
Mechanics and Mechanical Engineering

Vol. 17, No. 1 (2013) 99–112

c⃝ Lodz University of Technology

Static and Dynamic Thermomechanical Buckling Loads
of Functionally Graded Plates

Katarzyna Kowal–Michalska
Rados law J. Mania

Department of Strength of Materials
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In the paper the buckling phenomenon for static and dynamic loading (pulse of finite
duration) of FGM plates subjected to simultaneous action of one directional compression
and thermal field is presented. Thin, rectangular plates simply supported along all edges
are considered. The investigations are conducted for different values of volume fraction
exponent and uniform temperature rise in conjunction with mechanical dynamic pulse
loading of finite duration.
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1. Introduction

Functionally Graded Materials (FGM) were first introduced in 1984 by a group of
Japanese scientists and very soon have become very popular in research and engi-
neering applications. A typical FG gradient material is inhomogeneous composite
made up of two constituents – typically of metallic and ceramic phases which rel-
ative content changes gradually across the thickness of a plate or a shell. This
eliminates the adverse effects between the layers (e.g., shear stress concentrations
and/or thermal stress concentrations), typical for layered composites. The high
resistance heat capacity of ceramic and good mechanical properties of metal phase
make that the leading application area of FGM structures are high temperature
environments (spacecraft, nuclear reactors or structures for the chemical industry
and defence) [13], [14].
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Nonlinear analysis of plates and shells devoted to basic types of loads is covered
in Shen monograph [14]. He considered static bending and thermal bending as
an introduction to buckling and postbuckling behaviour of FGM plates and shells.
The shear deformation effect is employed in the framework of Reddy’s higher order
shear deformation theory (HSDT).

In [13], alongside HSDT for FGM plates Reddy presents the comparison of FSDT
and CLP theories application for functionally graded plates. According to presented
results it is obvious that for thin–walled plates as well as for greater exponent value
in the power law through the thickness distribution function [7], the application of
FSDT gives results in practice the same as HSDT. The discrepancy between both
theories is of 2% in calculated deflections of analyzed plates.

The static buckling problem of functionally graded plates is discussed in the
frame of different approaches e.g.: in [16], [17] – biaxial in–plane compression and
thermal loads (constant temperature) with axial compression, in [2] and [10] –
biaxial in–plane compression, in work [3] – for thermal stresses only and in [12] –
for through the thickness temperature gradient.

In mentioned above publications the dominant subject are the static mechanical
or steady–state thermal loadings. The dynamic types of analyses concern mostly
the vibrations problems. From our previous experience [6], [8] connected with static
and dynamic analysis of thin–walled isotropic and orthotropic composite plates, the
dynamic buckling of thin–walled structure is theoretically difficult problem but of
great importance for practical engineering applications.

The present work deals with static and dynamic stability of thin rectangular
plates, simply supported along all edges, made of functionally graded materials. The
material properties are assumed to be temperature independent. Considered plates
are subjected to static or dynamic uniaxial compression and uniform temperature
rise, constant through the thickness and constant in time. The uniform temperature
rise is of constant increment form.

The investigations are conducted by analytical methods for static case and nu-
merical ones for dynamic pulse compression.

2. Description of FGM properties

According to the rule of mixture the properties of functionally graded material (ρ
- density, α - coefficient of thermal expansion, E - Young’s modulus, ν - Poisson’s
ratio) can be expressed as follows [1]:

ρ(z) = ρm + (ρc − ρm)

(
2z + h

2h

)q

; α(z) = αm + (αc − αm)

(
2z + h

2h

)q

(1)

E(z) = Em + (Ec − Em)

(
2z + h

2h

)q

; ν(z) = νm + (νc − νm)

(
2z + h

2h

)q

where −h/2 ≤ z ≤ h/2, and q ≥ 0 is the volume fraction exponent (i.e., if q = 0 –
plate is full ceramic and for q = ∞ – plate is metallic).
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In this paper it is assumed that for a given fraction exponent q Poisson’s ratioν
is constant and equal to:

ν =

h/2∫
−h/2

ν(z)dz

h
(2)

3. Subject of consideration

A square simply supported FG plate (Fig. 1) subjected simultaneously to uniform
compression in x direction and uniform temperature rise is considered. The un-
loaded edges of plate are immovable. The coordinate system x, y, z coincides with
the midplane of a plate.

It was proved in the paper [3] that for thin plates (a/h >40) the differences
in the results obtained on the basis of classical laminate plate theory (CLPT) and
FDST are less than 1÷2%. Therefore in this paper CLPT is employed to obtain
the governing equations of thin FG plate equilibrium.
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Figure 1 Geometry and loading of a plate

In the classical nonlinear laminate plate theory the strains across thickness are
expressed referring to the displacements u, v and w of plate middle surface [4], [5]:

{ε} =
{
ε(m)

}
+ z

{
ε(b)

}
(3)
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Taking into account the generalized Hooke’s law for plane stress state, the in-plane
stress and moment resultants (N, M) are defined as:{

N
M

}
=

[
A B
B D

]{
ε(m)

ε(b)

}
(6)
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where: A, B, D, – are extensional, coupling and bending stiffness matrices, re-
spectively, for FG plate of components listed below:

A11 = A22 =

h/2∫
−h/2

E(z)

1− ν2
dz

A12 = A21 =

h/2∫
−h/2

E(z)

1− ν2
νdz

A66 =

h/2∫
−h/2

E(z)

2(1 + ν)
dz

B11 = B22 =

h/2∫
−h/2

zE(z)

1− ν2
dz

B12 = B21 =

h/2∫
−h/2

zE(z)

1− ν2
νdz (7)

B66 =

h/2∫
−h/2

zE(z)

2(1 + ν)
dz

D11 = D22 =

h/2∫
−h/2

z2E(z)

1− ν2
dz

D12 = D21 =

h/2∫
−h/2

z2E(z)

1− ν2
νdz

D66 =

h/2∫
−h/2

z2E(z)

2(1 + ν)
dz

Due to the presence of nontrivial matrix B, the coupling between extensional and
bending deformations exists as it is in case of unsymmetrical laminated plates [4].

The stretching–bending coupling affects strongly the constitutive equations and
boundary conditions that have complex form and the solution procedures become
difficult.

In some papers (e.g., [20]) the concept of ‘physical neutral surface’ is introduced
that allows to uncouple the in–plane and out–of–plane deformations.

The position of this physical neutral surface in the adopted coordinate system:

e = −B11

A11
(8)
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can be found, assuming that under pure bending a surface exists for which strains
and stresses are zero.

The displacements u, v, w corresponding to x, y, z axes take the following forms:

u = u0 −
∂w

∂x
(z − e), v = v0 −

∂w

∂y
(z − e), w = w(x, y) (9)

where: u0, v0, w are displacements of physical neutral surface.
Strains are defined as:

{ ε} =
{
ε(0)

}
+ (z − e)

{
ε(1)

}
(10)

The relations defining the in-plane stress and moment resultants in function of
strains, have now the following form:{

N
M

}
=

[
A 0
0 D∗

]{
ε(0)

ε(1)

}
(11)

The components of extensional stiffness matrix A are given by the relation (7) and
for bending stiffness matrix D* are as follows:

D∗
11 = D∗

22 = D11 −
B2

11

A11
; D∗

12 = D∗
21 = νD∗

11; D∗
66 =

1− ν

2
D∗

11 (12)

Comparing relations (??) with laminate plate theory based on geometric middle
plane, it can be seen that there is no extensional-bending coupling in constitutive
equations of equilibrium of FG plate subjected to in-plane compression and these
equations are the same as for homogenous isotropic plate.

4. Stability under static thermomechanical loadings

The well known Bubnov–Galerkin method has been applied to the problem solu-
tion. The procedure is classical and described in details in many works concerning
stability of isotropic, composite and FGM plates (e.g. [5], [7], [8], [16]).

The plate is simply supported along all edges and the boundary conditions have
been assumed as follows:

for loaded edges x = 0, a :

w = Mx = 0; u0 ̸= 0 Nx = σh
x N=

xy0; (13)

for unloaded edges y = 0, a:

w = My = 0; v0 = 0 Ny = 0 Nxy = 0. (14)

The deflection function is taken in the form:

w = f sin
πx

a
sin

πy

a
. (15)

and after rather long elaborations, the relation among compressive stress σx, in-
crement of uniform temperature rise ∆T and nondimensional deflection amplitude
f∗ = f/h has been obtained:

σx = σx0 +
4B11

a2(1 + ν)
f ∗+ π2A11h

4a2(1 + ν)
f∗2, (16)
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where:

σx0 =
4π2D∗

a2h(1 + ν)
− K∆T

1 + ν
(17)

and

K =
1

(2q + 1)(q + 1)

[
αm(2Emq2 + Ecq) + αc(Emq + Ec(q + 1)

]
(18)

The relation (16) has been compared with the relation derived in the paper [16] for
a rectangular plate and the perfect agreement has been found.

Table 1 Constituents properties of considered metal–ceramic material [18]

aluminium – TiC aluminium–alumina
ρ [kg/m3] 2700 4920 2700 3950
E [GPa] 69 480 69 380
ν [-] 0.33 0.20 0.33 0.30
α [1/K] 2.3·10−5 0.7·10−5 2.3·10−5 0.74·10−5

4.1. Calculations results

Some calculations have been performed for FG square plates of ratio width to
thickness equal to: a/h = 60 and 80 and temperature increment ∆T = 20 K and
40 K (only for a/h = 60). The material properties of components are given in
Tab. 1.

Table 2 Values of bifurcational stress σxo (Eq. 17)

σxo [MPa]
q ∆T [K] a/h = 60 a/h = 80
0 20

40
295.0
253.0

93.40
-

0.5 20
40

158.61
96.50

62.04
-

1.0 20
40

117.50
61.22

41.47
-

10 20
40

54.20
24.63

17.55
-

∞ 20
40

23.15
-

2.73
-

From the results presented in Tab. 2 (values of bifurcational stress σxo) and in
Figs. 2 and 3 (postbuckling curves), the influence of fraction volume exponent and
the assumed value of temperature increment is clearly visible. For greater values
of q (e.g. q = 10) the plate ability to sustain the compressive load at given ∆T
is several times smaller than for a plate containing more ceramics (e.g. q = 0.5).
As it can be seen the growth of temperature increment results in the decrease of
compressive load.
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Figure 2 Postbuckling curves for FG plates of a/h = 60 and ∆T = 40 K

It should be mentioned that equations (17) and (18) enable to find out the values
of ∆Tcr and postbuckling curves as a function of uniform temperature rise versus
non dimensional maximal deflection f∗ at assumed value of compressive stress σx

(see [16]).
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Figure 3 Postbuckling curves for FG plates (q = 1) of a/h = 60 (∆T = 20 K, 40 K)
and a/h = 80 (∆T = 20 K)



106 Kowal–Michalska, K., Mania, R.J.

5. Dynamic response of FG plate subjected to pulse compressive load
and constant uniform temperture rise

For plates and plate structures, it is structures with stable postbuckling path, op-
posite to the static loading the bifurcational dynamic buckling load does not exist.
The dynamic buckling is considered as a result of an in–plane load which involves
rapid deflections growth of plate/walls, which is/are initially not flat but imperfect.
It has been proved that for pulses of short duration the structure can withstand
the dynamic loading magnitude much greater than the static one. The dynamic
pulse buckling occurs for pulses of intermediate amplitude and duration close to
the period of fundamental natural flexural vibration. Due to lack of bifurcation
load it is necessary to define a ”critical” load on the basis of an assumed dynamic
buckling criterion. In most publications the Budiansky–Hutchinson criterion [6] is
applied to determine the dynamic critical load that is the amplitude of pulse load,
which at given duration causes the dynamic buckling. Dynamic buckling criterion of
Budiansky–Hutchinson states that: dynamic stability loss occurs, when the maximal
plate deflection grows rapidly with the small variation of the load amplitude.

Its modified version was employed for thermal buckling analysis as well [15],
where author used it to determine the buckling temperature.

The dynamic load factor DLF is introduced, defined as the ratio of amplitude of
pulse load to the critical static buckling load for ideal structures. Its critical value
DLF cr can be estimated on the basis of Budiansky–Hutchinson criterion.

In their previous work [7] the authors presented the dynamic buckling analysis
of thin FG rectangular plates, subjected to in plane compressive pulse loading.

The boundary conditions in dynamic buckling analysis are assumed likewise in
the previous static considerations i.e., all plate edges are simply supported. The
plate is subjected to in–plane compressive pulse load of rectangular shape, of dura-
tion Tp equal to the period of fundamental flexural vibrations T0 of considered FG
plate and simultaneously there is under one of two thermal environmental condi-
tions. The first one is define as ∆T = 20 K and next ∆T = 40 K, following those
of static solution. The thermal condition ∆T = 0 K solution compared with results
of work [7] can be treated as validation procedure. Beside sets of thermal envi-
ronmental conditions the dynamic pulse load was referred to two reference planes
distinguish by condition ([7]).

6. FEM model of metal–ceramic plate

The numerical simulations and appropriate calculations have been conducted using
the finite element software ANSYS [21]. The finite element SHELL181 has been
used for discretisation of created multi–layered composite plate model. This is four
nodes element with six degrees of freedom at each. It is suitable for analyzing
geometrically nonlinear problems and modelling of different material properties.
Its option Shell SectionType gives a possibility of defining a multi–layered cross–
section, their thickness, number of integration points across each layer thickness
and of introducing different material properties for separate layer. This approach
of modelling FG plate as multi-layered one is common in FEM buckling analysis
[7], [19]. However, there are known 3D approaches where the plate is modelled with
application of solid finite elements with midside nodes [9].
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The finite element SHELL181 is defined with respect to First Order Shear Defor-
mation Theory what is in discrepancy with applied in analytical solution Classical
Laminate Plate Theory. However for considered plate width to thickness ratio i.e.
a / h = 60 and a / h = 80 the differences are negligible.

ceramic

metal

z

Figure 4 Plate multi–layered cross-section meshing

Preliminary considerations allowed establishing the mesh density, number of lay-
ers across the thickness of FG plate in order to obtain converged solution within
acceptable time of computations. This analysis has shown that for a square plate
the optimal discretisation corresponds to division into 50×50 elements of uniform
mesh and 20 layers cross-section. The time step in applied Newmark time integra-
tion procedure has been taken as 1/50 of the period of plate fundamental natural
vibration.

The boundary conditions following the analytical solution with assumption of
simply support conditions, in finite element model were obtained through appropri-
ate displacements constrains applied to nodes located at plate edges. Additionally,
to achieve rectilinear shape of all edges translations normal to adequate edge of all
its nodes were coupled. In the case of only thermal load all plate edges were kept
unmovable.

7. Results of FEM computations

The square plate modelled as it was described in precedent subchapter was subjected
only to mechanical load. It was dynamic in-plane pulse compression and then ∆T =
0. The pulse was of rectangular shape and lasted in time equal to the period of plate
fundamental natural vibrations. Despite other aims, the impact of imperfection
sense i.e. its sign plus or minus, was especially considered [10]. The exemplary
results of these investigations for the volume fracture exponent q = 1.0 for FGM
made of Al–TiC, are presented in Figs. 5 and 6.

In both graphs there are two plots distinguished with black and red colours.
One curve (black) was obtained for the case when the imperfection had the positive
sign. It corresponded with the first buckling mode when the plate buckles into
ceramic direction. The second curve (red) was determined for the case when the
imperfection had opposite sign to the first buckling mode and the initial half–wave
was directed into metal layer. The differences between both curves are clearly visible
in both analyzed cases.
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Figure 5 The influence of imperfection sense – low imperfection magnitude

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
w

m
ax

/
h

DLF

magnitude0.10h
imperfectionin ' +sense' (comp)
imperfectionin ' -sense' (metal)

q= 1.0
withB-H

DLF
cr

+
= 1.393

DLF
cr

-
= 2.731

Figure 6 The influence of imperfection sense – high imperfection magnitude
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The discrepancy between them increased for greater magnitude of imperfection.
It leads as well to different values of dynamic critical load which values are given
in legend frames included in both figures. For the greater imperfection magnitude
equal to 0.1 of plate thickness, the critical DLF value for minus sign of imperfection
is doubled of the second one. In reference to these results it should be reminded
that homogenous isotropic plates are not sensitive to imperfection sign.

When the FGM plate is subjected to uniform temperature rise ∆T (with un-
moveable edges) from the state of no thermal strains, the critical value of this
increase can be determined when the plate buckles. As an example, for a square
plate of unit thickness made of aluminium-alumina (q = 1.0) this value equals to
∆Tcr = 9.34 K. However, the dependence of materials properties to temperature
was neglected. Only their thermal expansion features were input into computational
data.

During subsequent analysis the same plate was subjected to uniform temperature
rise constant in time and simultaneously was dynamically loaded by compression
pulse of finite duration. Similarly as in static analysis material properties of both
constituents of functionally graded plate were defined as temperature independent.
The applied thermal environmental conditions were closed to the critical tempera-
ture rise. The limits: ∆T = 8 K and ∆T = 10 K included the critical value (∆Tcr

= 9.34 K). In Fig. 7 there are shown three plots obtained within this analysis.
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Figure 7 Dynamic response of FGM plate subjected to thermo–mechanical loads

The black line corresponds to only mechanical pulse load and presents the rela-
tionship between dynamic pulse amplitude DLF and normalized plate deflection.
The next two were received for compound thermo–mechanical loads and also are
function of plate deflection with respect to pulse magnitude. Determined with the
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application of Budiansky–Hutchinson criterion the DLF critical value for pulse com-
pression is less the 1.5. The critical values for combined thermo–mechanical loading
can be estimated in the range marked in Fig. 7 with the circle. Both critical values
are a bit lower than 1.0 what means significant decrease of dynamic critical load.
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Figure 8 Dynamic response of FGM plate subjected to thermo–mechanical loads

For the cases when the thermal environmental conditions were apart from the critical
condition (∆Tcr = 9.34 K) the computations were performed also for comparatively
small initial imperfection amplitude (0.001 of plate thickness). These were two
thermal uniform loads: ∆T = 20 K and ∆T = 40 K combined with compression
mechanical dynamic pulse. Results of these calculations are presented in Fig. 8.
The relationship of plots in this figure are the same as applied in previous graphs -
∆w/t = f(DLF ). The runs of these plots suggest that the plate dynamic response
for these types of thermo-mechanical loads is dominated by bending not buckling.
The deflection of plate caused by different thermal expansion of ceramic and metal
layers added to mechanical type initial imperfection produces enough eccentricity
for plate bending from the beginning of compression load.

8. Conclusions

The influence of thermal environmental condition with interaction of pulse loading
on the dynamic response of FGM square plate was considered. The numerical
results of this analysis were presented in appropriate figures.

The FGM plate is sensitive not only to imperfection magnitude but to its sense
as well. This behaviour of plates made of FGM differs from homogenous isotropic
plate response. Under combination of thermo–mechanical loading for relatively
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small differences between applied thermal environment and critical conditions the
bending participation predominate in dynamic response.
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