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NOIUNCLATURE

C - Center distance

CB - bearing damping

CS - shaft damping

CP - circular pitch

CR - loading contact ratio

CRT - theoretical contact ratio

DDELT - backlash

DF - dynamic load factor

E - Young's modulus

F - gear face width

FH - hub face width

FW - geat web thickness

G - torsional modulus

GP - gear tooth pair

HSF - hub torsional stiffness factor

J - mass moment of interia

JG - 1/2 MG(RBC)2

K - shaft stiffness

KG - gear mesh stiffness, N/m

KP - gear pair stiffness, N/m

M - mass

P - total mesh static load, normal

PH - Hertz stress

PE - profile error

PM - profile modification

PSITP - static angular position

PRECEDING PACE Et A^y;( NOT FILMED
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Q - static GP load, normal

QD - dynamic GP load, normal

QDT - total mesh dynamic load, normal

RA - roll angle

RATIP - RA at tip of involute

RAPP - RA at pitch point

RABOT - RA at bottom of involute

RBC - radius of base circle

RCP - radius to contacting point

RCCP - radius of curvature

RH - hub fixity radius

RRC - radius of root circle

SV - sliding velocity

TR - transmission ratio

d - deflection

V - Poisson's ratio

E - critical damping ratio, gear mesh

^s - critical damping ratio, shafts

dynamic displacement, red

dynamic velocity

- dynamic acceleration, red/ sect

Superscript:

' - instantaneous
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W;

Subscripts :

D - driving element

G - gear

HCR - high contact ratio gearing

i - mesh arc position

L - load element

NCR - normal contact ratio gearing

S - shafting

1 - Gear 1

2 - Gear 2
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INTRMCrION

Many advanced technology applications have a general requirement that

the power to transmission weight ratli be increased. Engineers, as a

result of these requirements, design osar systems to maximum load capacity.

However, accurate determination of gear tooth loads and stresses under

dynamic conditions is nod currently possible. As a result, experience or

engineering institution becomes the controlling factors in transmission

•	 design. The ability to accurately calculate the dynamic loads in geared

systems becomes essential for advanced transmission design.

The concern with dynamic loads acting on gear teeth goes back at least

to the eighteenth century. A first concentrated effort in defining dynamic

loads was Conducted by the ASME Research Committee on Dynamic Loads on

Gear Telth in the late 1920's and early 1930's. These studies presented a

dynamic load equation more popularly known as Buckingham's Equations I']*.

Between 1940 and mid 1950's another era in analyzing the dynamic loads

in gear teeth developed. The studies conducted during this period utilized

more detailed information on gear teeth deflection, and in addition,

mass-equivalent spring models with wedge, cam, or sinusoidal type excitations

.	 were introduced f4, 6, 7, 93. In general, this group of analyses could be

considered as using an equivalent constant mesh stiffness model.

Numbers in brackets designate references at the end of the paper.



Starting with the late 1950's, a variable gear mesh stiffness model was

considered by a number of investigators [8, 10-12, 14-16, 18-211. In these

analyses, the gear mesh stiffness was assumed or calculated to be of periodic

rectangular (or nearly rectangular) form, in other cases it was assumed that

the stiffness could be of sinueoidal or trapezoidal forms. The main

simplifications used either singly or in same combinations in these models

can be generalized as follows:

a. Gear tooth errors have negligible effect or no effect on mesh

stiffness. This implies that for a given load a gear with errors

will have equal mesh stiffness as the same gear without errors.

b. Contact assumed to occur only on the line of action.

c. Analysis limited to contact ratios below 2.0.

d. The contact ratio and/or mesh 'stiffness is not affected by

transmitted load, premature or delayed engagement.

e. Dynamic simulations based on uninterrupted periodic stiffness

functions and error displacement strips.

In view of these limitations, the above gear mesh stiffness model can be

defined as a fixed-variable gear mesh stiffness model (?"M).

The gear mesh stiffness in engagement is probably the key element in

the analysis of gear train dynamics. The gear mesh stiffness and the contact

ratio are affected by many factors such as the transmitted loads, load

sharing, gear tooth errors, profile modifications, gear tooth deflections,

and position of contacting points.
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5
	 By introducing these aspects, the calculated gear mesh stiffness can be

defined as being a variable-variable mesh stiffness (VVMS) as opposed to

the FVMS modeling. The need for an improved modeling or variable-variable

gear mesh stiffness modeling has been recognized or initiated to some

degree C11, 15, 15, 22-25, 27, 29, 33, 341.

In this study a large scale digitized approach (computer block diagram

in Figure 1) was used for eliminating the previously indicated serious

shortcomings of the FVMS modeling. The concept of the VVMS was expanded by

introducing an iterative procedure to calculate the VVMS by solving the

statically indeterminate problem of multi-pair contacts, changes in contact

ratio, and mesh deflections. In both the static and dynamic portions of the

analysis, the gear train was modeled as a rotating system rather than an

equivalent mass-spring system excited by the error displacement strips or

wedges.

The primary purpose of this study was to develop an uninterrupted static

and dynamic analysis of a spur gear train. In both the static and dynamic

portions, the gear train was modeled as a rotating system rather than an

equivalent mass-spring system excited by the error displacement strips or

wedges. At this time the modeling is limited to the condition that for a

given gear all teeth have identical spacing and profiles (with or without

surface imperfections). The surface imperfections-faults were simulated

by introducing various sinusoidal profile errors and surface pitting. The

extended modeling is illustrated by a few selected situations in the

high contact ratio (CRZ2) and normal contact ratio (CR<2) operating regimes.

_
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OVERALL COMPUTER PROGRAM FLOW DIAGRAM

The developed digitized analytical mothod was programmed in

FORTRAN IV. Functionally,the computer program is divided into the following

three parts:

1. A set of subroutines to perform the static analysis. This set of

subroutines can operate as a stand-alone unit. However, this set

is needed to operate Sets 2 and 3.

2. A set of subroutines to perform the dynamic analysis.

3. A set of subroutines to perform the finite element analysis of

gear tooth stresses. (Currently not an integral part of the entire

system program package).

Figure 1 depicts in general terms the block diagram for the computer

program. The main calling program reads in and prints the input irformation

defining the gears. It then passes control first to the static analysis section

and then sequentially to the dynamic analysis section and to the finite element

section.

The MAIN1 routine performs the bookkeeping for the static analysis portion

of the program. This routine calls the necessary subroutines to perform all the

calculations required for the static analysis and the writing out of the

results in the form of tables or X-Y plots.

The static analysis is accomplished primarily by means of three

subroutines: MOD. SLOW and DEFL.

The purposes of the M0D subroutine is to generate the XY coordinate system

and digitize the gear tooth profiles from the addendum circle to the root circle

for each gear. The MnD subroutine permits to build up a non-standard tooth form,

or to introduce profile modifications, profile errors, and surface pits.
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The SLOWM routine determines the contact points and the number of

contacting gear tooth pairs, load sharing, stiffness functions, various

positional vectors, sliding velocity vectors, transmission ratios, etc. as

the gear tooth pairs move through the mesh arc. In the SLOWM routine all

inertia forces and torques were taken to be negligible.

The DEFL subroutine is used in conjunction with the SLOWM routine to

determine the individual gear tooth deflections.

The XYPLOT routine is used to cross plot as many as four dependent

variables against a single independent variable.

The FAST routine is the main routine for the dynamic analysis. The

zoutine consists of a number of subroutines listed below:

T'e VIBS subroutine is used to determine the eigenvalues and eigenvectors.

of the gear train and to set the length of the numerical integration run as

well as the integration time steps.

The RKUTTA and the MORERK subroutines are used to numerically integrate

the system of differential equations of motion. These routines utilize a

fourth order Runge-Kutta integration scheme.

The STORE subroutine is used in conjunction with the XTPLOT routine to

generate plots of the mesh stiffness function and the dynamic force variation

versus time. The STORE; subroutine features a recirculating memory provision

and is used as a buffer between the integration routines and the XTPLOT routine.

The STRESS routine contains the finite element and grid generatina.

subroutines to perform stress analysis of a gear tooth subjected to dynamic

loads. At this time the STRESS routine is not an integral part of the entire

program. Also see P. 76.

The principal executing subroutines are described in a greater detail in

subsequent sections and Appendix.
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TOOTH STIFFNESS AND EGAD SHARING

Before the variable-variable mesh stiffness (VYM) can be determined,

the actual contacting profiles gust be developed. In this process, the profile

modifications and errors must be considered.

It is customary to define the profile modifications and errors by menu

of a profile chart. In terms of an involute chart, the profile modifications (PM)

and errors (PE) can be expressed as

M - PV (RA)
	

(1)

where

M W	 deviation from the line of action

RA •	 roll angle limited to active profile

PV	 profile variation (error or amount of modification) as a

function of RA

A true involute profile is defined by

M - PV (RA) - 0

The previously discussed MOD subroutine simulates an involute chart-gear tooth profile]

relationship shown in Figures 2 and 3. The simulated profile chart can

accommodate the parabolic and straight line modifications of the tip and

root zones, Figure 2a. Tine profile errors were approximated by sinusoidal

representation. By varying the number of cycles and phase angle sinusoidal

profile errors (Figures 2b, 2c)could describe a large nunber of practical

the theoretical cases. A simulated surface pitting damage is shown in

Figure 2e. The defined surface faults :and their respective involute charts

are then numerically transferred to the previously digitized true involute
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profile. This is accomplished by subtracting or adding the specified amounts

of material perpendicularly to the true Involute profile as shown in Figures 3

and 4.

After considering several types of "curved" segments and resulting

numerical difficulties, straight line segments were chosen to connect the

densely digitized points involving the "modified" gear teeth. Each gear

tooth profile was defined by one to two hundred digitized points, depending

on tooth size. One hundred points were used to define the gear tooth heights

up to 25 mm (1 in.). Two hundred points were used to digitize the gear tooth

profiles above 50 mm. (2 in.) in,height. The intermediate tooth heights are

proportionally digitized between one and two hundred points.

The digitized profile points incorporating the specified profile

modifications and errors then are transferred to the SLOWM subroutine for

establishing the points of contact, number of contacting gear tooth pairs,

sliding velocity vectors, and the stiffness of the individual pairs as

well as the variable-variable mesh stiffness.

Figures 4 and 5 will be used to illustrate the computerized method for

determining the VVMS and other parameters. For this purpose three

coordinate systems are used. Following Figure 5.

U, V	 - Fixed global coordinate system for the pinion and gear

tooth profiles, gear 1 and gear 2, respectively.

The global system, (t!, V), has its origin at the pinion

center and its V-axis corresponds to the gear centerline.



teeth for the pinion and gear, respectively. The origin

0 (X,Y) is located at the intersection of the centerline of the

tooth and the line tangent to the root circle of the teeth.

The Y-axes coincide with the tooth centerlinea. The X, Y

coordinate system is used in digitising the profiles and for

determining the appropriate deflections of the teeth.

W, Z	 - Intermediate coordinate system rotating with the pinion and

gear respectively. The origins of the W, Z coordinate

systems for each gear are at the respective gear centers. 	 .

The Z-axes coincide with the tooth centerlines.

The transformations between the coordinate systems for each considered

gear pair (k-1, n) are:

W1 - X1; W2-X2

Zi - Yl + RR01; Z2 - Y2 + RR02

U1 - W1 sin PSIITP(k) + Z1 cos PSIITP(k)

V1 - -W1 cos PSIlTP(k) + Z1 sin PSIITP(k) 	 (2)

U2 - -W2 cos (PSI2TP(k) -1.51) + Z2 sin (PSI2TP(k) - 1.55)

V2 - C- [W2 sin (PSI2TP(k) - 1.51) + Z2 cos (PS12TP(k) - 1.51)]

For each angular position defined by PSIITP (k) and PSIZTP(k) the

profile coordinates (X,Y) are first transformed into an intermediate

coordinate system, (W,Z), and then into a global coordinate system, (U, V).

In each transformation step, the first profile point ( point 1) is located at the

addendum circle, and the final point is located at the root. Each tooth

is defined by the same number of digitized points.
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For example, using 100 digitized profile points there are:

X1 (100) 6 Y1 (100)
W1 (100), Zi (100)
U1 (100), V1 (100)1Gear 1

l k - l,n

X2 (100),Y2 (100)
W2 (100),Z2 (100)
U2 (100).V2 (100) Gear 2

1k -1,n

The locations of the contacting gear teeth and the number of contacting

gear tooth pairs are determined by using a three step process. First, the

gears are preloaded by a unit load and rotated by incrementing the

PS T_'TP (k) and PS12TP (k) angles and examining the potential contact

between the calculated (111, V1) and U2, V2) profile points for several

. gear tooth pairs. The search technique is described in Appendix 1. The

beginning and the end of the meshing arc are established by tracking the

gear pair 3, (GP3) through its complete meshing arc. After the limiting

points of mesh arc are determined the mesh arc is divided into fifty

positions. Next, the gears are fully loaded for further analysis. The

actual load sharing and deflections are calculated for fifty arc positions by

tracking the movement of fully loaded gears through the established mesh arc.

By tracking five tooth pairs simultaneousl y , it is possible to

analyze the mesh behavior for the contact ratios up to 3.0. Tracking seven

tooth pairs instead of five expanis the capacity of the program to analyze

gear systems with contact ratios between 3.0 and o;xl, .tc.

The gear tooth pair deflection S(k) i can be expressed in the following

form: S(k) j = d l (k)
i + 6

2 (k) i + 6H(k)i	
(3)

6 1 (k) i = deflection of the k th tooth of gear 1 at mesh arc position i

6 2 (k) i a deflection of the k th tooth of gear 2 at mesh arc position i

611 (k) i = localized Hertz deformation at the point of contact



For the contacting pairs,the gear tooth deflections 6 1 (k) i and 62(k)i

incorporate a number of constituent deflections; See 1173 and Appendix 29

al (k) i - 6Ml W 1 +6
N1 (k) i + 6 S 

W i + 6B1 (k) i + 6R1 (k)1	 (4)

and sivilarly for Gear 2. In equation (4),

6M - gear tooth deflection due to bending

8N - gear tooth deflection due to normal force

S y gear tooth deflection due to shear force

tsB 
= gear tooth deflection due to deformation of surrounding hub

area (rocking action)

I^ g = gear tooth deflection duc to groRs torsion of the rim or hub (Appendix 2)

The gear tooth deflections can be considered as equivalent positive profile

errors for the pinion and gears causing premature engagement and delayed

disengagement [24, 29]. The presence of positive manufactured profile errors

(material addition) will increase the total equivalent positive error at the

point of contact thus moving it farther away from the theoretical line of

contact and causing an earlier engagement. The negative profile errors or

material removal at the tips will reduce the equivalent positive errors.

In the third stet, the 6 1 (k) i and 6 2 (h) i and approuortioned 6H (k) i deflections

were returned to equations 2 and added perpendicularly to the respective

digitized profiles in order to simulate the above gear behavior. Now, the

Iterative search and calculate process is repeated under the "loaded and

deflected" conditions. In this step the contacting points and the mesh

are determined under full load. These events are illustrated in Figure 5,

where the limiting points of meshing arc occur at points A' and B' as compared

to the theoretical true involute mesh arc A-B under no load. As a result,

the contact arc, and therefore the contact ratio of the gears is increased.

In the same procedural step, the final number of pairs in contact, locations

of contacting points, gear tooth deflections, load sharing, stiffnesses, etc.,

are computed as the load gear tooth pairs move through the mesh arc (A'-B').
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If the geometrical variations in surfaces do not permit contact in

5tepto 1 and 2, than Ott- non-contacOng gear teeth are Htill subjected to

AR de l let-t ions. For e ,x.imp le, If t.11 1 and t-P3 are to contact, then for CP2

6
1 (2) i - 6 

R (2) 1 and 6
2 (2) i - 6R2 (2) 1	 (S)

These deflections are due to torque transmission at GP1 and GP3 and

the resulting circumferential hub deformation at GP2. If the 6
R1

(2) 1 and

6R2 (2) 1 deflections are sufficiently large to overcome the geometrical gap

(errors) between the approaching teeth profiles of gears 1 and 2 at the

angular position i, then the contact will be established for GF2. In

this case the final load sharing and deflections will be recalculated on

the basis of three contacting pairs (Step 3). These calculation methods

can handle both the involute and non-involute gear actions, high contact

ratio gearing, etc.

For any mesh are position i, the calculated k th gear tooth pair

stiffness KP(k) i , mesh stiffness KG i , and load sharing incorporate the

effects due to manufactured profile errors, profile modifications, and

deflections by means of the iterated numerical solutions of equations 3

through 8.

The individual gear tooth pair stiffness can be expressed as

KP(k) i = Q (k) i / 5W 1	 (b)

1f the effective errors prevent contact, KP(k) i
 • 0.

'rhe sum of gear tooth pair stiffnesses for all pairs in contact at

position i represents the variable-variable mesh stiffness KGP

K	 (7)

Kepi ` E KP(k)i
1

The load carried by each of the pairs moving through the mesh arc in the

static mode can be determined as

Q (k) i	 KP(k)(i')	 (8)

_	 i
where p is the total normal static load carried by the gears at any mesh

position i in the static mode

K
p - E Q(k)i

1

(9)



The contact ratio under non-conjugate action can be-more properly

defined as the ratio of the traversed arcs. For exam ple, referring to

Figures 5 and 6. the loaded contact ratios for an errorless gear pair can be

approximated as

CR
A' - B'
CP

where

(A' - B') - [PSITPI (3) At - 010)] - [PSITPI(3) - 020)] B ,	 (11)

(A' - B')is the loaded arc length from GP3 first engagement to GP3

disengagement with gl being the variable angle between the tooth centerline

and the contacting point. In this modeling GP2, GP3 and GP4 participate in

the mesh arc for 1<CR<2; GP1, GP2, GP3, GP4, and GP5 participate in the

mesh arc for 2<CR<3, etc.

For the instances when the contact points are not on the theoretical

lines of action (non-conjugate action) we must refer to instantaneous pressure

angleR, instantaneniis lines of action and transmission ratios. The need for

instantaneous lines of action were indicated in (15) and (23]. Utilizing

Figure 6, the instantaneous parameters* for the contact point A' (defined by

RCPT and RCP2, or UCP(k) and VCP(k) in the U, V coordinate system) are:

{10)

. 3

PPD'	 a RBCl/cos(aAl + (% B1)

"Al aresin (UCP(k)/RCP1)

aA2	 - aresin (UCP(k)/RCP2)

ag l	 R arctan (RCCP1/RBC1)

a'
t 'Al + aBl

TR' (C-PPD')/PPD'

TR RPC2/RPCI

RBC2' RBC1xTR '

_	 *	 Designated by superscript

Distance to instantaneous pitch point (12)

Instantaneous pressure angle 	 (13)

Instantaneous transmission ratio 	 (14)

Involute (theoretical) transmission (15)
ratio

Instantaneous base circle, gear 2 	 (16)
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1CCPl' V(RCP1) 2 - (RBC1)2	 Equivalent instantaneous radius	 {1T)

of curvature, gear 1 4

equivalent instantaneous radius 	 (18}
RCCP2'	 (RCP2)2 - (Rlk.2') 2	of curvature, gear 2

The saps procedure is used for determining the instantaneous parameters as

the above gear pair k traverses the mesh arc and, similarly, for other gear

pairs. The instantaneous transmission ratio T1 1 is influenced by the deformations

in the contact zone and tooth profile errors. It is important to note that for

no-load and no surface fault conditions TR' • TR, and similar analogy exists

for other parameters.

If the actual loaded contact occurs above the theoretical line of action,

the effective base circle radius of the driven gear will be decreased.

Consequently, the instantaneous transmission ration, TR' will be smaller than

the theoretical transmission ratio, TR.

In this study, it is assumed that the instantaneous transmission ratio

is dominated by the incoming tooth pair at point A' in Figure 6 as it moves

through one gear mesh stiffness cycle. The approximate variation/cycling of

TR' is illustrated in Figure 9. The maximum variation in TR' is defined as ATR.

The described static analysis determines the variable-variable mesh

stiffness (KGP), transmission ratios (TR), and the contact position vectors

(RCPT, RCP2, RCCP1', etc.) for subsequent dynamic calculations.
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DYNAMIC MODEL

A gear train shown in Figure 7 was used in dynamic simulations. This

model is assumed to represent one of the practical cases in gearing. The

model includes the input and load units; a pair of gears; interconnecting

shafts; damping in shafting, gears and bearings; non-involute action

caused by gear tooth deflections; and loss of contact.

The dynamic model is based on the same coordinates as the static model.

The instantaneous parameters which were determined for various mesh arc

positions in the static analysis will also be utilised in the dynamic

simulation.

The equations of motion for this model along the instantaneous

(non-involute) line of action can be given in the following form:

JD
 

If + CBD iD + 
CB1 y1 + CDS( yD - i1) + KDS ( YD - yl) - TD	 (19)

JG1 Y 1 + CDS( y1 - yD ) + KDS (
 7

1 - TD) +

[CGP 
i 
(RBCli 

1- RBC2 ' Y 2 ) + KGPi (RBClT I - RBC2 'T2)] RBC1 - 0	 (20)

J	 +C (T - It ) +	 (V	 Td +
G2 2	 LS 2	 L	 ^S 2- L	

(21)
[CGP i (RBC2 ' T2 - RBCIT1) + KGPi (RBC2'F - RBClT1)] RBC2' - 0

JL 'YL + CBLPL + CB2 P2 + CLS6L -y2) + LS ( TL - Y - T
D x TR'	 (22)

^T(TR')
L

The bearing damping on the drive and load shafts was lumped as

effective damping at their respective drive and load masses.
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The bracketed terms in equations (20) and (21) represent the dynamic

gear mesh force which is dependent on the Dynamic displacements of engaged

gears, gear mesh stiffness and damping in tine mesh.

In equations (20) and (21), KGPi represents the variable-variable mesh

stiffness. KGPi is a function of gear tooth profile errors and modifications,

deflections of gear teeth, load sharing, height of engagement, and an

angular rtosition i of engagement as the gear pairs move through the mesh

tone. The mesh stiffness cycle is illustrated in Figures 9 and 10. The

basic sources of excitation for a rotating pair of gears are the variable-

variable mesh stiffness and the changes in the transmission ratio caused by

non-involute action. The input torque TD is assumed to be constant while the

output or load torque T L is a function of the instantaneous transmission

ratio shown as TL (TR'), ana bearing losses. Also see Appendix 5. If

contact occurs above the theoretical line of action, the effective base

circle radius of the driven gear will be decreased by an amount equivalent to

the percentage decrease in the transmission. ratio.

Operational situations, which may involve momentary disengagement of

gears in mesh can impost several conditions on the dynamic gear mesh forces

in equations 20 and 21. By defining the relative dynamic displacement CRM as

CRM - RBC1 x +f l - RBC2' 12 ,	 (23)

if CRM >0
(QDT) i M CGPi x (RBClT I - RBC2'y 2) + KGPi x CRK	 (24)

If (CRM `- 0) and DDELT > J CRMj
	

(25)
(QDT) i ' 0

if (CRM = 0) and DDELT <I CRM I
(QDT) i • CGPi x (RBC1 + 1 - R3C2'T 2) + WI x (CRM-DDELT)	 (26)

Also, when KGPi a 0 1 (QDT) i 0 0
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The equivalent damping in gear mash COP T was related to MGi by means of a

critical damping coefficiect (;).

RaCl	 t (NM)2
JGl	 JG2

The indicated equations of motion (equations 19 - 22) were numerically

integrated in the FAST routine by means of a 4th order Runge-Kutta

Integration scheme described in Appendix S.

The initial displacements T D(0), 11 (0), T2(0) and VL(0) were determined by

statically twisting the entire system with the prescribed T D and TL torques.

For the initial velocities TD(0), Y1 (0), x'2 (0) and iL(0) the anticipated steady

state involute action velocities were selected.

The numerical integration of the equations of motion is

carried out for a length of time equivalent for the time required for the

start-up transient to decay. This time is assumed to be equal to five times

the longest system natural period. The integration time step is taken either

as one tenth of the shortest system natural period or one percent of the mesh

stiffness period with CR -. 2 (two percent for CR > 2), whichever is smaller.

Also see Appendix 4.

As the first step,the FAST routine calculates the dynamic force in the 	 -

mesh defined by equations 23-25. Next, the FAST routine interacts with the

SLOWM subroutine to determine the adjunct dynamic information:

a. how the dynamic load is shared by contacting tooth pains during
periods when multiple tooth pairs are in contact.

b. the variation of the load magnitude along the tooth profiles of
a contacting tooth pair as the pair moves through the contact tons.

c. the sliding velocity, the maximum hertz pressure and the sliding
velocity-hertz pressure product along the tooth profiles.



tn `i	 m
w w

A ^U C
d

to
00 +-^ u u
9: ^4 to 44

U •A to O CI r4 U
a 9: -A Ir C. o
6 •r4 u •.4 W .•a
i^ a to	 •V! 0
A 14 wo V >

as 00 A 00	 u u
c0 G 0 u "4 -t4
r+ •rl a "4 C
•st w w "M

Cd o ^00) .c
c+a c4 cn A ^ A A

N N N N	 N	 N	 N

00 +^

•F4 0
> 8
•a sv

Aw

ah

t

23

r•r^

cti
ti

C
0

V4
u
v
'^ a

w I~ 1
0
4

r♦
ac

Ul

O
d

0

r^ t~

^ ^ U
O
^ y

caH

u
G

'O

aw

tr
N

N

CA
H
N
>
a
zd
UN
d
z
D+
A

W
x
H

zN
A
W
rn
J

z
H
^i
a
H
a
d
W
U

1

w
xauH
w

r



24

I&

In order to save computational time, it was assumed that the loaded

meshing arcs (Points A'and B' in Figure 6) in the static and dynamic modes

will be of the same length. It is believed that this is also a reasonable

assumption because the rapidly fluctuating loads should not produce a lasting

change of the meshing arc lengths. With this assumption the determined dynamic

absolute angular displacements can be compared/interpolated with the

equivalent mesh are positions in the static mode PSIITP(k), PSI2TP(k) for

selecting the associated RCP1(k), RCP2(k), RCCP1(k), RCCP2(k) and other

vectors for further calculations. Some of this information is illustrated

in Figures 5 and 6. Consequently, the above-listed adjunct parameters a,

b and c were determined by utilizing the calculated dynamic mesh force (can

be zero for certain conditions) and interpolations between the dynamic and

static mode positions.

For example, by establishing the correspondence between the T 1 , T2 and

interpolated PSIITP(k), PSI2TP ( k) positions and associated RCP1 (k), RCP2(k)

vectors itis possible to calculate the sliding velocity for the dynamic mode.

The necessary vector relationships for determining the instantaneous

sliding velocities can be seen in Figure 6. In the kinematics of gearing

f the tangential velocities V 1 and V2 at the point of contact are perpendicular

to their respective contact radii with the sliding velocity perpendicular to

the line of action, Reference 0217.

velocities 
1 

and^y
29
 the instantaneous sliding velocity SV is determined

)
by solving the vector equation 28 (vector polygon in Figure 5).

SV(k) I - V i - V2 . RCP1'(k) yI - RCP2'(k) F 2	(28)

(Equation 21 can also be written in a scalar form as Equation 28).

SV(k) i a	(V1)2 + (V2) 2 - 2V1 V2 COS ( aAl + a 
A2)	

(29)
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The dynamic load (QD(k) for a contacting gear tooth pair in the dynamic

mesh position i was established as

	

QD(k)i	 KG k (QDT) i	(30)
i

For the same position the Hertz stress Ph was calculated by using an

equivalent cylinder approach, equation 30.

PH (k) i
	 QD (k) i	 1	 1

	3 FA	 ( RCCPI' (k)	 + RCCP2'(k)	 )	
(31)

where

RCCP1' (k), RCCP2'(k) • equivalent instantaneous radii of curvature

F	 minimum gear tooth face width
2

A ^ ( 1 - Ul 
2	 )	 + ( 1 - u2 )

El	 E2

In this study the dynamic load factors were defined as

(DFl) i - (QDT) 1 	(32)
p

and

(DF2), . QD(k)1	 (33)
Q(k)i

DF1 can be interpreted as the dynamic load factor for the mesh or as

the dynamic load factor for the gear pair, adjacent shafts and bearings.

DF2 is the dynamic load factor for an individual gear tooth pair

traversing the mesh arc. DF2 is of main importance when the strength of

the gear teeth is of primary importance. The larger of the two dynamic load

factors will be defined as the dynamic load factor for design, DF.
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RESULTS AND DISCUSSION

In the extended modeling which includes the variable-variable mash stiffness

(VVM) method,the gear train was modeled as a rotating system excited by the

variable-variable mesh stiffness and the profile error-induced interruptions

of the stiffness function. The non-involute action was described by the use of the

instantaneous line of action and consequent variations in the transmission

ratio.

The VVMS method defines the gear mesh stiffness as a function of load,

errors and position of contact. This is in contrast with the fixed-variable

stiffness (FVHS) method where the gear-mesh stiffness was treated

independently of the transmitted loads and gear tooth errors. In the FVMS

method it is generally assumed that the mesh stiffness function is the same

for identical gears with or without errors with the contact in both cases

occuring only on the theroretical line of action. The non-involute action of

the gears in the FVMS method was simulated by means of the error/displacement

strips acting along the line of action.

Static Analysis

The described digitized VVMS method removed many of the previous

assumptions and simplifications thus improving the determination of the gear

mesh stiffness. The extended modeling which includes the VVMS method will

be illustrated in the static and dynamic modes by a few selected cases in

the high contact ratio (HCR with CR22) and normal contact ratio (NCR with

CR<2) gearing, respectively.

Tables IA, 1B, and 2 and accompanying Figure 8 show the mesh stiffness

characteristics for error-less gears. Presented results indicate the obscure

but important influence of equivalent hub stiffness on the overall gear mesh

stiffness. By increasing hub torsional stiffness (higher HSF, Appendix 2)
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the loaded contact ratio decreases, mesh stiffness increases, changes in

transmission ratio decrease, and sensitivity to gear tooth errors increases.

The opposite occurs by decreasing the hub stiffness.

The tabulated results indicate substantial changes in the contact ratio

with increasing loads and/or gear hub flexibilities. For example, starting

with a theoretical contact ratio of 2.14 for a 32 & 96 tooth gear pair the

loaded contact ratio can be 2.47 or higher within practical load and gear

hub flexibility ranges. In addition, some of the NCR gear pairs could be

theoretically made to operate in the HCR regime by selecting an appropriate

combination of the transmitted load and gear hub flexibilities.

Profile errors and pitting can affect the mesh stiffness characteristics

to varying degrees. A case where only one of the meshing gears has surface

imperfections will be considered first. With torsionally flexible hubs where

the circumferential fixity is approximately equal to the minimum shaft size

required to transmit the applied torques (HSF- 5),the sinusoidal errors of

.013mm (•0005 in.) and narrow surface pits .5mm wide (.02 in.) were absorbed

by the mesh flexibility without affecting the errorless mesh stiffness

characteristics. On the other hand, when the hubs were torsionally rigid

(HSF - 1) the mesh flexibility was not able to absorb the errors of above

magnitudes. Unabsorbed errors cause non-contact zones resulting in significant

changes in the mesh stiffness characteristics (Figures 8 and 9). With

•	 increasing hub flexibility there was a gradual return to normal mesh stiffness

characteristics, i.e. the flexibilities in the mesh were able to narrow or

bridge the non-contact zones. For example, a 32 & 96 tooth gear pair mesh with

HSF a .6 was able to absorb a portion of the sinusoidal error by eliminating

about fifty percent of the mesh stiffness interruptions shown in Figure 9.

I	 I



28
TABLE IA

EFFECTS OF GEAR HUB FLEXIBILITY ON MESH STIFFNESS,
TRANSMISSION RATIO AND CONTACT RATIO

Gears: 32 b 96T, 8DP, 14.5°PA, F - 25.4mm (I in.), CR T - 2.14

Normal Load: 4450N(1000 lb ) or 175 N/mm (1000 lb/in)

RH1
f

RH2
f

KG N /um2

HS? ATR * CR

mm mm N11" %

10.0 14.5 3.07x108 1.21x104 .476 2.4 2.47

12.7 18.3 3.80x108 1.50x104 .591 1.9 2.42

12.7 38.1 5.08x108 2.00x104 .794 1.6 2.36

38.1 114.3 6.36x108 2.50x10 4 .992 1.0 2.32

47.2 148.8 6.45x108 2.54x10 4 1.0 1.0 2.32

TABLE 1B

LOAD EFFECTS ON MESH STIFFNESS,
TRANSMISSION RATIO AND CONTACT RATIO

Gears: 32 6 96T, 8DP, 14.50PA, F - 25.4mm (1 in.), CRT - 2.14, HSF - .992

Load KCmax KGF ATR.* CR
N/m N/m N/mma2 %

88 6.36x108 2.50x1O4 0.8 2.29

175 6.36x1O8 2.50x104 1.0 2.32

350 6.36x108 2.50x104 1.0 2.38

525 6.36x108 2.50x10 4 1.8 2.43

700 6.36x108 2.50x10 4 2..1. 2.45

KGmux = maximum attainable stiffness in the meshing arc

All gears without errors or modifications
KG

Fl- F?.w FH1: FH2 - 25.4mm (1.0 in.)KG	
max

F	
F

RRC1 - 47.25mm RRC2 - 148.84mm

*Illustrated in Figure 9



TABLE 2

Caar Mash Stiffness Characteristies

Normal Lpad: 4450N(1000 lb.) or 175 Was (1000 Win)

Gear
Combination RH1

ssaf
RH2
wsf

RG
2

HSF ATR

x

CR

NIB" NiW

A 10.0 14.5 3.07x108 1.21x10 4
4

.476 2.4 2.47

47.2 148.8 6.45x108 2.54x10 1.0 1.0 2.32

B 10.0 14.5 2.89x108 1.14x10 4 .714 2.6 1.67

55.1 55.1 4.05x108 1.59x10 4 1.0 1.3 1.63

C 10.0 14.5 3.52x108 1.39x10 4
4

.852 3.1 2.03

37.5 37.5 4.13408 1.62x10 1.0 2.6 1.99

D 10.0 14.5 1.63x108 .64x10 4
4

.517 .6 1.99
37.5 37.5 4.8915108 1.92x10 1.0 0.5 1.87

A - 32 & 96T, 8DP, 14.50PA, CRT - 2.14

B - 20 & 20T, 4DP, 200PA, CRT -.1.56

C - 26 & 26T, 8DP, 14.5 0PA, CRT - 1.89

D - 40 & 40T, 4DP, 200PA, CRT - 1.71

All gears without errors or modifications

Fl - F 2- FH1- FH2 - 25.4mm (1.0 in.)
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The VVM5 method can also be used to investigate other error combinations

acting on both gears. For example, errors shown in Figure 2b with PEI and

"E2 of .013mm are nearly self-compensating in terms of very small changes from

the normal meshing stiffness function. Other profile error combinations,

especially of large error magnitudes, could lead to non-operational contact

ratios below 1.0 or to very frequent interruptions of the mesh stiffness

function. The sinusoidal profile errors of approximately one cycle (Figures la,

lb) and .013= in magnitude are probably the maximum tolerable profile errors

in accurate spur gearing applications.

The gear tooth contacts due to deflections do not occur on the theoretical

line of action. This results in non-involute action producing variations in the

transmission ratio, ATR. The ATR can be viewed as a variation in the output

torque. These variations are cyclic as illustrated in Figures 9 and 10

could reach 5% for high load and hub flexibility ranges. Some additional

discussion of ATR is given in section on Dynamic Analysis.

The calculated results also indicated that the load distribution in a

gear pair without errors remained practically the same for the considered hub

flexibility ranges. Mother observation could be made that for the gears

with rigid hubs the attainable maximum gear mesh stiffness value remained

approximately constant over a wide range of load.

It is important to indicate that the F'VMS and similar methods can not

directly consider the absorbtion of errors.

ynamic Analysis

The dynamic loads are influenced by a large number of variables such as

the mass momenta of inertia of all elements, shaft stiffnesses, transmitted

loads, gear mesh stiffness characteristics, damping in the system, amount of

backlash and speed.

The presented information on dynamic loads in Figures 11, 12, and 13 is

intended to show the limiting ranges and effects of some of the parameters.
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Figure 11 shows the dynamic characteristics of a gear drive (Figure 7)

with an errorless 32 and 96 tooth Rear pair, "soft" and "stiff" shafting and

gear hubs, and varying amounts of damping. The trends indicate that various

gear drive systems could be designed for best performance in terms of

acceptable dynamic load factors DF (equations 31 and 32) by proper selection

of masses, gear mesh and shafting flexibilities, and damping.

The shaft stiffnesses and the masses of the drive and load elements in

most cases will determine the lower natural frequencies of the system. The

gear masses and mesh stiffness will dominate the highest natural frequency.

The harmonic content of the mesh stiffness characteristics will excite at

various speeds a number of natural modes. The mesh stiffness functions shown

in Figures 8, q, and 10 suggest a considerable variation of the harmonic

contents for various situations. Changes in the transmission ratio TR' also

refer to the sane mesh stiffness cycle. Thee analyses tend to suggest that the

main sources of excitation are the variable-variable mesh stiffness and its

interruptions. The ATR quantity which represents variations of load torque

due to non-involute action appear to be of secondary importance as a source

of excitation as showt, in Figure lb.

Two severe types of interruptions of the HCR mesh stiffness function

resulting in a partial loss of mesh stiffness are shown in Figures t, and lr!.

The effects of unabsorbed profile surface imperfections (sinusoidal and

pitting) are illustrated in Figures V and 13 for the HCR and NCR gearing,

respectively. In the presented ca pes, momentary gear separation can occur

when DF>2. The resonant peaks are the average dynamic load factors based

on the backlash between zero and .25mm.

The unabsorbed errors in the NCR situations considered caused a momentary

loss of mesh stiffness resulting in high dynamic loads and gear separation

over wide regions of considered speeds. In the slow speed range
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there Is a large zone of high dynamic load factors affected by a number of

the mesh stiffness function harmonics and separation of gears. These high

dynamic loads can be reduced by introducing higher damping, higher applied

loads and lower HSF's. Reference [33] indicated a 300 percent increase in

dynamic amplitudes caused by a zero stiffness zone due to a single tooth pit.

In this study surface imperfections were assigned to all teeth for a.given gear.

There is a requirement for a minimum amount of damping to prevent the

Mathieu-Hill type instabilities [25, 32]. In the considered cases only for

.	 a 32 & 96 errorless gear pair, it 	 shaft, "soft" hub and zero backlash

case there was a narrow instability band at approximately 11,000 rpm with

& - .05 and ^s = .005. This instability was eliminated by increasing & to

about .07. The above instability could also possibly be prevented without

changing & by including the bearing damping. However, for limiting the

number of variables the bearing damping in this study was taken to be zero.

There are also additional remedies for removing or minimizing these

instabilities [25, 32].

The extended modeling has the capability for analyzing the distribution

of the dynamic loads, dynamic factors, load sharing, contact Hertz stress

( P 11 ) and the contact stress-sliding velocity product (PV) for the entire meshing

zone. The maximum dynamic loads, dynamic factors, maximum PH , and maximum PV

do not necessarily occur at the same or any fixed position. These quantities and

their locations are dependent do the transmitted loads, speed, amount of

damping, mesh stiffness function interruptions due to errors, and location of

the contact points (contact point vectors and radii of curvature). Figures 14

and 15 show the range of the maximum PH and maximum PV values corresponding to

the dynamic conditions illustrated in Figures 11,12 , and 1.3. In general,

these values were lower with higher damping and higher contact ratios.
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The contact pressures in the approach arc using the method of instantaneous

radius of curvature (egs..18 , v) and ti) were, in many cases, somewhat lower

in comparison with the true involute solutions. The incorporated gear tooth

deflections increased the length of the contacting and curvature vectors thus

causing a decrease in the contact pressures. These findings are supported by

[27 and 36]. The instantaneous sliding velocities (eq.28 ) on the other hand

are higher than those in the true involute case.

SUMMARY

A large scale digitized extended gear modeling including the

variable-variable mesh stiffness (VVMS) method was developed to analyze

spur gearing in one uninterrupted sequence for both static and dynamic

conditions. This approach can be used to eliminate many deficiencies of the

currently used fixed-variable mesh stiffness (FVMS) modeling.

In the extended modeling an iterative procedure was used to calculate

the %ViS by solving the statically indeterminate problem of multi-pair

contacts, changes in contact ratio, and mesh deflections. The developed

method can be used to analyze both the normal and high contact ratio gearing

with a minimum number of simplifications. 	 .

The associated computer program package calculates the VVMS, the static

and dynamic loads, and variations in transmission ratios, sliding velocities and

the maximum contact pressures acting on the gear teeth as they move through

the contact zone. The following findings were obtained for some typical

single stage spur gear systems:
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1. The gears and the adjacent drive anal load systems can be matched

for optimum performance in terms of minimum allowable dynamic

loads for a wide range of operating speeds.

2. Torsionally flexible design of gear bodies/hubs/rims offers an

excellent means for absorbing or minimizing the geometrical errors

i
	 in mesh.

3. The gear mesh stiffness and its distribution are significantly

affected by the transmitted loads and tooth profile imperfections.

4. The dynamic factors can be decreased by increasing the damping and/or

contact ratio. Local damping appears to be the most efficient means

for decreasing the dynamic load factors.

5. The high contact ratio (HCR) gearing has.lower dynamic loads and

peak Hertz stresses than the normal contact ratio (NCR) gearing.

IL,-
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APPENDIX l

CONTACT POINT SEARCH METHOD

i

Since the location of the contact point is not constant and directly

affects the amount of tooth deflection and vice-versa, it was necessary

to develop a search technique that was able to determine accurately where

contact occurred. More importantly, because of gear errors, it was

necessary to be able to predict where contact would not happen for a

given angular position.

Figures A. 1-1 and A. 1-2 illustrate the search technique for the

contacting points. In the search stage, the digitized points include the

profile errors, modifications and appropriate deformations. Each gear

tooth profile was described by one to tow hundred digitized points. In

the majority of practical cases, this would translate into .13 to .25 mm

(.005 to .01 in.) radial intervals between two adjacent digitized points.

Although basically the same, there are three distinct serach procedures

in the SLOWM subroutine. These establish:

I. Location of first contact in the meshing arc and its angular position

(Position 1);

2. Location of the contact point on the tooth profile as the tooth

traverses through the contact zone (Positions 2 through 49);

3. Location of the final contact in the meshing arc and its angular

position (Position 50).

Each procedure makes at least two checks in the distance between the

gear teeth to establish whether or not contact occurs at that particular

angular gear tooth position.
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For example, for estahlishinj; Lite actual loaded initial point of

the meshing arc, Point A', Figure 6, the gears were counter rotated to

be outside the theoretical initial contact point equation A. 1-1. Then

the loaded gears are rotated by subtracting small increments (DELTA x

NLIM x DPELT) from P1SL in the direction of actua l rotation and comparing

the gaps between the approaching loaded teeth.

P1SL i PSSISL + DELTA x (NLIM x DELT)	 (A. 1-1)

P1SL	 -	 starting search angle
PSSISL -	 theoretical starting angle for meshing arc
DELTA	 -	 angular increment in the contact zone
NLIM	 -	 arbitrary number such that NLIM x DDELT - any integer

greater than 5
DELT	 -	 11N, where N is any interger greater than .:ne

The product (NLIM x DELT) determines how many angular increments,
DELTA, the gear teeth are set back. The product (DELTA x DELT)
DELTA, the gear teeth are set back. The product (DELTA x DELT) will

later determine how much the gear teeth are incremented in the search

for the initial contact. Generally, for light loaded, fairly rigid,

nun-modified gear teeth, (NLIM x DELT) can be in the range of 5 to S.

NLIM should he larger for systems with modified teeth or relatively

oft teeth or hubs. Smaller values of DELT will give more accurate

ccurate results, but require more computer time.

Each gear tooth is described in space by the U1 (J), V1 (J) and

2 (L), V2 (L) coordinates. In searching for the initial point of

ontact, the search is started with the tip of the driven gear, point

1 by examining the gaps between the tooth profiles of both gears.

esults as to the location of the initial contact. Both large values 	 .

f NLIM and small values of DDELT result in more interations, more
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U2(L+1), V2(L+1)
L + 1	 Driven Gear, Gear 2

U1(J), V1(J)

U11	 _122 (L). V2 (L)

Ls

J + 1
U1(J+1), V1(J+1)

Pinion,
Gear 1

Figure A. 1-1	 SEARCH FOR INITIAL MESH ARC CONTACT
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For any

V1 (J) : V2 (L) > V1(J+1)

1111 can be ralrulated by similar triangles from Figure A. 1-1 to be

X11 a
A

W - V1 J 
X [UI(J+I) - U1(J, + U1(J) (A. 1-2)

If,	 Ull > U2 (L)

and
(Ull - U2 (L)) S 0.00010 in. or .0025 ms.,	 (A. 1-3)

a permissible amount of Jamming or overlap has occurred; contact is

established and the rotational angles for this position defined (Point A',

Figure 6).

If the condition (A. 1-3) was not satisfied by any of the digitized

profile points, then the same points were reanalyzed for the "minimum

contact/gap" condition (A. 1-4)

abs'Ul1 - U2 (L)' t (.00001 in. or .00025 mm.) 	 (A. 1-4)

Using this second test, a contact was declared if the condition

(A. 1-4 ) was satisfied.

There is no contact, if neither of the above two conditions are met.

In this case, L is incremented by one, and the process repeated. If all

the values of L in the search region have been exhausted and no contact

found, then the angular position of the gears is advanced by an amount

(DELTA x DELT), and the search process repeated with L - 1, etc.
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1

The technique for finding the final contact point is similar to

the one just described. This time, the search is initiated with the

tip of the pinion point J, J - 1.

After the initial and final contact positions are found, the

contact positions for the remaining 48 meshing are positions are determined.

For any i th mesh arc angular position, the contact points or absence

of them are established by analyzing from 20 to 40 digitized points for

each gear pair profiles in the approach or estimated contact zones. This

is accomplished by incrementing the vertical search distance Vll (common

for each pair profiles) and comparing the corresponding horizontal "U"

distances between the profiles by means of the previously discussed

conditions A. 1-3 and A. 1-4.

The allowance (A. 1-4) was introduced to account for small deviations

in the profile digitizing and other numerical processes. It should be

noted that the longer horizontal rather than the shorter perpendicular

distances were analyzed thus increasing the probability of contact. The

(A. 1-3) and (A. 1-4) conditions were established by investigating a

large number of gears for the known theoretical "contact" and "no contact"

points. For the situations failing both tests, there was an unacceptable

gap or no contact. In the search method the initial or the highest point

for the pair in the i th angular mesh arc position.

This process was repeated for all tooth pairs expected to be in

contact in the i th mesh arc position. Referring to Figure A. 1-1, contact

was established at point P for the gear pair GP (k+l). There is no contact

for GP (k). Next, the gears are advanced to a new angular position, and the

process is repeated for the entire loaded mesh arc.
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DEFLECTION AT POINT OF CONTACT

Numerical integration of digitized gear tooth slices (Figure A. 2-1) was

used to obtain the bending ( 6M), shear ( 6S) and normal force ( dN) deflections

used in equations 3 and 4. These calculation were performed in the DEFL subroutine.

The circumferential deformation of the gear hub and deformation of the

adjacent part of the gear body were reflected to the contacting point as

(d R) and ( dB) deflections, respectively.

The methods for calculating the d B and the localized hertzian deflection

6  are amply described in [3, 17, and 291. The 6Rl, 6  and 6  deflections
were calculated in the SLOWM subroutine.

The 
6  

deflections cannot be easily defined. Following [17], these

deflections can be approximated for Gears 1 and 2 as shown below.

S (k)	 = Q(k)i  (RCP1(,k) i) 2 COS a B1	 1	
) 
2	 1	

2
R1 i	

4 n Gl(FH1)	 [ ( RHlf - (0—) ] (A. 2-1)

where

Q(k) i = load along the instantaneous line of action at the

contact point, k th pair.

RCP1(k)= radius to the contacting point, Gear 1, k th pair.

FH1	 = hub face, Gear 1

RH10 = outside hub/rim radius, Gear 1

RHl f = effective radius of circumferential hub fixity, Gear 1

G1	 = torsional modulus of elasticity, Gear 1

Similarly, for Gear 2

(k)	
Q(k)i (RCP2(k)i) 2 cos a B2	 ^2_(_	

)2]
k2	 i ^` 4 it G2(FH2)	 RH2f	 RH20

(A.2-2)



In many cases, it could be assumed that RH 1 0 and RH2
0
 will be

approximately equal to RRU and RRC2, respectively. The radius of circumferential

fixity RH f for individual hubs cannot be as readily assumed. RH f will depend

on the hub disk face width (TIF), hub web thickness (HW), type of gear

mounting, shaft size, cutouts, etc.

The torsionally rigid hubs can be theoretically obtained when the

radius of circumferential or torsional fixity will coincide with the root

circle resulting in 6  - 0. The opposite case can be visualized with the
thin hubs being fixed to small shafts. In general, an increase in the hub/rim

flexibility will increase the total deflection of the tooth and thus will

decrease the gear mesh stiffness. The hub stiffness factor (HSF, eq. A2-3)

will be used to indicate a degree of influence of the hub flexibility on the

overall gear mesh stiffness.

HSF = 
KGmax
KG*max	 (A. 2-3)

where

*
KG max = maximum mesh stiffness with torsionally rigid hubs

KG - maximum mesh stiffness with designated hubs
max

A combination of rigid hubs will be identified by HSF - 1.

34
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PROFILE DIGITIZING OUBROUTINR-MOD

The MOD subroutine is used for digitizing the spur gear tooth

profiles. Both standard and non-standard gear forms can be digitized.

This subroutine can accomodate the parabolic and straight line modifications

of the tip and root zones, sinusoidal profile errors and surface pits as

shown in Figures 2 and 3 and discussed in the static analysis section.

The main parameters needed for describing standard and/or non-

standard profiles for each gear are:

DP -	 diametral pitch (English input only)
M -	 gear module (metric module only)
PHID -	 pressure angle, degrees
TG -	 number of gear teeth
AD -	 addendum
WD -	 working depth
GRRF -	 generating fillet radius of basic rack
PATM -	 parabolic tip modification
STTM -	 straight line tip modification
RATM -	 roll angle of tip modification, degrees
PABM -	 parabolic bottom modification
STBM -	 straight line bottom modification
RABM -	 roll angle of bottoms modification, degrees
PER -	 amplitude of sinusoidal error
PAP -	 phase angle of sinusoidal error
CYC -	 number of cycles of sinusoidal errors
IPIT -	 profile coordinate points over which pit occurs
DEEP -	 depth of pit

Other symbols used in the computerized profile equation in the MOD

subroutine are defined in the Program Listing, Ap pendix 8.

A number of figures are included in this Appendix to show the

graphical relationship of the principal profile-defining symbols.

Figure A.3-1 shows a basic standard involute tooth profile. Figures

A.3-2 through A.3-4 depict several modifications of a standard involute

tooth profile. ThF_ fillet radius RF1 for gear 1 is described as

RF1 = .7*(GRRFI+WDl-ADl-CRRFI**2)/
(.5*PDl*WD1-AD1*GRRF1)	 (A.3-1)

56
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and, similarly, for Gear 2. In equation A.3-1, PD1 is Cie pitch diameter.

Other symbols are d-efined at the beginning of this Appendix.

The sinusoidal profile error PE1 for Gear 1 was defined as

PEl(J) - PER1*SIN((*RATI1-RA1(J))	
(A.3-2)

*CYCl/RATIPI)+PAP1)

and, similary, for Gear 2.

In equation A.3-2 the phase angle PAP1 refers to the peak of the error

from the pitch point. The sinusoids] error covers the region between the

tip and root orofi le modifications as shown in Figure A.3-3.

A straight line tip and root profile modification model in terms

is shown in Figure A.3-3. A similar model was used for Gear' 2 as well

as for the parabolic tip and bottom modifications.

By introducing negative profile modification in the root zone as shown

in Figure, A.3-4 several types of undercuts can be developed.

The program has several protective features. For example, in the

case of very severe profile modifications the contact ratio could fall

below 1 or there could be an interference, then a special notice will

be printed and the program execution stopped.



Case: RBC = RTF

RBC ? RRC

RLM >_ RTF

digitized points

J

RTI, RAC

49'

;i
i	 RBC, RLI
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F

^.. -BRTA^F Rg

O(XY).._ —

Rte/
T` ARG

1 --ALPHA

RRO

t

BETA

i

+O(W,Z)

nj - Normal to profile
ej - THETA (J), Normal angle
RTI- Radius to top of involute
RAC- Radius to addendum circle
RPC- Radius to pitch circle
RBC- Radius to base circle
RLM- Radius to limit circle
RRC- Radius to root circle
RLI- Involute limiting radius
RF - Filled radius
RTF- Radius to top of fillet

Figure A. 3--1
	

PRINCIPAL SYMBOLS -
STANDARD INVOLUTE TOOTH PROFILE
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Ni normal to original

	

^,-	 involute
k4E

.Qy, 	 ^-^ r -	 r
	 NM normal to modified

	

f ^^	 profile

RA (J * 1)	 `f^

8i= THETA(J)

8 M THEM(J)

involute

+PE material addition

-PE material deletion

Figure A.3-2 MATERIAL ADDITION OR SUBTRACTION FOR
A TYPICAL PROFILE LOCATION
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STTARI	
RAT1, Roll Angle at tip,also RAl(1)

+

RAM1

- sinusoidal profile error

RANI

- RABI, Roll angle at original involute
STBM1	 bottom, also RAi(LI1)

Firure A..3-3 STRAIGHT LINE MODIFICATION OF PROFILE AT TIP AND ROOT
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modified profile

RAW
f

-PE	
Q 

1

RRC

end of involute, RAN

end of original involute, RAB

Figure A_3-4
	

TOOTH ROOT MODIFICATION-MATERIAL REMOVAL
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APPENDIX 4

VI BS St T1;1IOUTI NE

The VIBS subroutine based on a Jacobi interation technique is used to

determine the eigen-values of the gear train from which the length of the

numerical integration as well as the integration time step were determined.

Using the undamped version of the model shown in Figure 7, the equations of

motion expressed in matrix form become

[J] {,y) t [K] {v) — { 0 )	 (A. 4-1)

The inertia matrix (J) is

DJD 0 0 0

0 OJGl 0 0

0 0	 DJG2 0

` 0 0 0 D JLi

(A. 4-2)

The stiffness matrix (K) is

1 runs	 -DKDS	 0	 0

-D?a)S	 DKDS + DKAVG x (DRBCl) 2 -(DKAVG x DRBC1 x DRBC2)	 0

2
(A. 4-3)

0	 -(DKAVG x DRBC1 x DRBC2) DKDS + DKAVG x (DRBC2)-DKLS

0 0 -DKLS DKLS

DKAVC is the average gear mesh stiffness.	 It	 is determined by summing

up the stiffness function over one cycle and dividing by the number of

positions in the cycle,

(A. 4-4)
n

	

DKAVG - 1 E KCP	 n - IEP - 1
n is0	 i

Shown in double precision format
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In equation A. 4-4:

KCP i - Rear mesh stiffness at the i th position of the mesh arc.

n - number of the mesh arc positions in one stiffness cycle

IEP = start position index for new stiffness cycle (Figure 9)

Having defined the constituent parts of the above matrix equation, the V173

routine is called to determine the natural frequencies and the modal shapes.

The natural frequencies were used to determine the time period o.er which the

•	 system is to be evaluated and the length of the integration tic^e steps. It

was assumed that the startup transients would decay within a time period

equivalent to five times the longest natural period. This time period plus

the time required for 2 or 3 additional cycles, depending on the contact

ratio, constitutes the total time span TTOTAL in the integration portion of

the FAST routine. The integration time step DT is taken either as one tenth

of the shortest system natural period or one percent of the stiffness period

with CR <2 (two percent for CR > 2). whichever is smaller.
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APPENDIX 5

PROGRAM INTEGRATION

The !Want routine has been devcloi)(,(] to analyze a four mast;, mathematical

model of a geared torsional system shown in Figure 7. This model

also includes the Rear mesh stiffness variations; damping in the shafts,

gears and bearings; non-involute action effects and loss of gear

tooth contact due to dynamic conditions.

The East routine (Fimire 1), which constitutes the dynamic portion

of the entire prof ►r;un, consists of the natural frequency subroutine

VIES, the interratinr subroutines RKUTTA and MORERK, and the storing

and plotting subroutines STORE and XTPLOT, respectively.

The differential equations of motion were programmed in the double

precision on IBM 370/158 computer. The equations of motion (equations

19 - 22) Are shown in the computerized symbols as equations A.5-1

through A.5-4. All va.rinbles used in these equations were declared

double precision. This also includes the symbols preceded with letter D.

?SDPOD = (-DCDS*((PSDPD+DOMGAD)-(PSIPD+DOMGAI))
-DCbu7;pSDPD+DOMGAL^.DCB1*(PSIPD*DOMGAI) 	 (A.5-1)
-DKDS*((PSIP+D'P*DOMGAD)-(PSIP+DT*DOMGA1))+ TD)/DJD

PSI PPI) = (-t)CD: * ((PSIPD+DOMGAI)-(PSDPD+DOMGAD) )

-DKDS*((PSIP+DT*DOMGAl)-(PSDP+DT*DOMGAD))	 (A.5-2) 	.
-CGP*(DRBC1*(PSIPD+DOMGAI)-(DRBCN*PS2PD + DRBC2*DOMGA2))

*DRBC1
-K(*,P*(URRC1.*(PSlP+DT*DoMuAl)-(DRBCN*PS2P + DRBC2*DT

* TAY "GA2) ) *DRBC 1) /DJG1

PS^PDD = (-DCLS*((PS2PD+DOMGA2)-(PSLPD+DOMGAL))
-DK_T,S*((PS2P+DT*DOMGA2)-(PSLS+DT*DOMGAL))	 (A.5-3)
-CGP*((DRBCN*PSIPD+DRBC2*DOMGA^)-DRBC1*(PSIPD+DOMGAl))

*DRBCN
KGP*((DRBCN*PS2P*DT*DOMGA2)-DRBC1*(PSIP+DT*DOMGAI))

*DRBCN/DJG2

PSLPDD - (-DCLS*((PSLPD+DOMGAL)-(PS2PD+DOMGA2))
-DCBL*(PSLPD+DOMGAl)- DCB?_*(PS2PD+DOMGA2) 	 (A.5-4)
-DKLS* (( PSLP+i)T*DOMGAL)-(PS2P+DT*DOMGA2))- TI,;/DJL



TL - (TD-DCBD*(PSDPD+DMAM) - DCBI*(PSIPD+DOMGAI))'

- DCB2*(PS2PD+DONGA2) - DCBL*(PALPD+DOMGAL)

For maintaining greater numerical accuracy by,working frith larger numbers the absolute

angular displacements and velocities were introduced into equations A.5-1 through

A.5-4. For example, in equation A.5-2, DPS1P is the angular oscillatory displacement

and DT*DOWA1 is the wept out constant angular displacement of Gear 1. The absolute

angular velocity at any instance consists of DPSIPD+DOMGAl terms where DPSIPD is the

oscillatory component of the constant angular velocity of gear 1, DCHGA1. Similar

expression were introduced for gear 2 by using the effective base circle radius

DRBCN, DT and D!A2 values. The initial displacements were determined by statically

twisting the entire system with the drive and load torques, TD and TL, respectively.

Thus, at time equal zero, the initial displacements are:

Text	 Computer Program

TD (0)	 -	 DPSID = TD/DKKS	 (radians)

`Y l (0)	 -	 DPSII = 0.0

T2 (0)	 -	 DPSI2 = - TD/KGP x DRBCl x DRBC2)

TL(0)	 -	 DPSIL = DPSI2 - TL/DKLS.

The initial velocities are set to nominal steady-state velocities

Text	 Computer  PrMEam

'YD(0) _ ] (0)	
DPSIDL = DPSIID = 2 x RPMIN/60 (red/sec)

x'2(0) , L(0)	 DPSI2D = DPStLD = (DRBC1/DRBC2) x DPSIDD.



The general integration schemetic for program integration in the FAM routine is

shown in Figure A.5-I. 'Me actual numer1ral intet7ation is performed in the

RKUTTA and MORERK subroutines based on the fourth order Runge-Kutta method [26].

The RKUTTA subroutine (Figure A.5-2) keeps track of the iteratinns across the

integration interval. The MORERK subroutine (Figure A.5-3) evaluates the

derivatives and performs the summations.

The RKUTTA call statement argument contains the integration step size. The

MORERK call statement argument contains the variable to be integrated, its

derivative value, and the integration time step. At first glance, it would seem

that the variables are being integrated in reverse order. But, it must be

remembered that the integrated values are those that will be used in the next

integration step. Therefore, the positional values are integrated first, and then the

angular velocities. The MORERK subroutine is called eight consecutive times after

RKUTTA to evaluate each element's change in position and velocity; PSDP, PADPD,

PSIP, PS1PD, PS2P, PS2PD, PSLP, and PSLPD. The variable NE is a counter used to

index the integrated variable and its derivative in two- eight element vectors,

! and DXT. It is reset to zero at the start of every interation. NP is the

variable controlling the iteration time step and denoting the iteration step for

MORERK. NRK is a variable used in the calling subroutine to check for the conclusion

of in*^gration for a given time interval.

The integrated values of angular displacements and velocities (equations A.5-la

through A.5-4a) for each element represent the deviations from the nominal constant

velocities and swept out displacements. These values are when added to the constant

velocities and swept out displacements to give the espective absolute angular

velocities and displacements. In addition to being used to initialize the next

integration step, the absolute angular position is used to interpolate a new value

for KGPj and TRNi.



Calculations in FAST we based on a stiff se cycling shown in Figures 8 and 9.

The cycle starts with the initiation of contact on a tooth entering the contact

sons and ends With the initiation of contact with the tooth ismedistely fallowing

it. In the program, this is done in the 8LM subroutine by examining the developed
s	 =	 -

stiffness function. The position of tooth #3 when #4 corns into contact is defined
^	 a

as IEF. Consequently, (IV-1) is the endpolut of the stiffness cycle started when

tooth # 3 cam into contact as illustrated in Figure 9. This process is repeated

until the total number of stiffness cycles (NCT) equivalent to TTOTAL is reached.

At this point, it is assumed that the system is at a steady state and the values

of gear pair stiffness, dynamic force, angular position, angular velocity,

stiffness, hertz stresses and dynamic load factors are printed out. The RCPT,

RCP2, RCCP1 9 RCCP2 vectors needed in scene of these calculations were similarly

interpolated as KGP.

The total integration time TTOTAL and the integration time step DT are based on

the lowest natural frequency of the system. More details on NOTAL and DT are

given in Appendix 4.

The description of parameters and relationship between the text and computer

program symbols is given in Table A.5-1.



CALL RKUTTA	 No	 NRK 1AND PORERK	 =.

	

Yes	
NCT = lamer of total

stiffness cycles based
on TTOTAL

	

> NCT	 Yes= Running EXIT
number of s	 cress cycles

i No

"RI "T'I A72 ACTUAI
u AlUE, OF PSI o PSID.
17)" , A"vD RUNNING TIPH

Yes	
C < OCT - MN P

No

S-; ORE AND INDEX
INTEGRATED VALUES
AND ELAPSED TIMES

Figure A. 5-1	 PROGRAM INTEGRATION



Figure A. 5-2 SUBROUTINE RKUTTA



XI(NE) = X
DXI (NE) - DX	 RETURN
X = X + (DX xDT)

NPa2___	 nXI(NE) = DXI (NE) + (2 x DX) 	 =RETURN
X = XI{NB') + (DX x DT)

DXS(NE) = DXI (NE) + (2 x DX) k—o< RETURN
X = XI(NE) + (DX x DT)

NP-._	 ..^.^ DXI ONE) _ (DXI {NE) + LX)/6
1 X = XI(NE) + (DXI(NE) x DT)	

RETURN



TAB A,5-1

RITIQNSHIP 281 1801 THE
TM AID PAM# SYMM

PEA

TEXT	 PROM"	 DbMIMOR

u	 PR	 Poisson's ratio

61, 62	 TDI$iU, TDWU 	 Tooth deflection, Gear. l and 2

C	 ZKTAG	 Gear,meah, critical danping ratio

Cs	 ZNTAS	 Shaft critical dsuping ratio

Tit'	 TRN	 Instantaneous transmission ratio

RBC2'	 DRBCN	 Instantaneous base circle. Gear 2

RCCP1'	 RCCl	 Instantaneous radius of curvature
RCCP2'	 RCC2

(J]	 Its!]	 Inertia matrix

[K]	 Cwt]	 Stiffness matrix

"D';D'fD	
PSDP ,PSDPD,PRDPDD	 Dynamic Displacement, Velocity,

.,	 and Acceleration, Driving Unit

fl'i1';1	 PSIP ,PSIPD,PSIPDD	 Dynamic Displacement, Velocity,
•	 and Acceleration, Gear 1

f2 .2 ^2	 PS2P,PS2PD ,PSPDD	 Dynamic Displacement, Velocity,
and Acceleration, Gear 2

^L'^L ' ^L	
PSLP,PSLPD,PSLPDD	 Dynamic Displacement, Velocity,

Un itabd Acceleration, Local 

T	 TD,TDIN	 Input torque
TL	 TL,TOUPT	 Output torque

OMGAD	 Constant angular velocity, driver , rad/sec

0MGA1	 Constant angular velocity, gear l,rad/sec

OMGA2	 Constant angular velocity, gear 2, rad/sec

OMGAL	 Constant dflgular velocity, load, rad/sec

NOTE: Letter D preceding the computerised symbols identify double precision.
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INTRODUCTION

The external spur gear program which was developed by the Mechanical Engineering

Department, Cleveland State university under NASA grant 1i3-18547 currently :was

the capability to solve for the instantaneous static and dynamic loads of an

external spur gear mesh. The program al p ) calculates the instantaneous transmission

ratio, sliding velocities, maximum contact pressure, and maximum PV values. For

determining the gear tooth bending stresses the finite element approach is

proposed.

Several types of elements and mesh generators were considered. In order to

conserve computing time without compromising the accuracy, it was decided to use

an isoparametric incompatible displacement finite element. The entire external

spur gear program was developed in a modular form, thus facilitating introduction

(if needed) of other types of finite elements or even the major finite element

programs such as NASTRAN, SAP IV etc.

The quadrilateral elements used are a four node quadrilateral Oaving two

incompatible displacement modes that were developed by Wilson, et. al., [37].

This element was selected because it gives excellent results for bending

applications, while maintaining a narrow band width. For large computer systems

where the band width is no problem, the more common eight or nine node

isoparametric elements could be used. The incompatible displacement model is

discussed in more detail in the subsequent sections of the appendix. A special

purpose finite element mesh generation routine was developed that takes into

account the digitized spur gear tooth shapes from the MOD routine thus minimizing

the input on the part 4 the analyst. The static and dynamic portions of the

external spur gear program contain the required definitions of the gear tooth



The finite element and mesh generation routines were combined sa a side

STRESS routine as shorn in Figure A. 6-1. Linking, the proposed STRESS

routine with the above described external spur gear program is a function of

computer also and type. This finite element programs due to its large scale,

at this tine is not as integral portion of the gear load analysis program.

Currently the proposed STRESS program uses the pre-processed data from the

above external spur gear program - there is no direct link between the load

and finite stress analyses. Work is to be continued to develop a direct link

between these two programs for usage on various computers.

In the STRESS program the stresses can be calculated on a gear or pinion

tooth at any profile position along the line of action. For efficiency, the

stiffness matrix is assembled and decomposed only once for each structure

as shown in Figure A. 6-1.

The decomposed matrix is then stored on a disk file for subsequent use for

each selected load case. Since most of the computer time involved in the

stress calculation is in the assembly and decomposition procedure, this

approach represents a considerable savings in execution time for gear nets

having the stress routine called more than once. The following load cases

can be called:

a. Maximum dynamic load (at any position).
The calling index FELGR - 1, Control Name List, CONTRL.

b. Dynamic load at pitch
The calling index FFLRR - 2, Control Name List, CONTRL

c. Maximum dynamic bending moment
The calling index FELGR - 3, Control Name List, CONTRL

d. Maximum static load (at any position)
The calling index FELGR - 4, Control Name List, COWM



in Figure A.6.2. An algorithm was devised that causes nodal points near the

gear surface to be more closely spaced than those near the centerline of the

gear tooth. In the horizontal direction using sym etry six nodal points

were selected. The relative coarseness in the horizontal direction - X

direction is shown in Figure A.6-2. In the vertical direction, the total

number of nodal points must be even. It is felt that about six to eight

nodal points will be sufficient to describe the working portion of the profile.

The fillet zone can be described also by 6 to S nodal points. The vertical

distance between two adjacent nodal points encompass several digitized profile

points. The relative coarseness between the nodal points on the gear tooth

profiles is suggested in Figure A. 6-2.

The only input that is required for the stress analysis is the desired total

number of the surface nodes on the gear tooth profile (NNODE) and their respective

index numbers (NODES). The name list heading is FINLEM for NNODE and NODES. The

coordinates of the desired nodal points are contained in the MOD and STRESS

routines. The grid generator automatically generates the required data from the

designated surface nodal points for the analysis of the tooth based on a symetrical

side input. Coordinates of the involute profile points are transferred by a

common block statement. The mesh is generated by defining the number of nodal

points (NNODE) and their respective index number (NODES).

The lower portion of the structure is a triangular shape as illustrated in

Figure A. 6-3. Point 0 is the center of the gear. This area is composed of

triangular and quadrilateral elements. The locations of the nodal points are

dictated by the nodal points at the base of the tooth and the geometry of the



INCOMPATIBL8 DISPWZHBNT
FINITE EL 1RNT

This analysis uses an isoparametric finite element having two incompatible

displacement modes. This type of element allows for a linear strain field

laving comparable accuracy for bending problems of eight or nine node

i,soparametric elements, but result in a band width identical to a constant

strain element.

The basic problem with constant strain elements is that they behave poorly

under pure bending. When using this type of element for the analysis of a

structure in a location when bending stresses predominate (for example

in the area of a gross structural discontinuity on a pressure vessel) the

stress analyst must take special care to define a "inite element mesh that is

sufficiently refined to assure reasonable convergence. As a result, this type

of analysis often requires large amounts of the stress analysts time to

be devoted to setting up analytical models and to interpret a large amount of

out put data. Also, by refining the finite element mesh, an increased number

of equations must be solved. This may appreciably increase the computer time.

The usual approach to circumvent these problems is to use a higher order

element. This type of element uses a higher degree polynomial to approximate

the displacement field and usually has one or more mid-side nodes. one

type of higher order element which has no mid-side nodes and is used in

this study was reported by Wilson, Taylor, Doherty and Ghaboussi [371.



The approach used by Wilson, et. al., in their higher order element

development is to add higher order tome to the displacement modes of lover

order elements to compensate for the errors in the lower order element. A

brief discussion of their technique follows.

Consider the two-dimensional element which is illustrated in Figure A. 6-4.

The exact displacements are of the form

u = cl xy	 (A.6-1)

v = 1/2 c  (a2 - x2) + c2 (b2 - Y2)	 (A.6-2)	
F

These displacements are illustrated in Figure A. 64b• For a constant

strain element, the assumed displacements are of the form

u = c  xy	 (A.6-3)

v = 0	 (A.6-4)

and illustrated in Figure A. 6-4C.

From equations A.6-1 through A. 6-4, it can be seen that the error in the

constant strain solution is of the foram:

v dl (a2 - x2) + d2 (b2 - y2)	
(A. 6-3)

Wilson et al. proposed that the error described by equation A.6-3 could be

eliminated by adding displacements of the form of equation A.6-5 to equations

A. 6-3 and A. 6-4. In this way pore bending, free of shear strain, may be

represented exactly. The complete displacement fields for this element arc given by:'

4
u m E Niui + (1 - s= ) us + (1 - t :) us

101	 (A.6-6)

4
V w E Nivi + (1 - s 2 ) vs + 0 - t = ) vs	 (A.6-7)

i=1



The displacement eMedo@ wbich are represented by 1 S and 6 In S t1

A. 6-6, aid A. 6-7 are associated with internal degron of fps and Are

illustrated in Figure A. 6-5. These displsoements are quadratic and are

defined by only two nodal points aloe the edge of the slaments. Sine a

quadratic can not be uniquely defined by two points, the displacement field

along a common 	 of two elements generally not equal; hence, the displacements

are referred to as incompatible.

Since one condition for monotonic convergence is that compatibility mot

exist between the elements. Since displacements in general are not compatible,

mo=tonic convergence is not assured. However, since the incompatible modes

satisfy the requirements for pure Ming, an inproved solution is obtained.

DOUARY CONDITIONS

The boundary condition at the support are illustrated in figure A. 6-3.

Point 0 is assumed to be fixed, while other nodal points along

lines OA and OB are assumed to be on roller supports. This was

accomplished by rotating the degrees of freedom: associated with each
	 I

of these supports into a local coordinate system that is parallel

and normal to the roller supports. The force and displacement

vectors in this coordinate system are:

f 

F , 

t

}	 •	 [a] 

t

{ g}

( al l s	 [R] {d}

where {F} and {6} represent the force and dis placement vector

respectively. The prime indicates the local coordinate system,

and [R] is a rotation matrix as follow:

[R] s cod! sitN
-sin8 coa8

Where 0 is the angle between the global x axis and the local x axis.

i



rotated support.

St3LLR`ZUIt ALONION

The oomputer program developed used a blocking algoritha fbr as out

of core equation solver that was presented by Lestingi and Prachuktam [38]

This approach permits a very large number of equations to be solved

on a computer having :limited core capacity. This is because during

the assembly and decomxeition steps only a portion of the structure

stiffness matrix has to be in core. The balance can be stored on a

disk. Similarly, during the back substitution step, only a portion

of the decomposed stiffness matrix must be in core.

It should be noted tact this solution algorithm takes advantage of

the symmetry and banded nature of the stiffness matrix. The only

terms stored are the main diagonal and the upper trisngular portion

within the upper band width. Therefore, all of the zero terms outside

the band width are not processed.

Since I RJ is an oruionormal matrix

[1t] -1 - [k] T

be stiffness equation in the global coordinate system 	 .

M > [K] {6}

becomes	 W) - [g] [K] [g]T (go)

in the local coordinate system. The stiffness Matrix in the local

system becomes

[K'] • [x] [K] [g]T
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DATA INPUT

The gear data set is input via the NAMELIST arrays defined

in the main program. NUserical data maybe input without format statements,

and fields are generated as required. The input variables required,

along with their respective NAMELIST headings are:

/CONTRL/

INPiTT - alphanumeric code used to designate type of
input data
'ENGL' - English (lbf,in.,sec.)
'SI'	 - metric (newtons,mm,sec.)

OUTPUT - alphanumeric code used to designate output;
codes used are same as for input

IFLOT - 0; tabulate all dynamic results
1; plot frequency response starting at time = 0
2; plot steady - state frequency response

MODF	 - alphanumeric code used to designate whether
or not profile modifications are input

'NO' - no modifications
'YES' - modifications listed under /PRFDEF/

NTYPE - 1; static analysis only
2; static and dynamic analysis only
3; finite element analysis based on static loads
4; finite element analysis based on dynamic loads

FELGR - 1; finite element analysis based on maximum dynamic
load experienced

2; finite element analysis based on maximum dynamic
load applied at pitch point

3; finite element analysis based on maximum dynamic
bending moment

4; finite element Analysis based on maximum static
bending moment

/PHYPAR/ (two data points (one for each gear) required per variable)

E	 - Young's modulus
PE	 - Poisson's ratio
GAMA	 - specific weight

a JG	 - polar moment of inertia



/SPAR/

V	 -

DP
M
DELTP
TIN
RPMIN
ZETAS
ZETAG
PHID
CBD
CB1
CB2
CBL

* JD
a JL
* MS
a KM
a LDS
* LIS

- diametral pitch (Rnglisb input only)
- gear module (metric modus- 1 only)
- beaklas h
- input torque
- input RPM-
- damping coefficient of shaft
- damping coefficient between gear- teeth
- pressure angle (dweea.)
- driver bearing damping coefficient
- pinion'bearing damping coefficient

- driven gear bearing damping coefficient
- load bearing damping coefficient
- mass moment of inertia of driver
- mass moment of Inertia of load
- torsional spring stiffness of driving shaft
- torsional spring stiffness of load shaft
- length of drive shaft
- length of load shalt

/GEOPAR/ (taro data points required per variable)

TG
AD
WD
GRRF

* RZ

/'FINED; /

number of gear teeth
addendum
working depth
fillet radius of basic rack
hub radius
face width

NNODE - even number of profile points used in mesh generation
MODES - index number of those profile points used in mesh

generation
NGEAR - 1; stress analysis doge on pinion

2; stress analysis done on driven gear
3; stress analysis done on gear set

optional, if no value entered.. Program will generate values
as shown at the end of this section.

The pear Lhooth profile can also be modified to simulate tip

relief or undercutting. Sinusoidal errors can be iv".-roduced, as well as

pits, to simulate involute errors due to manufacturing and surface damage,

respectively. These modifications are introduced in /PRFDEF/ namelist.

If MODF= NCB , /PRFDEF/ need not be included in the data card set.

/PRFDEF/ (two data points required per variable)

PATM	 - parebolic tip modification
STTM	 - straight line tip modification
%:TM	 - roll angle of tip modification



r

PABM	 - parabolic bottom modifioaton
STS!	 - straight line bottom modification
RABN	 - roll angle of bottom modification
PER	 amplitude of sinusoidal error
PAP	 - phase angle of sinusoidal error
CYC	 - number of cycles of sinusoid errors
IPIT	 - profile coordinate points over which pit occurs
DEEP	 - depth of pit
Q
	 - radius to top of undercut, Fig. A.3-6 automatically

calculated, if not given.
Use )f the NAMELIST arrays offers a simple, unformatted

means of inputting data and is convenient for looping more than one data

set. After the initial data set, subsequent data sets need just to

input revisions. If a later NAMELIST array contains no revisions, only

a card with the array heading and ending need be submitted. Unlisted

variables default to the previous values. Examples of input data card

sets illustrate the following NAMELIST data card format (Figure A. 7-1);

1. Column one is blank.

E	 2. '&' is used to signify new NAMELIST array.

3. '&' is followed by the NAMELIST name.

k. A blank separates the NAMELIST name and the first variable

name.	 Subsequent variables are separated by commas.

5. There are two methods for defining the two element variables.

The elements are defined in the order they are to be entered

in the variable and separated by commas, i.e., TG=32,96 defines

TG(1)=32, and TG(2)=96.	 If both elements are equal, they may

be entered by listing the number of identical values, the

multiplication symbol, and then the value itself, i.e., AD=2*0.125,

defines AD(1)=0.125 and AD(2)=0.125.

6. The last listed array value is followed by a blank and then the

symbol from column 2 is repeated. 	 The word END immediately follows

the symbol. and signifies the end of that array.

The program has the capability for accepting either SI or

English gear input data and has options to print the results in either

SI or English units. Input and output do not necessarily have to be

of the same regime, i.e., SI output can be obtained from English input and

vica-versa. Data submitted under the 'ENGL' code should be in pounds-

A
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force, inches, and seconds. Tice data submitted under the '51 1 code	 E
I"

should be in newtons, millimeters, and seconds. The only exception to 	
^An

this is the density value under the 1 61' code should be in kg/a3.

PROO M DEFAULT VALUES	 I

RI(l) _ ($.O * TIN)/[(PI * TAUW) ** (1/3)) in.
RI(2) - (8.0 * TOUT);[PI * TAUMAX) ** (1/3)) in.

TADW = 10,000 psi

JG(1)= 0.5 * GAMA(1) * PI * Fw(1) * (RPCl ** 4)/386. in.-lbf -s2/radian
JG(2) = 0.5 * CAW,(2) * PI * FW(2) * (RPC2 ** 4)/3$6. in.-lbf -92/radian

JD = 0.5 * JG(1) 	 in.-lbf-92/radian
JL = 0.5 * JG(2) 	 inwlbf-S /radian

LDS = 6 in.
LLS a 6 in.

KDS = PI * (2.* RI(1) ** 4) * [E/(2.* (1 + PR)j /(32.* LDS) in.-lbf /radian
KLS - PI * (2.* RT(2) ** 4) * fE/(2.* (1 + PR))] /(32 .* LLS) in.-lbf /radian

The listing of the program could be obtained by contacting the Project
Manager at-NASA Lewis Research Center.

0
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APPENDIX 8

SAMPLE OUTPUTS

In the static and dynamic portions the following basic groups of
parameters are calculated:

a. Gear tooth and mesh deflections and the accompanying gear mesh and
gear tooth pair stiffness.

b. Load distribution among the contacting tooth pairs.

c. The sliding velocity, the maximum Hertz contact pressure, and the

sliding velocity-hertz pressure product (PV) along the tooth profiles.

These parameters can be printed out i n tabular form or plotte, is 'ndividual

graphs on a line printer for both static and dynamic conditions.

Some of theses plots are illustrated for 32-96 T, 200 PA, 8 DP, standard

full depth tooth for;ii, gear pair, HSF -^.1 .5, transmitting a torque equivalent
to a normal load of 175 N/mm (1000 lb/in) at 2000 rpm. CR T= 1.758, CR =

2.123. Gears are without profile modifications and errors. C = .05, E s = .005

Figure A. 8-1 Gear Tooth Deflections

Figure A. 8-2 Gear Mesh and Gear Tooth Pair Stiffness

Figure A. 8-3 Load	 Distribution
Figure A. 8-4 Hertz Contact Stress
Figure A. 8-5 Slicing	 Velocity
Figure A. 8-6 PV:	 Hertz	 Contact Stress	 - Sliding Velocity	 Product

Firues A.8-1 through A.8-6 are fer the pinion (Gear 1) for equivalent static
load condition at 2000 rpm. Similar plots can be generated for Gear 2, and

as well as for the dynamic load conditions. The program accomodates the
AG11A and metric gears.as well as the English and SI units.

Tile dynamic simulation results can be also given in both the tabular and

grar)h forms.	 For example,

Figure A. 8-7	 Gear Mesh Dynamic Load

Figure A. 8-8	 Tabulation of Dynamic Loid Factors

Figure A. 8-9	 Dynamic Load Between Contacting Gear Tooth Pair

Fimire. A. 8-10 Dynamic Hertz Stress
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