340 research outputs found

    Decomposition of unstructured meshes for efficient parallel computation

    Get PDF

    Incremental triangulation by way of edge swapping and local optimization

    Get PDF
    This document is intended to serve as an installation, usage, and basic theory guide for the two dimensional triangulation software 'HARLEY' written for the Silicon Graphics IRIS workstation. This code consists of an incremental triangulation algorithm based on point insertion and local edge swapping. Using this basic strategy, several types of triangulations can be produced depending on user selected options. For example, local edge swapping criteria can be chosen which minimizes the maximum interior angle (a MinMax triangulation) or which maximizes the minimum interior angle (a MaxMin or Delaunay triangulation). It should be noted that the MinMax triangulation is generally only locally optical (not globally optimal) in this measure. The MaxMin triangulation, however, is both locally and globally optical. In addition, Steiner triangulations can be constructed by inserting new sites at triangle circumcenters followed by edge swapping based on the MaxMin criteria. Incremental insertion of sites also provides flexibility in choosing cell refinement criteria. A dynamic heap structure has been implemented in the code so that once a refinement measure is specified (i.e., maximum aspect ratio or some measure of a solution gradient for the solution adaptive grid generation) the cell with the largest value of this measure is continually removed from the top of the heap and refined. The heap refinement strategy allows the user to specify either the number of cells desired or refine the mesh until all cell refinement measures satisfy a user specified tolerance level. Since the dynamic heap structure is constantly updated, the algorithm always refines the particular cell in the mesh with the largest refinement criteria value. The code allows the user to: triangulate a cloud of prespecified points (sites), triangulate a set of prespecified interior points constrained by prespecified boundary curve(s), Steiner triangulate the interior/exterior of prespecified boundary curve(s), refine existing triangulations based on solution error measures, and partition meshes based on the Cuthill-McKee, spectral, and coordinate bisection strategies

    A New Paradigm for Parallel Adaptive Meshing Algorithms

    Full text link

    Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies

    Get PDF
    The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system

    Graph Partitioning-Based Coordination Methods for Large-Scale Multidisciplinary Design Optimization Problems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97127/1/AIAA2012-5522.pd
    corecore