514,268 research outputs found

    A Method for the Combination of Stochastic Time Varying Load Effects

    Get PDF
    The problem of evaluating the probability that a structure becomes unsafe under a combination of loads, over a given time period, is addressed. The loads and load effects are modeled as either pulse (static problem) processes with random occurrence time, intensity and a specified shape or intermittent continuous (dynamic problem) processes which are zero mean Gaussian processes superimposed 'on a pulse process. The load coincidence method is extended to problems with both nonlinear limit states and dynamic responses, including the case of correlated dynamic responses. The technique of linearization of a nonlinear limit state commonly used in a time-invariant problem is investigated for timevarying combination problems, with emphasis on selecting the linearization point. Results are compared with other methods, namely the method based on upcrossing rate, simpler combination rules such as Square Root of Sum of Squares and Turkstra's rule. Correlated effects among dynamic loads are examined to see how results differ from correlated static loads and to demonstrate which types of load dependencies are most important, i.e., affect' the exceedance probabilities the most. Application of the load coincidence method to code development is briefly discussed.National Science Foundation Grants CME 79-18053 and CEE 82-0759

    Mechanism continuously measures static and dynamic cable loads

    Get PDF
    Pulley mechanism measures the tensile loads on a cable under static and dynamic conditions, without disturbing the continuity of operation of the system. A set of takeoff pulleys are mounted on a pivoted frame that is linked to a strain gage which measures the frame displacement as a function of the static or dynamic tensile load on the cable

    Decomposition of aggregated load: finding induction motor fraction in real load

    Get PDF
    The main contribution of this paper is decomposition/separation of the compositie induction motors load from measurement at a system bus. In power system transmission buses load is represented by static and dynamic loads. The induction motor is considered as the main dynamic loads and in the practice for major transmission buses there will be many and various induction motors contributing. Particularly at an industrial bus most of the load is dynamic types. Rather than traing to extract models of many machines this paper seeks to identify three groups of induction motors to represent the dynamic loads. Three groups of induction motors used to characterize the load. These are the small groups (4kw to 11kw), the medium groups (15kw to 180kw) and the large groups (above 630kw). At first these groups with different percentage contribution of each group is composite. After that from the composite models, each motor percentage contribution is decomposed by using the least square algorithms. In power system commercial and the residential buses static loads percentage is higher than the dynamic loads percentage. To apply this theory to other types of buses such as residential and commerical it is good practice to represent the total load as a combination of composite motor loads, constant impedence loads and constant power loads. To validate the theory, the 24hrs of Sydney West data is decomposed according to the three groups of motor models

    Rolling maneuver load alleviation using active controls

    Get PDF
    Rolling Maneuver Load Alleviation (RMLA) was demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the LaRC Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of .33, .38, and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure

    Simulation of dynamic load effect on power system frequency

    Get PDF
    This thesis addresses the impact of dynamic load on power system frequency. Rapid dynamic load variations will bring significant impact to the power system in terms of frequency. The thesis is based on three-phase dynamic load (composite based). The objective of this thesis was to analyse the dynamic characteristics of loads and its impact on power system frequency. For this, IEEE 9 bus system was tested with dynamic loads by observing change in power system frequenc

    Effects of rotor location, coning, and tilt on critical loads in large wind turbines

    Get PDF
    Several large (1500 kW) horizontal rotor configurations were analyzed to determine the effects on dynamic loads of upwind downwind rotor locations, coned and radial blade positions, and tilted and horizontal rotor axis positions. Loads were calculated for a range of wind velocities at three locations in the structure: (1) the blade shank; (2) the hub shaft; and (3) the yaw drive. Blade axis coning and rotor axis tilt were found to have minor effects on loads. However, locating the rotor upwind of the tower significantly reduced loads at all locations analyzed

    Influence of linear profile modification and loading conditions on the dynamic tooth load and stress of high contact ratio gears

    Get PDF
    A computer simulation for the dynamic response of high-contact-ratio spur gear transmissions is presented. High contact ratio gears have the potential to produce lower dynamic tooth loads and minimum root stress but they can be sensitive to tooth profile errors. The analysis presented examines various profile modifications under realistic loading conditions. The effect of these modifications on the dynamic load (force) between mating gear teeth and the dynamic root stress is presented. Since the contact stress is dependent on the dynamic load, minimizing dynamic loads will also minimize contact stresses. It is shown that the combination of profile modification and the applied load (torque) carried by a gear system has a significant influence on gear dynamics. The ideal modification at one value of applied load will not be the best solution for a different load. High-contact-ratio gears were found to require less modification than standard low-contact-ratio gears. High-contact-ratio gears are more adversely affected by excess modification than by under modification. In addition, the optimal profile modification required to minimize the dynamic load (hence the contact stress) on a gear tooth differs from the optimal modification required to minimize the dynamic root (bending) stress. Computer simulation can help find the design tradeoffs to determine the best profile modification to satisfy the conflicting constraints of minimizing both the load and root stress in gears which must operate over a range of applied loads

    A multi-purpose method for analysis of spur gear tooth loading

    Get PDF
    A large digitized approach was developed for the static and dynamic load analysis of spur gearing. An iterative procedure was used to calculate directly the "variable-variable" gear mesh stiffness as a function of transmitted load, gear tooth profile errors, gear tooth deflections and gear hub torsional deformation, and position of contacting profile points. The developed approach can be used to analyze the loads, Hertz stresses, and PV for the normal and high contrast ratio gearing, presently the modeling is limited to the condition that for a given gear all teeth have identical spacing and profiles (with or without surface imperfections). Certain types of simulated sinusoidal profile errors and pitting can cause interruptions of the gear mesh stiffness function and, thus, increase the dynamic loads in spur gearing. In addition, a finite element stress and mesh subprogram was developed for future introduction into the main program for calculating the gear tooth bending stresses under dynamic loads

    Frequency Restoration Reserve Control Scheme with Participation of Industrial Loads

    No full text
    In order to accommodate larger amounts of renewable energy resources, whose power output is inherently unpredictable, there is an increasing need for frequency control power reserves. Loads are already used to provide replacement reserves, i.e. the slowest kind of reserves, in several power systems. This paper proposes a control scheme for frequency restoration reserves with participation of industrial loads. Frequency restoration reserves are required to change their active power within a time frame of tens of seconds to tens of minutes in response to a regulation signal. Industrial loads in many cases already have the capacity and capability to participate in this service. A mapping of their process constraints to power and energy demand is proposed in order to integrate industrial loads in existing control schemes. The proposed control scheme has been implemented in a 74-bus test system. Dynamic simulations show that industrial loads can be successfully integrated into the power system as frequency restoration reserves. © 2013 IEEE

    Structural load challenges during space shuttle development

    Get PDF
    The challenges that resulted from the unique configuration of the space shuttle and capabilities developed to meet these challenges are described. The methods and the organization that were developed to perform dynamic loads analyses on the space shuttle configuration and to assess dynamic data developed after design are discussed. Examples are presented from the dynamic loads analysis of the lift-off and maximum dynamic pressure portion of ascent. Also shown are orbital flight test results, for which selected predicted responses are compared to measured data for the lift-off and high-dynamic-pressure times of ascent. These results have generally verified the design analysis. However, subscale testing was found to be deficient in predicting full-scale results in two areas: the ignition overpressure at lift-off and the aerodynamics/plume interactions at high-q boost. In these areas, the results of the flight test program were accommodated with no impact to the vehicle design
    corecore