715,459 research outputs found
O-ring gasket test fixture
An apparatus is presented for testing O-ring gaskets under a variety of temperature, pressure, and dynamic loading conditions. Specifically, this apparatus has the ability to simulate a dynamic loading condition where the sealing surface in contact with the O-ring moves both away from and axially along the face of the O-ring
Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source
The highly transient nature of shock loading and pronounced microstructure
effects on dynamic materials response call for {\it in situ}, temporally and
spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray
sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction
under dynamic loading, due to their high photon energy, high photon fluxes,
high coherency, and high pulse repetition rates. The feasibility of bulk-scale
gas gun shock experiments with dynamic x-ray PCI and diffraction measurements
was investigated at the beamline 32ID-B of the Advanced Photon Source. The
x-ray beam characteristics, experimental setup, x-ray diagnostics, and static
and dynamic test results are described. We demonstrate ultrafast, multiframe,
single-pulse PCI measurements with unprecedented temporal (100 ps) and
spatial (2 m) resolutions for bulk-scale shock experiments, as well
as single-pulse dynamic Laue diffraction. The results not only substantiate the
potential of synchrotron-based experiments for addressing a variety of shock
physics problems, but also allow us to identify the technical challenges
related to image detection, x-ray source, and dynamic loading
Effect of strain rate on the yielding mechanism of amorphous metal foam
Stochastic amorphous Pd_(43)Ni_(10)Cu_(27)P_(20) foams were tested in quasistatic and dynamic loading. The strength/porosity relations show distinct slopes for the two loading conditions, suggesting a strain-rate-induced change in the foam yielding mechanism. The strength/porosity correlation of the dynamic test data along with microscopy assessments support that dynamic foam yielding is dominated by plasticity rather than elastic buckling, the mechanism previously identified to control quasistatic yielding. The strain-rate-induced shift in the foam yielding mechanism is attributed to the rate of loading approaching the rate of sound wave propagation across intracellular membranes, thereby suppressing elastic buckling and promoting plastic yielding
Static and Dynamic Thermomechanical Buckling Loads of Functionally Graded Plates.
In the paper the buckling phenomenon for static and dynamic loading (pulse of finite
duration) of FGM plates subjected to simultaneous action of one directional compression and thermal field is presented. Thin, rectangular plates simply supported along all edges are considered. The investigations are conducted for different values of volume fraction exponent and uniform temperature rise in conjunction with mechanical dynamic pulse loading of finite duration
The Commonality of Earthquake and Wind Analysis
Earthquakes and wind loadings constitute dynamic effects that often must be considered in the design of buildings and structures. The primary purpose of this research
study was to investigate the common features of general dynamic analysis procedures
employed for evaluating the effects of wind and earthquake excitation. Another major
goal was to investigate and develop a basis for generating response spectra for wind
loading, which in turn would permit the use of modal analysis techniques for wind
analysis in a manner similar to that employed for earthquake engineering. In order to
generate wind response spectra, the wind loading is divided into two parts, a mean
load treated as a static component and a fluctuating load treated as a dynamic component.
The spectral representation of the wind loading constitutes a simple procedure
for estimating the forces associated with the dynamic component of the gusting wind.
Several illustrative examples are presented demonstrating the commonality.National Science Foundation Grants ENV 75-08456 and ENV 77-0719
Dynamic pore collapse in viscoplastic materials
Dynamic pore collapse in porous materials is studied by analyzing the finite deformation of an elastic/viscoplastic spherical shell under impulsive pressure loading. Effects of dynamic loading rate, pore size, initial porosity, strain-i-ate sensitivity, strain hardening, thermal softening, and mass density of the matrix material on the pore collapse process are examined and results are compared with those from quasistatic analyses of both rate-independent and rate-dependent matrix materials. Dynamic (inertia) effects are found to be significant or even dominant in certain shock wave consolidation conditions. An approximate method is proposed to incorporate dynamic effects into quasistatic pore-collapse relations of viscoplastic matrix materials. Implications of results of current study are discussed in terms of understanding the processes of shock wave consolidation of powders
On dynamic loads in parallel shaft transmissions. 2: Parameter study
Solutions to the governing equations of a spur gear transmission model, developed in NASA TM-100180 (AVSCOM TM-87-C-2), are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also. it is found that the applied load and shaft inertia have little effect on the dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect on dynamic loading; the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness the higher the rotating speed required for dynamic response
Modelling of Dynamic Strain Aging with a Dislocation-Based Isotropic Hardening Model and Investigation of Orthogonal Loading
Based on experimental results, a dislocation material model describing the dynamic strain aging\ud
effect at different temperatures is presented. One and two stage loading tests were performed in\ud
order to investigate the influence of the loading direction as well as the temperature influence due\ud
to the hardening mechanism. Bergström’s theory of work hardening was used as a basis for the\ud
model development regarding the thermal isotropic behavior as well as the Chaboche model to\ud
describe the kinematic hardening. Both models were implemented in an in-house FE-Code in\ud
order to simulate the real processes. The present paper discusses two hardening mechanisms,\ud
where the first part deals with the pure isotropic hardening including dynamic strain aging and the\ud
second part involves the influence of the loading direction regarding combined (isotropic and\ud
kinematic) hardening behavior
Left-right loading dependence of shock response of (111)//(112) Cu bicrystals: Deformation and spallation
We investigate with molecular dynamics the dynamic response of Cu bicrystals with a special asymmetric grain boundary (GB), (111)//(112)〈110〉, and its dependence on the loading directions. Shock loading is applied along the GB normal either from the left or right to the GB. Due to the structure asymmetry, the bicrystals demonstrate overall strong left-right loading dependence of its shock response, including compression wave features, compression and tensile plasticity, damage characteristics (e.g., spall strength), effective wave speeds and structure changes, except that spallation remains dominated by the GB damage regardless of the loading directions. The presence or absence of transient microtwinning also depends on the loading directions
- …
