory. Note that these are requested, maximum resource
requirements. VMs are initially placed into hosts based on these values and attempts are made
to guarantee them when required. However, once VMs are running, they are mapped into hosts
and allocated resources based on their actual resource usage, not request.

To simulate workload for the experiments, we model a set of interactive applications run-
ning within the data centre, each application running inside a single VM. Applications are
assigned a VM type in such a way to create an equal number of all three VM types. Real
workload traces are used to simulate dynamic resource demand for the applications. Each
application is assigned a trace built from one of five sources: the ClarkNet, EPA, and SDSC

traces [18], and two different job types from the Google Cluster Data trace [19]. For each
source trace, its normalized request rate is calculated, in 100-second intervals. Applications’
CPU demand is calculated through the use of a queuing model and the current request rate. To
prevent all applications powered by the same trace from exhibiting identical behaviour, each
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application starts reading its trace at a randomly selected offset time.

The set of applications can be divided into base load and additional load. Applications in
the base load arrive in the data centre at the beginning of the simulation and remain running
throughout the entire experiment. During this setup period, metrics are not recorded. Once the
setup period is over and the base load is running in the data centre, metric recording starts and
applications in the additional load may start arriving. These additional applications may arrive
at varying rates and terminate after a certain length of time. A specific, randomly-generated
instance of application arrivals, departures, and trace offset times is referred to as a workload

pattern, and is entirely repeatable through specifying the random seed used to generate it. We
use a set of 10 different workload patterns to evaluate each experiment, and all presented results
are averaged across these 10 workload patterns.

4.4.2 Experimental Design

In these experiments we compare our proposed hierarchical, topology-aware management sys-
tem (referred to as Hierarchical) with an existing centralized management system (referred to
as Centralized) that treats the whole data centre as a single pool of resources. The centralized
system uses a balanced management strategy – Hybrid Strategy, described in detail in [14] –
that achieves reasonable performance in terms of both power consumption and SLA violations.
Furthermore, we use a version of the centralized system where the VM Relocation policy is
triggered in a reactive fashion instead of periodically. That is, hosts are checked for stress every
time they send a status update and the VM Relocation policy is triggered upon stress detection.
In that way, the system responds faster to stress situations and the policy is not invoked when
no host is stressed. This improved version of the management system was presented in [20].

We design three experiments: two with a constant number of applications deployed in the
data centre and one with a variable number of applications. Experiments 1 and 2 consist of
a base load of about 800 and 1440 applications, respectively, that arrive in the data centre
within the first 4 and 6 days of simulation, respectively. In both cases, there is no additional
load. Experiment 3 consists of a base load of about 800 applications that arrive in the data
centre within the first 4 days of simulation, and an additional load that consists of applications
arriving in the data centre at a rate of 10 applications per hour over days 6, 7, 9 and 10. These
applications terminate after about 4 days. The total number of applications in the system varies
between 800 and 1520. In all cases, metrics are recorded for a total of 8 simulated days.

In these experiments, host managers are configured to send status updates every 2 minutes,
and rack and cluster managers every 5 minutes.
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4.4.3 Metrics

• Active Hosts (Hosts): The average number of hosts in the On state. The higher the
value, the more physical hosts are being used to run the workload.

• Active Racks (Racks): The average number of racks in the On state.

• Average Active Host Utilization (Host Util.): The average CPU utilization of all hosts
in the On state. The higher the value, the more efficiently resources are being used.

• Power Consumption (Power): Power consumption is calculated for each host and
switch, and the total kilowatt-hours consumed during the simulation are reported. Hosts’
power consumption is calculated using results from the SPECPower benchmark [21],
and is based on CPU utilization. Switches’ power consumption is assumed constant and
independent of network traffic – as long as the switch is powered on – and is based on
the power benchmarking study by Mahadevan et al. [17].

• SLA Achievement (SLA): SLA Achievement is the percentage of time in which the
SLA conditions of an application are met. We define the SLA of an application in terms
of an upper threshold on its response time. When the response time exceeds this thresh-
old, SLA is considered violated. Response time exceeding the threshold is a consequence
of under provisioning CPU resources to the application, caused by contention with other
VMs on a host.

• Number of Migrations (Migrations): The number of VM migrations triggered during
the simulation. These are further divided into intrarack, intracluster and intercluster.
Typically, a lower value is preferable, since fewer migrations means less network over-
head.

4.4.4 Results and Discussion

The results of the experiments are presented in Table 4.1 and Figure 4.2. As we can see, Hi-
erarchical achieves 7% to 9% lower Average Active Host Utilization than Centralized, which
results in more hosts and racks having to be powered on, thus increasing Power Consumption

in the data centre by 6% to 9%. On the other hand, the lower host utilization results in 1.5%
higher SLA Achievement. In addition, Hierarchical issues 48% to 56% fewer VM migrations
than Centralized, and 97% to 99% of those migrations occur within the rack scope, as opposed
to Centralized with only 6% to 9% of migrations issued within a rack. Figure 4.3 shows the
results of the third experiment, and is representative of all experiments conducted.
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Figure 4.2: Hierarchical vs Centralized Results
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Figure 4.3: Exp. 3 – VM Migrations per Type
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As we noted early on, minimizing power consumption, just as maximizing SLA achieve-
ment, is an important goal in data centre management. From that perspective, Hierarchical
does not perform as well as Centralized, given its larger use of data centre infrastructure. How-
ever, the reason why Hierarchical does not achieve better host utilization is that its strategies
focus on restricting migrations to the rack scope, only migrating VMs outside of a rack when
there is absolutely no other option. When Hierarchical’s policies try to find a target host for
a migration, they only consider the hosts in the same rack as the source host, thus having very
limited options. However, this approach results in very few VMs ever traversing the network
between racks or even clusters. If we consider that the smallest VM in these experiments had
a memory footprint of 512 MB and that the VM Relocation strategies of both Hierarchical
and Centralized always try to migrate the smallest VM available, given the number of intra-
cluster and intercluster migrations, we can calculate that Hierarchical moves at least 1.6 TB
of management data (i.e., migrated VMs’ memory footprint) through the network (outside the
rack scope), while Centralized moves at least 82.1 TB of data. This represents a significant
reduction in network overhead, potentially outweighing the increase in power consumption.

4.5 Conclusions and Future Work

In this work we presented a hierarchical, topology-aware management system for large-scale
data centres. We defined a set of aggregate metrics to convey system state information to
higher management levels, and defined communication protocols between management ele-
ments – expressed in the form of management strategies and policies – to carry on data centre
management operations. By leveraging the data centre network topology to create the hierar-
chy, the flow of management data (VM migrations and communications) is encapsulated to a
high extent within the lowest management scope (i.e., the rack), thus reducing the overhead in
the data centre management network.

This work could be extended in several ways. One such way would be to extend the scope
of the VM Consolidation operation to Levels 2 and 3, for it to work in a similar fashion as
VM Relocation does. Another extension would be to eliminate Management Level 3 (i.e.,
the data centre manager) and organize all cluster managers in a peer-to-peer structure. Yet
another extension would be to modify all three management operations to support applications
composed of multiple VMs. It could also be of interest to study how to dynamically adjust the
frequency of status updates based on workload behaviour (i.e., resource demand variability) or
the arrival rate of applications. Finally, it may sometimes be convenient to migrate a VM away
from its hosting rack, so as to break a cycle of continuous migrations. Determining if and when
to do this makes for an interesting challenge.
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Chapter 5

Dynamic Management of Multi-VM
Applications with Constraints

While deploying and managing single-VM applications in a data centre is a well studied prob-
lem [2, 3, 4, 5, 6, 7, 8, 9, 10, 11], managing multi-VM applications is not. A multi-VM ap-
plication is an application that consists of multiple components working together to provide a
service, where each component runs in its own dedicated VM. A common example of a multi-
VM application is a 3-tier web application, consisting of web, application and database tiers,
where each tier is hosted on a separate server [12].

Multi-VM applications may require an IaaS provider to meet certain placement constraints,
which could be specified in an SLA. For example, an application may require some of its com-
ponents to be co-located in the same host (or the same rack) for performance reasons, while
another application may require its components to be placed far apart for high availability pur-
poses. In this way, the data centre management system is faced with the challenge of meeting
these placement constraints, in addition to the challenge of meeting each application’s resource
demand at every point in time.

In this work, we investigate how to manage multi-VM applications in data centres, so as to
increase infrastructure utilization while keeping SLA violations low, and satisfying application
placement constraints. In addition, we explore temporarily violating placement constraints
through management actions to evaluate its effect on overall data centre power consumption
and SLA satisfaction.

The remainder of this chapter is organized as follows: Section 5.1 discusses related work
in the area, Section 5.2 describes the application placement constraints we considered, Section
5.3 presents the two approaches we developed to manage multi-VM applications in the data
centre, Section 5.4 presents our evaluation and discusses the results, and finally Section 5.5

0This chapter is based on work published in [1].
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states our conclusions and suggests directions of future work.

5.1 Related Work

There is considerable work that deals with the deployment and management of single-VM
applications in data centres, using a variety of techniques ranging from greedy heuristics (First
Fit, Best Bit, hill-climbing, etc.) and genetic algorithms to integer linear programming and
fuzzy-logic [2, 3, 4, 5, 6, 7, 8, 9, 10].

There is also considerable work that focuses on the placement of virtual networks or virtual
infrastructures (also referred to as Virtual Data Centres) in data centres (e.g., [13, 14, 15]).
These virtual infrastructures consist not only of VMs, but also switches, routers and links
connecting those VMs and having requirements of their own, such as bandwidth or delay. Our
work, however, focuses on mapping application components running inside VMs to hosts in the
data centre. Multiple application components can be mapped to the same host (and sometimes
are required to in this work), which is usually not possible when mapping virtual networks.

There is work, however, that does focus on managing multi-VM applications in data cen-
tres. Gulati et al. [16] presented a high-level overview of VMware’s Distributed Resource
Scheduler (DRS), which is used to map VMs into hosts and to periodically perform load bal-
ancing. DRS allows users to specify VM-to-VM and VM-to-Host affinity and anti-affinity rules
(or constraints) in their deployments. VM-to-VM anti-affinity rules are respected at all times,
while VM-to-VM affinity rules are respected during load-balancing, but may be violated dur-
ing initial placement. The system described in this work relies on a centralized architecture
and does not scale beyond a single cluster. Our approach, on the other hand, relies on a hierar-
chical architecture with the express purpose of scaling across multiple clusters. We adopt their
definitions of (VM-to-VM) affinity and anti-affinity constraints for our own work.

Shrivastava et al. [17] addressed the issue of managing multi-tier applications in virtual-
ized data centres. More specifically, they focused on the problem of finding new target hosts
for VMs that had to be migrated away from their current host due to resource stress. They
proposed an approach that considered both the data centre network topology and the commu-
nication dependencies between application components when making VM migration decisions,
with the goal of minimizing the resulting data centre network traffic (due to inter-VM commu-
nication) after the VM migrations had been completed. They proposed a Best Fit heuristic that
aimed to minimize the cost of each migration, calculated as the total delay introduced in the
communication between the migrated VM and any other VM with which it communicated.
Their proposed algorithm relocated overloaded VMs (though it is unclear what constituted an
overloaded VM). In contrast, our work does not treat VMs as overloaded, but rather treats hosts
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as stressed; as a consequence, we are not forced to migrate specific VMs, but rather we select
which VM to migrate so as to optimize a given goal. In addition, given that we seek to place
all VMs of an application within a single rack, our solution minimizes communication traffic
in the data centre network by default.

Shi et al. [18] also worked on placing sets of VMs with placement constraints in a data
centre, with the goal of maximizing the data centre provider’s revenue. They defined three
constraint types: full, all VMs in the set must be placed in the data centre or none; anti-affinity,
all VMs in the set must be placed in different hosts; and security, all VMs in the set must be
placed in hosts that do not host VMs from other sets. VM sets can have one of these constraint
types, no constraints at all, or the combination full + anti-affinity or full + security. They
proposed an Integer Linear Programming formulation that achieved optimal solutions, but was
time consuming and unscalable. They also proposed a Firt Fit Decreasing heuristic for multi-
dimensional bin packing that achieved suboptimal solutions, but was fast to compute. In our
work, we consider the full constraint implicitly; in other words, all applications have to be
placed completely or not at all. On the other hand, we do not consider the security constraint,
which requires VMs to be placed separately from the rest of the workloads in the data centre,
thus greatly simplifying their placement. In addition, Shi et al. apply constraints to all the VMs
in a set, while we consider constraints to be applied to individual VMs in a set. Finally, our
work does not only address placement, but also relocation and consolidation.

Finally, Tighe and Bauer [19] worked on integrating application autoscaling with multi-
VM application management in data centres, with the aim of satisfying the management goals
of both application owners and data centre provider. In addition, in order to reduce inter-VM
communication latency, their solution sought to place all components of an application within a
single rack whenever possible, though it would violate this constraint if necessary. Their work
does not consider any other form of placement constraint between application components,
while our work did not consider application autoscaling.

5.2 Application Placement Constraints

A placement constraint is a restriction specified by the application owner to indicate the way
in which the components of an application should be placed with respect to each other in the
data centre.1 The purpose of a constraint is usually to improve an application’s performance or
reliability.

In this work, we consider three types of constraints:

1Placement constraints can also specify an application component’s need for specific hardware or software,
but that type of constraint is beyond the scope of this work.
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Figure 5.1: Data Centre Infrastructure

1) Single-rack: all components of an application should be placed within a single rack.

2) Affinity: application components related by affinity should be placed in the same host.

3) Anti-affinity: application components related by anti-affinity should be placed in differ-
ent hosts.

The motivation behind the single-rack constraint is that by spreading an application’s com-
ponents across multiple racks, the communication paths between components become longer
(see Figure 5.1), and each additional link that needs to be traversed introduces delays in the
communication (i.e., increases network latency), thus degrading application performance. In
order to prevent this problem, all components of an application should be placed within a sin-
gle rack. By default, we treat every application submitted to the data centre as affected by this
constraint.

The affinity and anti-affinity constraints are adopted from the work of Gulati et al. [16].
We say that an application component affected neither by affinity nor anti-affinity is neutral.
A neutral application component may, however, communicate with other components in the
application.

Finally, though the constraints are defined in terms of application components, given the
one-to-one mapping of application component to hosting VM, we say that the constraints apply
to the VMs or the application components interchangeably.
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Figure 5.2: Application Templates. Nodes represent application components and edges repre-
sent communication links. Boxes indicate that multiple instances of the same component may
exist.

5.2.1 Application Templates

For this work, we created a series of templates from which to create all applications to be de-
ployed in the data centre (see Figure 5.2). These templates model interactive applications in
the form of multi-tiered web applications. The templates specify the communication paths be-
tween application components and whether there can be multiple instances of any component.
From this information, placement constraints can be inferred as follows:

• if a component can have multiple instances, then all instances of the component are
subject to the anti-affinity constraint;

• if a component can have only one instance, then the component is neutral; however,
if two neutral components communicate with each other, then those components are
actually constrained by affinity.

One limitation of these templates is that they only allow for an application component to
be affected by affinity or anti-affinity, but not both.

5.2.2 Application Representation

Given an application template, the application components can be grouped according to their
constraint type. Thus, an application can be represented as a collection of affinity sets, anti-

affinity sets, and a single neutral set, where each affinity and anti-affinity set consists of a single
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Figure 5.3: Sample Application

group of components related by the associated constraint. This representation of an application
is used by the management strategies.

For example, consider the sample application in Figure 5.3, modelled after one of the tem-
plates in Figure 5.2. This application can be represented as follows:

• Affinity sets: { { 5 , 6 } }

• Anti-affinity sets: { { 2 , 3 , 4 } }

• Neutral set: { 1 }

5.3 Management Strategies

In the context of dynamic VM management, there are three main operations:

• Placement. When a new VM has to be instantiated in the data centre, a physical server
must be selected to host the VM.

• Relocation. When a host becomes stressed (i.e., close to running out of spare resources
to allocate to its VMs), one or more of its VMs must be migrated away, so as to free
resources locally. For each VM migration, a physical server must be found to become
the new host of the migrated VM. This physical server is referred to as target host.

• Consolidation. The process of relocating VMs in the data centre, so as to concentrate
the VMs into as few hosts as possible.
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A management strategy defines the behaviour of the data centre management system and is
designed to pursue specific management goals. It consists of a set of policies that specify how
each of the main management operations are carried out across the data centre. In this section,
we describe two management strategies: one that respects applications’ placement constraints
at all times and another that may violate constraints under certain conditions.

5.3.1 Data Centre Organization and System Architecture

Before describing the management strategies, it is necessary to define the organization of the
target data centre and the architecture of the management system for which the strategies were
designed.

The target infrastructure consists of a collection of clusters, each cluster being a collection
of racks, and each rack a collection of physical servers. Two networks provide connectivity
throughout the data centre: the data network and the management network. The former is
used by the client applications, while the latter is reserved for the management system. Both
networks have the same architecture. The hosts in a rack are connected to the networks through
two switches – one per network – placed inside the rack. The racks in a cluster are connected
to each other through a cluster-level switch, and the cluster-level switches are connected to a
central switch at data centre-level. Figure 5.1 shows the architecture just described (except
that, for simplicity, only one network is shown in the figure).

Each computational entity in the data centre (i.e., hosts, racks, clusters, and the data centre
itself) has an associated autonomic manager. Managers have a set of policies and a knowledge
base. Managers can receive events, which may trigger the execution of zero or more policies,
which in turn may trigger management actions or additional events. The knowledge base is
updated with monitoring data sent to the manager (as an event) or through policies’ execution.
Managers communicate with each other periodically (e.g., monitoring) and aperiodically (in
response to events).

The management system is organized as a hierarchy of autonomic managers. There are
four levels of management: host-level (Level 0), rack-level (Level 1), cluster-level (Level 2),
and data centre-level (Level 3). The management strategies consist of policies running at one
or more levels. Managers at the same level use the same set of policies.

5.3.2 Management Strategy: Enforced Constraints (MS-EC)

This management strategy was designed to operate at the granularity-level of applications, that
is, the strategy maps applications to clusters or racks instead of mapping individual application
components or VMs. However, at rack-level, the policies do operate at a lower granularity-
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level, mapping (and re-mapping) VMs to hosts as needed, always respecting the VMs’ place-
ment constraints as defined by the application they belong to.

Placement

The Placement management operation is carried on by three policies, running at rack-, cluster-,
and data centre-level, respectively. When managers receive a Placement request (i.e., a request
to place a new application), they execute their associated Placement policy. Policies search
for candidate entities to which to forward the request (or send VM instantiation events at the
lowest level); if none can be found, the request is rejected, and the upper level manager has to
start a new search.

When the Data Centre Manager receives a Placement request (or a Placement reject mes-
sage – see below), its Placement policy parses the list of clusters, removing those that do not
meet the hardware requirements of the application, sorts the clusters in decreasing order by
power efficiency (i.e., processing per watt of power), and divides them in active (or powered
on) and inactive clusters. If there is no active cluster, one is powered on and selected. If there
is only one active cluster, the policy checks if the cluster has enough spare resources to host the
application. If there are multiple active clusters, the policy checks each subset of equally power
efficient clusters, searching for the cluster with the least loaded rack (i.e., least active hosts) and
that can host the application, or the cluster with the most active racks, but that still has racks to
activate. If no active cluster was identified, the next inactive cluster in line is powered on and
selected; if there are no inactive clusters, the Placement request is rejected. If a suitable target
cluster was found, the Placement request is forwarded to the cluster’s manager.

When a Cluster Manager receives a Placement request, its Placement policy starts by sep-
arating active from inactive racks. If there is no active rack, one is powered on and selected.
If there is one active rack, the policy checks if the rack has enough spare resources to host
the application. If there are multiple active racks, the policy searches the entire list of active
racks to identify the rack that can host the application and would activate the least number of
additional hosts in so doing; if several such racks exist, the most loaded one (i.e., most active
hosts) is selected. If no active rack was found, the next inactive rack in line is powered on
and selected; if there are no inactive racks, a Placement reject message is sent to the Level 3
manager. If a suitable target rack was found, the Placement request is forwarded to said rack’s
manager.

Finally, when a Rack Manager receives a Placement request, its policy first classifies and
sorts the available hosts in the rack. It then tries to place all the VMs of the application. First,
for each affinity set, the policy tries to map all the VMs in the set into a single host. Second,
for each anti-affinity set, the policy tries to map each VM in the set into a different host. Third,
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the policy takes the set of neutral VMs and maps the VM to whichever host can take them. In
every step, the intention is to maximize the CPU utilization of the hosts in the rack without
exceeding a given threshold – hosts’ target utilization threshold.

Relocation

Just like the Placement operation, Relocation is achieved through the combined work of three
policies, used by managers at rack-, cluster-, and data centre-level. In contrast, the Relocation
operation starts at Level 1 and often does not require the involvement of upper management
levels. In this operation, managers try to solve stress situations within their scope by perform-
ing migrations between computational entities under their control. It is only when a manager
cannot deal with a stress situation on its own that the manager requests assistance from its
upper level manager.

1: s, p, u, e = classifyHosts(hosts)
2: p′, u′ = sortByCpuUtil(p, u)
3: e′ = sortByPowerState(e)
4: targets = concatenate(p′, u′, e′)
5: n, x, a = classifyVms(stressed)
6: if processNeutralVms(n, targets) then
7: migrateVm()
8: return true
9: end if

10: if processAntiAffinityVms(x, targets) then
11: migrateVm()
12: return true
13: end if
14: if processAffinityVms(a, targets) then
15: migrateVm()
16: return true
17: end if
18: return false

Algorithm 8: MS-EC Relocation policy at rack-level – Internal process.

At rack-level, Relocation is a two-step process. When a Rack Manager detects that one of
its hosts is stressed, the Relocation policy starts its internal relocation process (see Algorithm
8), by which it tries to migrate a VM from the stressed host to a non-stressed host in the rack.
The policy first classifies the available hosts in the rack as stressed (s), partially-utilized (p),
underutilized (u) or empty (e), and sorts them as follows (lines 1-4): p is sorted in increasing
order by CPU utilization, u is sorted in decreasing order by CPU utilization, and e is sorted
in decreasing order by power state (i.e., on, suspended, off). It then classifies the VMs in the
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stressed host (line 5) in three groups according to their placement constraint type – neutral (n),
anti-affinity (x) and affinity (a) – and considers each group in order using a greedy approach
(lines 6-17). First, the policy tries to find the least loaded neutral VM that still has enough load
to terminate the stress situation and that can be taken by another host in the rack (line 6). If
that fails, the policy repeats the process with the group of anti-affinity VMs (line 10), checking
in addition that no VM is selected to be migrated to a host that is already hosting a VM from
the same anti-affinity set (i.e., a VM hosting the same application component). If that step also
fails, the policy considers at last the group of affinity VMs (line 14), first grouping the VMs
into their affinity sets, and then trying to find the smallest affinity set that could be taken by
another host in the rack. The first of these three steps that can find a suitable migration issues
said migration and terminates the relocation process.

1: l, s = classifyVms(stressed)
2: V M = processVms(l)
3: if V M == null then
4: V M = processVms(s)
5: end if
6: if V M != null then
7: send(AppMigRequest(V M.getApp()), manager)
8: return true
9: else

10: return false
11: end if

Algorithm 9: MS-EC Relocation policy at rack-level – External process.

When the internal relocation process fails to find a suitable migration, the policy starts
its external relocation process (see Algorithm 9), so as to migrate an entire application to a
different rack. First, the policy divides the VMs in the stressed host into two groups, large (l)
and small (s), according to whether the VMs have enough CPU load (i.e., amount of CPU under
consumption) to terminate the stress situation or not (line 1). The VMs in the large group are
processed first (line 2), searching for the VM that belongs to the smallest application (i.e., the
application with the least number of components), and selecting the least loaded VM if there
is a tie. If no V M is selected, the process is repeated with the VMs in the small group (line 4),
searching for the VM that belongs to the smallest application, and selecting the most loaded
VM if there is a tie. If a suitable V M is found, the Rack Manager requests assistance from its
corresponding Cluster Manager (line 7) to find a target rack to which to migrate the application
that the chosen V M belongs to. If the Cluster Manager fails to find a suitable placement for
the migrated application in the cluster, it will in turn request assistance from the Data Centre
Manager to migrate the application to a different cluster in the data centre.
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The Relocation policies at Levels 2 and 3 are similar to the Placement policies at those
levels, with minor differences: when the policies consider an active rack or cluster as potential
migration target, they first verify that the computational entity is not the sender of the migration
request, and if it is, the computational entity is skipped.

Consolidation

In contrast with the previous two operations, Consolidation only happens at rack-level. This
operation occurs periodically and what the policy attempts to achieve is to empty and power
off underutilized hosts by migrating their VMs to hosts with higher utilization. However, all
migrations occur within the scope of the rack; in other words, no VM is migrated between
racks as a result of a consolidation process. By limiting this operation to the rack scope, we
reduce overhead on the management network.

When the rack-level policy is invoked, it starts by classifying the hosts and making two lists:
the sources list contains all underutilized hosts, while the targets list contains all non-stressed
hosts. The first list is sorted in increasing order by CPU utilization and the second is sorted in
decreasing order by CPU utilization. For each host in the sources list, the policy tries to migrate
all its VMs into hosts in the targets list, starting with affinity VMs, then anti-affinity VMs, and
finally neutral VMs, always respecting the constraints in the same way the Relocation policy at
rack-level does. VMs are processed in this order according to constraint type, so as to attempt
to place the more restrictive VMs first and fail early. If suitable migrations could be found for
all VMs in the source host, then the migrations are issued and the host is marked to be powered
off once the migrations are completed. Otherwise, no VM is migrated away from this host.

5.3.3 Management Strategy: Relaxed Constraints (MS-RC)

This management strategy differs from MS-EC in how the Relocation operation is handled;
more specifically, the external step of the relocation process.

The Relocation policy at rack-level performs the internal relocation process as described
for MS-EC. However, during the external relocation process (see Algorithm 10), this policy
does not look to migrate an entire application, but rather to migrate a single VM. This approach
should offer the benefit of terminating stress situations while performing fewer VM migrations,
though it requires the temporary violation of placement constraints.

The policy sorts the VMs in the stressed host in increasing order by CPU load (though it
ignores the VMs with not enough load to terminate the stress situation) (line 1), and traverses
the list (lines 2-13), searching for the first single-VM application it can find (lines 3-6). In
case no such VM is found in the list, the policy also identifies the first non-affinity VM (na)
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1: vms = sortByCpuLoad(stressed)
2: for V M in vms do
3: if V M.getAppSize() == 1 then
4: send(AppMigRequest(V M.getApp()), manager)
5: return true
6: end if
7: if na == null and V M.getConstraintType() != affinity then
8: na = V M
9: end if

10: if a == null and V M.getConstraintType() == affinity then
11: a = V M
12: end if
13: end for
14: if na != null then
15: send(VmMigRequest(na), manager)
16: return true
17: else if a != null then
18: send(VmMigRequest(a), manager)
19: return true
20: end if
21: return false

Algorithm 10: MS-RC Relocation policy at rack-level – External process.

(i.e., neutral or anti-affinity) (lines 7-9) and the first affinity VM (a) (lines 10-12). If a single-
VM application is found, the Rack Manager requests assistance from its corresponding Cluster
Manager to migrate away the application (line 4). Otherwise, the Rack Manager requests
assistance from the Cluster Manager to migrate away the non-affinity VM identified (line 15),
or if no such VM was identified, to migrate away the affinity VM (line 18).

It is easy to see that if a single-VM is found and migrated, no constraints are violated.
However, if a VM that is part of a larger application is chosen for migration, then this action
will violate the single-rack constraint. In addition, if the migrated VM is the one related by
affinity, then the system will violate this other constraint as well.

The Relocation policy was not only modified to allow for the violation of placement con-
straints, but also to correct these situations. Given an application that has one or more of its
VMs hosted remotely, the Rack Manager contacts the corresponding remote Rack Managers
to request current resource consumption information about the VMs and see if the VMs can be
hosted back in the local rack, respecting the placement constraints of the application. If a suit-
able local target host can be found for any of the VMs, the migration is issued. This procedure
is invoked every hour, starting one hour after a VM was migrated away, and it continues until
the VM is recovered.
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5.4 Evaluation

We evaluate the two management strategies proposed in Section 5.3 through simulations using
DCSim [20, 21], a tool designed to simulate a multi-tenant, virtualized data centre. In this
section, we describe the experimental setup and design, list and explain the metrics used for
evaluation, and discuss the results obtained.

5.4.1 Experimental Setup

We created a simulated infrastructure consisting of 5 clusters, with each cluster containing
4 racks, and each rack containing 10 hosts. The hosts were modelled after the HP ProLiant
DL160G5 server, with 2 quad-core 2.5GHz CPUs (2500 CPU shares per core) and 16GB of
memory. As many hypervisors nowadays, the hosts make use of a work-conserving CPU
scheduler, which means that CPU shares not used by one VM can be used by another VM.
However, CPU caps are not supported. If the total CPU demand of co-located VMs exceeds
the CPU capacity of their host, CPU shares are divided among VMs in a fair-share manner.
Memory is statically allocated and is not overcommitted. Network switches were modelled
after the power measurement study conducted by Mahadevan et al. [22]. Rack switches have
48 1-Gpbs ports and have a power consumption of 102 Watts. Cluster and data centre switches
have 48 1-Gpbs ports and consume 656 Watts.

We defined three different VM sizes:

1) 1 virtual core of 1500 CPU shares, 512MB RAM

2) 1 virtual core of 2400 CPU shares, 1024MB RAM

3) 2 virtual core of 2400 CPU shares, 1024MB RAM

Note that these are maximum resource requirements. At runtime, however, VMs are allo-
cated enough resources to meet their current demand, not their maximum requirements.

We created five different application types based on the templates defined in Section 5.2.1.
At the start of the simulation, applications are randomly assigned a VM size, which determines
the resource requirements of their components (and in that way, the size of the VMs that host
those components). We did not allow for application elasticity, meaning that once an applica-
tion is deployed in the data centre, the number of its components stays fixed. The application
types created are shown in Table 5.1 with their respective configuration.

The application model used is that of an interactive, multi-tiered web application. In this
model, a number of clients issue requests to an application, wait for a response, and issue
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App. Type Task Id Service Time (s) Visit Ratio #Instances
1 1 0.03 1 1
2 1 0.02 1 1

2 0.015 1 1
3 1 0.02 1 1

2 0.015 1 1
3 0.015 1 1

4 1 0.01 1 1
2 0.02 #Instances/2 2..4
3 0.008 1 1
4 0.007 1 1

5 1 0.01 1 1
2 0.04 #Instances/4 4..6
3 0.01 1 1
4 0.02 #Instances/2 2..3
5 0.01 1 1

Table 5.1: Applications

follow-up requests. Applications are modeled as a closed queueing network, solved with Mean
Value Analysis (MVA). Applications have an associated think time, which is the time clients
wait between receiving a response to a request and producing a follow-up request, and a work-

load, which is the number of clients currently using the application. Workloads change over
time, according to trace data from an input file. Individual tasks – the term used in DCSim to
refer to application components – have their own configuration parameters: service time indi-
cates the time it takes for the task to process a request, while visit ratio indicates the number
of times the task is invoked by a single request. If a task instance does not have its resource
demand met (due to its host being stressed), its service time is incremented to account for pro-
cessor queueing, which would impact the application’s response time, potentially causing SLA
violations. When there are multiple instances of a task, the load (i.e., the requests) is shared
equally between the instances.

All applications were configured with a think time of 4 seconds and were randomly as-
signed a trace built from one of three sources: ClarkNet, EPA or SDSC [23]. Each of these real
workload traces was processed and normalized request rates calculated, in 100-second inter-
vals. These values were used to indicate the number of clients using the application over time.
The normalized workloads were scaled so that, when the number of clients was at its peak, the
application’s response time was 0.9 seconds (just below the 1-second response time threshold
associated with SLA violations – see Section 5.4.3). Each application was assigned a random
offset to start reading its associated trace, so as to prevent applications with the same trace from
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exhibiting synchronized behaviour.

5.4.2 Experimental Design

To evaluate the management strategies, we ran each strategy under four different scenarios.
Each scenario consisted of a subset of the five application types described in the previous
section. Each number in the set corresponds to an application type listed in Table 5.1. The four
scenarios used were the following:

1) Set A: { 2 }

2) Set B: { 2, 3 }

3) Set C: { 2, 3, 4 }

4) Set D: { 2, 3, 4, 5 }

The set of applications to submit to the data centre consisted, in every scenario, of 1,200 ap-
plications divided equally between the available application types. All generated applications
were submitted to the data centre within the first 5 days of simulation at a rate of 10 applications
per hour. During this period metrics were not recorded. The system was given 1 additional day
to stabilize itself before recording metrics. After that time, metrics were collected for 7 days,
and then the simulation was terminated.

We define a workload pattern as a randomly-generated sequence of application submission
times and random offsets, which is reproducible by specifying the random seed used to generate
the pattern. For this experiment, we generated five different workload patterns and ran each
scenario once per pattern. Results were averaged across scenarios.

A second experiment was conducted with slighly different scenarios. While the scenarios
in the first experiment consisted solely of multi-VM applications, every scenario in the second
experiment included single-VM applications (that is, the scenarios included Application Type
1). The purpose of this experiment was to evaluate how the management strategies performed
when unconstrained applications were included. The four scenarios used were the following:

1) Set A’: { 1, 2 }

2) Set B’: { 1, 2, 3 }

3) Set C’: { 1, 2, 3, 4 }

4) Set D’: { 1, 2, 3, 4, 5 }
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Finally, host managers were configured to send status updates every 2 minutes, and rack
and cluster managers to do so every 5 minutes. Hosts were considered stressed when their CPU
utilization exceeded 90% (non-stressed otherwise), while they were considered underutilized
when their CPU utilization fell below 60%. The target utilization was set at 85%.

5.4.3 Metrics

• Active Hosts (Hosts): The average number of hosts powered on. The higher the value,
the more physical hosts are being used to run the workload.

• Average Active Host Utilization (H. Util.): The average CPU and memory (MEM)
utilization of all powered on hosts. The higher the value, the more efficiently resources
are being used.

• Power Consumption (Power): Power consumption is calculated for each host and
switch, and the total kilowatt-hours consumed during the simulation are reported. Hosts’
power consumption is calculated using results from the SPECPower benchmark [24],
and is based on CPU utilization. Switches’ power consumption is assumed constant and
independent of network traffic – as long as the switch is powered on – and is based on
the power benchmarking study by Mahadevan et al. [22].

• SLA Achievement (SLA): SLA Achievement is the percentage of time in which the
SLA conditions are met. We define the SLA for an application as an upper threshold on
its response time – set at 1.0 seconds. While the response time stays below the threshold,
we consider the SLA satisfied; otherwise, the SLA is violated. Response times exceed-
ing the threshold are a consequence of underprovisioned CPU resources to a VM (or
application component), as a consequence of CPU contention with other VMs on the
host.

• Number of Migrations (Migrations): The number of VM migrations triggered during
the simulation (due to both Relocation and Consolidation). Typically, a lower value is
preferable, since fewer migrations means less network overhead.

• Applications Deployed (Apps.): The number of applications successfully deployed in
the data centre. Since application submissions can be rejected, this number may be lower
than the total number of submissions.

• VMs Instantiated (VMs): The total number of VMs instantiated in the data centre.



5.4. Evaluation 91

• Spread Penalty (Spread): The Spread Penalty is calculated as the amount of time,
measured in hours, that an application had its components distributed across multiple
racks. This metric indicates the extent to which the single-rack constraint (defined in
Section 5.2) has been violated by the management system.2 We report the mean Spread
Penalty (Mean) calculated over all the applications in the data centre, as well as the
percentage of application with non-zero Spread Penalty (Apps), calculated over the total
number of applications in the data centre.

5.4.4 Results and Discussion

The results of the first experiment (presented in Table 5.2) show that both strategies use similar
number of hosts and achieve equally high host resource utilization. Power consumption and
SLA achievement metrics are also very close in both strategies. Regarding migrations, the
strategies issue similar numbers – in two scenarios, the difference is negligible, and in the
other two, the difference is 6% and 9%, respectively. In other words, MS-RC does not provide
any major advantage over MS-EC. On the contrary, MS-RC suffers the disadvantage that, by
temporarily violating constraints, it degrades the performance of the affected applications. In
this experiment, we see that about 70% of the applications deployed in the data centre have
the single-rack placement constraint violated at least once during their lifetime (see column
Spread (Apps)). In addition, the average amount of time that affected applications spend with
their components spread across multiple racks (over their 7-day lifetime) varies between 23.6
and 42.8 hours.

The results of the second experiment (presented in Table 5.3 and Figure 5.4) allow for
the same observations to be made with regard to active hosts, host resource utilization, power
consumption and SLA achievement. However, when we look at the number of migrations, we
see that MS-RC consistently issues more migrations than MS-EC (8.6% to 41.4% more). As
for the spread penalty, the percentage of applications with violated constraints varies between
20.7% and 51.4%, and the average amount of time applications are affected by this situation
varies between 5.7 and 15.9 hours.

A few additional observations can be made by looking at the results of both experiments.
First, both strategies issue fewer migrations in the second experiment than in the first one (up
to 40% less) – with the exception of MS-RC in the fourth scenario. Second, MS-RC vio-
lates constraints less often in the second experiment (20.7% to 51.4% affected applications
against about 70%) and the amount of time applications remain with their constraints vio-

2Since DCSim is not able to simulate application performance degradation due to network congestion, we use
this metric to approximate the extent to which applications are adversely affected by having their components
spread over the data centre.
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Figure 5.4: Exp. 2 – Single- and Multi-VM Applications
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lated is considerably smaller. Both of these observations can be explained by the presence of
single-VM applications in the second experiment. Regarding the smaller number of migra-
tions, both strategies always try to prioritize smaller applications during Relocation: MS-EC
always choses the application with the fewest components available, so whenever there is a
single-VM application among the candidates, that application will be relocated; and MS-RC,
before violating a constraint, checks whether a single-VM can be found in the stressed host,
so as to relocate that application instead. This latter behaviour of MS-RC also explains the
decrease in the number of applications affected by violated constraints.

5.5 Conclusions and Future Work

In this paper, we addressed the issue of managing multi-VM application with placement con-
straints in data centres. We developed a management strategy for a hierarchical management
system to place, relocate and consolidate this type of applications, satisfying at all times the
applications’ placement constraints. In addition, we developed a variant of the original man-
agement strategy to allow for constraints to be temporarily violated. The experiments showed
that the first management strategy could satisfactorily deal with applications’ placement con-
straints, while at the same time achieving high levels of resource utilization and SLA achieve-
ment. While the second strategy performed equally well with regard to resource utilization
and SLA achievement, it tended to issue more migrations. In addition, the second strategy
causes application performance degradation when violating placement constraints. Therefore,
the second strategy provides no advantages over the first strategy, while adding an extra cost.

There are several ways in which this work could be extended. The most immediate one
would be to expand the set of available application templates, be it with multi-tier applications
or other types of applications altogether. A more general approach to the task of generating
multi-VM applications would be to do so randomly, that is, to randomly generate the number of
components in an application and the connections between them. One potential difficulty with
this approach is that the generated applications could be far from any real-world application
architecture and in that way be of little usefulness in practice.

Another direction to explore is to allow for application elasticity, that is, for applications to
change their size (i.e., number of components) at runtime to match current service demand. In
this situation, would enforcing constraints at all times still be possible (and desirable), or would
violating constraints become a necessity? In other words, would the conclusions reached in this
study still hold in the new context? This idea goes in line with the latest work from Tighe and
Bauer [19].

Another issue to explore is violating other placement constraints besides the single-rack
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one. This work considers violating the single-rack constraint during relocation. What if the
affinity or anti-affinity constraints were to be temporarily violated during (internal) relocation
or consolidation? What effect would this management approach have in resource utilization,
power consumption, SLA achievement, and number of migrations? This approach would re-
quire the definition of appropriate penalties for these constraint violations.

Finally, it would be interesting to investigate using some form of relocation to assist the
Placement operation. In this work, when an application is submitted to the data centre, the
Placement operation tries to map the application components to hosts in a single rack. If that
fails, the application submission is rejected. However, it would be interesting to consider, after
the failure of a straightforward deployment, moving VMs around so as to make room for the
incoming application instead of rejecting the submission outright.
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Chapter 6

Conclusion

Cloud Computing is changing the way in which software is being designed, deployed and
used. Adoption of this paradigm has already been substantial [1] and it is predicted that by
2017 nearly two thirds of all workloads will be processed in the cloud [2]. These workloads
running in the cloud are actually hosted in virtualized data centres, making of these data centres
complex systems to manage.

This work addressed the issue of dynamic VM management in IaaS-type data centres. More
specifically, we addressed the following research challenges:

• Virtual Machine Relocation: does changing the order in which VMs and hosts are

considered for migration have any effect on the long-term management goals of a data

centre?

• Multi-goal Management Strategies: is it possible to design a management strategy to

both minimize SLA violations and minimize power consumption, while giving both goals

equal priority?

• Management Systems’ Architecture: is it possible to design a scalable management

system that makes efficient use of the data centre’s resources (e.g., CPU, network, power)?

• Multi-VM Application Management: how can we manage multi-VM applications, so

as to satisfy their placement constraints and at the same time maximize resource utiliza-

tion and minimize SLA violations?

6.1 Discussion

In Chapter 2, we addressed the VM Relocation problem. We designed a set of policies that
implemented the VM Relocation operation, where all the policies were based on the same

100
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First Fit heuristic and differed from each other in the order they considered VMs and hosts for
migration. We evaluated the policies under different load-levels and compared the results in
terms of active hosts, host utilization, power consumption, dropped requests (SLA violation),
and number of migrations. We determined that no one policy scored best in every metric;
moreover, the policies succeeded to different extents depending on data centre state (i.e., load-
level) and the metrics considered. From this work follow a couple of implications: first, policies
should be customized according to data centres’ management goals, so as to achieve the most
desirable trade-offs; and second, no single policy will be able to meet all management goals
or achieve consistent results under different data centre conditions. This last point suggests
that a management system might be better served by a set of policies (that perform the same
operation) that can be swapped based on data centre state.

In Chapter 3, we focused on the issue of Multi-goal Management Strategies. We proposed
the use of a meta-strategy, that is, a mechanism that dynamically switched between two base
management strategies (each one designed to pursue one of the desired goals) according to data
centre state. We developed three different meta-strategies, and evaluated them through simula-
tion, jointly with the base single-goal SLA and Power strategies, and a hybrid strategy designed
to pursue both goals simultaneously. The experiments showed that dynamic strategy switch-
ing (i.e., the meta-strategies) improved overall performance (in terms of power consumption
and SLA violations) compared to all three single management strategies. This work suggests
that pursuing multiple goals (even opposed ones) with equal intensity is achievable through the
use of multiple management strategies. Moreover, changing management strategies at runtime
based on data centre state makes for a more adaptable management system.

In Chapter 4, we addressed the issue of Management Systems’ Architecture. We designed
a hierarchical management system, leveraging the topology of the data centre network to orga-
nize the hierarchy of autonomic managers. We defined aggregate metrics to convey system state
information across management levels, and defined managers’ responsibilities and interactions
through the implementation of management policies. The system was evaluated through sim-
ulation, jointly with the centralized system presented in Chapter 3. Thought the hierarchical
management system could not make as efficient a use of CPU and power as the centralized sys-
tem did, the hierarchical system managed to issue about half the number of migrations and to
greatly reduce the flow of management data across the data centre network, thus considerably
reducing network overhead. This work shows that hierarchical, topology-aware systems are
highly effective at limiting the flow of management data (VM migrations, monitoring, etc.) in
data centres. In addition, it shows that the approach of treating a data centre as a single pool of
resources makes for an inefficient use of its network.

Finally in Chapter 5, we addressed the issue of Multi-VM Application Management. We
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developed a couple of strategies for a hierarchical system to manage multi-VM applications
with placement constraints in data centres, while aiming to increase resource utilization (thus
reducing power consumption) and decrease SLA violations. One of the management strategies
enforced placement constraints at all times, while the other allowed for the constraints to be
temporarily violated during VM Relocation. The strategies were evaluated under various ap-
plication sets consisting of applications with different placement constraints. Both strategies
achieved high levels of resource utilization and SLA achievement, suggesting that violating
constraints was not worth the cost (in terms of application performance degradation). This re-
search indicates that it is possible to handle multi-VM applications with placement constraints
and still achieve high levels of resource utilization and SLA achievement. It is worth noticing,
though, that the management task is easier to accomplish when the application set includes
unconstrained applications.

6.2 Limitations

Some limitations present in our earlier works where removed in subsequent works (e.g., work-
ing only with homogeneous test environments). However, other limitations still remain. In this
section, we discuss some of those limitations, in no particular order.

First, our work relies solely on CPU measurements to determine the level of load of a host
or VM (though all resources are considered when trying to map a VM to a host). For example,
hosts are classified during management operations according to their CPU utilization. It might
be desirable to expand our definition of load to encompass other resources, so as to avoid, for
example, trying to consolidate an underutilized hosts that has its memory fully allocated (and
would therefore result in an expensive operation in terms of network overhead). On a related
note, we also use CPU utilization only to determine stress situations in hosts. However, this
approach does not constitute a problem because CPU is the only resource that we oversubscribe
and hence can cause SLA violations if the total CPU demand of co-located VMs exceeds the
total CPU capacity of the host.

Second, the process of migrating a VM imposes an overhead in both source and target hosts.
This overhead is accounted for by penalizing the application running inside the migrating VM:
the application loses 10% of its processing capacity during migration. In other words, during
migration, a VM is only able to use 90% of its CPU allocation for work processing; the other
10% is lost as migration overhead. Neither memory nor bandwidth overhead is considered at
the hosts due to migration.

Third, we do not measure or account for network traffic in the data centre. That is, we do
not know the load of links and devices on the network. As a consequence, VM migrations are
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completed without delay (which may not happen in real environments). On a related note, our
management strategies seem to issue large numbers of migrations. While migration overhead
is considered and reflected in the SLA violations and host utilization metrics, we are unaware
whether this migration count is acceptable or even possible to sustain.

Fourth, we do not do forecasting of VMs’ resource demand, which could have an effect in
the detection of stress situations and in the selection of VMs and hosts for migration.

Fifth, our test environments may not be representative of high-end data centres nowadays.
However, it is difficult to get information about workload characteristics or hardware specifi-
cations from industry.

Sixth, the simulation framework used in our experiments, DCSim, is not able to simulate
application performance degradation due to network congestion. It is for this reason that a
Spread Penalty metric was included in the experiments of Chapter 5, so as to circumvent this
limitation.

Seventh, our work was evaluated solely through simulation. This is perhaps one of the
biggest limitations of our work, and also one of the most difficult to overcome. Though it would
be highly informative and extremely useful to evaluate our work in a real data centre, obtaining
access to a data centre and acquiring a diverse set of traces is difficult. As a consequence, most
work in the area is evaluated through simulation (e.g., [3, 4, 5]).

6.3 Future Work

Dynamic VM Management in data centres is a vast area of research, so there are many direc-
tions in which this work could be extended. In this section, we discuss a series of issues that
could be investigated.

6.3.1 Hierarchical Management

Some of the most interesting issues stem from our work on hierarchical management (Chapter
4). One such issue has to do with determining how fast monitoring data becomes stale and
whether that is a problem at all. In this work, we defined aggregate metrics to convey system
state information to higher management levels so that decisions could be made. The system
state conveyed in those metrics could change as result of a management decision, making said
data invalid or stale, and any further decisions made using that data could compromise the
quality of the decision.

Another issue is how to detect VM migration thrashing. We proposed a hierarchical man-
agement system, which was designed – jointly with its policies and strategies – to be topology-
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aware, making decisions that would minimize the flow of management data and thus reduce
the overhead on the data centre management network. As a result, most VM migrations hap-
pen within the scope of a rack – 95% to 99% of the migrations, according to our experiments.
This behaviour does reduce the overhead on the management network, but it may also cause an
increase in the number of migrations issued when all the hosts in a rack present high resource
utilization. It may be the case that an stressed host migrates a VM to another host in the rack,
which soon after becomes stressed itself.

One task that we left pending was extending the scope of the VM Consolidation operation
beyond the rack. Both VM Placement and VM Relocation involved policies at every level in
the hierarchy; VM Consolidation did not. A further issue to explore regarding VM Consoli-
dation would be the use of optimization techniques, such as Integer Programming or genetic
algorithms, at rack-level. Given the small number of hosts and VMs enclosed in a rack, it may
be possible to obtain optimized solutions in a reasonable amount of time.

Another issue to explore is further modifying the architecture of the management system:
take the hierarchy, remove its highest management level (i.e., the single data centre manager),
and organize all cluster managers in a peer-to-peer fashion. These change would increase data
flow (due to cluster-to-cluster communication not needed before) and could degrade the quality
of management decisions (lightly, if at all), but would not affect the scalability of the system
and it would rid the system from a single point of failure.

6.3.2 Placement Constraints

In Chapter 5, we explored the issue of managing multi-VM applications with placement con-
straints. This work, however, considered only interactive, multi-tiered web applications. It
would be interesting to expand the repertoire of application templates to include different ap-
plication architectures.

The placement constraints considered in this work included single-rack, affinity and anti-

affinity. However, placement constraints can also be used to specify an application component’s
need for specific hardware or software. This kind of constraints would signify an additional
level of challenge during VM Management.

Finally, it would be interesting to investigate using some form of relocation to assist the
Placement operation. In this work, when an application is submitted to the data centre, the
Placement operation tries to map the application components to hosts in a single rack. If that
fails, the application submission is rejected. However, it would be interesting to consider, after
the failure of a straightforward deployment, moving VMs around so as to make room for the
incoming application instead of rejecting the submission outright.
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6.3.3 Complementary Work

There are also some issues to explore that would complement our work. The first has to do
with the resource utilization thresholds that we use to determine whether a host is stressed or
underutilized. These thresholds are normalized values in the range [0..1], independent of the
resource capacity of the hosts to which they are applied. These results in hosts being deemed
stressed when they still have more spare capacity than a host only deemed partially utilized, or
in hosts being marked as underutilized while hosting more load than another host marked as
partially utilized. For this reason, utilization thresholds cannot be independent of the resource
capacity of the hosts.

Speaking of utilization thresholds, these values are defined based on hosts’ CPU utiliza-
tion. Our policies focus mainly on CPU utilization to determine whether a host is stressed or
underutilized, and to select VMs for migration or hosts as migration targets. Other resources,
such as memory, bandwidth and storage, are mostly ignored, only considered when we have to
determine whether a host has enough spare resources to accept a new VM.

Another issue to explore would be that of selecting VMs for migration in such a way to
reduce per VM (or application) penalty. When VMs are migrated or their resource demand is
not met, they accrue a penalty, which is used to measure their level of SLA achievement or
compliance. In order to reduce this application penalty, when searching for VMs to relocate,
we could choose to migrate the least penalized VM (that is still useful to migrate). This could
improve the overall SLA achievement of the management system.

6.3.4 New Approaches to VM Management

There are some other issues to explore that would mean somewhat of a departure from our
current line of work. One of it is to consider Quality of Service classes for the applications that
are deployed to the data centre. This categorization could be leveraged in any number of ways.
For example, when having a stress situation, policies could always select for migration VMs
from the lowest class, so as to not disrupt the performance of higher-class VMs, or instead
of issuing a migration, policies could take resources away from lower-class VMs and allocate
them to higher-class VMs.

The other issue to explore is the implementation of a hybrid approach to VM Management,
combining dynamic management with an offline module that would create mappings of VMs
into hosts based on complementary resource demand traces. The idea would be to logically
divide the set of hosts in the data centre in two groups: sandbox and stable. The membership
of these groups would be dynamic, meaning that a host could belong to one group and then to
the other. When a VM (or application) is submitted to the data centre, the VM is dynamically
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mapped to a host in the sandbox. From the moment the VM is placed, its resource demand
is monitored and stored as a trace. After a period of time, once enough history is known
of the VM, the VM is moved out of the sandbox and into a host in the stable group. This
new mapping is developed by the offline module, leveraging VMs’ history and using some
optimization technique, such as Integer Programming or genetic algorithms. If at a later point
the VM’s resource demand moves considerably away from its predicted values, the system
would migrate the VM away of its host in the stable group and back into a host in the sandbox,
where a new trace would start to be built. This idea is inspired in the work of Gmach et al. [4].

6.4 Conclusion

This work has addressed the issue of Virtual Machine Management in IaaS-type data centres
from four different directions and made contributions in each. First, we explored a variety of
First Fit heuristics applied to the VM Relocation problem and determined that a single policy
will not be able to satisfy all management goals or perform consistently under different data
centre conditions. Second, we worked on pursuing multiple management goals with equal
intensity, which we achieved by dynamically switching management strategies according to
data centre state. Third, we designed a hierarchical management system that, by virtue of
being organized to match the topology of the data centre network, could greatly reduce network
overhead. Fourth, we developed management strategies to handle multi-VM applications with
placement constraints and still achieve high levels of resource utilization and SLA achievement.
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Appendix A

DCSim

The scale of data centres providing Cloud services continues to increase, with thousands to
tens-of-thousands of servers to manage. This presents a unique challenge to researchers de-
veloping methods and algorithms for management, as the scale of the target environment pre-
cludes the use of a physical testbed. As such, simulation is commonly used for the evaluation
of management techniques. Simulation also helps researchers quickly evaluate data centre
management algorithms and techniques at a speed and scale not possible with a real imple-
mentation.

DCSim (Data Centre Simulator) [2, 3] is a simulation tool for simulating a virtualized data
centre operating as an Infrastructure as a Service (IaaS) cloud. To support our research and
to provide tools that other researchers can leverage in their work, we have developed DCSim.
Its features include event handling and message passing, mechanisms for event callbacks and
sequencing, new components to simplify the creation of management systems and to model
the communication between them, and a more complete model of the structure of a data centre
including racks and clusters. We also introduce classes to help streamline the creation of new
experiments, new output options and metrics, and a visualization tool to help provide a new
perspective on the behaviour of data centre management methods and systems. Finally, we
continue to focus on providing an extensible platform for researchers to extend and adapt to
suit their own work.

The remainder of this chapter is organized as follows: Section A.1 presents related work in
data centre simulation, Section A.2 describes the architecture, core features and new additions
to DCSim, Section A.3 gives some detail on how to configure and run experiments with DC-
Sim, Section A.4 provides an evaluation of the simulator through a demonstration of its use,
and Section A.5 presents some conclusions and future work.

0This chapter is based on work published in [1].
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A.1 Related Work

There are a small set of existing simulation tools available, each with their own strengths,
weaknesses, and target environments. GreenCloud [4] is designed to evaluate the energy costs
of operating a data centre. It is a packet-level simulator built as an extension to Ns-2 [5], and
provides a detailed model of communication hardware and power consumption of each element
of the data centre. It does not, however, include modelling of virtualization. MDCSim [6] is
designed to simulate a large-scale data centre running a three-tiered web application. It fo-
cuses only on evaluating the configuration of each tier, measuring both power and performance
metrics. As with GreenCloud, it does not consider virtualization. Furthermore, it is built on a
commercial product and is not publicly available.

GDCSim (Green Data Centre Simulator) [7] aims to help researchers fine-tune the inter-
actions between management systems and the physical layout of the data centre, including
thermal and cooling interactions with workload placement. This tool does not consider multi-
ple tenants of the data centre, nor does it consider virtualization.

CloudSim [8] simulates a virtualized data centre, with multiple clients operating VMs.
However, it implements an HPC-style workload, with Cloudlets (jobs) submitted by users to
VMs for processing. It can be manipulated to simulate an interactive, continuous workload
such as a web server [9], but it lacks a real model of such an application. An extension of
CloudSim, NetworkCloudSim [10], considers communication costs between VMs performing
parallel computations, but again focuses on HPC-style workloads rather than interactive work-
loads. Additionally, our work on DCSim adds data centre organization components such as
racks and clusters not present in CloudSim.

SimWare [11] targets the modelling of data centre cooling and power costs, including the
impact of server fan power consumption as related to the temperature of the data centre, and
air travel time from CRACs to servers. Their simulated client workload is based on traces of
HPC systems, rather than interactive applications.

DCSim [2, 3] models a virtualized data centre providing IaaS to multiple tenants, with
a focus on transactional, continuous workloads, and models such an application using a basic
queuing model. It can model replicated VMs sharing incoming workload, as well as dependen-
cies between VMs that are part of a multi-tiered application. It also provides metrics to gauge
SLA achievement, power consumption, and other performance metrics that serve to evaluate
a data centre management approach or system. Furthermore, DCSim is designed to be easily
extended, implementing new features and functionality.
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Figure A.1: Data Centre Model

A.2 DCSim Architecture & Components

DCSim is an event-based simulation tool, written in the Java programming language. It is
designed to be easily extended, so as to support research in the area of data centre management.
Figure A.1 gives a high-level overview of the basic data centre model implemented by DCSim.
The remainder of this section outlines the components and underlying mechanisms that drive
DCSim.
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A.2.1 Simulation Engine

As DCSim is intended to be a simulation platform that can be extended to suit the needs of
a particular area of research, it is useful to take a look at the mechanism by which DCSim
advances through simulated time in order to help gauge the feasibility of possible extensions.
Algorithm 11 outlines a simplified version of the main simulation loop.

1: simTime = 0
2: while eventQueue not empty && simTime ≤ duration do
3: scheduleResources()
4: postScheduling()
5: e = peek(eventQueue)
6: simTime = e.getTime()
7: advanceSimulation(simTime)
8: updateMetrics()
9: performLogging()

10: while eventQueue not empty && peek(eventQueue).getTime() = simTime do
11: e = pop(eventQueue)
12: handleEvent(e)
13: end while
14: end while

Algorithm 11: Main Simulation Loop

The eventQueue contains all future events that must be executed, simTime records the
current simulation time, and duration is the length of the simulation (in simulation time).
The outer loop is responsible for advancing in simulation time to the next scheduled event(s).
Changes to data centre state only occur via events; in-between events, the state of the data cen-
tre is static. The first phase of the loop uses the current data centre state to schedule resources

(line 3), in which an allocation of resources/second for each VM is calculated (see Section
A.2.6). CPU scheduling is based on current application demands, in a fair-share manner up
to the maximum capacity of the host processor. Next, the post-scheduling hook (line 4) al-
lows data centre components can create new events or move existing events based on dynamic
resource scheduling. This allows the simulation of operations and processes that exhibit vari-
able runtime based on available resources. This feature is included primarily for the planned
future development of variable VM migration times (due to changes in available network band-
width), and batch/HPC type jobs whose runtime is based on dynamically scheduled CPU. We
then check for the simulation time of the next event (which may have changed based on pro-
cessing in postScheduling()), and advance the simulation to the time of the next event using the
calculated resource scheduling (lines 6 & 7). Simulation metrics are then updated (see Section
A.3.2) and logging is performed. The inner loop (lines 10 to 13) executes all events that take
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place at the current simulation time. The process is then repeated to advance to the next set of
events.

A.2.2 Events

As DCSim is an event-driven simulation, all actions, operations and state changes in the simu-
lation are triggered by an Event. Events are also used for communication between data centre
elements and management components. The basic properties of an event are the simulator
component(s) that will receive the event, and the time at which to execute it. Events are or-
dered such that, in the case of multiple events being executed at the same simulation time,
they are executed in the order in which they were sent. Any component can send an event to
another component, or to itself in order to trigger some functionality at a specific time in the
future. The basic Event class is abstract, with specific event types implementing any behaviour
or storing any data they require.

There are a number of hooks and methods which can be used to add additional functionality
to an event. Pre-execution and post-execution methods can be implemented to perform oper-
ations before and after the event is executed, such as logging event details. An event callback
can also be registered with an event, allowing one or more objects to be notified once an event
has been executed. In some cases, an event can cause several other events to be generated in
order to complete an operation, which may require the post-execution and callback methods to
be triggered only after the complete sequence of events has been executed. To accomplish this,
events can be strung together in a sequence. For example, instructing a host (i.e., a physical
server; see Section A.2.3) to boot up involves one event sent to the host, and another event sent
by the host to itself some time later indicating the completion of the operation – hosts take time
to boot. These events are added in sequence together, allowing a management component to
receive a callback only once the full boot up operation has completed.

A special event subclass, MessageEvent, can be used for communication between compo-
nents by extending it with any additional functionality required. MessageEvent automatically
keeps track of the number of messages of each specific subclass that are sent during the simula-
tion. Finally, a special type of event, called the RepeatingEvent, can be used to trigger repeated
executions of the event on a regular interval.

A.2.3 VMs, Hosts, Racks & Clusters

DCSim uses a series of abstractions to organize the architecture of a data centre. These ab-
stractions are VM, Host, Rack, Cluster and DataCentre. In DCSim, a data centre consists of
a collection of clusters, each cluster being a collection of racks, and each rack a collection of
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hosts. Both Cluster and Rack are designed to be homogeneous collections (in terms of their
composing elements), but DataCentre may be an heterogeneous collection.

VM

A VM in DCSim represents a virtual machine running a single application (or application
component). The properties and requirements of a VM are defined in its VMDescription, which
is used to create an instance of the VM. The VMDescription defines the number of virtual
cores and the amount of CPU, memory, bandwidth and storage resources requested. In its
present state, DCSim allocates memory, bandwidth and storage statically to a VM, in the full
requested amount – they are not oversubscribed. CPU resources, however, do not need to be
fully allocated, allowing a host’s CPU to be oversubscribed. Once a VM is created and started
on a host, its CPU requirements are driven dynamically by the needs of the application it is
running (See Section A.2.5 for details on applications in DCSim).

In order to perform dynamic management of VMs in a data centre, VMs must be moved
from one host to another using VM live migration. This mechanism allows a VM to be moved
between physical servers with minimal downtime. DCSim supports simulating live migration,
and calculates the time to migrate a VM based on available bandwidth and VM memory size.

Host

A host represents a physical machine in the data centre, capable of running VMs. Its physical
properties are defined by the following set of attributes: the number of CPUs; the number
of cores per CPU; core capacity; memory capacity; network capacity; storage capacity; and a
power model. Core capacity is defined in terms of CPU Units, where one CPU unit is equivalent
to 1MHz of processor speed (e.g., a 2.4GHz processor has 2400 CPU units). The power model
defines how much power the host consumes at a given CPU utilization level, and is calculated
using results from the SPECPower benchmark [12]. The resource utilization of the host at any
given time is calculated as the sum of the resources in use by the set of VMs it is hosting,
including its privileged domain. A host can be in one of three states: on, off, or suspended.
VMs are only given resources to run their applications when the host is in the on state. The
host consumes some small amount of power when in the suspended state, and no power when
off. Transition times between states can be defined in the simulation configuration file.

Rack

A rack represents a collection of hosts in the data centre. This collection is homogeneous; that
is, all hosts in the rack are of the same type. A rack has a given number of slots that can be filled
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with hosts, and this number may vary between racks. A rack counts also with two switches to
which every host in the rack is connected.

Cluster

A cluster represents a collection of racks in the data centre. This collection too is homogeneous.
The number of racks per cluster is not fixed, so different clusters can have different numbers
of composing elements. The cluster also contains two collections of switches, one for the
data network and one for the management network (more information on networks in the next
section).

A.2.4 Data Centre Network

In DCSim, a data centre has two different networks: a data network and a management network.
The first is used to meet the communication needs of the hosted VMs, while the second is used
for the internal management of the data centre. VM migrations make use of the management
network as do status update messages or migration requests exchanged between management
entities.

A network consists of nodes and edges, namely, NetworkElement objects and Link objects.
A Link has a certain bandwidth capacity and it connects two NetworkElement objects. There
are two types of NetworkElement: NetworkCard and Switch.

Every Host has two network cards, one for each network. These network cards are con-
nected through links to their corresponding switch in the rack (two switches per rack, one
per network). At cluster-level, two network arrangements are possible: one, every rack in the
cluster is connected to a single switch (per network), which is referred to as main switch and re-
quires as many ports as there are racks in the cluster; and two, there is a two-level hierarchy of
switches (per network), where racks are connected to low-level switches and low-level switches
are connected to a single high-level switch (referred to as main switch). At data centre-level,
there is a central switch (per network) to which each cluster’s main switch is connected.

A.2.5 Application Model

Applications in DCSim are modeled after interactive, multi-tiered web application. In this
model, a number of clients issue requests to an application, wait for a response, and then
issue follow-up requests. An application consists of a set of tasks, and each task can have
multiple identical instances. When there are multiple instances of a task, the incoming load
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Figure A.2: Application Model

(i.e., requests) is shared equally between the instances. Task instances are mapped into VMs
in a one-to-one mapping. (See Figure A.2 for an overview of the application model.)

Applications are modeled as a closed queueing network, solved with Mean Value Analysis
(MVA). Applications have an associated think time, which is the time clients wait between
receiving a response to a request and producing a follow-up request, and a workload, which is
the number of clients currently using the application. Workloads can change at discrete points
in time during the simulation, according to trace data from an input file or using a random
number generator.

Tasks have a set of parameters that need to be defined: service time indicates the time it
takes for the task to process a request, visit ratio indicates the number of times the task is
invoked by a single request, resource size is the amount of resources allocated to the task, and
finally default and maximum indicate the base and maximum number of task instances.

Tasks have resource requirements; these specify an amount of CPU, memory, bandwidth
and storage. The last three resources are considered static and the specific quantities have to
be available (i.e., unallocated) in a host for a task instance (inside a VM) to be successfully
deployed in the host. The CPU resource, however, is dynamic, meaning that the CPU demand
of a task instance changes over time according to the application’s workload, and the total
CPU requirement does not need to be allocated to the task instance at all times. Moreover, it is
possible for the CPU demand of a task instance to be unsatisfied at some point in time due to
CPU contention with other task instances co-located on the same host. If this happens, the task
instance’s service time is incremented to account for processor queueing, which in turn affects
the application’s response time, and may cause SLA violations (see below).

A workload trace file consists of a sequence of value pairs, where the first component is a
discrete point in time and the second component is a normalized value in the range [0, 1]. The
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normalized values are scaled up to match the size of the associated application. The scaling
factor can be calculated by DCSim by specifying the maximum desired utilization of a task
instance or the maximum desired response time.

It is possible to associate a Service Level Agreement (SLA) to an application. This feature
takes the form of an upper threshold on the application’s response time or throughput. DCSim
keeps track of the amount of time the SLA conditions for an application were satisfied (or
achieved). SLAs can also define penalties to be calculated during periods of SLA violation
(i.e., unmet conditions).

A.2.6 Resource Managers & Scheduling

Host resources in DCSim are managed by a Resource Manager component on each host. The
resource manager is responsible for allocating and deallocating resources for VMs, keeping
track of the total amount of resource allocated, and deciding whether or not the host is capable
of running a given VM. The resource manager is an abstract class and must be extended to
provide the desired functionality. The default resource manager allocates memory, bandwidth
and storage statically, with no oversubscription. CPU is oversubscribed, allocating to VMs as
much CPU as they request, although they may not actually receive it if the host’s CPU becomes
overloaded.

While the resource manager handles allocations, the resource scheduler handles the schedul-
ing of dynamic resources, such as CPU, based on current demand. At present, the resource
scheduler schedules only CPU, although it could be extended to dynamically calculate usage
of other resources as well, such as bandwidth. Other resources are simply given their full al-
location, as determined by the resource manager. During the schedule resources phase of the
main simulation loop (see Section A.2.1), the resource scheduler for each host calculates the
amount of resources/second that each VM is given. In the case of CPU, this would be the
number of CPU units given to each VM. It does so in an fair-share manner, giving each VM a
chance to receive an equal amount of CPU, up to the total CPU required by its application at the
current time. CPU not used by one VM can be used by another, and any CPU amount required
by a VM over and above the capacity of the host is not scheduled, resulting in application
performance degradation.

A.2.7 Autonomic Managers & Policies

Our development of DCSim is focused on providing tools to support research on virtualized
data centre management. The Autonomic Manager (AM) and related components provide a
framework to allow quick development of new management systems, while taking care of
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some of the messaging and event handling details of DCSim automatically. The AM acts
as a container for a set of Capabilities and Policies. A capability is simply a data storage
object, which provides methods for the policies to access the stored data. For example, the
HostManager capability provides a reference to a host that is managed by an AM possessing
the capability. This capability can be used by a policy that is designed to manage a host in the
data centre. Policies are installed into AM, and implement the actual management logic. A
policy can only be installed in an AM that possesses the capabilities that the policy requires to
function.

Policies can be triggered on a regular interval, or in response to events sent to the AM by
another policy or component. In order to design a policy that executes on a regular interval, we
simply create a Policy class that defines an execute() method, and pass the time interval to
the AM when installing the policy. To trigger a policy on the arrival of a specific event class,
we simply define an execute(ConcreteEvent e) method, and the AM will automatically
detect that the policy accepts this event class, and call the policy whenever an event of this
class is received.

AMs do not need to be attached to any other component, and can simply run detached from
the physical data centre infrastructure. However, they can also be attached to host objects, to
indicate that the AM is running on that host. When this configuration is used, the AM will only
execute when the host is in the on power state.

Within this framework, it is a quick and simple process to define new policies, capabilities
and events to build a desired management system or test a management algorithm.

A.2.8 Management Actions

Common management operations performed within a simulation can be encapsulated in a Man-

agement Action. DCSim currently features management actions for instantiating a new VM,
migrating a VM, replicating a VM within an application task, and shutting down a host. Addi-
tional management actions can be created by extending an abstract class. It is possible to build
a set of actions which can be executed either concurrently, in sequence, or in any combinations
of the two. If a sequence of management actions is executed, the preceding management ac-
tions must complete before subsequent ones can execute. This includes the case where some
management actions, such as VM migration, may take some time to complete.

A.2.9 Metrics

DCSim includes a mechanism for recording metrics of interest in order to evaluate manage-
ment systems and algorithms through simulation. The class MetricCollection represents a set



118 Chapter A. DCSim

of related metrics and is responsible for the calculation of those metrics. The class Simulation-

Metrics consists of several default MetricCollection objects, such as HostMetrics and Clus-

terMetrics which collect infrastructure related metrics, and users can expand this collection
adding their own custom MetricCollection objects.

A.3 Configuring and Using DCSim

In this section we describe some of what is required to configure and run DCSim.

A.3.1 Workloads

As discussed earlier in Section A.2.5, the Workload component is responsible for specifying
a dynamic workload level for applications running in the simulated data centre. In our simu-
lations, we use normalized workload traces built from 5 real web server traces: the ClarkNet,
EPA, and SDSC traces [13], and two different job types from the Google Cluster Data trace
[14]. To ensure that VMs do not exhibit identical behaviour, we always start the trace for each
VM at a randomly selected offset time.

In a data centre, the set of VMs is not static; VMs continuously arrive and depart the
data centre. DCSim allows for this behaviour to be simulated, that is, the continual arrival
of new applications (see Section A.2.5) to the data centre, which are submitted by sending an
Application Placement event containing a description of the application to deploy. Applications
have a lifespan chosen randomly from a specified distribution, after which they terminate. This
helps model not only changes in individual VM resource requirements, but also changes in
overall data centre utilization over the course of a single simulation.

A.3.2 Default Metrics

DCSim provides a number of useful metrics in order to help judge the performance of data
centre management systems and algorithms, including the following:

Average Active Host Utilization

The average CPU and memory utilization of all hosts that are currently in the on state.

Average Data Centre Utilization

The average CPU and memory utilization of the data centre as a whole – treating all CPU and
memory resources as one big pool.
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Max, Min, and Average Active Hosts

The maximum, minimum, and average number of hosts in the on state at once.

Max, Min, and Average Active Racks and Clusters

If racks and clusters are defined in an experiment, the maximum, minimum, and average num-
ber of racks and clusters in the on state at once are calculated. Racks and clusters are considered
in the on state when any of their hosts are active.

Number of Migrations

The number of migrations triggered during the simulation, by each management component
that triggers migrations. Migrations are further broken down into migrations within a rack,
between racks in the same cluster, and between clusters.

SLA Achievement

This metric represents the percentage of time in which Service Level Agreement (SLA) con-
ditions are met (e.g., applications’ response time stays below the threshold specified in the
SLA). DCSim reports the following metrics related to SLA Achievement: mean and standard
deviation; maximum and minimum; 95th, 75th, 50th, and 25th percentiles; the number of ap-
plication with 99%, 95%, 90%, and less than 90% achievement. Penalties can be defined in a
per application basis, so as to be calculated during SLA violation.

CPU Underprovisioning

This is the amount of CPU demand that could not be satisfied. When a VM has its CPU demand
unmet, the difference between CPU demand and CPU scheduled is recorded and at the end a
total percentage is calculated and reported.

Power Consumption

Power consumption is calculated for each host, and the total kilowatt-hours consumed during
the simulation are reported. If racks and clusters are defined in an experiment, a second set of
power consumption metrics is calculated taking into account both hosts and network switches.

Message Counts

The number of message sent, for each subclass of MessageEvent used during the simulation.
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Spawned, Total, Shutdown, and Failed Applications

A number of application-related metrics are collected: created (spawned), successfully de-
ployed (total), completed (shutdown), and unsuccessfully deployed (failed).

Max, Min, and Mean Response Time and Throughput

The maximum, minimum, and mean application response time and throughput values.

Max, Min, Mean and Total VMs

The maximum, minimum, and mean number of VMs running at once in the data centre. The
total number of VMs that were instantiated during the simulation is also reported.

A.3.3 Performing Experiments with DCSim

In order to make configuring and performing experiments with the simulator as clean and easy
as possible, DCSim provides a set of helper classes for performing simulations. The Simula-

tionTask class encapsulates a single simulation configuration, allowing the user to configure the
simulator by implementing the setup()method, while taking care of the details of running the
simulation automatically. Simulation name, and duration can be specified, as well as a period
of time to wait before recording metrics. Finally, a seed for random number generation can be
passed to the SimulationTask to be used to generate any random elements, such as workload
configurations. This provides repeatable experiments, which is convenient both for debugging
and for comparing management systems and algorithms. Once the simulation task has been
run, a collection of metrics recorded during the simulation is returned.

In order to run several simulations, either sequentially or concurrently, SimulationTask
objects can be added to a SimulationExecutor. The simulation executor handles spawning
threads for individual simulation tasks, waiting for all tasks to complete, and returning the
resulting metric collections from each task.

A.3.4 Output & Logging

DCSim uses the logging library Apache log4j [15]. By default, only basic output is printed
to the console, with other options available for more detailed logging (at the expense of pro-
cessing time required for logging I/O). The DCSim configuration file contains several options
specifying different logging output:
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Enable Detailed Console

This will cause detailed, human-readable data on the execution of the simulation to be outputted
to the console. This includes data on each host and VM at every step in simulation, as well as
data on management operations such as VM migration.

Enable Console Log File

Console output will also be written to a log file.

Enable Simulation Logging

Individual, detailed data on the execution of the simulation (the same data as enabled with the
Enable Detailed Console option), will be written to a separate log file for each simulation task
run, even if several simulation task objects are executed concurrently.

Enable Trace

This will enable a machine-readable version of the detailed simulation data, for use in graphing
or visualizations.

A.3.5 Visualization Tool

When developing and evaluating data centre management techniques, it can be extremely help-
ful to have a tool to visualize what is happening within the simulated data centre. We have de-
veloped a visualization tool that makes use of the machine-readable trace output of DCSim to
provide a set of graphs describing the simulation run in detail. Furthermore, it includes an ani-
mation, allowing the state of Hosts and VMs in the data centre to be viewed as the simulation
time progresses. Host and VM resource utilization are presented, and VM migrations and new
instantiations are clearly shown. This allows the researcher to visually see how a management
system or algorithm is operating, and to gain new insight into its behaviour.

A.4 Evaluation

In this section we demonstrate how DCSim can be used to implement and evaluate a manage-
ment system, and use three different (though similar) management systems as working exam-
ples. We first describe the elements of these management systems (such as autonomic manager
capabilities, policies, and events), discuss the changes that were made from one system to the
next, and later compare the systems through simulation.
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A.4.1 Data Centre Infrastructure

The target infrastructure consists of a collection of hosts and a DataCentre abstraction that
contains all of the hosts. Each host has an associated Autonomic Manager (AM), as does the
data centre. In the next sections we will discuss the capabilities of these managers and their
associated policies.

A.4.2 Management Systems - Common Elements

Each host in the data centre has an AM associated with it. This manager possesses a capability,
namely HostManager, that acts as a knowledge base for the manager, storing all relevant man-
agement information that the policies may need to successfully execute. One such policy is
the HostMonitoringPolicy, which upon invocation collects the current status information of the
host (resources in use or allocated, power consumption, number of incoming and outgoing VM
migrations, etc.), packages the information in a HostStatusEvent message, and sends the mes-
sage to the data centre’s AM. The HostMonitoringPolicy requires the HostManager capability,
so as to be able to access the host and collect the necessary status information.

Another policy installed in every host’s AM is the HostOperationsPolicy. This policy de-
fines the behaviour of the manager upon receiving the events InstantiateVmEvent, Migration-

Event and ShutdownVmEvent. These events trigger the allocation of the resources requested
for the VM in the host, start a migration process, and stop and deallocate a VM, respectively.

At installation time, the HostMonitoringPolicy is configured to be triggered every 5 min-
utes. This behaviour is achieved by creating a RepeatingPolicyExecutionEvent with a period-
icity of 5 minutes and specifying the host’s AM as intended target. When the manager receives
the event (once every 5 minutes), it triggers the associated policy.

The data centre’s AM possesses the HostPoolManager capability, which serves to store
information about a collection of hosts (in this case, all the hosts in the data centre). In the
following sections we will discuss the policies that are installed in this AM.

A.4.3 Static Management System

The Static Management System allocates VMs in the data centre according to their expected
peak resource demand, allocating to each incoming VM the total resources requested at cre-
ation time and never modifying that allocation. This is achieved through a single manage-
ment policy, which is installed in the data centre’s AM. This policy is a VM Placement policy,
which defines how to perform the mapping of incoming VMs to hosts. Every time a VmPlace-

mentEvent is received, the data centre’s AM invokes the VM Placement policy. This policy
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implements a greedy algorithm to place the incoming VM in the first host that has enough re-
sources available to fit the VM without oversubscribing resources. If one such hosts is found,
then the search is terminated and an InstantiateVmEvent is sent to the host. Otherwise, the VM
Placement fails and the client request is rejected. The policy relies on the manager’s HostPool-

Manager capability to get status information about all the hosts.

Another policy installed in the data centre’s manager is the HostStatusPolicy. This policy
is invoked every time a HostStatusEvent is received. The policy stores the new host status
information in a data structure in the HostPoolManager capability of the data centre AM.

A.4.4 Dynamic Periodic Management System

The Dynamic Periodic Management System maps VMs into hosts based on their current re-
source needs. Resources such as memory, bandwidth and storage are statically allocated and
never change, but the CPU is oversubscribed, therefore allowing the system to map more VMs
to a host than is possible with the Static Management System.

Like the Static Management System, the VM Placement policy installed in the data centre’s
AM is invoked upon reception of a VmPlacementEvent. This policy is similar to the one used
in the Static Management System, but since this system leverages CPU oversubscription, the
policy does not require the hosts to have unallocated CPU for the incoming VM, but the policy
rather checks how much CPU is actually in use in the host, and if there is enough CPU not in
use, then the VM can be mapped into the host. As mentioned before, the system maps VMs
into hosts based on the VMs’ current resource needs. At creation time, the requested resources
are taken as the current resource needs of the VM.

By oversubscribing resources, the management system can increase the resource utilization
of the hosts, and therefore of the data centre as a whole. However, this strategy increases the
risk of hosts becoming stressed. A stress situations occurs when the combined demand of the
VMs co-located in a host exceeds the resource capacity of the host. When this happens, one
or more VMs have to be migrated to another host, so as to free resources locally to satisfy the
resource demand of the remaining VMs.

The management system uses a VM Relocation policy to determine which VMs to migrate
away from a stressed host and to choose a new host for the migrating VMs. The policy is
configured at installation time to run periodically every 10 minutes. When invoked, the policy
first checks the set of hosts to determine which, if any, are stressed. For each stressed host, the
policy follows a greedy algorithm to select VMs for migration and to find target hosts in which
to place the migrated VMs.

The management system also uses a VM Consolidation policy to periodically consolidate
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VMs in the data centre, attempting to minimize the number of physical servers that need to be
powered on to host VMs. This policy is installed in the data centre’s AM and is configured to be
invoked every hour. Upon invocation, the policy uses a greedy algorithm to migrate VMs away
of underutilized hosts and into hosts with higher resource utilization. Hosts that are emptied of
VMs are then suspended or powered off, to conserve power.

The same HostStatusPolicy used in the Static Management System is used here to process
HostStatusEvent messages and maintain up-to-date status information about the hosts in the
data centre.

A.4.5 Dynamic Reactive Management System

The Dynamic Reactive Management System is very similar to the Dynamic Periodic Manage-
ment System, except that it triggers its VM Relocation policy on demand rather than periodi-
cally. The VM Relocation policy itself is essentially the same, with minor changes implemented
to allow the policy to run as frequently as required rather than periodically.

The Reactive system attempts to detect stress situations and trigger VM migrations as soon
as possible, so as to reduce the SLA violations suffered by VMs co-located in stressed hosts. In
order to achieve this behaviour, a new HostStatusPolicy (i.e., different from the corresponding
policy from the Dynamic Periodic Management System) is necessary. This policy, known
as ReactiveHostStatusPolicy, is still invoked upon receipt of a HostStatusEvent and is still
responsible for updating hosts’ status information. However, once the status information of
the host associated with the event is updated, the policy issues a VmRelocationEvent so as to
invoke the VM Relocation policy.

Upon invocation, the new VM Relocation policy first queries the VmRelocationEvent to
obtain identification information of the host whose status information was recently updated.
The policy then performs a stress check on the host. If the host is stressed, the policy looks for
VMs to migrate away from the host and for target hosts to receive the migrated VMs. If the
host is not stressed, the policy terminates its execution.

A.4.6 Experimental Setup and Design

The simulated data centre for these experiments consists of 200 hosts, divided equally between
two types: small and large. The small host is modelled after the HP ProLiant DL380G5, with 2
dual-core 3GHz CPUs and 8 GB of memory. The large host is modelled after the HP ProLiant
DL160G5, with 2 quad-core 2.5GHz CPUs and 16GB of memory. The different types of host
have different power efficiency, which is calculated as CPU capacity / power consumption at
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100% utilization. The power efficiency of the large host is 85.84 cpu/watt, while the power
efficiency of the small host is 46.51 cpu/watt.

We use three types of VMs in these experiments. The small VM requires 1 virtual core
with 1500 CPU units (minimum), plus 512MB of memory. The medium VM requires 1 virtual
core with 2500 CPU units (minimum), plus 512MB of memory. The large VM requires 2
virtual cores with 2500 CPU units each (minimum), plus 1GB of memory. These descriptions
correspond to the resource requirements of the VMs at creation time. Once a VM is running in
the data centre, further placement and allocation considerations are made based on the actual
resource usage of the VM. These experiments include an equal number of each type of VM.

The experiments are configured to create 600 VMs in the first 40 hours of simulation. These
VMs remain throughout the entire experiment, so as to maintain a minimum level of load in the
data centre. In the third day of simulation, new VMs begin to arrive; they do so at a changing
rate and last for about a day. The total number of VMs in the data centre changes daily, using
randomly chosen values uniformly distributed between 600 and 1600. This second set of VMs
provides for a dynamic load in the data centre.

We use the term workload pattern to refer to a randomly generated collection of VM in-
stances with arrival, departure, and trace offset times. A workload pattern can be repeated by
providing the random seed with which it was first generated. We generate 10 different work-

load patterns and evaluate each management system under each of these workload patterns.
The experiments have a duration of 10 simulated days, though only the last 8 days of simu-
lation are recorded; the first 2 days are discarded to allow for the system to stabilize before
recording results. Results are averaged across workload patterns.

A.4.7 Results and Discussion

Table A.1 presents the results for each management system. We can see that the Static Man-
agement System achieved the lowest host utilization by far, which translated also into the high-
est power consumption. However, given that VMs are statically allocated their total resource
request (enough to meet their peak demand), the management system avoids CPU underprovi-
sioning completely. It should be noted, however, that such a conservative approach to resource
allocation resulted in an elevated percentage of failed placements, while the other management
systems were able to accept every VM creation request.

Both Dynamic Management Systems achieved similar results, with Periodic showing slightly
higher host utilization (and therefore less power consumption) and Reactive lowering CPU un-
derprovisioning by about 40%. However, Reactive’s reduction of CPU underprovisioning was
achieved by triggering VM migrations as soon as hosts became stressed, which resulted in a
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Host Util. CPU Failed
Systems (CPU) Power Underprov. Migrations Placements

Static 46% 7,221kWh – 0 24%
Periodic 80% 5,056kWh 0.109% 10261 0%
Reactive 79% 5,121kWh 0.059% 12508 0%

Table A.1: Management Systems Comparison

20% increase in the total number of VM migrations issued.

A.5 Conclusions and Future Work

Developing and evaluating data centre management techniques on the scale that they are ul-
timately required to perform at presents a significant challenge. As such, most work turns
to simulation tools for their experimentation. We have presented DCSim (Data Centre Sim-
ulator), an extensible simulation tool for simulating a virtualized data centre operating as an
Infrastructure as a Service (IaaS) cloud. This tool allows researchers to quickly evaluate data
centre management algorithms and techniques. We have presented an example use-case of the
simulator, comparing three different VM management systems, to demonstrate the usefulness
of the simulation results.

A number of additional features are planned for DCSim. An HPC/batch style application
model should be included, as data centres typically host both interactive and HPC workloads.
VM migrations are an important aspect to dynamic VM management, and their overhead needs
to be considered in as accurate a manner as possible. We plan to include a more detailed
modelling of migration bandwidth, and the impact of multiple simultaneous migrations on
both migration time and SLA metrics, using our new model of data centre networking. Finally,
the thermal state of the data centre should be considered and used to calculate cooling costs, as
cooling power represents a significant cost for data centre operations.
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