
1997

Decomposition of Unstructured
Meshes for Efficient Parallel

Computation

Robert A. Davey

Doctor of Philosophy

University of Edinburgh

To Ros

Abstract
This thesis addresses issues relating to the use of parallel high performance com-

puter architectures for unstructured mesh calculations. The finite element and

finite volume methods are typical examples of such calculations which arise in a

wide range of scientific and engineering applications.

The work in this thesis is focused on the development at Edinburgh Parallel

Computing Centre of a software library to support static mesh decomposition,

known as PUL-md. The library provides a variety of mesh decomposition and

graph partitioning algorithms, including both global methods and local refine-

ment techniques. The library implements simple random, cyclic and lexico-

graphic partitioning, Farhat's greedy algorithm, recursive layered, coordinate,

inertial and spectral bisections, together with subsequent refinement by either

the Kernighan and Lin algorithm or by one of two variants of the Mob algorithm.

The decomposition library is closely associated with another library, PUL-sm,

which provides run-time support for unstructured mesh calculations.

The decomposition of unstructured meshes is related to the partitioning of un-

directed graphs. We present an exhaustive survey of algorithms for these related

tasks. Implementation of the decomposition algorithms provided by PUL-md is

discussed, and the tunable parameters that optimise the algorithm's behaviour

are detailed. On the basis of various metrics of decomposition quality, we evalu-

ate the relative merits of the algorithms.and explore the tunable parameter space.

To validate these metrics, and further demonstrate the utility of the library, we

examine how the runtime of a demonstration application (a finite element code)

depends on decomposition quality. Additional related work is presented, includ-

ing research into the development of a novel 'seed-based' optimisation approach

to graph partitioning. In this context gradient descent, simulated annealing and

parallel genetic algorithms are explored.

Acknowledgements

This work would not have been possible without the generous assistance of many

of my colleagues at EPCC. I would like to thank everyone who has contributed

to the PUL-md and PUL-sm libraries; in particular Robert Baxter and Shari

Trewin. I am also indebted to Arthur Trew and Mark Sawyer, both for ensuring

I didn't get side-tracked, and for making time available for me to work on this

thesis. I would further like to thank; Chris Wendl (Harvard) and David Henty,

for collaboration on the GA's decomposition project; Mark Parsons and Julian

Parker, for help and encouragement along the way; and also Harvey Richardson,

for getting me going on the CM at the beginning.

My parents I must thank for their support, not only during the course writing

this thesis, but also throughout my previous education.

Of my friends, I should mention; Claire Cummings and Glenn Marion, for the

MSc days and beyond; and also Jo[h]ns Mather and Shapcott for Computer

Science consultancy.

My supervisors, AsifUsmani and J. Michael Rotter, deserve my thanks for having

more faith that I would finish this than I did.

I would also like to mention my MSc supervisor, Des Johnston, as I feel I should

spell his name right in at least one acknowledgements section.

Finally, I would like to thank everyone who has put up with me talking about

nothing else for the last few years...

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text.

(Robert A. Davey)

Contents

Notation and Terminology 	 6

1 Introduction 	 8
1.1 Research Approach and Background9

1.1.1 Library Development and Related Work10
1.1.2 	Publications11

1.2 	Thesis Summary13

2 	Unstructured Mesh Calculations 16
2.1 Discretisation 16

2.1.1 	Regular Grids 17
2.1.2 	Unstructured Meshes 18

2.1.2.1 	Mesh Notation 18
2.1.2.2 	Static and Dynamic Meshes 19

2.2 Finite Element Calculations 19
2.3 Finite Volume Calculations 20
2.4 Summary 20

3 High Performance Computing 22
3.1 	Architectures 22

3.1.1 	Flynn's Taxonomy 23
3.1.1.1 	SISD 23
3.1.1.2 	MISD 23
3.1.1.3 	SIMD 24
3.1.1.4 	MIMD 26

3.1.2 	Shared versus Distributed Memory 27
3.1.3 	Network Topologies 28

3.2 	Programming Paradigms 31
3.2.1 	SPMD 31
3.2.2 	Data Parallel 32
3.2.3 	Message Passing 34

4 Decomposition 	 37
4.1 	Efficient Parallel Computation37

	

4.1.1 	Load Balance38

	

4.1.2 	Communication38

1

4.1.3 Measures of Performance 39
4.2 	Types of Decomposition 	

. 	 	 40
4.2.1 Trivial 40
4.2.2 Functional 40
4.2.3 Data 41

4.2.3.1 	Regular Grid with Balanced Load 42
4.2.3.2 	Regular Grid with Unbalanced Load 43
4.2.3.3 	Task Farming 45

5 	Parallel Unstructured Mesh Calculations 47
5.1 Implementation in a Message Passing Environment 48

5.1.1 	Shadow Nodes and Halos 49
5.1.2 	Relative Merits of the Two Models 49
5.1.3 	Implications for an Explicit Scheme 51
5.1.4 	Implications for an Implicit Scheme 53
5.1.5 	Parallel Solvers 55
5.1.6 	PUL-sm 59

5.1.6.1 	Scalable Mesh Distribution 60
5.2 Implementation in a Data Parallel Environment 62

5.2.1 	An Example Data Parallel Finite Element Code: LEASH . 	 62
5.3 Decomposition 65

5.3.1 	Modelling the Platform 66
5.3.2 	Modelling the Application 68
5.3.3 	Dual Graphs 68
5.3.4 	The Partitioning Problem 70
5.3.5 	Partitioning and Mapping 71

5.4 Problem Complexity 73
5.5 Summary 74

6 	Decomposition Algorithms 75
6.1 Characteristics of Algorithms 75
6.2 The Example Mesh 76
6.3 Simple, Direct k-way Algorithms 77

6.3.1 	Random 77
6.3.2 	Cyclic 78
6.3.3 	Lexicographic 78
6.3.4 	Bandwidth Reduction 80
6.3.5 	The Greedy Algorithm 84

6.4 Optimisation Algorithms 88
6.4.1 	Gradient Descent 89
6.4.2 	Simulated Annealing 90
6.4.3 	Chained Local Optimisation 91
6.4.4 	Stochastic Evolution 92
6.4.5 	Genetic Algorithms 92
6.4.6 	Summary 94
6.4.7 	Applications to Mesh Decomposition 	 94

2

6.4.7.1 	Gradient Descent 95
6.4.7.2 	Simulated Annealing 95
6.4.7.3 	Chained Local Optimisation 98
6.4.7.4 	Stochastic Evolution 99
6.4.7.5 	Genetic Algorithms 99

6.5 Recursive Partitioning 100
6.5.1 	Limitations 101
6.5.2 	Separator Fields 101

6.6 Geometry Based Recursive Algorithms 102
6.6.1 	Coordinate Partitioning 103
6.6.2 	Inertial Partitioning 105

6.7 Graph Based Recursive Algorithms 107
6.7.1 	Layered Partitioning 108
6.7.2 	Spectral Partitioning 110

6.7.2.1 	The Discrete Problem 111
6.7.2.2 	The Continuous Problem 113
6.7.2.3 	Solution of the Continuous Problem 117
6.7.2.4 	Multi-Dimensional Variants 119

6.7.3 	Summary 124
6.8 Local Refinement Algorithms 125

6.8.1 	Kernighan and Lin 126
6.8.1.1 	KL for Bisection 126
6.8.1.2 	Extensions to the Basic KL Algorithm 132

6.8.2 	Mob 134
6.8.3 	Jostle 137

6.8.3.1 	Sub-Domain Heuristic 138
6.8.3.2 	Load Balancing Heuristic 140
6.8.3.3 	Localised Refinement Heuristic 141

6.8.4 	Summary 141
6.9 Multilevel and Hybrid Variants 142

6.9.1 	Graph Contraction 142
6.9.1.1 	Edge Contraction 143
6.9.1.2 	Vertex Clustering 144

6.9.2 	Multilevel Kernighan and Lin Partitioning 144
6.9.3 	Multilevel Spectral Partitioning 146
6.9.4 	Multilevel Jostle 149

6.10 Parallel Decomposition Algorithms and Dynamic Partitioning 	. . 	 150
6.11 Summary 159

7 Development of a Mesh Decomposition Library 160
7.1 	Introduction 161
7.2 	Application Program Interface 162

7.2.1 	Stand-Alone Usage 164
7.3 	Design and Data Structures 165

7.3.1 	Top Level Design 166
7.3.2 	The Partition Data Structure 168

3

7.3.3 Recursive Routines . 	 171
7.4 	Implementation of Global Algorithms 173

7.4.1 Determining Layer Structures 173
7.4.2 Separator Fields 175
7.4.3 Simple Partitioning 176
7.4.4 Recursive Layered Bisection 176
7.4.5 The Greedy Algorithm 178
7.4.6 Recursive Coordinate Bisection 179
7.4.7 Recursive Inertial Bisection 180
7.4.8 Recursive Spectral Bisection 181

7.4.8.1 	Eigensolution 181
7.4.8.2 	The Lanczos Algorithm 182
7.4.8.3 	Stability Issues 186
7.4.8.4 	Implementation 187

7.5 	Implementation of Local Refinement
Algorithms 189
7.5.1 Mob 190
7.5.2 Kernighan and Lin 192

7.6 	Visualisation 202

8 	Evaluation and Discussion of Decomposition Algorithms 206
8.1 	Collection and Presentation of Results 206
8.2 	Analysis of Results 209

8.2.1 	Dual Graph Statistics 210
8.2.2 	Simple Algorithms 211
8.2.3 	Greedy 212
8 .2.4 	RLB 214
8 .2.5 	RCB 216
8 .2.6 	RIB 218
8 .2.7 	RSB 221
8 .2.8 	KL 226
8.2.9 	Mob 231

8.3 	Summary 235

9 A Demonstration Application 238
9.1 The Serial 	Code 239
9.2 The Parallel Code 240
9.3 Effects of Decomposition Quality 241

9.3.1 	Balanced Decompositions 	 242
9.3.2 	Unbalanced Decompositions 	

. 	 245
9.4 Summary 247

10 A Seed-Based Optimisation Approach to Partitioning 	248
10.1 Seed-Based Partitioning248
10.2 Optimisation 249
10.3 Genetic Algorithms250

rd

--

10.3.1 	Representation . 250
10.3.2 	Evaluation 251
10.3.3 	Mutation 251
10.3.4 	Recombination 251
10.3.5 	Population Models 252

10.4 	Summary 253

11 Conclusions 	 254
11.1 Review254
11.2 Future Work257

Bibliography 	 259

A Decomposition Statistics 	 272
A.1 Widget Data-Set 273
A.2 Wedgel Data-Set288
A.3 m6 Data-Set303

5

Notation and Terminology

Terminology

• An unstructured mesh consists of nodes and elements.

• A dual graph consists of vertices and edges.

• We find a decomposition of a mesh.

• We find a partition of a graph.

• Where the distinction is irrelevant we use decomposition and partition in-
terchangeably.

• k-way, a decomposition over k processors.

• A sub-domain is the part of a mesh (graph) assigned to an individual pro-
cessor.

• EPCC, Edinburgh Parallel Computing Centre.

• PUL, the EPCC Parallel Utilities Libraries.

• PUL-md, the Mesh Decomposition library.

• PUL-sm, the Static Mesh runtime support library.

Notation

General notation:

x a scalar.

xJ absolute value.

x a vector.

X a matrix.

or 1X1 2 Euclidean norm.

Set notation:

PSI the size of the set S.

{ a, b, c, d} list of members of a set

is C S : conditioris} sub-set of S
for which the conditions are true.

Parallel computing notation:

P set of processors.

n17 the number of nodes.

I the set of mesh elements.

Ei = 177,77b,...1 a mesh element
(a set of nodes).

n the number of elements.

d dimensionality of the mesh.

Graph notation:

G a dual graph.

V the set of vertices.

v 2 a graph vertex.

nV the number of vertices.

E the set of edges.

eij = {v, v3 1 a graph edge
between v 2 and v3 .

e the number of edges.
k the number of processors

w(v) the weight of vertex v 2 .

(sub-domains).

dnet dimensionality of a hypercube 	we (eij) the weight of edge

network. 	 the set of cut edges.

h13 hypercube hops between
processors i and j.

tlatency network latency.

3m size of a message.

/3 network bandwidth.

Partitioning notation:

Mpczrt a partition (decomposition).

S the sub-domain on
processor p E P.

1 recursive equivalent of k.

Mesh notation:

M an unstructured mesh.

iV the set of mesh nodes.

a mesh node.

IAI the total vertex weight of A ç V.

lBI e the total edge weight of B ç E.

Finite element notation:

K the global stiffness matrix.

an elemental stiffness matrix.

Pseudocode:

x += y is x -4 x + Y.

a; -= y is a; -+ a; - Y.

S W A, for the sets S and A,
S—SuA.

Miscellaneous notation:

H an objective function.

K m the Krylov matrix.

7

Chapter 1

Introduction

The subject of this thesis is, as its title suggests, efficient parallel computation

involving unstructured meshes. Meshes of this type are a common discretisa-

tion technique used by numerical methods such as the finite element and finite

volume methods. As unstructured mesh calculations arise in a wide variety of

scientific and engineering application areas, and parallel computers are now a

commonplace high performance computing platform, this is of significant prac-

tical importance.

If an unstructured mesh calculation is to make use of a parallel computer, then

parts of the mesh must be assigned to the individual processors of the machine; a

process referred to as decomposition. For this to make efficient use of the machine

the decomposition must be such that the work load on each processor is as even

as possible, so that no processor is left idle while waiting for another to complete

its work, and such that communication between processors is minimised. The

problem of finding a decomposition of a mesh that satisfies these requirements

is closely associated with that of partitioning a graph. The graph partitioning

problem does not just arise in parallel unstructured mesh calculations, but is also

of importance in the design of integrated circuits, task scheduling, sparse matrix

factorisation and several other areas.

Given the number of important applications that result in problems of this type,

it is unsurprising that considerable research has gone into the development of

algorithms for mesh decomposition and graph partitioning. Unfortunately, it

can be shown that the computational complexity of solving these problems for

large problem sizes is such that no exact solution is ever likely to be found.

We must therefore resort to heuristic approaches which give an acceptably good

approximate solution in a reasonable time.

In this thesis we survey existing algorithms that address these issues and examine

their merits qualitatively. We then detail the algorithms we have chosen to

implement and examine their merits quantitatively, based on various metrics of

decomposition quality. To validate these metrics of quality we investigate how

the performance of a typical application is related to them, and also examine

certain features of the algorithms that are otherwise difficult to assess. We also

introduce a novel partitioning algorithm based on optimisation techniques.

1.1 Research Approach and Background

The research approach taken in this thesis results from the background of library

development undertaken over a number of years at Edinburgh Parallel Comput-

ing Centre (EPCC), hence we will say a little about this background so that the

work presented here and the role of the author in this development may be put

in context.

The Parallel Utilities Libraries (PUL) project encompasses the development of

portable parallel libraries which support application development and free the

application programmer from re-implementing basic parallel utilities. The PUL

project was one of the original Key Technology Programmes at EPCC and has

been ongoing since 1991. PUL draws upon the machine independence and lib-

rary support offered by MPI, and offers facilities for a range of programming

paradigms, including task-farming, regular domain decomposition, parallel I/O

and unstructured meshes.

The libraries of interest to us here are PUL-md and PUL-sm; the libraries which

EPCC has developed to support unstructured mesh applications. These two lib-

raries respectively address mesh decomposition (hence 'md') and runtime support

of static mesh applications (hence 'sm'), and are closely coupled, with the former

acting as a serial preprocessor for the latter.

Two industrial collaborations have driven the development of these libraries;

namely those between EPCC and British Aerospace, and also with Fujitsu Par-

allel Computing Research Centre, Kawasaki, Japan.

The collaboration with British Aerospace, which took place in 1995 and 1996,

centred around the FLITE3D project [BMT96], which involved the parallelisation

01

of an existing computational fluid dynamics code used in the design of commercial

aircraft. The porting of this code was greatly facilitated by use of the PUL

libraries, and in turn furthered their development. The resulting parallel code

is now run on by British Aerospace on the Farnborough Supercomputing Centre

256 processor T3D, and forms a valuable part of their aircraft production cycle.

The collaboration with Fujitsu, which ran from 1993 to 1996, focused on the

porting, development and optimisation of PUL software on the Fujitsu AP1000

[DPPS95, BD96], a distributed memory MIMD parallel computer. In particular,

the PUL-md and PUL-sm libraries were greatly improved and expanded in the

the course of the Fujitsu project, and it is during this phase of development that

the current author was most deeply involved. At the conclusion of this project a

demonstration application was sought to illustrate the use of the libraries, which

is the HEAT2D finite element code we shall encounter in chapter 9.

1.1.1 Library Development and Related Work

Work on the PUL-sm library began in late 1992, and predates PUL-md by two

years. Much of the initial work for both libraries was carried out by Shari Trewin,

with further contributions from Simon Chapple and Killian Murphy. More re-

cent development of PUL-sm, in particular extensions for mesh halos, have been

carried out by Shari Trewin and Robert Baxter.

Prior to development of PUL-md proper an EPCC Summer Scholarship' pro-

ject undertaken by Malcolm Allen (Napier University, UK) investigated parallel

methods for static mesh decomposition [A1193]. In the course of this project

parallel methods were investigated but not implemented. However, serial imple-

mentations of recursive coordinate bisection (see section 6.6.1) and the Kernighan

and Lin local refinement algorithm (see section 6.8.1) were undertaken, as was

a mesh registration interface to PUL-sm. While this project influenced sub-

sequent development of PUL-md, neither its code nor implemented algorithms

were included in the initial version of the library.

The initial version of PUL-md, as implemented by Shari Trewin, forms the back-

ground for the work in this thesis. It implemented dual graph extraction, re-

cursive layered bisection (see section 6.7.1) without Cuthill-McKee (see section

1The Summer Scholarship program allows students to work with EPCC for ten weeks over
the summer on a variety of topics relating to High Performance Computing.

10

6.3.4), the initial implementation of the Mob algorithm (see sections 6.8.2 and

7.5.1), and I/O functions designed to interface with PUL-sm. In particular, the

partition data structure (see section 7.3.2) and closely related recursive software

design (see section 7.3.3) of the decomposition functions date from this version.

The current author began work on PUL-md in 1995, and has focused on further

development of the decomposition functions. This has entailed improvements to

the initial algorithms (addition of Cuthill-McKee to recursive layered bisection

and implementation of the improved 'Mob Complete' version of that algorithm),

and the implementation of a substantial number of additional algorithms (all

those except the two mentioned above). Concurrent with this Robert Baxter

added additional I/O functions relating to mesh halos to the library. This latter

stage of development was primarily driven by the Fujitsu project outlined above.

Other, related, work at EPCC includes the development of the parallel version of

the HEAT2D demonstration code, which was undertaken by Robert Baxter, and

the development of a parallel implementation of the Jostle sub-domain heuristic

(see section 6.8.3), known as 'Refine,' undertaken by Mark Parsons. The latter

parallel algorithm is not included in PUL-md proper.

The final piece of work we must mention is the 1996 Summer Scholarship project

[Wen96] which forms the basis for chapter 10 of this thesis. The concept for

this work was originated by the current author and David Henty, who jointly

supervised the project. The actual implementation of the algorithms described

are entirely due to the student, Chris Wendi (Harvard University, USA).

The version of PUL-md described in this thesis constitutes release version 'PUL-

md-2-2.' Like all PUL software it is available free of charge to UK academics.

Interested parties (including companies) may also obtain the software under eval-

uation license.

1.1.2 Publications

Four publications have resulted from the current author's involvement in the

development of PUL-md:

11

[DPPS95] Unstructured Mesh Partitioning and Improvement on the

AP1000

A short overview of PUL-md and PUL-sm development presented at PCW'95,

the Fourth International Parallel Computing Workshop (1995) hosted by

Imperial College in conjunction with the Fujitsu Parallel Computing Re-

search Centre. This overview was published in the proceedings of that

workshop.

[BD96] Unstructured Mesh Libraries for the AP1000

A paper detailing the full three years of collaboration between EPCC and

the Fujitsu Parallel Computing Research. This again focused on the PUL-

md and PUL-sm libraries and was presented at PCW'96, the Sixth Parallel

Computing Workshop (1996) and appears in the proceedings of that work-

shop.

[BDH97] Unstructured Mesh Applications at Edinburgh Parallel Com-

puting Centre: Libraries, Applications and Interactive Learning

A paper which surveys all work carried out at EPCC relating to unstruc-

tured mesh applications to date. This covers the PUL-md and PUL-

sm libraries, the HEAT2D demonstration code, the FLITE3D project,

the 1997 Summer Scholarship project and the EPIC [Wes96, MW97] in-

teractive courseware which allows Web based learning, in this case per-

taining to mesh decomposition. This paper was presented at the First

Euro-Conference on Parallel and Distributed Computing for Computa-

tional Mechanics 1997, Pre-Processing and Solution Procedures, held at

Lochinver, Scotland. It is published in 'Advances in Computational Mech-

anics with Parallel and Distributed Processing.'

[BDT96] PUL-md Prototype User Guide

The library's User Guide, which details the application program interface

and decomposition algorithms.

In addition to these publications, an EPCC course currently entitled 'Unstruc-

tured Meshes: Generation and Decomposition' contains much work originated by

the current author, as does the EPIC on-line course material referred to above.

12

1.2 Thesis Summary

The content of this thesis is arranged in the following chapters:

2 Unstructured Mesh Calculations

We introduce the numerical methods which give rise to unstructured mesh

calculations, and contrast them with other approaches. These methods are

typified by the finite element and finite volume methods, which we intro-

duce and briefly discuss here. This provides motivation and perspective for

subsequent discussions.

3 High Performance Computing

We review the current state of high performance computing, with particular

reference to large scale parallelism. We discuss both hardware and software

issues relevant to parallel unstructured mesh calculations. In terms of

hardware, we contrast the SIMD and MIMD parallel architectures, and

examine how network topologies have a considerable bearing on the cost

of communication. In terms of software, we contrast the data parallel and

message passing programming paradigms.

4 Decomposition

We introduce the factors that affect the performance of a parallel compu-

tation, and see that these are, to a first approximation, load balance and

communication costs. We then examine, in the most general terms, how

computation may be spread across the processors of a parallel platform in

an efficient manner.

5 Parallel Unstructured Mesh Calculations

We look at the details of the implementation of parallel unstructured mesh

calculations and introduce the halo and shadow node models of mesh distri-

bution. We look in detail at the decomposition of unstructured meshes and

see how it is related to the graph partitioning problem. This chapter both

motivates the problem this thesis addresses, namely the decomposition of

unstructured meshes for efficient parallel computation, and also phrases the

problem in such a way as to abstract it from any one particular application

or platform.

13

6 Decomposition Algorithms

We review the algorithms that have been developed for mesh decomposition

and graph partitioning, classifying them broadly as global methods or local

refinement techniques. This review aims to be as complete as possible, with

particular attention placed on those algorithms which are implemented in

PUL-md, as the subsequent chapter will make reference to the discussion

here whenever some feature of an algorithm implemented is well known.

7 Development of a Mesh Decomposition Library

We examine the programming methodology used in the development of

PUL-md, both in terms of its application program interface and the un-

derlying data structures and software design. We discuss each of the al-

gorithms implemented in the library in turn, and define the tunable para-

meters which control their behaviour.

8 Evaluation and Discussion of Decomposition Algorithms

The title of this chapter is largely self-explanatory; for three example data-

sets of varying sizes, we have employed PUL-md using a variety of al-

gorithms and a range of settings of their associated tunable parameters

and recorded various metrics of quality for the resulting decompositions.

This raw data we consign to a later appendix, as it is quite voluminous,

even though only a representative range of numerical experiments were

performed. Where possible we extract the relevant data and present it

graphically, but where this is not possible we refer the reader to the spe-

cific data in the appendix. We present our conclusions as to the relative

merits of these algorithms and the most favourable setting of their tunable

parameters in the summary at the end of this chapter.

9 A Demonstration Application

While the evaluation in the previous chapter is based on purely theoretical

metrics of quality, here we study the effects of decomposition quality on

the actual runtime of a real application. We use this to investigate the

validity of the metrics of quality previously used and to investigate some

features of our decomposition algorithms that are difficult to assess in the

absence of a real application.

14

10 A Seed-Based Optimisation Approach to Partitioning

We introduce a novel partitioning algorithm which uses optimisation tech-

niques, in particular genetic algorithms, to find favourable seed vertices

in the graph whose positions then determine the full partition. A qual-

itative comparison of the various optimisation techniques and seed-based

partitioning algorithms employed is presented.

11 Conclusions

We summarise our conclusions and review outstanding issues in this chapter.

Appendix A Decomposition Statistics

In this appendix we present the data that forms the basis of our evaluation

of the decomposition algorithms implemented in PUL-md, as referred to

above.

15

Chapter 2

Unstructured Mesh Calculations

In this chapter we introduce the numerical methods which give rise to unstruc-

tured mesh calculations, and contrast them with other approaches. The class

of problems that these numerical methods address are primarily those that can

be expressed as partial differential equations (PDEs). This constitutes a very

large class of problems, as many of the general laws of nature are most naturally

expressed in this form. Areas of application range from structural analysis and

fluid mechanics to solid state physics and quantum mechanics.

In all of these cases, we are dealing with some region in which the problem is

defined, namely the simulation domain. If, as is often the case, no analytical solu-

tion exists for the problem at hand, then numerical methods may be employed

to give an approximate solution. While PDEs view the simulation domain as

a continuum, the numerical methods we are interested in discretise the domain

into smaller regions so that valid approximations to the PDEs may be made and

the overall solution obtained.

2.1 Discretisation

There are two main types of discretisation that are employed in the solution of

PDEs; regular grids and unstructured meshes, as illustrated in figure 2.1.

16

Node 	 Element

Regular Grid 	 Unstructured mesh

Figure 2.1: Structured and unstructured discretisations

2.1.1 Regular Grids

Regular grids arise from the finite difference method of solving PDEs numerically.

The approach is to approximate the derivatives in the PDE in terms of the finite

difference in the values of the problem variables at neighbouring grid points.

The differential equations are thus transformed to a set of algebraic equations

accurate only at the finite number of grid points. The algebraic equations may

then be solved to give the overall solution.

We have illustrated a situation in figure 2.1 where the grid has been distorted

by a simple mapping, but in most cases the grid is orthogonal and regularly

spaced. Even with a distorted mesh there are clearly limits as to how complex

a geometry can be modelled, which is one of the disadvantages of the method.

A partial solution to this is to use many such grids, arranged in such a way

that they meet in a congruent manner and fill the simulation domain. The finite

difference method may then be employed within each regular grid, so long as the

nodes that are shared between grids are treated in such a way as to take this

into account. This approach is the multi-block method, which is often used for

computational fluid dynamics (CFD) simulations. Although multi-block allows

for more complex geometries, the definition of the block structure is a time

consuming process, usually undertaken by hand.

17

2.1.2 Unstructured Meshes

Unstructured meshes arise from the finite element and finite volume methods,

which we shall discuss shortly. The approach taken here is to discretise the

simulation domain into a mesh of elements each with simple geometry. These

elements are arranged in a completely arbitrary manner and may be of widely

varying sizes. Examining the figure once more, we see that a node in the un-

structured mesh is a member of a variable number of elements, indicating that,

while the array is the natural data-structure for the regular grid, it can not

be used to represent an unstructured mesh in a straightforward way. Typical

element geometries are triangles and quadrilateral in two dimensions, and tetra-

hedra, hexahedra and triangular prisms in three dimensions. Generally speaking

element types will be homogeneous for a given mesh, although meshes of mixed

element type are not unknown. The element geometry may be linear, as shown in

the figure, or given in terms of a simple function, such a low-degree polynomial.

Flexibility in fitting an unstructured mesh to a geometry is not the only advant-

age gained by this approach. We may also fit the mesh to the expected solution,

so there is greater accuracy where the solution is changing most rapidly or is of

greatest interest. Comparing the two diagrams in figure 2.1, we see that both

have greatest density in the lower left hand corner. However, in order for the

regular grid to accomplish this, other parts of the grid must also be made more

dense unnecessarily, whereas the unstructured mesh can focus on the region of

interest alone.

Before moving on we introduce the terminology and notation we shall employ in

later discussion of unstructured meshes, as follows.

2.1.2.1 Mesh Notation

An unstructured mesh, M, may be defined in terms of a set of nodes, H, and a

set of elements, E, so that M = (A(, E). An element, ei E E, consists of a set of

nodes, 71a) ri&,... E H, so that ej = {ula, rib }, where the ordering of the nodes

in Ej determines their connectivity.

The number of nodes is then n,1 = IMI and the number of elements n,

18

2.1.2.2 Static and Dynamic Meshes

If the mesh does not change in the course of the simulation then we say that it is

a static mesh, if the mesh does evolve then we say that it is a dynamic mesh (or

sometimes adaptive). A static mesh is typically generated by some preprocessor

to the main solution program, and may be used for many simulations where

boundary conditions or material properties change, but where the geometry is

fixed. As a dynamic mesh evolves through the course of the simulation, the mesh

generation must become part of the simulation. The mesh and the simulation are

coupled by some measure of error in the solution, and the mesh refined in regions

where the error is high to give greater accuracy, or coarsened in regions where

it is very low to speed execution. This may either be done by disregarding the

existing mesh and generating another essentially unrelated to it, or by making

local alterations to the existing mesh where necessary, which is usually more

economic.

2.2 Finite Element Calculations

The finite element method is the archetypal unstructured mesh calculation. It

was originated for structural stress analysis, and was quickly recognised as a very

general technique for solving PDEs.

The method is based on extrapolating values at the nodes of an element to give

values at any point within the element via some shape function. For example, if

we consider a triangular element used in an elasticity problem, we may, for given

displacements of the element's nodes, write down expressions for the strain at

any point within the triangle if we make the assumption that the displacement

varies, say, quadratically (i.e. a quadratic shape function). We may then write

down an expression for the stress at any point within the element based on its

material properties. If we integrate over the element (which may need to be

done numerically) then we arrive at a simple matrix which completely defines

the element's behaviour in response to nodal forces; this is the element stiffness

matrix, often denoted K .

Clearly, the behaviour of the element is related to that of any other element with

which it shares a common node, as it is at the nodes that the problem variables

are defined, so we must combine the element stiffness matrices into a larger

19

matrix which describes the whole simulation domain. This process is referred to

as assembly into the global stiffness matrix, often denoted K. A matrix equation

results, which may be solved to give the overall deformation of the structure

being simulated in response to applied loads.

While we have presented a specific example of the use of the finite element

method for elasticity, the approach is similar in other application areas, although

terminology may vary. For a complete study of the finite element method we

refer the reader to [Zie89].

2.3 Finite Volume Calculations

While the finite element method originates in structural mechanics, and is most

easily explained in that context, the finite volume method originates in CFD and

is most easily explained in terms of fluid flow.

In the finite volume method we consider fluxes in and out of the element 1 . Where

the PDE we are studying represents some set of conservation principles, this

method is particularly suitable. For example, consider flow of a fluid through

the faces of a three dimensional element. We may integrate the flow normal to

an element face to give the total flow through that face. If mass, for instance,

is conserved within the element, then the total of these flows over all of that

element's faces must be zero. Moreover, the flow entering an element through

one face must equal the flow leaving another element with which it shares that

face. In this way an overall algebraic system of equations may be built up to give

the flow in the simulation domain in terms of the flow defined by its boundary

conditions.

For a good introduction to the finite volume method we refer the reader to

[MV95].

2.4 Summary

We have seen that unstructured mesh caJculations are employed to solve a variety

of problems of great importance in science and engineering, and so are a topic

worthy of study. While we have scarcely done justice to the numerical methods

1 More correctly control volume, but we wish to use consistent terminology.

20

outlined in this chapter, and these are not the only applications of unstructured

meshes 2 , we hope that we have presented enough of their general features in

order to put our subsequent discussions in perspective.

2 Dynamically triangulated random surfaces [BJW90, DM91], with applications in funda-
mental physics and biology, are just one other example.

21

Chapter 3

High Performance Computing

In this chapter we introduce both hardware and software considerations which

arise as a result of the present day nature of high performance computing (HPC).

We review computer architectures with particular emphasis on large scale paral-

lelism and network design, as these will provide the primary motivating factors

for the discussion of decomposition that follows in subsequent chapters. We then

look at the programming models and languages that have evolved to program

such machines. We will see that the development of hardware and software have

often gone hand-in-hand, but that emerging standards in programming now al-

low considerable portability of programs, demonstrating that parallel processing

is now a mature discipline of wide applicability.

3.1 Architectures

A computer, in its most basic and general form, receives two types of input; its

instruction stream and its data stream. The instruction stream carries the code

the computer is to execute, while the data stream carries the input data from

memory that the instructions are to be applied to. The computer, having trans-

formed the input data according to the instructions, then outputs the results,

typically back down the data stream to memory.

These notions of instruction and data streams allow us to classify computer

architectures according to the multiplicity of these streams, as we shall see in

the following section.

22

3.1.1 Flynn's Taxonomy

A classification scheme of the type just outlined may be formed by differentiating

between single and multiple instruction streams and also between single and

multiple data streams. The four combinations that result give rise to Flynn's

taxonomy [F1y66], as illustrated in figure 3.1.

Single Data Multiple Data

SJSD SIMD Single
Single Instruction Single Instruction Instruction

Single Data Multiple Data

MISD MIMI)
Fmultlple

Multi le
Multiple Instruction

Single Data
Instruction

1 	\IuRipk D tia Instnition

• 	Parallel machines are commonly
regarded as falling in this region

Figure 3.1: Flynn's taxonomy of computer architectures.

We will now examine each of the four architectures defined by figure 3.1 in turn.

3.1.1.1 SISD

The SISD architecture is the traditional computer architecture, otherwise re-

ferred to a serial, sequential or Von Neumann machine. Here there is a single

instruction stream and a single data stream, both feeding a single processor.

The majority of present day computers still fall into this category, as typified by

desk-top workstations and personal computers.

3.1.1.2 MISD

The MISD architecture is the first parallel architecture we shall consider; par-

allel in that more than one processor is used. Here each processor has its own

instruction stream, but all processors share a single data stream. Hence each

processor is performing a potentially different operation on its own copy of the

same data. While a fairly free interpretation of this category allows the inclusion

of pipelined architectures (which are essentially a hardware implementation of

23

the sort of functional parallelism we shall later discuss in section 4.2.2), it is

difficult to find good examples of architectures which have been constructed that

are clearly in the MISD category.

While MISD is perhaps the least useful category in Flynn's taxonomy, the fol-

lowing two categories, SIMD and MIMD, describe faithfully the two main types

of parallel architecture and it is largely for this reason that this taxonomy is

useful.

3.1.1.3 SIMD

In a SIMD architecture there are multiple processors, each with its own data

stream, but all sharing a single instruction stream. This is often referred to

as synchronous parallelism, in that the operation of all processors is necessarily

synchronised by the instruction stream they share. A typical SIMD architecture

is illustrated in figure 3.2. In that figure each processor element (PE) consists

of a processor and local memory 1 . The program which the PE's execute is held

on some host or front end machine, and is broadcast through the controller over

a dedicated control bus (the single instruction stream). The PE's then apply

the broadcast instructions to the data in their local memory (the multiple data

streams).

This type of architecture would be of limited usefulness if all PE's always per-

formed the same operation, therefore the hardware permits a sub-set of PE's

to be inactive and ignore (or not receive) the broadcast instructions. Thus, if

we wish half the PE's to perform instruction A and the other half instruction

B, then we would have to broadcast instruction A while one half of the PE's

were inactive, then broadcast instruction B while the other half of the PE's were

inactive. This is clearly only economic if we mostly wish to perform the same

operation on a large number of different data items, but a surprisingly large class

of problems satisfy this requirement.

As well as operating on the data resident in local memory, PE's may communicate

with each other through the network which connects them. As the instructions

to do so must also be issued in the manner just described, the architecture is

best suited to applications where any communication that occurs is of a similarly

uniform nature.

1 1t is therefore technically a distributed memory SIMD architecture. See section 3.1.2.

24

Control Bus (Instructions and Data)
U •• • U• Ua•U•• .%..... • 5U• •U•UU

::c6
ONNECTION

Dat
NETWORK

Processor
Element

Figure 3.2: A distributed memory SIMD architecture. Each PE consists of
processor and memory.

Processor
Element

Figure 3.3: A distributed memory MIMD architecture. Each PE consists of
processor, control and memory. 	 4

25

These considerations lead to SIMD architectures being particularly suited to

operating on large arrays of data and indeed often have connection networks

which reflect this (see section 3.1.3), hence they are sometimes referred to as

array processors.

This architecture is typified by machines such as the Thinking Machines Cor-

poration Connection Machine 2 series (CM-2 and CM-200), the ICL/AMT Dis-

tributed Array Processor (DAP), both of which are no longer in production.

While the MIMD architecture which we shall discuss next is now more preval-

ent, SIMD machines are still produced, for example the Alenia Spazio/Quadrics

APE100 and its proposed successor, the APEmille.

3.1.1.4 MIMD

In a MIMD architecture there are again multiple processors, but now each has its

own data and instruction stream. There is no longer any synchronisation imposed

by the instruction streams, as each is independent; this may therefore be termed

asynchronous parallelism. A typical MIMD architecture is illustrated in figure

3.3, where we see that there is no longer any front end machine controlling the

PE's. If, as in the figure, each PE has its own local memory, then each is a SISD

device in itself, each obeying its own program and operating on its own data.

Returning to the example used in the previous section, where half the processor

perform instruction A and half instruction B, we see that these instructions may

now be carried out concurrently in the MIMD architecture by simply running

two different programs (one containing instruction A, the other B) on the two

halves of the machine.

If the PE's are to cooperate on some task then they must communicate but, unlike

the SIMD architecture, the PE's must coordinate this communication amongst

themselves without the aid of a front end machine to oversee the process; for

example, if PE 1 wishes to pass some data it holds to PE 2, then not only does

the program for PE 1 need to contain instructions to send the data, but the

program for PE 2 will generally need to contain instructions to receive it. While

this message passing is more complex than the uniform communication typical

of SIMD architectures, it is also much more flexible, as essentially arbitrary

communication patterns are possible.

These considerations make MIMD the most flexible and widely applicable parallel

26

architecture; certainly any task that can be accomplished on a SIMD machine can

be accomplished just as easily on a MIMD machine, but the reverse is not true.

While this partially explains the predominant use of the architecture, another

consideration is the fact that each PE is a SISD device and, since such devices

are commonplace, a MIMD machine may be built from proprietary components

(off the shelf processors and even proprietary interconnect) making construction

more economic than SIMD machines that may require bespoke components.

The most familiar example of a MIMD architecture is the simple network of work-

stations; with the appropriate software communication across standard Ethernet

allows message passing and the use of the network for concurrent processing. For

higher performance dedicated parallel machines with high speed networks are re-

quired, as typified by the Cray T31) and T3E, the Meiko Computing Surfaces

such as the CS-2, the Intel Paragon, the IBM SP2, the nCUBE, the Thinking

Machines Corporation Connection Machine 5 (CM-5) and many others.

3.1.2 Shared versus Distributed Memory

In the example architectures we used to illustrate SIMD and MIMD (figures 3.2

and 3.3) each PE has its own local memory and can only access data residing

in another PE's memory by communicating with that PE. When each PE has

its own local memory like this we say that memory is distributed. However, for

many machines this is not the case and memory is shared by all PEs, each having

access to all memory addresses via the connection network.

A potential disadvantage to this approach arises when all processors need to

communicate with a single bank of physical memory and there is the danger of

memory access bottlenecks. This makes it difficult to construct shared memory

architectures of this type with very large numbers of processors. Nonetheless, this

architecture, know as the symmetric multi-processor (SMP) model, has proved

very successful for small scale parallelism. Many machines operating as servers

can benefit from this architecture, with the operating system scheduling the

many independent processes that are typically run on such machines to run

on different processors concurrently, and in a way that is transparent to the

user (or users). SMP machines of this type include the Cray CS-6400, the DEC

AlphaServer, the Sequent Symmetry, the SGI Challenge/POWER Challenge and

the Sun Enterprise Server, to name but a few.

27

To get around the difficulties encountered if all processors access a single bank

of physical memory, it is possible to physically distribute the memory (in the

manner of a distributed memory MIMD design), but still maintain a shared

global address space. Machines of this type are known as non-uniform memory

access (NUMA) machines, as the access time for a memory address physically

local to a processor is faster than for a remote access. The distinction between

distributed memory MIMD and NUMA is subtle, but the latter allows one PE

to access memory addresses physically located on another without the second

PE's cognisance, while the former does not. The Cray/SGI Origin2000, the HP-

Convex Exemplar and the Sequent NUMA-Q Series are good examples of this

architecture.

3.1.3 Network Topologies

So far we have treated the connection network for a parallel architecture as a

black box, in that its structure has had no bearing on the taxonomy we have been

discussing. However, the details of the network's construction will have particular

bearing on subsequent discussions, especially when we turn our attention to

the cost associated with communication. In any event, the efficiency of the

connection network is fundamental to the efficiency of any parallel machine as a

whole, and so we will now examine some typical network structures.

There are three main types of network:

• Bus networks

• Switching networks

• Point-to-point networks

In a bus network, all PEs share one communication channel which can only carry

one message at a time. Thus the performance is limited by the bus bandwidth

(i.e. the amount of data it can transmit in unit time), which will not scale as

the number of PEs attached to it increases and is therefore of relatively little

interest to us, although it is worth noting that Ethernet falls into this category.

Switching networks are dynamic connection structures with active elements, such

that varying connection patterns can be engaged during execution. Examples of

such networks include crossbar switches, delta networks, Cbs networks and fat

trees. Of these, we shall only detail the latter, as illustrated in the left-most

Fat Tree 	 2D Grid 2D Torus

U Switch 	• Processor Element 	0 Processor Element [and router]

Figure 3.4: A fat tree switched network (where line thickness indicates band-
width), and 2D point-to-point networks

E 19
0 Processor Element [and router]

t,]

Figure 3.5: Hypercube point-to-point networks in 2, 3 and 4D.

29

diagram of figure 3.4. The fat tree illustrated is binary but this is by no means

always the case; the important concept is that a message from one PE to another

travels up the tree only so far as is needed in order for the switches to pass it

on to its destination. The tree is termed 'fat' as a switch higher up the tree has

more connections routed through it, although not always as many as the sum of

the branches below, as most communication is likely to be local. This type of

network is employed in the Thinking Machines CM-5.

Point-to-point networks are most common, where connections are directly from

PE to PE, although special routing hardware often takes care of communication

destined for other PE's (cut through routing), so that computation on the PE

need not be halted for it to handle the message itself. The structure of the

network can vary widely, from vectors and arrays (or grids), to rings, complete

graphs or hypercubes. Often, if a grid is used, the connections at the edges of

the array wrap round to form a torus, as shown in the right-most diagram of

figure 3.4. This type of network is employed by the Cray T3D and T3E, where

a torus in three dimensions is used.

The hypercube, in varying dimensions, is an attractive structure for network

design, as no two PEs are ever further apart than a number of connections

equal to the dimensionality of the network. This can be seen in figure 3.5; if

we consider the square, which is the 2-dimensional hypercube, then we see that

the greatest distance is from opposite corner to opposite corner, which involves

traversing 2 network connections, or hypercubc hops as they are known; similarly,

opposite corner to opposite corner for the cube takes 3 hypercube hops; finally,

the tesseract, or 4-dimensional hypercube is 4 hops from corner to corner.

We shall have more to say on the cost associated with network distance in section

5.3.1, but for now will simply comment that it is generally true that the time

taken for a message to reach its destination increases with network distance for

almost any type of network, particularly when there is contention for network

resources.

We note that if a binary tree or hypercube network is used, then the number of

PEs in the machine must be a power of two. This is often the case for machines

that use other network structures as well, for this permits a fixed number of

binary digits to specify each PE's identity. It is also often the case that when

a large parallel machine is shared by many users the number of PEs assigned

to each user is a power of two, for the same reason (this is true for the Cray

30

T31)). We emphasise this now, as we will later encounter methods for dividing a

computational problem up over a number of processors which is assumed to be

a power of two.

3.2 Programming Paradigms

We now turn our attention from the hardware of parallel platforms to the pro-

gramming paradigms that have evolved to make use of them. Historically, al-

though parallel programming languages and libraries fell clearly into one of two

camps; the data parallel and the message passing, there was a lack of standards

that hindered the portability of parallel codes between platforms manufactured

by different vendors, as each had their own proprietary software. Today emerging

standards are gaining wide popularity and allow a well written parallel program

to be run on a variety of platforms with relative ease.

3.2.1 SPMD

Sometimes used as a classification of hardware, the single program multiple data

(SPMD) programming paradigm is more correctly a style of MIMD program-

ming, although one so widely accepted that many operating systems enforce its

use. SPMD simply entails the execution of the same program by every PE of

a MIMD machine. This does not reduce the flexibility of the resulting code, as

can be seen if we return to the example we used in sections 3.1.1.3 and 3.1.1.4.

So long as each PE is aware of its own identity and, if we may assume for the

moment that this is given as an integer, then the following pseudocode fragment

illustrates this:

if (PE identity even)
execute instruction A

else
execute instruction B

endif

Just as in the MIMD case the instructions A and B are executed concurrently,

each on half the PEs. We see that any MIMD set of heterogeneous programs

may be combined into one larger program and run in SPMD style in this way

31

without loss of generality. The only down-side to this is that the executable

code occupies more memory, but it is rare that more than a handful of different

operations need be executed concurrently, so this is not often a consideration.

3.2.2 Data Parallel

In the data parallel programming paradigm the programmer writes code in a lan-

guage designed with parallel execution in mind, but leaves many of the details of

how that execution is performed to the compiler. A single program results, where

concurrent operations are carried out in parallel automatically. Communication

takes place either implicitly, where there are references to non-local data, or

explicitly where language communication intrinsics are called. Each processor

performs the same operation on different data and, from the programmer's point

of view, there is a single thread of control, a global name space and [loosely]

synchronous execution.

This programming paradigm is most closely associated with, but no longer re-

stricted to, SIMD architectures, particularly in the form of array processors. On

a synchronous SIMD machine, the instructions in a data parallel program are

naturally synchronous, but data parallel compilers are also available for MIMD

machines, where synchronisation is typically only imposed by some program con-

structs, such as the completion of a loop.

The most characteristic feature of data parallel programming is its ability to

treat whole arrays as single entities. For example, consider a simple inner

product of two conformable vectors, A and B. In a traditional serial language

we would sum the product A(i)*B(i) in a loop over i. A data parallel equi-

valent might be SUM(A*B), where the product A*B is carried out element-wise

over the whole of the two vectors, and the resulting vector summed by the SUM

intrinsic. When executed on a parallel platform, each processor may perform the

array element product concurrently for its local data (we assume each PE is re-

sponsible for a portion of the overall distributed vectors A and B). The summation

of these products, and the communication it entails, proceeds transparently to

the user. Intrinsics for common array operations, such as matrix multiplication,

sum, transpose and so forth are usually provided 2 .

2A inner product intrinsic would almost certainly exist also, but we wish to use the previous
example to illustrate message passing in the next section, so did not use one here.

32

While the compiler can ensure concurrency in such operations with little diffi-

culty, it generally requires additional information from the programmer to spe-

cify how data is distributed over the available processors of a parallel machine for

maximum efficiency. This is often done by means of compiler directives, which

are not executable in themselves and generally appear as comments of an identi-

fiable format in the code. Typical distributions are simple block or cyclic layouts

based on array index3 .

If an array is distributed in such a way, any reference to an array element not

local to the processor wishing to perform calculation upon it will result in com-

munication occurring; this is transparent to the programmer except in so far

as performance is concerned. Communication also occurs during execution of

intrinsics such as the SUM used above, or when explicit communication intrinsics

are called. The functionality of the latter is usually limited to regular patterns

of data motion. A good example of this would be a 'CSHIFT' operation, where

all the elements of an array are shifted in a circular manner along a specified

dimension, equivalent to A (i) =A (mod (i+s , n)) for an n dimensional array.

Historically data parallel languages have been vendor specific dialects of common

languages, predominantly Fortran 4 . This hindered portability, although many

concepts were common to these dialects. In an effort to standardise these dialects

the High Performance Fortran (HPF) standard was drafted [Hig93] and has now

gained wide acceptance with compilers available for most common platforms.

HPF is an extension of the Fortran 90 standard which itself extended Fortran 77

to include, amongst other things, operations on whole vectors and arrays (it may

have been noticed that both the A*B syntax and the SUM and CSHIFT intrinsics

are included in Fortran 90). HPF extends Fortran 90 by adding direct sup-

port for data parallel programming through compiler directives which determine

data distribution, and provides added intrinsic and library functions to support

specifically parallel operations.

Often, HPF compilers make use of lower level parallel software libraries such as

threads or message passing systems; indeed, if the latter is implemented for a

3These correspond respectively to the lexicographic and cyclic partitioning methods we shall
encounter in chapter 6 applied to array index. See [KLS+ 94] or the HPF standard itself [Hig93]
for a more formal description.

4A data parallel C, know as C, was available for the Connection Machine series of com-
puters from Thinking Machines [Thi93a]; a Parallel Pascal was developed by NASA [Ree84];
parallel dialects of functional languages, notably Lisp and Prolog, also exist - [Brä93] contains
a short survey of these.

33

MIMD architecture, the result is a good example of SPMD programming.

3.2.3 Message Passing

Unlike data parallel programming, message passing programming makes use of

standard languages such as C and Fortran, but adds communication through

calls to special library routines. The communications library forms the message

passing system (MPS) and will typically implement a variety of point-to-point (i.e.

single FE to single FE) and collective (multiple PE) communication operations.

The message passing model assumes that many separate programs are run con-

currently, and that the only interaction between them takes place through the

MPS, thus all variables are private within each program. While this is the only

way a distributed memory MIMD machine may be programmed at the lowest

level, message passing is also a useful paradigm for shared memory architectures,

where it can be less cumbersome than multi-threaded programming, as it may

avoid the need for locks and semaphores to coordinate memory access and ensure

determinism5 .

Message passing is a much more flexible programming model than data parallel,

as the programmer has full and unrestricted control of data distribution and

communication. Of course, this flexibility passes on to the programmer many of

the responsibilities that a data parallel compiler automates, but it also allows

much more freedom to tailor code for maximum performance.

Message passing point-to--point communications usually occur in a send/receive

pair, as we see from the following illustrative SPMD pseudocode fragment:

if (PE 1)
mps_send(task, PE 2)

else if (PE 2)
mps_receive(task, PE 1)
if (task == 'A')

execute instruction A
else if (task == 'B')

execute instruction B
endif

endif

5 Lack of synchronisation can result in race conditions occuring, leading in turn to unpre-
dictable behaviour. We say programs that avoid this are deterministic, in that they always
produce the same output given the same input; clearly a desirable property.

34

Here we see PE 1 sending the data in task to PE 2, which is awaiting the

message with a corresponding receive. It then executes either instruction A or

B according to its value. In this example the message sent is just a simple scalar

flag, but the MPS will usually support messages which are entire arrays or even

arbitrary data types.

Collective communications include operations such as all-to-all, gather/scatter or

global data reduction functions. No only do these facilities save the programmer

from re-inventing common communication operations, but they also allow the

MPS library implementors to take advantage of the underlying hardware on a

given platform, as the most efficient algorithm may be influenced by such factors

as network topology.

An example of collective communication occurs if we consider again the imple-

mentation of a simple inner product, as we did in the previous section. In the

message passing model, there is no concurrent equivalent of the array product

A*B, as there is no assumption that arrays are the favoured data structure and

neither is there any global name space. Thus, each processor must sum the

product A(i)*B(i) in a ioop over i for its local data (we assume each PE has a

portion of the overall distributed vectors stored in the local vectors A and B). If

this local sum is stored in some temporary scalar T, then each processor would

subsequently call some MPS global reduction function, such as mps_sum(T), in

order to know the overall sum which is the complete inner product.

There are two prevalent MPS interfaces today:

PVM - Parallel Virtual Machine [SGDM94]

MPI - Message Passing Interface [For94]

PVM development began in 1989 at Oak Ridge National Lab in the US and

was originally designed to operate on heterogeneous networks of workstations,

and still contains important features for supporting applications in such environ-

ments. PVM implements communication operations of the type outlined above

with interface bindings for Fortran 77, C and C++. In addition, it allows dy-

namic process creation and provides a standard method of configuring the parallel

machine.

MPI is a software standard, defined and maintained by the MPI Forum, with its

first specification completed in 1994. The rigor of the standards procedure has

helped MPI reach a prime place amongst message passing systems, offering real

35

portability between HPC platforms. Many vendors of HPC systems now offer

native MPI support on their machines, and many generic versions are available

free of charge.

The 1994 standard (version 1.1) defined only the interface for Fortran 77 and C; it

said nothing regarding process management and did not allow dynamic process

creation, but otherwise included many of the features of PVM. In addition it

added the concept of a 'virtual topology,' which allows the abstraction of the

application communication topology from that of the underlying hardware. The

recently published update to the standard (version 2.0, 1997) has C++ and

Fortran 90 bindings, additional functionality for dynamic processes, one-sided

communication (useful for shared memory architectures), and parallel I/O.

An important feature of MPI that was present from its first definition is that

of communication context. Every communication occurs only within a specified

context and this allows the development of third party parallel libraries whose

communication is insulated from all other messages. In section 5.1.6 we shall

encounter the PUL-sm library developed at EPCC for the runtime support of

parallel unstructured mesh applications, which forms an example of such a par-

allel library; without the idea of communication context such a library could not

have been robustly written.

36

Chapter 4

Decomposition

In order to make use of a parallel computer the problem at hand must be sub-

divided in some way, either explicitly by the programmer or implicitly by the

compiler (as is the case in the data parallel programming model). We refer to

this sub-division as decomposition of the problem.

Where the problem is one of physical simulation, we will be simulating a finite

region, the problem domain. In this case, the parts into which we have divided

the domain, we refer to as sub-domains. A sub-domain is therefore that part of

the simulation domain with which an individual processor is concerned.

The way in which this decomposition is done is crucial to the performance of

a parallel program. In this chapter we will consider the factors which affect

performance and see why this is so. Additionally, we will briefly consider the

main types of decomposition in common use.

4.1 Efficient Parallel Computation

There will almost always be overheads involved in the use of a parallel com-

puter which are not present in the use of a serial machine (the exception being

trivial parallelism, see section 4.2.1). These overheads come from two sources;

firstly, any time a processor spends idle while waiting on another is wasted, and,

secondly, any time spent communicating between processors does not directly

aid in the solution of the problem. These are load balance and communication

overheads, respectively.

37

4.1.1 Load Balance

Load balance simply refers to ensuring that each processor has the same amount

of work to do. If there is any imbalance in the load on the processors then some

must be idle while waiting on others.

Although this is a simple concept and, indeed, in many instances is straightfor-

ward to ensure, it may be complicated in practice. An example of this would

be a case where the load is determined by the data in such a way that it is not

known in advance. Another would be where the program was running on a work-

station cluster shared with other users or made up of a heterogeneous mixture

of machines, in which case the load would have to be tailored to the computing

resources available.

4.1.2 Communication

Communication overheads arise as a result of decomposition. The parts into

which the problem has been sub-divided are not, in general, independent and so

must communicate in order to cooperatively solve the problem.

The actual cost of communication will be determined by the platform on which

the program is running. However, the main factors contributing to communica-

tion costs are:

• The volume of communication; that is the number of bytes of data sent.

• The frequency of communication; there is a start-up cost associated with

each message sent.

• The 'distance' between communicating processors across the network; the

time taken for a message to reach its destination may, for example, depend

on the number of routers it has to pass through.

• Contention for network resources; one message may get held up while an-

other is using the same part of the network, particularly if all processors

are communicating at once, which is often the case.

The relative cost of communication and computation may also be an issue. For

example, it may be more efficient for a processor to recalculate a result locally

than for it to fetch it from another processor that already has that result.

4.1.3 Measures of Performance

We would like to be able to quantify the performance of a parallel program, both

in relation to a good serial implementation (which may well contain algorithmic

differences), and also in relation to the number of processors used to run the

parallel code.

By comparing the execution times of serial and parallel codes, running on identical

processors, and also by studying how the parallel execution time varies with num-

ber of processors, we can arrive at some measures of performance, as follows.

If we denote the serial and parallel execution times as tserjal and 	ral1el, respect-

ively, then we can define the total speed-up obtained by parallelisation as

- t8erzal

- tpflj
(4.1)

and the total efficiency as

Etot 	
Stot 	tser jut = =
k 	ktraitei• 	

(4.2)

Where k is the number of processors used by the parallel implementation.

It is often the case that a good serial implementation is not available, cannot be

run on a single processor of the parallel machine, or that we are only interested in

examining features of the parallel algorithm, for example looking at how decom-

position affects performance. It is therefore common to compare the execution

time of the parallel code running on a single processor, traj1Cl with that of the

parallel code running on k processors.

We define the parallel speed-up as

- tpczratlel
Spar - k 	 (4.3)

tpa7 . allel

and the parallel efficiency as

Spar
Epar - 	

- tParallel 	
(4.4)

k - kt raiiei

39

4.2 Types of Decomposition

4.2.1 Trivial

If a problem has a number of similar, independent parts, and each of these

can be accommodated on a single processor, then these parts may be computed

concurrently with none of the overheads previously discussed. Such a problem is

sometimes termed embarrassingly parallel.

To illustrate this, consider a simple engineering code which performs a structural

analysis. The user wishes to vary a parameter which describes a feature of the

structure, say the thickness of a shell, and study how the strength of the structure

varies with this parameter. If we have k processors available, then k parameter

values may be studied concurrently in the time it would take us to perform one

analysis on one processor.

Clearly, if the time taken by a single structural analysis is tsa then the parallel

speed-up is kt sa/t sa = Ic and the parallel efficiency is 100%. As there are no

overheads associated with this trivial parallelism, this is often taken as providing

an upper limit on the speed-up that may be obtained by any parallel program.

In practice other issues, such as cache utilisation, may invalidate this limit.

This example is typical of trivial decomposition; we are not so much sub-dividing

a problem, as much as running several problems at once. As parallel computing

is usually applied to problems that would be too large to fit on a single processor,

trivial decomposition is of little interest.

4.2.2 Functional

Functional decomposition seeks to sub-divide the problem into a number of tasks,

here akin to subroutines or code blocks, each of which can be run on a separate

processor. The output of one task is communicated from the processor on which

it is running to another, where it is used as the input for another task running

there.

A typical structure for a parallel program which used functional decomposition

would be a pipeline, as shown in figure 4.1. Here a sequence of data items are

read in, processed by task A, passed to task B for further processing, and so on,

through task C to output.

40

[_input __i. [_Task A_1 -i [Task B_] .-.. [_Task 5] --Blow

Figure 4.1: Functional parallelism, a pipelined approach.

In a serial implementation of this program the tasks would simply be executed in

sequence, looping over data items. If we consider a item of data flowing through

the pipeline then it is processed in sequence, just as in the serial case. This

means that, if we are only processing a single data item, then the execution time

of the serial and parallel codes (running on similar processors) will be the same,

bar the additional communication costs for the parallel code.

The performance of a pipeline is, therefore, only seen if there are a large number

of data items to be processed. In other words, there is a start-up cost associated

with filling the pipeline at the start of execution and, similarly, a close-down cost

for emptying it at the end. At both of these stages the pipeline is not full and

some processors will be idle.

This is not a problem if there is sufficient data to make pipelining worthwhile.

However, more serious issues can arise in the implementation of such a program.

Our example will perform well if there are five processors for it to run on, but if

there are less it will not run at all, and if there are more they will remain idle

and cannot be taken advantage of. Utilising all processors would involve altering

the program to take the number of processors into account, which may well have

to be done by hand.

Another issue is that of load balancing; any load imbalance will result in a

bottleneck in the pipeline, with a corresponding decrease in performance. As

the work involved in each of the tasks is a function of the code executed as part

of that task, any alteration in that code will alter the load balance, making the

code hard to maintain.

However, if these issues can be dealt with, for the problem in question, then

functional parallelism can be very effective. This is particularly the case where

a small number of very powerful processors are to be used.

4.2.3 Data

The majority of parallel programs decompose a problem by decomposing the

corresponding data. Where identical operations are being performed on each

Mi

part of the data, the amount of data that a processor has to deal with will be a

measure of the work it has to do; we term this a balanced problem. However, this

is not always the case and the work required may be determined by the content

of the data; we term this an unbalanced problem.

To categorise decomposition further is problematic as it is essentially prob-

lem dependent and has potentially as many solutions as there are applications.

However, we can present some canonical examples which illustrate common ap-

proaches and will help to put later discussions of the decomposition of unstruc-

tured meshes (which we will cover in section 5.3) in context.

4.2.3.1 Regular Grid with Balanced Load

A simple balanced problem is the regular grid, such as would he found in a finite

difference calculation, for example. Here we have an array of data, each element

of which is treated similarly and only interacts with its immediate neighbours.

It is easy for us to decompose this problem so as to obtain perfect load bal-

ance. As data elements are all treated identically an even distribution of work is

achieved by having an equal number of data elements on each processor.

Shared Region

HH Without Halo

Shared Region

¶1JJ With Halo

Halo Region

Figure 4.2: A regular 16x16 grid decomposed for 16 processors, with and without
halos.

Looking at the regular grid in figure 4.2, we see that we could simply assign each

row of the array to a different processor. This would certainly give load balance,

but would result in an large amount of communication. Each row would have

to communicate with its two neighbouring rows, as we know interactions are

nearest neighbour. This is not a great problem for small arrays, like the one in

figure 4.2, but as the arrays size grows so does the amount of communication.

42

The best decomposition is generally' that shown in the figure. Here each pro-

cessor owns a square section of the array and will therefore only need to commu-

nicate at borders to neighbouring squares.

The distinction between these two decompositions show an important feature of

parallel programming. The efficiency of the row decomposition decreases as the

problem size increases, whereas the square decomposition does not. We therefore

say that the latter is scalable.

It is clear from this discussion that what we are seeking to do is to maximise

the ratio of useful calculation to communication, and that this is related to

minimising the 'surface area' of the sub-domain assigned to each processor.

Two possible implementations of this decomposition are also shown in figure

4.2. To perform a calculation for a data element in the shared region will require

knowledge of the neighbouring data elements and these are on another processor.

We could fetch these elements, one at a time, as we need them (the 'without halo'

option) but we would incur a cost for starting each separate communication. The

usual solution is to add a halo around the local part of the array and swap data

with its neighbours for the corresponding parts of the halo in one communication

per neighbour.

An example of this type of problem can be found in [Boo96], which details the

application of this type of decomposition to Quantum Chromodynamics.

4.2.3.2 Regular Grid with Unbalanced Load

If we consider a variation of the previous problem where not all data elements are

treated identically then we have an unbalanced problem. Consider the problem

of ocean modelling around a land mass. We superimp9se a regular grid over the

land mass, but now those data points which lie over land will be idle.

An example of this type of problem can be found in [Gwi95], which details the

work of the OCCAM ocean modelling consortium.

The load imbalance that the presence of the land mass will cause, if we use the

previous decomposition, is clear from examining the work load of the processor

1 1n some instances it may be preferable to have fewer larger messages, as we do for the
row-based decomposition just described. The reasons for this will become clearer when we
discuss communication latency in section 5.3.1.

43

marked 'A' in figure 4.3, which has only three active data elements, while several

others have all sixteen data elements active.

If the shape of the land mass is known in advance then a good decomposition

can be found where the sub-domain a processor owns is irregular, as shown. This

in itself may be time consuming, but worthwhile if many calculations are to be

performed.

If the shape is not known in advance, and it is considered unprofitable to find a

decomposition in the manner just described, other options exist.

Figure 4.3: A regular grid with an inactive region.

One other option would be a scattered decomposition. Here we almost abandon

the attempt to keep interacting (i.e. adjacent) data elements together and assign

data elements to processors essentially at random (possibly cyclically) and trust

that, on average, each has the same work load. The problem here is that this

will tend to maximise communication costs. To overcome this deficiency we may

group interacting elements together into grains of some size smaller than the

total we wish to find in a sub-domain. By tuning this grain size we can trade off

the higher communication cost of small grains against the improvement in load

balance they bring.

An illustrative example of this approach occurs in N-body or molecular dynamics

simulations, where a number of discrete particles interact according to the forces

they exert on one another. If the space in which the particles move is discretised

into a simple cartesian grid, then the number of particles in each grid cell at a

given time is unknown. A scattered decomposition of the grid cells will, if there

are enough cells per processor, even out the number of particles per processor,

and hence ensure reasonable load balance. If the forces are of limited range (like

the Lennard-Jones potential, for example) then communication costs increase

as we decrease cell size, as nearby particles are more likely to be resident in

cells assigned to different processors. The trade off between load balance and

communication costs evidently influences the optimal choice of cell (i.e. grain)

size.

An example of this type of decomposition applied to very large scale cosmolo-

gical simulations can be found in [MPPC97], where gravitational forces are rep-

resented, at short range, by particle-particle interactions, and, at long range, by

particle-field interactions. Other examples occur in biological population model-

ling and LU factorisation of matrices [FJL88, FWM94].

4.2.3.3 Task Farming

Task farming provides a means of dynamic load balancing, that is load balan-

cing that must be carried out at run-time. If the problem can be sub-divided

into grains which can be processed independently, but which have varying, and

possibly unknown, amounts of work associated with them then it is a suitable

candidate for task farming.

If we return to the example in section 4.2.1, of multiple, simple structural analyses

being performed, we see that the perfect speed-up rests on the assumption that

t sa is a constant. If this is not the case, and t sa is a function of the input

parameters, then the parallel execution time will be that of the processor which

finishes last and the speed-up inferior.

Now it may be the case that many more analyses are to be performed than there

are processors available. In this case we may use a task farm, as shown in figure

4.4.

The task farm consists of a single source, several workers and a single sink (which

is often also the source). Here a task consists of performing the analysis for a

particular parameter set. The task farm then operates as follows:

• The sink handles input and initially hands out parameter values to the

workers. Thereafter, it waits for a request from a worker for a new set of

parameters.

• The workers perform the structural analyses for the parameter set they

have. Their results they communicate to the sink and then request another

45

Figure 4.4: Task Farm

parameter set from the source.

• The sink receives results from the workers, performs any additional pro-

cessing of results and handles output.

This process will tend to even out the work load between workers, as they only

request more work once they have finished the work they have. Inefficiencies

may arise if, at the end of execution, some workers are still calculating their last

task long after many others have finished. If the work associated with a task (i.e.

parameter set, in this example) is known, or may be estimated, then the source

can give out the more intensive tasks first to alleviate this problem.

An example of just such an application of task farms for engineering design is to

be found in [Boy94], which details their use for the design of underwater storage

tanks.

M.

Chapter 5

Parallel Unstructured Mesh

Calculations

In this chapter we look at issues arising in the implementation of parallel un-

structured mesh calculations. We look at two models of mesh distribution (halos

and shadow nodes) and how communication between processors occurs. The im-

plications this has are examined using the finite element method as an example.

We also look in detail at the decomposition of unstructured meshes and the

related issues of graph partitioning and mapping. This necessitates an examin-

ation of platform and application communication, so that a model can be built

which will allow evaluation of decomposition algorithms. This model, the dual

graph, is also fundamental to many of the decomposition algorithms which will

be introduced in later chapters.

The emphasis here, and indeed for the rest of this thesis, is on implementation

in a message passing environment, for the reasons stated below. However, this

should not be seen as restricting the scope of these discussions, as the problems

that arise during implementation in that or the data parallel programming model

are essentially the same; reducing communication costs while maximising useful

computation.

47

5.1 Implementation in a Message Passing En-

vironment

In order for an unstructured mesh calculation to be carried out in parallel the

mesh must be decomposed into the sub-domains that will be resident on each

processor. The discussions in chapter 4 regarding the decomposition of regular

grids are just as relevant here. In the terms of that chapter, we are dealing

with a data decomposition; balanced if all parts of the mesh are treated equally,

unbalanced otherwise.

The question then arises as to what the basic unit of sub-division is to be. We

have two choices; elements or nodes. Given that a considerable proportion of the

computation involved in an unstructured mesh calculation is often associated

with determining the properties of a mesh element, the element is the preferred

unit.

If we consider a finite element calculation, for example, we see that each elemental

stiffness matrix must be calculated and that these calculations are independent.

If we distribute elements across processors then this part of the calculation is

embarrassingly parallel. However, if we distribute nodes then communication

will be necessary wherever the nodes of a given element are not all resident on

the same processor. The former is clearly more efficient.

Having decided on the basic unit we then need to find a good decomposition.

We will discuss how this is done in detail in section 5.3 and following chapters,

but for the moment we assume we have some reasonable decomposition and that

the mesh is static.

The issues that then arise are how to perform scalable input and output, how to

communicate data between sub-domains, and what algorithmic differences are

there between serial and parallel implementations. Scalable input and output are

covered briefly in section 5.1.6, in the context of PUL-sm. Algorithmic differences

are most visible in the context of solution procedures and are dealt with in section

5.1.5.

Communication between sub-domains and the associated data structures are of

primary interest; here we present two models - halos and shadow nodes - and

compare their merits.

5.1.1 Shadow Nodes and Halos

In the shadow node model each processor stores only information associated

with those elements it is assigned ownership of. Referring to figure 5.1 this is

the central, unshaded region of local mesh 3. The shadow nodes are then those

which are duplicated on every processor which owns an element of which they

are part. This duplication implies that the shadow nodes will require special

treatment.

In the halo model additional storage is used for copies of those elements im-

mediately adjacent to the local sub-domain. These elements are precisely those

which the local elements interact (and therefore communicate) with. For some

applications this can reduce communication costs relative to the shadow node

model, at the expense of an increase in memory requirements (generally modest)

and the introduction of some redundant computation.

The situation is similar to that discussed in section 4.2.3.1, regarding halos for

regular grids. However, it is important to realize that the example used there

was of a finite difference calculation, and that the decomposition was carried out

at the node level, whereas here we are considering decomposition at the element

level for finite element and volume calculations.

5.1.2 Relative Merits of the Two Models

The immediately evident disadvantage of the halo model is the increase in memory

requirements. However, in practice this will not be great compared to the size

of a sub-domain, which will typically contain a large number of elements, even

before any halo might be added.

If we consider a compactly shaped sub-domain of size r and add thin halo layer

around it of thickness Sr, then, in two dimensions, the area of the sub-domain

will be 0(r 2) while the area of the halo will be O(r6r). Clearly the area of

the halo is small in comparison, so long as Sr << r. If we assume that mesh

elements are all of similar size then the area will be approximately proportional

to the number of elements and our claim that the added memory requirements of

the halo model is modest is justified. If elements are not of a similar size then we

could extend our argument by measuring area against a metric of length based

on local element size and our claim would still hold true.

49

Local mesh 0
elm

11>
/

/

/

F ~ ~50 OfflUNEEM/0 ~ ~

Local mesh 2

0 Shadow nodes —2 co—owners

	

• Shadow nodes - 3 co—owners
	 4 	Elements in the halo

	

Shadow edge - 2 co—owners
	 4

Figure 5.1: Mesh decomposition, showing both halos and shadow nodes.

50

Another disadvantage is that additional computation may have to be performed

in the halo region which is in fact redundant.

These costs must be be justified in terms of increased performance and whether

this is realized is application and platform dependent. There are two ways in

which the addition of halos may allow increased performance.

The first is by allowing in-place communication; because data located at halo

nodes is not calculated by the local processor, but updated by the processor

with primary ownership of that node, the update can simply write the new value

to that location. If the shadow node model is used then two or more processors

share ownership of a shadow node and it will usually be the case that a combine

operation (send-with-add, for example) must be used to determine the correct

value at that node. This is generally a more expensive operation than an in-place

send and may indeed require buffer space comparable to that required by a halo.

The second is by reducing the volume, and possibly number, of messages com-

municated. We illustrate why this may be so in the context of a typical explicit

scheme and then go on to contrast this with the situation in a typical implicit

scheme.

5.1.3 Implications for an Explicit Scheme

An explicit scheme is one in which new values of the problem unknowns are given

as a function of those at a previous time step or iteration, as is the case for the

Forward Euler scheme.

Here one might adopt an iterative numerical scheme whereby the iterate at a

given point in the mesh depends upon the values of variables stored at neigh-

bouring points. If, for instance, the governing equations were

at = F(u, Vu) + D(u, Vu)

for unknowns u, we might have the following numerical scheme:

At = h(u1 +)

D' = d(u1 +)

F' = f(u+)

u1 = u, + (F' + D')Lt

51

where At is a time-step determined adaptively by the function h(u) to be as large

as possible and still ensure convergence. D' and F are discretised approximations

to D and F, such that D' - D and F -+ F as the mesh element size -+ 0. We

use u+ to denote a reference to values of ui at nearest neighbour points, where

u2 is our approximation to the true solution at time step i.

In the shadow node model, the above scheme would be parallelised like this:

At = f(u 1 ±), update boundary of At

= d(u 1 +), update boundary of D'

F' 	f(u 1 +), update boundary of F'

= u + (F' + D')Lt

If the mesh domains were to include a single overlapping level of halo elements

the parallel scheme would become:

At = f(u 2 +)

D' = d(u1±)

F' = f(u1+)

= u + (F' + D')Lt, update halo of u 1

As can be seen, we have reduced the number of communication phases from three

to one.

The gain, in terms of reduction of number of communication phases, is thus

dependent on the number of calculation phases and therefore application de-

pendent.

This sort of scheme arises in CFD and this example is motivated by experience

gained while porting the British Aerospace FLITE3D code to the Cray T3D

[BMT96]. FLITE3D provides explicit multi-grid Euler solution for modelling

high speed airflow around complex geometries. It was parallelised using the

shadow node model, but it was felt that the number of calculation phases (which

is greater than in our example) may warrant the use of halos. Although the

project did not extend to an investigation of this, similar investigations have

been carried out [LL96] and it is upon this that many of the comments here are

based.

52

5.1.4 Implications for an Implicit Scheme

An implicit scheme is one in which new values of the problem unknowns require

the solution of a set of linear equations based on those at a previous time step

or iteration, as is the case for the Backward Euler, Galerkin or Crank Nicolson

schemes.

Processor boundary

0 	 I 	 4

0 	1 	2 	 Mesh

5 	 6 	 7 	 9

0 1 2 3 4 5 6 7 S 9

0

3

4

5

6

7

S

9

Global
Stiffness
Matrix

Figure 5.2: Four element mesh and corr(sponding global stiffness milatrix.

This is also a requirement in the case of finite element analyses where there is no

time-like coordinate. In a linear analysis of this type, a system of linear equations

(independent of the unknowns) must be solved just once. In a non-linear analysis

of this type, an iterative procedure is performed where, at each iteration, a set

of linear equations (dependent on the unknowns at the previous step) must be

solved.

We refer to this matrix on the left hand side of this system of linear equations

as the stiffness matrix. It is a sparse, often symmetric positive definite, matrix.

In all cases the pattern of the stiffness matrix is determined solely by the con-

nectivity of the mesh. Hence, the decomposition of the mesh has direct bearing

on the structure of the parts of the stiffness matrix local to a processor. To

illustrate this we first examine assembly of the stiffness matrix without reference

to parallelisation, then move on to look at how the shadow and halo models of

parallelisation change the local stiffness matrix.

53

Mesh on processor 0 	 Mesh on processor 1

J 	i Jaiow node(' J 2 I Non-zero
local value'.

Parlial •
• 	•.••__ . • U... U- • 	•.• U. U

••..-.... • MEME1_
• U...__
• U.. •• . • •••...U.... .•.........

S . 	S

Compleic ii:

Combine

Parts of matrix and vector
on processor 0

Figure 5.3: Mesh decomposed using the shadow node model and corresponding
local stiffness matrices.

Figure 5.2 shows a simple four element mesh and corresponding global stiffness

matrix, K, with one degree of freedom per node. K is the sum of four elemental

stiffness matrices, K, each of which has (number of nodes per element) 2 entries

identified by shading. These overlap and are summed wherever a node is part

of more than one element, for example at (1,1), (1,6), (6,1) and (6,6). The

interaction between nodes is clear from the non-zero entries on a row. Consider

node 1; it is part of both elements 0 and 1, and therefore interacts with all the

other nodes in those elements. Looking at row 1, we see entries for nodes 0, 1,

2, 5, 6, and 7, precisely those nodes in elements 0 and 1. The same is true of

columns, as the pattern of sparsity of the matrix is symmetric.

If we now consider the shadow node model depicted in figure 5.3 we see that

each processor now has stiffness matrix entries for only those elements in its sub-

domain. Processor 0 has entries for K° and K 1 , while processor 1 has entries

for K 2 and K 3 .

The halo model extends this to include entries for K, where e is on another

processor, but adjacent to the local sub-domain. Processor 0 now has entries for

K° . K 1 and K 2 , while processor 1 now has entries for K'. K 2 and K 3 .

While it is evident that this difference may have implications for solving these

54

-.-.
-=.
-U-.

-.= -.-. -.
U

U.

U
U
U

U

Mesh on processor 0
	

Mesh on processor I
0 	1 	2 	3 	I 	2 	3 	4

Halo
eIements 	1 	2 	 Non-zero

calcu1at - i I 24 	

6 	7 	8 	9

local values

Not —

Complete LJ

Parts of matrix and vector
	

Parts of matrix and vector
on processor 0
	

on processor 1

Figure 5.4: Mesh decomposed using the halo model and corresponding local
stiffness matrices.

equations in parallel, it will not be clear in what way until we have examined

how this procedure is carried out.

5.1.5 Parallel Solvers

Solution of systems of linear equations is a vast field and solution in parallel

a large and rapidly developing part of that field. It is quite beyond the scope

of this thesis to do this subject justice and we refer the reader to [JM92] and

[BBC94] for a good introduction to the subject.

Many serial unstructured mesh codes use elimination methods for solution, but

these have several disadvantages, both for large problems and for parallel imple-

mentation.

If we are solving a system of equations with fld0f degrees of freedom using an elim-

ination method, then the computation involved is 0(n 0f), for a dense system.

For sparse systems, which we have seen arise in unstructured mesh applications,

this may be reduced to O(n,b), where b is the bandwidth of the sparse mat-

rix. Methods which make use of this sparsity, such as frontal or profile solvers,

are inherently sequential. as are many methods which seek to reduce bandwidth

55

and so optimise solution. Additionally, elimination methods alter the pattern of

sparsity of the matrix.

Iterative methods require 0(n 01) operations per iteration and so have an ad-

vantage if convergence occurs in few enough iterations. Whether iterative or

elimination methods are superior on a serial platform depends very much on the

application, however on a parallel platform iterative methods have clear advant-

ages. Firstly, they are easy to parallelise in a scalable manner, secondly they do

not alter the structure of the matrix and thirdly we are going to be solving large

systems, if the use of a parallel platform is to be justified at all, and it is here

that iterative methods are most competitive, even in serial.

A common choice of parallel solver is the conjugate gradient method [GL89] [JM92].

It is typical of parallel solvers and often the best choice of method, so we will

detail it here.

We wish to solve

Kx =1. 	 (5.1)

Where K E Rndofxndof and x,l E Rnao/

The solution procedure can be viewed as finding the position in Rdof which

minimises an error function defined over that space. The method of steepest

descent is the basic method in this class. From an initial vector x o , it produces a

sequence of vectors xo,. . . , each of which has a lower value of the error function

than the last, that is, is a better solution than the last. x is generated from

x, by moving in the direction of maximum gradient of the error function, p2 , at

that point (hence steepest descent).

The conjugate gradient method is similar, but adds the constraint that the p

be mutually conjugate with respect to K, that is

pTKp3 =O Vij

If we start with

Po =ro= 1 - Kx 0

56

The conjugate gradient method, at step i + 1, is then

ui = Kp i

ai =
= 	x+ a 2p1 	 (5.2)

= 	i' - ajui

/3i =

pi+1 = 	r 	+ /3zp,

In exact arithmetic the method will find the correct solution in fld0f iterations,

but requires approximately six times as much computation as Gaussian elimin-

ation for a fully populated matrix. In finite precision arithmetic more iterations

may be needed and it is only when viewed as an iterative method for solution

of large, sparse, symmetric positive definite systems that it becomes favourable.

This is, however, often exactly what we require (for non-symmetric systems the

similar biconjugate [F1e76] or the generalised minimum residual (GMRES) [SS86]

methods are available).

Examining 5.2 we see that the only array operations required to implement the

method are:

• vector multiplied by scalar

• vector addition/subtraction

• inner product

• matrix vector product

Now if we assume each processor has all values that are stored on it correct to

start with, including any halo data in that model, we can proceed as follows.

The vector multiplied by scalar and vector addition/subtraction operations are

trivially parallel, in either the halo or shadow node model. Each processor loops

over those array elements (i.e nodal degrees of freedom) local to it and performs

the required operation, no communication being required. In the halo model

additional calculation must be performed for halo nodes, over and above that in

the shadow node model. If this is not done then halo node data will be incorrect

57

for use in later calculations. The alternative, introducing communication, will

never be economic.

The inner product operator requires each processor to perform an inner product

on the array elements local to it. All processors then sum their local contributions

in a global reduction communication, at the end of which they all have the total.

The only complication with this is to avoid over-counting; if two processors share

a node and the corresponding array elements in the inner product are multiplied

together on both processors and then summed (first locally, then globally), clearly

those contributions will be double the correct value. We must therefore ensure

that only one processor in the group which shares a node performs this multi-

plication and addition. This is done by assigning primary ownership of those

nodal degrees of freedom to one processor only; all others which share it have

secondary ownership. Processors then only deal with data they have primary

ownership of. The halo and shadow node models perform the same calculations

in this case.

How the matrix vector product is carried out is illustrated in figure 5.3, for the

shadow node model, and in figure 5.4, for the halo model.

In both cases a local matrix vector product is performed, the effects of neighbours

are then resolved through a communication phase.

In the shadow node model, array elements associated with shadow nodes have

only partial results after the local matrix vector product. The correct values for

those elements are the sums of the local results on all processors which share

the corresponding nodes. Note that the primary/secondary distinction is not

required here. Communication therefore takes the form of a send-with-combine

(i.e. send the value and add it to the local one).

In figure 5.3 we can see this for nodes 2 and 7. After the local matrix vector

product processor 0 sends its contributions to processor 1, where they are ad-

ded to the values there and processor 1 sends its contributions to processor 0,

similarly.

In the halo model correct local values are obtained for the corresponding (bound-

ary) nodes immediately after the local matrix vector product. Values at other

nodes in the halo will be only partial results, however the full, correct values will

be known on other processors. The communication phase can therefore be an in-

place send operation, which is generally quicker than a send-with-combine, which

NRI

may require buffering as well as actually performing the combine. Of course, un-

wanted local values that are replaced by the send need not be calculated in the

first place.

In figure 5.4 we can see this for nodes 3 and 8. Processor 0 has only partial

results for these elements, whereas processor 1 has complete results and so can

send them to processor 0. The situation is symmetric for nodes 1 and 6.

In summary, we have seen that iterative procedures for the solution of linear

systems are generally favourable in terms of parallel computation, and that this

implies that the efficient implementation of a distributed matrix vector product

is of crucial importance to the overall efficiency of the parallel solution procedure.

For both shadow node and halo models, this distributed matrix vector product

proceeds as a local matrix vector product on every processor, followed by a com-

munication phase. For the shadow node model the local matrix vector product

involves less calculation compared to the halo model, but the communication

phase must be a send-with-combine, which itself involves some further calcula-

tion. The total calculation in the shadow node model is, however, still less than

that required in the halo model, as a simple study of the matrices in figures 5.3

and 5.4 shows'. Whether the halo model has anything to commend it over the

shadow node model may then be an issue of the ease with which storage may

be arranged for efficient in-place communication with the minimum of memory

copies. In short, the relative merits of the two models are much less distinct for

an implicit scheme than for an explicit scheme.

5.1.6 PUL-sm

PUL-sm [TB96, Tre95b] is EPCC's library for run-time support of parallel, static,

unstructured mesh calculations. The library consists of a set of routines, with

interfaces in both C and FORTRAN, which provide much of the functionality

we have just discussed, as well as tackling several other issues which need to be

addressed in the course of developing such an application or porting an existing

serial code to a parallel platform. The library is built on top of the MPI message

passing library and so can be compiled on a wide variety of platforms.

1 For the matrices shown each processor performs 32 multiplications and 26 additions in
the local matrix vector product for the halo model, compared to 28 multiplications and 22
additions for the shadow node model. The send-with-combine in the latter model incurs a
further two additions.

59

It is closely associated with PUL-md [BDT96], the mesh decomposition library

which acts as a serial preprocessor to PUL-sm. We will study PUL-md closely

in chapter 7. For now it will suffice to say that it provides a decomposition of

the mesh, is capable of preprocessing mesh structure and data files to allow fast

distribution and determine any halo structure (if required).

PUL-sm (current PUL-sm-2-3 release) provides the following features:

• It provides support for static meshes; those whose structure does not change

in the course of execution.

• It implements both halo and shadow node models.

• Decomposition is expected to be provided by the application (PUL-md may

fill this role).

. It manages reading and distribution of mesh structure and data files.

• Scalable distribution of such files is provided where they have been suitably

preprocessed by PUL-md (see section 5.1.6.1).

• It manages communication between processors via boundarj swap library

calls.

• Primary and secondary ownership is handled by the boundary swap oper-

ations transparently.

• Only a single mesh can exist in an instance of PUL-sm

• Multiple instances of PUL-sm can coexist, allowing multi-grid calculations.

• Migration of mesh elements for dynamic load balancing is provided (initial

PUL-sm-1-0 release only).

• Scalable output is also provided.

5.1.6.1 Scalable Mesh Distribution

Experience with the FLITE3D project showed that i/o could be a serious bottle

neck in a parallel unstructured mesh calculation. The naïve approach, in which

one processor handles i/o of the mesh structure and data files and then commu-

nicates with all the remaining processors, is not found to be scalable [BMT96].

If it was only at the start and finish of execution that i/o occurred then, al-

though this would ultimately be undesirable, we might be able to ignore the

File 	Readers 	Clients

__.. [Processor]

	

LPrOCS0n] 	 . 	Subgroup 0

[Processor]

	

[processor] 	 . 	Subgroup 1

_. 	essor]

	

[Processor] 	 . 	Subgroup 2

LCSS]

Figure 5.5: Processor blocked scalable input.

issue. However, problems large enough to exhibit this bottle neck will be likely

to run for some time, and so will require check-pointing (writing out of interme-

diate results to allow restart in case of error). Initial, check-pointing and final

i/o can together come to dominate the run-time of the application if the naïve

approach is used.

The solution, implemented as part of PUL-sm, is for a number of i/o processors

to read (or write) simultaneously from (or to) a file. Each of these i/o processors

then communicates data with a subgroup of other processors for which it is solely

responsible.

For efficient file access we need to arrange the file so that all the data for a given

subgroup is contiguous in the file. This will ensure that there is no contention

for file access and that each i/o processor may proceed sequentially through its

portion of the file. We term this file format processor blocked. The necessary

preprocessing for this is one of the functions of PUL-md.

Given a processor blocked mesh file, input proceeds as shown in figure 5.5. Out-

put is simply the reverse. Typically eight processors are used in each subgroup,

although this may be altered at compile time.

61

5.2 Implementation in a Data Parallel Environ-

ment

Unstructured mesh calculations do not lend themselves well to implementation

in a data parallel environment. The strength of data parallel programming is

in the ease with which it handles arrays and regular patterns of communication,

making it ideal for the sort of regular grid calculation used as an example in

section 4.2.3.1 of the earlier decomposition chapter. It is much less suitable for

unstructured mesh calculations, due to the very irregular nature of their data

structures and communication patterns.

This is not to discount the use of the data parallel architectures in this con-

text entirely, as successful implementations have been made; [Mat92] describes a

finite element three dimensional stress analysis using the Thinking Machines CM-

2, [JMJH93] and [JMJH94] discuss communication strategies for finite element

calculations on the CM-5 and [Ego92] compares six computational fluid dynam-

ics applications which use this architecture, several of which use unstructured

meshes.

To illustrate implementation in a data parallel environment we present a ex-

ample code which shows how the programming environment impacts on a simple

unstructured mesh application.

5.2.1 An Example Data Parallel Finite Element Code:

LEASH

In the early stages of research for this thesis the current author parallelised a

linear elastic shell analysis code to run in a data parallel environment on the CM-

200 distributed memory SIMD architecture. The code, known as LEASH, was

part of the FELASH suite of programs [TR89a, TR89b, Rot85] for axisymmetric

shell analyses of various types, with particular application to silo structures.

The LEASH code employed a mixed harmonic analysis and finite element ap-

proach, with circumferential variation being described by Fourier series, while

normal and meridional variations were accounted for by finite element ana-

lysis. This may be thought of as carrying out, once for each harmonic, a two-

dimensional finite element analysis using simple line elements. This enables

62

both non-symmetric loads and branched axial sections to be studied. The lat-

ter implies that the element topology, although relatively simple, is nonetheless

unstructured as an arbitrary number of elements may meet at a common node.

A typical geometry is illustrated in figure 5.6, as is the corresponding element

topology.

Figure 5.6: Typical axisymmetric shell geometry arising in the study of silo struc-
tures, together with detail showing element numbering of the multiple segments
making up the ring-beam local geometry.

Parallelisation of the code, so far as individual harmonics were concerned, was

trivial; they are independent for a linear analysis and therefore embarrassingly

parallel. The situation as regards the finite element analysis was less straightfor-

ward, but also of more interest to us in the context of this thesis. Two options

regarding data distribution were feasible; either to distribute node or element

indexed arrays. To allow the calculation of element stiffness matrices without

incurring communication, it was decided to distribute elements; a decision influ-

enced by [MJ90a] and [MJ90b].

Given this data distribution, assignment of elements to CM-200 virtual pro-

cessors was based on element numbering (a lexicographic decomposition), which

the code's preprocessor ensured was contiguous except where branched axial sec-

tions met. In other words, the numbering within each 'segment' of a branched

structure was contiguous, as we can see from figure 5.6. The communication

pattern this imposed was an arbitrary one determined by the problem geometry.

If there were no branches in the structure, then nearest neighbour communica-

63

tion is all that would be required, and simple data-parallel shift communication

primitives could be efficiently employed. However, if this was not the case then

interaction between elements at the end of each segment that joined another

would require communication between an arbitrary set of processors. The ir-

regular communication pattern this represents could be accounted for in this

data parallel/SIMD environment by using shift primitives within each segment,

and treating terminal elements as a special case with, say, an expensive all-to-all

communication. This approach is clearly only efficient for the partially struc-

tured topology we consider here, and would not be suitable for more general

finite element meshes, although random decompositions and all-to-all commu-

nication have occasionally been employed [Mat90, MJ92]. The most efficient

approach was provided by the communication compiler routines which form part

of the Connection Machine Scientific Software Library (CMSSL) for CM Fortran.

These routines compute, store, load and use message delivery optimisations for

basic data motion and combining operations. They are particularly appropri-

ate for the type of repetitive, partially regular communication occasioned by the

iterative solver employed in the parallel LEASH code. Given a pattern of com-

munication, a trace is compiled, which described a near optimal schedule for best

use of the machine's network given the restrictions imposed by the synchronous

nature of the SIMD architecture. A variety of methods for compiling the trace

were available, with the FastGraph method being most suitable in this instance

[Thi93b, Dah9O].

While this discussion illustrates some of the difficulties that arise in the imple-

mentation of unstructured mesh codes in a data parallel environment, it has been

coloured by the restrictions of the fine-grained parallel, SIMD architecture of the

CM-200. As we have seen, data-parallel languages such as HPF are available for

MIMD architectures and only impose partial synchronisation, making irregular

communications considerably easier to deal with. It may still, however, be the

case that for efficient performance special treatment is required for this class of

problems, as the data parallel compiler may not be sufficiently sophisticated to

handle the complex patterns of communication that arise. This special treat-

ment may resemble message passing to such a degree that that the apparent

convenience of data parallel programming is eroded.

64

We close this discussion of the parallel LEASH code with an illustration of the

results of a simple analysis. Figure 5.7 shows a cylindrical shell (not a branched

structure) subject to a small patch load, with the resulting membrane shear

depicted by surface colour.

Figure 5.7: Stress analysis resulting from the parallel LEASH code of an axisym-
metric shell subject to a small patch load.

5.3 Decomposition

Having seen how parallel unstructured mesh calculations are implemented, we

now have some idea as to what we would consider a good decomposition. However,

we have also seen that what constitutes 'good' is both application and platform

dependent. As we clearly do not wish to develop decomposition methods that

are tied to any one application or machine, we need to abstract the concepts we

have introduced and thereby find methods which have general applicability.

The abstraction we use to model the application is the dual graph (see section

5.3.3). With this we can then model the run-time of the application if we have

an understanding of the costs of communication and computation on a given

platform.

One approach is to view this as an optimisation problem; we wish to find the

65

decomposition which minimises run-time over the space of all possible decom-

positions. We have seen that there is a trade off between communication and

computation and may write an objective function which reflects this

H = H1 + /AHcomm . 	 (5.3)

Here H1 represents load balance and is minimised when all processors have

the same load, Hwmm measures the cost of communication and i the relative

importance of the two.

Not all decomposition methods use this formulation directly (section 6.4 details

those that do) but it is a useful starting point as it concisely summarises our

requirements.

We now look at the terms in equation 5.3 in relation first to the platform and

then the application.

5.3.1 Modelling the Platform

The platform on which the application is running influences H primarily through

the second term. The relative efficiency of the processors compared to the net-

work connecting them has a direct bearing on t; on a machine with siow com-

munication and fast processors we can accept some load imbalance, if we can

reduce communication as a result, and so would favour H mm by increasing t;

conversely, on a machine with fast communication and slow processors we would

prefer stricter load balance and so would favour HCaIC by decreasing M.

The form of Hmm is a direct result of the performance of the platform's com-

munication network. Section 4.1 first introduced communication overheads and

we now examine them in more detail.

Communication on a parallel computer is often modelled, to a first approxima-

tion, by the latency-bandwidth model.

In this model the cost of a message, i.e. the time it takes to complete its com-

munication is given by

S M
Hmessoge = tiatency + j. 	

(5.4)

In other words there is a cost associated with starting a message which is fixed,

the latency, tlatency, and there is a cost associated with the size of the message,

Sm, i.e. the number of bytes of data sent in message in. The network bandwidth,

/3, is a measure of how many bytes a second the network can transmit.

This is only a first approximation because it assumes communication between

processors does not depend on their location in the network. If we consider a

hypercube network, as described in section 3.1.3, it can be seen that this is not

necessarily a good assumption. Processors in a hypercube, as we have seen, can

be addressed by a binary number with as many digits as there are dimensions

in the hypercube, Moreover, the number of network connections that a

message needs to traverse is given by the number of bits which are different in

the binary addresses of the communicating processors.

For example, consider the case where dnet = 2. We have four processors 0,1,2

and 3, with 3 at the opposite corner from 0. A message is sent from processor 0

(00); if it is sent to 1 (01) or 2 (10) 1 it only travels along one side of the square

and there is only one bit different between 00 and 01 or 10; if it is sent to 3

(11) then it travels along two sides of the square and there are two bits different

between 00 and 11.

The number of hops a message makes, that is the number of network connection

it traverses, was a major consideration for earlier parallel computers, where the

time taken for a single message was proportional to the hops. This is less so

with the advent of cut-through routing, where special routing hardware makes

the time almost independent of the number of hops.

The notion of hops is still useful however, because the previous discussion neglects

contention for network resources. In the sort of loosely synchronous applications

we are considering communication takes place in bursts and contention is an

issue. The hops metric is useful here because any connection a message uses

cannot be used by another message at the same time; the further it has to go,

the greater congestion it causes.

Typically we are dealing with relatively large messages; a processor will send

all the relevant boundary data for its sub-domain to the processor holding the

sub-domain on the other side of the boundary in one message, and so we can

neglect latency costs.

If we do so, one model of the cost of the whole communication phase is then

67

Hwmm = 	S m hjj 	 (5.5)
in

where h 3 is the number of hops that a message m, communicating between

processors i and j, makes. An empirical study that justifies equation 5.5 can be

found in [Ham92].

5.3.2 Modelling the Application

The application has a direct bearing on equation 5.3 through 1L, and an indirect

one through Hcomm.

as well as being a function of the platform, is also a function of the application;

if the application requires little communication then we would favour Hi; if it

requires much then we would favour H mm. it would be altered accordingly, as

before.

Of greater interest is the way in which the application determines the commu-

nication pattern. As we are dealing with unstructured mesh applications, where

each mesh element only interacts with its neighbours, the communication pattern

is a direct result of the mesh structure.

5.3.3 Dual Graphs

We have seen that the basic entity which we are assigning to processors is the

mesh element, and that interactions between mesh elements occurs only between

neighbours. We can therefore use a graph to represent this, namely the dual

graph of the mesh.

Each mesh element, - i E E, corresponds to a dual graph vertex and each inter-

action, and hence communication, to an edge in the graph. The question then

arises as to what constitutes a 'neighbour'. Mesh elements can be considered to

be neighbours if they are connected by at least one node, at least one edge or (in

three dimensions) at least one face. We refer to the corresponding types of dual

graphs as node based, edge based or face based, respectively. This is illustrated

for a small, two dimensional, triangulated mesh in figure 5.8.

Which type of dual graph is appropriate to a given application is determined by

68

Mesh

Edge-based Dual Graph

Node-based Dual Graph

Figure 5.8: Mesh and corresponding dual graphs.

the way in which elements interact, and this will be a product of the formulation

of the problem that the application solves.

It will be clear from the discussions in section 5.1.4 that for a finite element

formulation, where the problem unknowns are associated with the mesh nodes,

any two elements which share a node must interact. Thus communication must

occur between them, and so we would choose a node based dual graph, where

there will be an edge connecting the two corresponding vertices.

For a finite volume calculation, where the problem unknowns are fluxes through

the mesh element faces (in three dimensions) or edges (in two dimensions), we

would choose a face or edge based dual graph, respectively.

We stated at the beginning of section 5.1 that we could be dealing with either

a balanced or unbalanced data decomposition. It may be the case that all mesh

elements are not treated equally; examples of this include the imposition of

boundary conditions or a differing physical model being used in some region (in

CFD, say, we may want viscous flow in a boundary layer around an aircraft wing,

while using inviscid equations outside this layer). If this results in a difference

in the work associated with different elements we need to take this into account.

69

We can incorporate this into the dual graph by assigning a vertex weight, pro-

portional to the work load of the corresponding mesh element, to each vertex.

Similarly, we can use an edge weight to incorporate variations in communication

between elements into the dual graph.

If we consider a node based graph, then two vertices which represent a pair of

mesh elements sharing a single node would have a lower weight associated with

the edge joining them than would two vertices representing elements which share

a face, for example. Thus the edge weight measures volume of communication

between mesh elements.

Given a dual graph and a decomposition of that graph, we can define a cut edge

in the graph as one where the vertices at either end of the edge lie on different

processors. Communication therefore only occurs across cut edges.

The task of decomposing the mesh is therefore related to the task of partitioning

the graph, that is assigning graph vertices to as many disjoint sub-sets as there

are processors.

Let us now put this more formally.

5.3.4 The Partitioning Problem

We define the dual graph to consist of an undirected, weighted graph G = (V, E),

where V is the set of vertices and E the set of edges. Let n = IVI be the number

of vertices and n, = JEJ be the number of edges.

We associate a vertex weight, w(v) > 0, with each v 1 E V. Similarly we

associate a edge weight, we(e,.,) > 0, with each e23 E E, where e23 = {v 2 , v3 } and

For a set of k processors, F, we define a partition, Mrt , of G, as a mapping

Mpart V - P. The sub-domains that Mrt defines are then the disjoint sub-sets

S,, = {v 2 E V: M rt(Vj) = p} where p E P.

The set of cut edges is then 	= {e 3 E E : vi e S, ==> v3

We define the total vertex weight JAI v of a set A ç V as

IAI = 	w(v)
v, EA

70

and the total edge weight Iá9Ie of a set B c E as

IBIe = >j2 we(ejj).

eEB

We may now formulate the graph partitioning problem:

Find a partition, Mrt , of a graph, G, such that

I v
(a) 	'S'

Iv
I 	- —i-- V p E P 	 (5.6)

and

(b) 	JEcut l, is minimised.

Requirement (a) says that each sub-domain should have equal work, in so far as

this is possible. Evidently if n is odd and all vertices have equal weight then

exact load balance can not be achieved if k is even. Similarly, if vertex weights

are not uniform it may not be possible to attain exact load balance. The '' in

(a) reflects a difference of no more than the weight of the heaviest vertex.

Requirement (b) seeks to reduce the total volume of communication, but takes

no notice of network distance or contention.

In other words, the partitioning problem is: enforce strict load balance and min-

imise total volume of communication subject to this constraint.

5.3.5 Partitioning and Mapping

If we have a solution to the partitioning problem we are still left with the problem

of mapping the sub-domains to processors, as this mapping does not feature in

the formulation of the problem. Indeed, given a solution to 5.6, it is possible

to generate another which is just as good by swapping any pair of sub-domains

between processors, as this does not affect the value of IEcut l e .

Hence, it is possible to treat this issue separately, keeping the assignment of

vertices to sub-domains fixed, but changing assignment of sub-domains to pro-

cessors. However, it is better to deal with both the partitioning and mapping

problems together, as a larger space of possibilities can be explored. Of course,

71

this complicates the problem and many decomposition algorithms just attack the

partitioning problem and ignore mapping entirely.

If we wish to deal with both partitioning and mapping together we can formulate

the generalised partitioning problem:

Find a partition, M,,art, of a graph, G, given an objective function H(G, M rt)

which provides a model of the target platform, such that

	

H(G, Mpart) is minimised. 	 (5.7)

The generalised partitioning problem makes no assumptions as to the nature of

H(G, Mpart) and its solution is the province of optimisation algorithms, which we

will turn to in section 6.4. The flexibility this gives is offset by the need to define

H(G, Mpart), which may involve the specification of many parameters which are

hard to determine.

It is also possible to restrict the problem somewhat, while still maintaining some

notion of network locality. If we enforce strict load balance then we can ignore

Hcaic in equation 5.3, u in that equation becomes irrelevant and we may write

H(G,Mpart) = Hcomm (G,Mpart).

We then arrive at the constrained partitioning problem:

Find apartition, M, rt, of a graph, G, given an objective function H COmm (G, Mpart)

which provides a model of communication on the target platform, such that

(a) 	'SPI' v I 	 j M. V p E P 	 (5.8)

and

(b) 	Hcomm (G, Mpart) is minimised.

In other words, the constrained partitioning problem is: enforce strict load bal-

ance and minimise total cost of communication subject to this constraint.

72

5.4 Problem Complexity

Having posed the problem we wish to solve, we now comment on the difficulty

of finding an exact solution.

Of the three formulations of the problem, 5.6, 5.7 and 5.8, it is clear that 5.6,

the partitioning problem, is the simplest. If we can not solve this in a reasonable

time, then we will certainly not be able to solve the generalised or constrained

problems in a reasonable time either.

Unfortunately, even the partitioning problem, 5.6, in its simplest case, where

k = 2 and v, e, = 1, Vi,j, has been shown to be NP-complete [GJS76]. This

means that no known algorithm to provide an optimal solution for large problems

in a reasonable time exists and it is highly unlikely that one will ever be found;

exact solution of the problem is intractable.

The notion of tractability is defined in terms of how the time complexity of an

algorithm depends on the size of the problem it solves. We say that an algorithm

is polynomial if it runs in O(n') time, where a > 0 is some constant and n is the

size of the problem. Similarly, we say an algorithm is exponential if it runs in

O(b") time, where b > 2 is some constant.

The class P contains those problems for which there exists a polynomial time

algorithm to solve the problem. The class NP contains those problems for which

there exists a polynomial time algorithm to check the correctness of a solution.

This says nothing about the time complexity of the solution itself. Additionally,

a problem is NP-complete if any other problem in NP may be reduced to it in

polynomial time.

Not only are there no known polynomial time algorithms to solve NP-complete

problems (in fact all known algorithms are exponential) but if we were to find a

polynomial time algorithm to solve any problem in that class, then we would be

be able to solve all NP-complete problems in polynomial time (via the polynomial

time reduction) and P would equal NP.

As the class of problems in NP but not in P is large, arising in almost all areas of

computation, it seems unlikely that P = NP. NP-complete problems are there-

fore generally regarded as intractable, while those in P are considered tractable.

If we consider complete enumeration of all possible solutions to 5.7 then the

exponential growth of the search space is clear, in that there are k possible

73

decompositions. Even parallel algorithms help only a little in mitigating this

exponential growth in run time [Ak189]. As we are quite likely to be dealing with

k in the hundreds and n in the millions, complete enumeration is out of the

question.

As we can not realistically hope to find an exact solution to any of our problems,

we must resort to heuristic approaches, where we seek only an approximate

solution.

5.5 Summary

We have examined the problems that arise in implementing an unstructured mesh

calculation in parallel and looked at the factors which affect the performance of

the application. From this we have built up an abstract model of performance

which has allowed us to formally define the problem we wish to solve, namely

the graph partitioning problem (and its variants).

It has been seen that we must take a heuristic approach to the problem. We

therefore now turn to examine the heuristics which have been developed for this

purpose, which will be the subject of the following chapter.

74

Chapter 6

Decomposition Algorithms

A large body of work exists on the topic of mesh decomposition and graph

partitioning. There has been research carried out in this area since before 1970

[Ker69] and there is still active research in the area today [WCE97, PD97, KK97]

etc.

The survey of methods which is the subject of this chapter aims to be as ex-

haustive as possible; it covers all important methods together with many others

which are deemed to be illustrative.

We first examine the general characteristics of decomposition algorithms. We

then survey the algorithms that have been developed and comment on their

merits. This commentary is qualitative in nature, presenting visual examples

where possible. A quantitative examination will be presented in chapter 8.

Where an algorithm is one that is included in PUL-md, issues which are relevant

to implementation are covered in greater depth in the following chapter, where

we examine PUL-md in detail.

6.1 Characteristics of Algorithms

We classify decomposition algorithms as follows:

. Global methods

- Direct k-way methods.

- Recursive methods.

75

• Local refinement techniques.

We view global methods in contrast to local methods. The latter work with an

initial decomposition and attempt to improve upon it locally, while maintaining

its overall structure; the former decompose the mesh as a whole.

Similarly, of the global methods, we view Ic-way methods in contrast to recursive

methods. The latter decompose the mesh into 1 << Ic parts and then are recurs-

ively applied to each part, until k sub-domains are generated; the former do not

have this recursive nature.

Broadly, the structure of this chapter reflects the approaches which characterise

decomposition algorithms:

• Simple, direct k-way algorithms.

• Optimisation algorithms, where we seek to minimise H(G, Mrt) and are

concerned with the generalised partitioning problem 5.7.

• Geometry based recursive algorithms, which use additional geometric in-

formation associated with the graph vertices and are concerned with the

partitioning problem 5.6.

• Graph based recursive algorithms which use only the graph structure and

are concerned with the partitioning problem 5.6 or the constrained problem

5.8.

• Local refinement algorithms, as discussed above.

• Multi-level and hybrid variants, which use combinations of other methods

and multi-level acceleration to reduce the run-time of the decomposition

algdrithm and/or increase partition quality.

6.2 The Example Mesh

In the course of this chapter we will use a small, triangulated, two dimensional

mesh to illustrate various points (figures 6.1, 6.2, etc.) This mesh originates from

the HEAT2D heat transfer code which is detailed in chapter 9 and is used in the

evaluation of algorithms in chapter 8. We refer to this data set as the Widget
data-set; it has 1746 elements; its dual graphs therefore have the same number

76

of vertices, while the number of edges in the graph is 10072 for a node-based

graph and 2527 for an edge-based graph. These graphs are unweighted.

6.3 Simple, Direct k-way Algorithms

In this section we look at some naïve approaches (random, cyclic and lexico-

graphic) primarily to see why we need better solutions, and then look at band-

width reduction (which is an improved lexicographic algorithm) and the greedy

algorithm which are simple, but not unreasonable, algorithms for the solution of

the partitioning problem 5.6.

6.3.1 Random

The most naïve approach we could take would be to assign each vertex to a

processor at random. Strict load balance would not be achieved, but, on average,

we would expect it to he about right. It is simple to produce a random partition

with strict load balance. Consider an unweighted graph; assign a random number

to each vertex, sort the vertices on this key and assign the first 11k vertices to

the first processor, the second 11k to the second processor, etc.

Figure 6.1: A random, strictly load balanced decomposition of Widget over 2
processors.

As no account is taken of connectivity, vertices adjacent in the graph will not,

in general, tend to be in the same sub-domain and communication costs will be

enormous. This is illustrated in figure 6.1; clearly this is the opposite of what

we are after.

I

6.3.2 Cyclic

Figure 6.2: A cyclic decomposition of Widget over 2 processors.

A cyclic or scattered partition of a graph is obtained by placing vertex v0 on

processor 0, vertex v 1 on processor 1 and so on, until we reach vk where we start

at processor 0, once more. In other words, M, r t(Vj) = i mod k.

Strict load balance will be achieved (for an unweighted graph), but, examin-

ing figure 6.2, we see that this is no better than the random approach so far

as communication is concerned. In fact it is slightly worse; the random parti-

tion produces 5054 cut edges in the node-based dual graph of Widget and the

cyclic 5303 (corresponding figures for an edge-based graph are 1269 and 1473.

respectively).

6.3.3 Lexicographic

A lexicographic partition simply assigns vertices to processors in order of vertex

numbering. The first ne/k vertices go on processor 0, the second on processor 1,

and so on. In other words, M, rt (Vj) = int(i/k) for an unweighted graph.

This often produces a not unreasonable decomposition, as is shown in figure 6.3.

The reason for this is that the numbering of elements in the mesh (and hence

vertices in the graph) is far from random; it is an artifact of the mesh generation

process. Often, during mesh generation, each new element is created next to the

previous one (for instance in the advancing front method [PVMZ87]) and the

element numbering reflects this.

This also explains why a cyclic decomposition is generally worse, in terms of

communication costs, than a random one. In a cyclic decomposition two consec-

-7

Figure 6.3: Lexicographic decomposition of Widget over 4 processors.

Figure 6.4: Material types for Widget.

utively numbered vertices are guaranteed to be on different processors; with a

random decomposition there is at least a chance that they will share the same

processor.

The influence of mesh generation on the decomposition is clear if we compare

figure 6.3 with figure 6.4, which shows how the mesh is composed of two materials.

The two different materials have different thermal properties and are meshed

separately, one after the other, with visible effects on the element numbering

and hence decomposition.

6.3.4 Bandwidth Reduction

While lexicographic decomposition is a vast improvement over the other methods

we have looked at it is still far from optimal. We clearly can not accept being

at the mercy of an arbitrary numbering scheme, which may or may not give

reasonable results. It is, however, quite possible to renumber the mesh elements

in such a way that a subsequent lexicographic decomposition produces better

results.

This renumbering is referred to as bandwidth reduction. This procedure was de-

veloped to facilitate the solution of sparse systems of linear equations, regardless

of whether the equations are obtained from an unstructured mesh problem or

not.

We have seen in section 5.1.4 how the structure of the mesh is reflected in the

stiffness matrix. If we consider which mesh nodes interact in figure 5.2 we see

that they are precisely those with non-zero off-diagonal entries in the stiffness

matrix. We can form a graph which represents this, which we will term the

dependency graph for the purposes of this discussion, to avoid confusion with the

dual graph, which is quite distinct. Vertices in the dependency graph represent

mesh nodes (and hence variables) and edges connect pairs of mesh nodes with

corresponding non-zero off-diagonal matrix entries. Even if we do not have a

mesh corresponding to the matrix we can still form such a graph from the matrix.

We now define the half-bandwidth and profile of a symmetric matrix, A 3 . Let

bi be the smallest number such that A 2 = 0 Vj> i + b, the half-bandwidth is

then maxi bi and the profile E j b.

If we wish to solve a sparse system using an elimination method which takes

advantage of the sparsity (e.g. the profile method [JM92]. See also [DER86] for

Rul

L4

Coefficient
Matrices

6

7

8

9

Dependen (XXX Graphs

9 	8 	7 	6 	5

Numbem B

I. 	I. 	T

-56789 H 	 3 4 5 6

3

4
5

r

Numbering A

direct methods in general or [Duf96] on frontal methods) we would like to reduce

the bandwidth, as this will result in decrease in the amount of computation

needed. Also, sparse matrices are usually stored in a packed form, where the

storage required is determined by the bandwidth or profile of the matrix; reducing

these reduces the memory required.

Figure 6.5: Two node numberings and corresponding matrices.

The required reduction may be obtained by renumbering the nodes, as is shown

in 6.5. Here we see two different numberings of the dependency graph of the mesh

we have seen before, in section 5.1.4. Numbering A has the maximum possible

half-bandwidth of 9, while the numbering in B results in non-zero entries being

much closer to the diagonal, with a half-bandwidth of 4 (figure 5.2 has a half-

bandwidth of 6).

One algorithm for bandwidth reduction that has also been applied to mesh

decomposition is the Cut hill-McKee algorithm [CM69], which is shown in the

pseudocode of figure 6.6.

The algorithm proceeds by finding level sets, L 1 , in successive layers around the

seed point. The first level set is the seed itself, the second all its neighbours, the

third all the neighbours of vertices in the second set that are not in any other

set, and so on.

The sorting by vertex degree, on line 11 of the pseudocode, is often not used

Pseudo: Cuthill-McKee
Choose a seed vertex, v, preferable at an extremity
of the graph and of low degree.

i=0
L={v}
Number v as vertex 0.
While There are un-numbered vertices.

i+=1
L1=O
F0rVvEL2 _j

L 1 W {un-numbered neighbours of v}
EndFor
Sort L i by vertex degree, keeping original order
of addition where possible.

Number vertices in Li in order.
EndWhile

EndPseudo

Figure 6.6: The Cuthill-McKee algorithm.

for partitioning, as we are more interested in the layer structure than numbering

within layers.

The layer structure generated by the Cuthill-McKee algorithm starting from node

o in the dependency graph which we have previously examined is also shown in

the same figure (6.5).

When used for mesh decomposition the Cuthill-McKee algorithm is applied to

the dual graph. The layer structure which results is shown for the Widget data

set in figure 6.8, where a node based dual graph has been employed.

It is a feature of the Cuthill-McKee algorithm that the numbering for two adja-

cent vertices in the same layer, L, can not differ by more than I LI. Similarly,

for two adjacent vertices in different layers, L 2 and L3 , the difference may not

exceed I L i I + IL 3 I. It is therefore advantageous to ensure that the maximum layer

size is kept as small as possible. This may be done by finding two vertices which

are maximally distant from each other, where the metric of graph distance is the

number of layers separating the two.

If the last vertex numbered by the Cuthill-McKee algorithm is used as the seed

for another application of the algorithm, and this procedure is iterated, it is

typically found that within a very few iterations such a maximally separated pair

is discovered. This is shown graphically in figure 6.7, with the corresponding layer

structures in figures 6.8 to 6.10. The starting vertex is 0, the maximally distant

vertex from this is vertex 930, and from 930 we find vertex 805 (all numberings

given in original numbering). If we apply the procedure again then we return to

'Jill

Figure 6.7: Successive seed vertices found by repeated application of the Cuthill-
McKee algorithm.

Figure 6.8: Layer structure for node based graph of Widget starting from vertex
0.

Figure 6.9: Layer structure for node based graph of Widget starting from vertex
930.

E*]

vertex 930.

A decomposition of Widget over eight processors is shown in figure 6.11. It is

typical of the type of decomposition which results from the use of Cuthill-McKee,

in that each sub-domain has few neighbours (which is desirable on machines with

high tiatency), but Ie is quite large due to the elongated shape of many of the

sub-domains. Clearly as we increase k the resulting sub-domains become more

and more elongated and this effect is accentuated. It is therefore common to

apply the method recursively; we shall return to this in section 6.7.1.

6.3.5 The Greedy Algorithm

The Farhat's greedy algorithm [Far88] makes similar use of the connectivity of

the mesh to expand out in layers from a seed vertex, but it is distinct, in that it

uses several seeds, one for each sub-domain.

The algorithm proceeds by expanding out from its initial seed, as before, but

stops once sufficient vertices have been claimed to fill one sub-domain. It then

chooses a favourable vertex from the boundary of the previous sub-domain as

the seed of the next. This process is repeated until the required decomposition

is obtained.

The version of the algorithm used by Farhat in [Far88] is not phrased in terms of

the dual graph, although the algorithm may be cast in such a form (see section

7.4.5 for the way PUL-md does this). Rather, it works directly with the mesh,

as follows.

A weight, w1 , of a node ii, E Al is defined as w1 = lf,-j E E : qi E e)}I. In other

words, the weight of a node is the number of elements connected to that node.

The interior boundary of a sub-domain, S,,, is then defined as = 177i E S,,

E E3 V S}. We number the sub-domains from 1 to k, and consider F0 to be
the external boundary of M. Finally, we mask an element by adding it to the

set Emasked.

With this notation Farhat's greedy algorithm is then given by the pseudocode in

figure 6.12.

As the algorithm progresses, a sub-domain, S, expands about its initial seed

node, i, until it has the required number of elements, ne /k, as given by line

11. Masking the elements during this process ensures that elements are not

M.

Figure 6.10: Layer structure for node based graph of Widget starting from vertex
805.

Figure 6.11: Lexicographic decomposition of Widget over eight processors after
Cuthill-McKee renumbering.

Pseudo: Greedy

Emasked = 0
Fori=ltok

Choose ri € fj with minimal weight wi.
Si = 16 V &,nasked : 17i E 61
For ej E Si do recursively

EmaskedJej

For7)kEE
Wkl

EndFor
Sit±i {s V ema,ked : q where 'j E ej and q E e}
Break when 1S1 1 = ne /k

EndFor
EndPseudo

Figure 6.12: Farhat's greedy algorithm.

RR

reconsidered, as we only select unmasked elements, e V eflQ8kd in lines 4 and 10.

The decrement of the weight in line 8, ensures that the weight of a node not on

the interior boundary of a sub-domain is zero, allowing f1_i to be identified as
1773 E S,_ i w, > 01.

The seed node for sub-domain S 1 is thus the node on the interior boundary of

the previous sub-domain, which is a member of the minimum number of

unmasked elements.

The way in which the loop 5 is carried out results in the algorithm appearing to

take successive bites out of the mesh; hence the greedy algorithm. This can be

clearly seen in figures 6.13 to 6.15. which show the first three sub-domains being

formed.

Figure 6.13: First sub-domain generated from Widget by the greedy algorithm.

Figure 6.14: First two sub-domains generated from Widget by the greedy al-
gorithm.

These figures are generate from the PUL-md implementation of the greedy al-

gorithm which works with the dual of the mesh, as has already been mentioned.

Figure 6.15: First three sub-domains generated from Widget by the greedy al-
gorithm.

Figure 6.16: Decomposition of Widget over 16 processors by the greedy al-
gorithm.

IM

Here we start from a seed vertex in the graph, rather than a seed node in the

mesh. The elements marked in black are these seed vertices.

A full decomposition of the mesh is shown in figure 6.16. It can be seen that most

sub-domains have a quite compact shape and we have avoided the formation

of elongated sub-domains which occurred during lexicographic decomposition.

However, as more and more sub-domains are formed the remaining part of the

mesh becomes increasingly convoluted. This results in less satisfactory sub-

domain shapes, with increased boundary sizes, indeed, often the growth of a

sub-domain will be trapped by surrounding sub-domains and a disconnected

sub-domain results.

Nonetheless, the greedy algorithm is a fast and simple algorithm, which is inde-

pendent of mesh numbering, and produces strict load balance and a generally

acceptable (if not optimal) level of communication.

6.4 Optimisation Algorithms

Optimisation algorithms are quite general algorithms for the class of problems

where we can write some objective function, H(x), which measures the quality

of a solution, x. This objective function maps from the space of all possible

solutions of the problem to R, and will be minimised for an exact solution. The

approach is then to explore the solution space (in an intelligent manner) looking

for a global minimum of H.

The objective function is sometimes referred to as a Hamiltonian, in that is it

analogous to a physical energy; we may think of the exploration of the solution

space as exploring a landscape, looking for the deepest valley. Another term for

H is the cost function, in that it measures the cost of an inexact solution. Of

course, we could equally well phrase this in terms of maximising a function; here

we will always refer to minimisation.

We have seen in section 5.3 how we can model the run time of an unstructured

mesh calculation as a function of the decomposition, and have arrived at the

statement of the generalised partitioning problem 5.7. It is therefore clear that

we can apply optimisation algorithms to the task at hand.

We will now survey the algorithms commonly applied to optimisation problems,

keeping the discussion in quite general terms, and then look at how these al-

gorithms may be applied to decomposition.

6.4.1 Gradient Descent

If we use the analogy of exploring an energy landscape then a simple algorithm

would be to head straight downhill from some arbitrary initial point. This is

the gradient descent algorithm (also known as hill climbing, in the context of

maximisation), and is shown in the pseudocode of figure 6.17.

Pseudo: Gradient Descent

While oH> 0
Evaluate H for all changes, 6(x), in some small
neighbourhood of x,.

Choose 6(x 1) such that OH = H(x1 + 6(x1)) - H(x1)
is minimised.

x+i=x,H-O(x,).
EndWhile

EndPseudo

Figure 6.17: The gradient descent algorithm.

In other words, (x) is the direction of maximum negative gradient of H at x,

and we move in that direction.

The drawback with this is that, although we will certainly reach a minimum, we

have no guarantee that it is remotely near the global minimum. This is shown

in figure 6.18. If we are starting from some point in the 'valley' around the

global minimum, it is clear that we will converge to the desired solution using

the gradient descent algorithm. However, if we start at any point outside this

region, the process will become trapped in a local minimum.

Local minima

Objective
H(

Global
minimum

Configuration, x

Figure 6.18: The energy landscape and an iterative change to the solution.

It is for this reason that the gradient descent algorithm is not commonly used,

except for problems with exceptionally well behaved objective functions. This

is the case with the method of steepest descent introduced in section 5.1.5, for

the solution of systems of linear equations; because the method is based on

an objective function derived from the quadratic form of a symmetric positive

definite matrix, we can be assured that there is only one minimum, which must

therefore be the global minimum [JM92]. In this case we may also evaluate the

gradient of H, so there is no need to search for the direction of maximum gradient

as we do in 6.17.

6.4.2 Simulated Annealing

Simulated annealing [KJV83] is similar to the gradient descent algorithm, in that

it proceeds by iteratively proposing small changes to the solution, but avoids

becoming trapped in local minima by also accepting 8(x 2) which increase H.

It does this in a stochastic manner, where the probability of accepting such a

change is a function of a parameter which is analogous to the temperature of

a physical system. This temperature starts off at a high value, indicating a

high probability of accepting an increase in H, and is slowly reduced to zero,

indicating that no such change will be accepted. It is for this reason that the

algorithm is called simulated annealing, in that it mimics the formation of highly

ordered states (with low energies) in metals as they are slowly cooled from a high

temperature.

Given a small, random change to the solution, 8(x 2), we accept or reject it based

on the Metropolis criterion [MRR53]:

. If 8H < 0 we accept unconditionally.

. If 6H> 0 we accept with probability e_jTi.

Where Ti is the temperature and 8H = H(x2 + 8(x)) - H(x 1), as before. The

temperature at each iteration is given by the annealing schedule, which will

monotonically decrease to zero.

The algorithm is shown in the pseudocode of figure 6.19.

If Ti is very large then any change to the solution is accepted and we simply move

through the space randomly, with no regard to the objective function. On the

KC

Pseudo: Simulated Annealing
WhileT1 >Oor5H>O

Determine Ti from the annealing schedule.
Propose a random 8(x).
oH = H(x1 + 0(x1)) - H(x 1).
Generate random number, ri e [0, 1]
If OH < 0 or r2 <e_öfTi Then

Endlf

EndWhile
EndPseudo

Figure 6.19: The simulated annealing algorithm.

other hand, if Ti = 0 then only we only accept SH < 0 and we have a situation

equivalent to the gradient descent algorithm; we may not go directly downhill,

but we shall certainly arrive at the same minimum that the descent algorithm

would find (given the same starting point). As before we will have no guarantee

that this is the global minimum.

The annealing process bridges the gap between these two extremes, allowing that

any part of the solution space may be explored, while eventually settling into a

minimum; hopefully the global minimum. It can be shown that, if Ti is decreased

sufficiently slowly (1/log i, or better), then the probability of attaining the global

minimum tends to certainty [Haj88].

The choice of annealing schedule is crucial to the success and efficiency of the

algorithm; if it cools too fast the solution may become caught in a poor local

minimum; if it cools too slowly then a large amount of computation is wasted.

Making the right choice may require physical insight or trial and error experi-

mentation.

6.4.3 Chained Local Optimisation

Chained local optimisation [MOF91] combines simulated annealing with a local

search heuristic. As before, we propose a change 5(x 1) and accept or reject it

based on the Metropolis criterion. However, the change now has two stages.

First, a large random 'kick' is given to the solution, for example n of the changes

that would have been used in the simulated annealing case, to arrive at an

intermediate state. Then a local search heuristic is applied starting from this

intermediate state, to seek out a local minimum.

91

Objective
H(

Configuration, x

Figure 6.20: Chained local optimisation.

This is illustrated in figure 6.20. If a good local search heuristic is available this

can be quite efficient; effectively smoothing out the energy landscape. Where

simulated annealing would have to climb over the barriers formed by local max-

ima in a sequence of steps, chained local optimisation may cross them in one

iteration.

6.4.4 Stochastic Evolution

Stochastic evolution is, again, similar to simulated annealing, but now

is deterministic. The accept/reject stage is still random, but the probability

of accepting a given increase in H does not monotonically decline. Instead,

the probability fluctuates, increasing if no better solution is found, decreasing

thereafter. The best solution found during this process is recorded and is used as

the final solution, once termination criteria have been met. We limit ourselves to

this brief discussion, and refer the interested reader to [R591] for further details.

6.4.5 Genetic Algorithms

Genetic algorithms [Mic96] take the ideas of biological evolution and apply them

to optimisation. A population of solutions, which are known as individuals, gen-

otypes or chromosomes, is evolved over successive generations. Evolutionary

pressure towards the desired solution is introduced via a fitness function, which

is simply the objective function, H.

Out of each generation parents are selected, favouring the fittest. Offspring are

92

then formed from the parents using a recombination operator with random muta-

tions being introduced at this stage.

The offspring are then inserted back into the population, sometimes replacing

their parents. Thus a new generation is formed and the process repeated. Once

the termination criteria (often a set number of generations or a required value of

fitness) have been met, the solution is then that encoded in the fittest individual

in the population, or, if it has been stored, the fittest individual in any generation.

In contrast to the other methods we have looked at in this section, genetic al-

gorithms examine several areas of the solution space simultaneously (as many as

there are individuals in the population). If the recombination operator is cor-

rectly chosen it will allow the qualities of the two parents to be merged, rather

than garbled, and distinct species of solution to emerge and compete for sur-

vival. However, a balance must be stuck between allowing the dominance of a

single species (which is akin to becoming trapped in a local minimum) and ex-

cessive mutation. We wish to preserve diversity, yet allow some members of the

population to approach the global optimum.

Of key importance is the representation of the problem, that is, how the possible

solutions are encoded in the genotypes. A genotype consists of a set of alleles,

which correspond to features of the solution. Interpreting the alleles of a genotype

gives us the phenotype, which is the actual solution.

The representation used in Holland's influential early work on genetic algorithms

[Hol75] is a binary one; each chromosome is a bit string of fixed length. Two

parents, x 1 and x 2 , are then recombined with (for instance) a one-point crossover

operator, which splits both at the same (random) point:

= (00000101100000001000),

= (1O1O1I000110011O1111).

The two offspring are then

= (1o1o1Io1100000001000),

= (00000I000110011O1111).

In theory we can use this binary representation for any sort of computational

optimisation problem. After all, all data is binary - the bit string may represent

floating point numbers, characters; any data structure. The attraction of Hol-

93

land's approach is its generality. Once a binary representation has been chosen,

standard techniques may be applied and a solution obtained. However, this does

not permit us to take advantage of any features of the problem which may allow

for more efficient solution. Another approach is then to use a problem-specific

representation, with crossover and mutation operators tailored to the situation

at hand.

6.4.6 Summary

We summarise these algorithms with a posting to comp.ai .neural-nets [Sar93]

quoted in [Mic96]:

"Notice that in all [hill-climbing] methods discussed so far, the
kangaroo can hope at best to find the top of a mountain close to where
he starts. There 's no guarantee that this mountain will be Everest, or
even a very high mountain. Various methods are used to try to find
the actual global optimum.

In simulated annealing, the kangaroo is drunk and hops around ran-
domly for a long time. However, he gradually sobers up and tends to
hop up hill.

In genetic algorithms, there are lots of kangaroos that are parachuted
into the Himalayas (if the pilot didn't get lost) at random places.
These kangaroos do not know that they are supposed to be looking
for the top of Mt. Everest. However, every few years, you shoot the
kangaroos at low altitudes and hope that the ones that are left will be
fruitful and multiply."

6.4.7 Applications to Mesh Decomposition

We now examine how optimisation algorithms may be applied to the decompos-

ition of unstructured meshes.

In principle, optimisation algorithms allow for all the details of application and

architecture to be taken into account, in that H may be as complex as desired,

with no effect on the algorithm itself. H is simply a black box, as fax as the

algorithm is concerned. Attractive though this is, in practice the use of a complex

model will involve the determination of many parameters which may not be

readily ascertained. However, if a good model is available (in the form of H)

then optimisation algorithms can approach the task of decomposition in a holistic

manner which none of the other algorithms we shall encounter are capable of.

All of the optimisation algorithms we have looked at, with the exception of

genetic algorithms, explore the solution space in a step-by-step manner. This

means that the point from which we start will have a large impact on the run-

time of the optimisation algorithm. If we start near the global minimum then

few iterations will (hopefully) be needed to reach it. Similarly, if we start far

from it, it may take many iterations to reach it.

In the light of this, there are two ways we can view optimisation algorithms; either

as global methods, where we start from a random decomposition and allow the

optimisation algorithm to do all the work of finding a good decomposition; or

as local refinement techniques, where we use some other algorithm to provide

an initial decomposition, and subsequently use optimisation to improve upon it,

essentially tidying up the details. The former approach is more likely to come

closer to the global optimum, but may take prohibitively long. The latter will

generally be quicker (assuming we are using a fast algorithm to generate the

initial state) but may not be able to escape from a local minimum near a poor

initial decomposition.

In either case, and for that matter with genetic algorithms too, it should be

realised that it is unlikely to be efficient to run for sufficiently long to attain the

global optimum. All we seek is an acceptably good decomposition.

6.4.7.1 Gradient Descent

Gradient descent is not much used for mesh decomposition, due to the problems

it has with local minima. Although the energy landscapes commonly found

in decomposition problems are relatively well behaved, compared with those

found in the travelling salesman problem for instance [FWM94], they are still

too convoluted for this algorithm to be applicable.

6.4.7.2 Simulated Annealing

Simulated annealing has been successfully applied to mesh decomposition and

graph partitioning in several instances [Wi191, FLS93, JAMS89].

Of particular interest is the nature of 8(x). In line 3 the pseudocode of figure

95

6.19 we simply state that a random change be made but do not allude to what

this might be.

Williams [Wi191] proposes several options:

Choose a vertex v E V at random. If, currently, v E S, move it to a random

Sq , where p q.

Choose a vertex v E V at random. Move v to Sq , where Vnejghur E Sq for

some random neighbour, Vnejghur, of v.

Choose a vertex v E V at random. If, currently, v E 5,, move it to:

• Sq , where Vnejghbtjur E 5q for some random neighbour, Vnejghur, of v,

with high probability.

• a random 5q, where p 54 q, otherwise.

Choose a cluster of vertices C C V, by choosing a random vertex Vmnjtzal E V

and adding neighbouring vertices, Vnejghbour, to C with probability p if

Vneighbour E 5,, and Vznitial E S, never otherwise. C is complete once any

V neighbcnjr fails to be added. Use any of the previous methods to move C.

He finds that method 1 tends to produce fragmented sub-domains and is slow to

converge, and so introduces method 2.

As method 2 only migrates vertices to neighbouring sub-domains, it effectively

moves sub-domain boundaries and so is less prone to this problem. However, a

crucial requirement of any S(x 1) in simulated annealing is that it be ergodic, that

is, that we may always reach any state from any other. Method 2 violates this

principle, in that, if a sub-domain ceases to exist, or never existed in the initial

state, then it can never be created or recreated.

Method 3 is ergodic and combines the features of methods 1 and 2. This is found

to be the most favourable of the methods which move individual vertices.

Method 4 forms a cluster around an initial vertex within the sub-domain of which

it is part. The whole cluster is then moved as a unit, thus further reducing

fragmentation and speeding up the process.

Williams also examines a variant of simulated annealing, collisional simulated

annealing, where several moves are made at once, and which may be implemented

in parallel itself.

Williams discussed the form of H and makes an interesting point concerning

which we havenot examined in detail before'.

Previously, we merely stated that H1 should be minimised when load balance

is achieved. A simple statement of this would be

= max IS, I
PEP

As the whole calculation runs at the speed of the most heavily loaded processor,

this would seem to be satisfactory. However, if we add a linear perturbation, for

example one proportional to ISI v , so that

H. jr = max 1S1 + €IsoI,
pEP

then 	exhibits an undesirable, discontinuous behaviour. If e < 11(k - 1)

then the minimum of H1 is achieved when IS = IVI v /k Vp E P, but if c>

1/(k —1) then the optimum becomes I Sq I v = 0 and ISl v = I Vj/(k - 1) Vp =A q.

As we intend to add such a perturbation, in the form of Hcomm , we prefer a sum

of squares, so that

H1 = CI IspI,

where C is a scaling constant.

Williams uses a form of Hcomm similar to equation 5.5, in that he assumes that the

total communication cost is the sum of the individual costs and that tlajency = 0.

He takes no account of network distance, so that hij = 1 Vi j and is zero

otherwise, and arrives at

Hcomm =

where e is a scaling constant.

He then chooses the scaling constants so that the optimal HC,,,Ic and H mm have

approximately unit contributions from each processor, with

k 2 	 /k\d
and

where the form of c incorporates the dimensionality of the mesh because the

'Williams studies only unweighted graphs; we use the notation for weighted graphs here,
for consistency.

97

surface area of a compact shape shape in d dimensions varies as the (d - 1)

power of the size, while the volume varies as the d power.

The final form of H is then

d-1

H
= T 	:ç: si + IL 	 lEcut l e . 	 (6.1)
 I V III

Using 6.1 Williams compares simulated annealing, used as a global decomposition

method, to the fast and simple recursive coordinate bisection algorithm and the

slower, but more sophisticated recursive spectral bisection algorithm, both of

which we will study later in this chapter (sections 6.6.1 and 6.7.2). He concludes

that, for sufficiently slow cooling, simulated annealing produces the best results,

both in terms of the value of H and actual application run-time. However, he

finds the time taken for the decomposition to be far too long in comparison to

the other methods, speculating that the numerous input parameters may not be

optimally set.

When used as a local refinement technique simulated annealing has proved more

useful. The software package TOP/DOMDEC [FLS93] for mesh decomposition

successfully implements the algorithm in this this manner, offering the user a

variety of terms which may be included in H.

6.4.7.3 Chained Local Optimisation

Chained local optimisation has been applied to mesh decomposition by Martin

and Otto [M095], having previously successfully applied the algorithm to the

travelling salesman problem [MOF91].

The 'kick' used to find an intermediate state is an exchange of n vertices, with

n random and not too small. Each set of n vertices is generated as a cluster in

a manner similar to the clustering suggested in the previous section. The local

search that follows this uses the Kernighan and Lin algorithm which we will

examine in section 6.8.1.

They find that chained local optimisation is superior to simulated annealing, and

also to coordinate bisection followed by Kernighan and Lin. However, they only

examine the method for bisection of a graph.

4.1

6.4.7.4 Stochastic Evolution

TOP/DOMDEC uses stochastic evolution as a local refinement technique as in

the same manner as simulated annealing. No comparison is given in [FLS93].

6.4.7.5 Genetic Algorithms

The problem of representation is very apparent when we try to apply genetic

algorithms to mesh decomposition.

If we consider partitioning over k = 2dh1 1 processors, as is common, we may use

Holland's bit string representation where the length of the string is dneg fl v . The

first dnet bits determine which processor v0 is assigned to, the second dnet bits

determine the processor for v 1 , and so on.

The problem with this, is that maintaining a sufficiently large population will

require a correspondingly large amount of memory and, although genetic al-

gorithms can often out-perform simulated annealing, the method is still likely to

be too slow. Even if dnet = 1, and we are simply bisecting the mesh (the method

could, after all, be applied recursively; see section 6.5 which follows) this will

still be the case, as n,, is the dominant factor.

Clearly, if genetic algorithms are to be competitive we need a more compact and

problem-specific representation.

Using genetic algorithms to optimise the position of a line, in two dimensions,

or a plane, in three dimension, which recursively bisects the mesh is one possib-

ility. Another is to use a coarse approximation to the mesh (see section 6.9.1

which fully discusses multilevel methods) and partition this. Both these ap-

proaches have been used in the sub-domain generation method [KT93, ST97],

where decomposition becomes part of the mesh generation process, the coarse

mesh having yet to be finely meshed, and a neural network being employed to

predict the number of elements that will be generated within each coarse element.

Another approach is to use a representation where the partition is determined

by a set of seed vertices, one for each sub-domain. Sub-domains are then simul-

taneously grown out from the seeds, in a similar layered manner to the greedy

algorithm. This allows a compact representation to be used, although it does

restrict the solution to a sub-set of all possible solutions. However, this sub-set

consists of those partitions where the sub-domains are connected and tend to be

compact in shape; precisely those we would favour. This approach was taken

by an EPCC summer scholarship project [Wen96], and will be the subject of

chapter 10.

6.5 Recursive Partitioning

We have seen in section 5.4 that even the simplest of the problems posed, namely

the partitioning problem 5.6, is of considerable complexity. One way to reduce

the complexity of the problem is to partition into 1 << k parts, and then re-

cursively partition each of these parts in the same manner, until the required k

sub-domains have been generated. This, we refer to as recursive partitioning,

which is illustrated for a simple dual graph with 1 = 2 in figure 6.21 (the graph

shown is the same as figure 5.8).

NNN

•.>•
A A

•. 	•<
Figure 6.21: Recursive bisection of a dual graph.

Commonly, recursive bisection is employed (1 = 2), although methods for quad-

risection (1 = 4) and octasection (1 = 8) are also known. We refer to methods

where I > 2 as multi-dimensional.

100

In general, recursive methods attack either the partitioning problem 5.6 or the

constrained partitioning problem 5.8 where strict load balance is required 2 .

6.5.1 Limitations

Clearly, the more we restrict the range of possible solutions an algorithm may

produce the more likely we are to miss other, better solutions.

A theoretical study [ST93] indicates that, for the type of graphs which derive

from finite element and volume meshes, recursive bisection is normally within

a constant factor of the optimum, using cut edges as a metric of quality. This

study also indicates that, by relaxing the requirement of strict load balance

(requirement (a) in 5.6 and 5.8), a better partition may be found. The edge

cuts of a strictly load balanced partition obtained by bisection are found to be

O(k 11d 1li ' n
—d) and the edge cuts of an approximately balanced partition, where

ISI v < (1 + e)IV/k Vp E P, for some small c, are within a factor of O(logk)

of the optimum.

A particular deficiency of bisection is that it can not take network distance into

account. Even if we are solving the constrained partitioning problem 5.8, any

terms in Hcom m which model network distance are irrelevant. However, if we use

a multi-dimensional method this is not the case.

This is clear if we consider the hops metric of network distance introduced in

equation 5.5. If we are recursively partitioning into 1 parts, then we can use the

hops metric at each stage, as if 2" = 1, but if 1 = 2 then drec = 1 and it makes

no difference which of the two 'sub-domains' are on which of the two 'processors'

as h01 = h10 (for any sane architecture).

6.5.2 Separator Fields

After [Wil9l] we introduce the concept of a separator field. This is simply a real

number associated with each graph vertex, in other words a vector f

Given a separator field we may partition a graph into 1 parts, 53 , with the simple

algorithm given in the pseudocode of figure 6.22.

2 Note that even the partitioning problem 5.6 for bisection is still NP-complete.

101

Pseudo: Separator
i=O
Sort the vertices on the key f.
Forj=ltol

sj -_O
While IS2 I 	IVII1

S,t±1v1
i+=1

End While
EndFor

EndPseudo

Figure 6.22: Partitioning with a separator field.

If we are bisecting an unweighted graph this is akin to finding the median of f,

call it mj , and partitioning into So = Iv i E V : 	m j } and S = {v, E V

f > inj}.

Once we examine the nature of f it will become clear that, if 1 > 2 is used,

then the mesh will be divided into parts with increasingly poor aspect ratios.

Indeed, there is nothing to stop us using 1 = k, however, this would result in very

elongated sub-domains and a correspondingly large volume of communication. In

this instance, each sub-domain would be expected to have very few neighbours,

so that if tlateflcy were very high this may be beneficial. This not usually the

case, and recursive bisection is typically usually used for separator field based

techniques.

Multi-dimensional methods use more than one separator (two for quadrisection,

three for octasection) at each level of recursion [HL93a, HL92]; hence the choice

of terminology.

6.6 Geometry Based Recursive Algorithms

If we have geometric information associated with a graph then we can use this to

provide a separator field for partitioning. As unstructured meshes always have

coordinate information associated with them, this is a useful approach.

Each mesh element, E, consists of a set of nodes, 1 17a, 17b, . .. }, the coordinates

of which will be known. If the coordinates are x0 	E Rd then their mean

may be used as a position for the corresponding graph vertex v 1 . If that position

is x i then x2 = (j€ei x)/kI

102

6.6.1 Coordinate Partitioning

Given this geometric information for the graph we can simply use the component

of the vertex coordinate in the direction of one of the coordinate axes as a

separator field. If d 3 is the unit vector in the direction of the i-axis the separator

is then f, = xi.dj. This will result in the graph being partitioned with a plane

(or planes, if / > 2) orthogonal to d,.

The question is then; which axis do we choose?

If the graph vertices are distributed evenly in space then the volume of commu-

nication resulting from cutting through the mesh with a plane (or line in two

dimensions) is proportional to the size of the intersection of the plane with the

simulation domain, and clearly should be minimised.

If the simulation domain is particularly extended in one direction then choosing

that direction is likely to provide the best choice, as shown in figure 6.23.

Chosen axis

Cut plane

Good choice of axis Bad choice of axis

Figure 6.23: Good and bad choices of axis for coordinate partitioning.

Having made this observation there are several ways we may apply coordinate

partitioning:

Find the direction of maximum extent, determine the separator once for

this direction, and partition using 1 = k.

Find the direction of maximum extent, determine the separator for this

direction, bisect the graph (1 = 2) and repeat the procedure recursively.

Ignore this observation and cycle through the dimensions, recursively bi-

secting, as before.

103

Figure 6.26: Orthogonal recursive bisection of Widget over S processors.

104

Figure 6.24: Direct coordinate partition of Widget over 8 processors.

Figure 6.23: Recursive coordinate bisection of Widget over 8 processors.

The first option, which we term direct coordinate partitioning, suffers from the

advantages and disadvantages mentioned in section 6.5.2, concerning elongated

sub-domains. This is illustrated in figure 6.24.

The second is generally preferable (in terms of J 	I€) forming much more com-

pact sub-domains, as shown in figure 6.25. This method was termed recursive

coordinate bisection by Simon [Sim9l].

The last option saves computation by not evaluating which direction is prefer-

able in the hope that, on average, it will make little difference. This method was

termed orthogonal recursive bisection by Williams [Wi191]. In practice, evaluat-

ing the preferred direction is of little cost, and the results of not doing so are

often significantly worse that the previous option, as is illustrated in 6.26.

Recursive coordinate bisection 3 (RCB) is a very fast method, which is easy to

implement and can often produce acceptable results. However, it takes no ac-

count of graph connectivity and the assumption that graph vertices are evenly

distributed is usually not the case. Its fundamental flaw is that it relies on the

mesh being strongly aligned with the coordinate axes.

6.6.2 Inertial Partitioning

In view of the flaw of coordinate partitioning which we have just observed, inertial

partitioning was developed. Rather than rely on the alignment of the mesh with

the coordinate axes, inertial partitioning seeks to determine the direction of

maximum extent directly from the vertex coordinates.

Based on the observation that a rotating object has minimal moment of inertia

when rotating about its long axis (if it is reasonably compact), inertial parti-

tioning treats each vertex as a point mass and calculates this direction, dinertiat.

This is then used to give the separator as before, with fi = ej .djnertjai . This is

illustrated in figure 6.27, in contrast to coordinate partitioning.

The calculation of di nertiat is not a computationally intensive one; the moment of

inertia tensor, I is formed by accumulating the contributions from each vertex,

this is then solved for its smallest eigenvalue and the corresponding eigenvector

is taken as dinertiat. As I E R"' the eigensolution is trivial and may be carried

3When the RCB algorithm is selected in PUL-md all three of the options mentioned here
are available via tunable parameters. So, in that context, RCB may mean any of these variants.
In general, if we use the term RCB we mean option 2, unless stated otherwise.

105

Chosen axis

Cut plane

Good choice of axis 	 Bad choice of axis

Figure 6.27: Coordinate versus inertial partitioning.

out with any number of standard methods.

The contribution of vertex V i to the moment of inertia tensor 4 is, in three dimen-

slons,

I I + 	_!;eI

= 	I + ;

	

\\
_jj 	+ ! i) Zj—ij

where 	(, , &) = x i - Xcg and x is the centre of mass given by XCg =

(t,.EV x)/n. In other words, 	is the coordinate of v 2 relative to the centre

of mass.

I is then the sum of the contributions of all the vertices

1 =
viEV

We then solve)i = Ii for the eigenvalues A 	A 2 < A 3 and corresponding

eigenvectors i t , i2 , 23.. The required direction is then dinertiai = i i .

Having arrived at dincrtiai we may then either proceed as in option 1 of the

previous discussion of coordinate partitioning, with 1 = k, which we would term

direct inertial partitioning, with the comments previously made still applicable,

or we may use bisection, in which case the method is widely known as recursive

inertial bisection (RIB), illustrated in figure 6.28.

Although RIB makes no assumptions as to the orientation of the simulation

4 Note that vertex weights do not figure in this formulation.

106

Figure 6.28: Recursive inertial bisection of Widget over 8 processors.

domain, it still has the deficiency that it does not take into account graph con-

nectivity in common with RCB. Nonetheless, it is a fast, robust, easily implemen-

ted method for obtaining partitions of reasonable quality and will almost always

produce partitions of as good or better quality than RCB. It has therefore been

widely employed [FL93, FLS93. HL95. HL94, NORL86, KR92, FR94] and is an

excellent choice of algorithm for use in conjunction with local refinement tech-

niques.

6.7 Graph Based Recursive Algorithms

We have seen that coordinate and inertial partitioning do not take graph con-

nectivity information into account, indeed both always cut the mesh with a line

or plane, which clearly limits the quality of solutions they may produce, as there

is no reason, in general, to suppose the optimal decomposition is one where the

sub-domains are delimited in such a regular manner.

An additional consideration is whether we have geometric information at all. In

the case of unstructured mesh problems we will, but if we are dealing with a

circuit placement problem then we will not.

We now turn our attention to recursive algorithms, which work solely with the

dual graph structure, and so avoid these deficiencies (although this is not to say

that they are necessarily superior).

107

6.7.1 Layered Partitioning

Layered partitioning is essentially already familiar to us from the discussion con-

cerning bandwidth reduction in section 6.3.4. We stated there that sub-domains

of better aspect ratio (if we may use such a geometric term in this context),

and hence lesser , are formed if we apply Cuthull-McKee renumbering fol-

lowed by lexicographic partitioning recursively; this is precisely what we mean

by layered partitioning, due to the layer structure induced by Cuthill-McKee.

If we are to take this approach, the best results occur when we bisect the graph at

each stage of recursion, as we have seen for coordinate and inertial partitioning.

When we do this, we refer to the method as recursive layered bisection (RLB).

To review the discussion of bandwidth reduction, as it is applied in this instance,

what we are essentially doing is taking a seed vertex in the graph and expanding

out in layers around it. In the case of RLB we then bisect the graph into two

balanced halves, so that one part consists of those vertices closest to the seed

and the the other part is the compliment of this. The boundary between the two

will therefore tend to fall in the region of a layer, call it and the volume

of communication across the boundary will be approximately proportional to its

size, IL t I. This is illustrated in figure 6.29, where we see the layer structure

within the half of the mesh surrounding the seed vertex, the other half of the

bisection being of uniform colour.

Figure 6.29: Layered bisection for node based graph of Widget starting from
vertex 0.

As we discussed in section 6.3.4, 	may be reduced by repeatedly applying

Cuthill-McKee to find a pair of maximally separated vertices and using one of

these as the final seed. In that section we stated that we are often not concerned

with numbering within layers when using Cuthill-McKee for partitioning, and it

108

Figure 6.30: Layered bisection for node based graph of Widget starting from
vertex 930.

is now clear why, in that numbering within layers has little bearing on RLB. It

is possible to view the numbering as a separator field, or, indeed the method as

allied to the Greedy algorithm, to which it has clear similarities, but we feel that

it is most closely allied to bandwidth reduction, in that Cuthill-McKee is almost

always used.

We also saw in section 6.3.4 that the pair of vertices which are maximally separ-

ated are 805 and 930 for the Widget data set; if we choose one of this pair then

we clearly reduce IL t J with a commensurate reduction in cut edges. In figure

6.29 we arbitrarily choose vertex 0 as the seed, with lE cut l e = 596, while starting

from one of the maximally separated pair (vertex 930, as shown in figure 6.30)

is superior, with I.Ecut l e = 388.

As the computational cost of RLB is proportional to the number of times the

Cuthill-McKee algorithm is applied, the runtime of the algorithm increases cor-

respondingly when we use Cuthill-McKee repeatedly to find the maximally sep-

arated pair. Fortunately, as we previously observed, Cuthill-McKee usually finds

this pair in a very few iterations. As the improvement, compared to starting

from an arbitrary seed, is large and the cost of a single iteration is small, this is

almost always favourable.

In the form we have described (with Cuthill-McKee finding the maximally sep-

arated pair) the method occurs in [Sim9l], where it is known as recursive graph

bisection, and in [FLS93], where it is known as the recursive reverse Cuthill-

McKee algorithm.

Recursive layered bisection is usually superior to coordinate partitioning and on

a par with recursive inertial bisection. Figure 6.31 illustrates this for the Widget

109

data set partitioned over the same number of processors used in the inertial

example (figure 6.28).

Figure 6.31: Recursive layered bisection of Widget over 8 processors.

6.7.2 Spectral Partitioning

Spectral techniques were first explored in the context of graph related problems

by Donath and Hoffman [DH73], Fiedler [Fie75, Fie73] and Barnes [Bar82], but it

was the work of Pothen et al., on the factorisation of sparse, symmetric matrices

[PSL90] which lead to the application of these techniques to the decomposition

of unstructured meshes.

Simon [Sim9l] and Williams [Wi191] concurrently used this prior work on fac-

torisation to develop similar recursive bisection algorithms, which they termed

Recursive Spectral Bisection and Eigenvector Recursive Bisection, respectively 5 .

The approach taken is to form a matrix whose structure is closely associated

with that of the dual graph, namely the Laplacian matrix, L E The

eigenspectrum of L is then examined, hence the term spectral partitioning, and, as

we shall see, one particular eigenvector of this matrix may be used as a separator

field, in exactly the same way that we have encountered in coordinate and inertial

partitioning.

We will now examine the mathematical background of spectral partitioning in

some detail. Starting with a description of the partitioning problem in a discrete

space, we will then see how a continuous approximation may be made, and how

a solution of the continuous problem may be found by the eigeusolution just

described.

5 We shall follow Simon and use the term Recursive Spectral Bisection, or RSB for short.

110

6.7.2.1 The Discrete Problem

If we consider recursive graph bisection (1 = 2), where we attempt to solve the

partitioning problem 5.6, to find two balanced sub-sets with minimal cut edges

between them at each stage of the recursion (as we discussed in section 6.5) then

we may rephrase the problem as follows.

A solution to the partitioning problem 5.6, is the mapping, M rg , of graph

vertices, v, to the set of processors. If we are only concerned with bisection then

we can define any such mapping with an indicator vector in a discrete space,

m e 1-1, +11T2, such that v 2 is placed in one half of the bisection if m i = —1

and in the other if in, = +1, and will denote these two sub-sets S_ and S,

respectively.

We may now reformulate the partitioning problem 5.6 for bisection as the

discrete bisection problem:

Given a graph, G, find an indicator vector, m E 1-1, +1}0, such that

(a) 	w(v)m 	0 	 (6.2)
v EV

and

(b) 	
1 E w(e 2)(m - rn3) 2 is minimised.

e,3 EE

Where the approximation in equality (a) is no larger than the weight of the

heaviest vertex, as before.

As all vertex weights are positive (a) clearly states that the sum of the ver-

tex weights in each half of the bisection should be equal, in so far as that is

possible (i.e. that IS I IS+ I) and therefore still expresses the load balance

requirement of (a) in 5.6.

The second requirement can be seen to be equivalent to that in (b) of 5.6 by

noting that (rn - rn3) 2 takes either the value zero or four, depending on whether

v 2 and v 3 are in the same sub-set or not, and therefore whether the edge between

them is cut.

Now that we have reformulated the problem we can express it in matrix form,

as follows.

111

Firstly, we expand the sum in (b)

E We(ij)(rni - rn3) 2 = 	w(e1)(m + m) - 	2we (eij)rnimj . (6.3)
e 1 EE 	 e 11 EE 	 e,EE

We note that the first term on the right of 6.3 only contributes a constant factor,

namely

We(eij)(m + rn) = 2 IEIe,
eEE

as m 2 , mj E 1-11 +11.

Any constant factor is irrelevant so far as the minimisation of (b) is concerned,

so we could ignore this term or indeed replace it with any other constant term.

Such a constant term may be written in the form

m TD m = 	md1 = 	di = Consi.

	

v 1 EV 	vEV

where D = Diag(d) E R<nit is some diagonal matrix.

However, it will prove convenient, once the continuous approximation to the

problem is made, to replace the first term in 6.3 with one that is equivalent. We

therefore choose d1 = JJeij : v2 E e}l, that is the sum of the weights of all edges

incident on vertex v 2 , so that

mTDm = 2 IEIe,

also.

If we now define the weighted adjacency matrix, A, of the graph as

A3

- {

we (ejj) if e1, e E

	

0 	otherwise,

then we may treat the second term in 6.3 similarly, so that

112

2we (e uj)mjmj = 	rniA ijmj = mTA m.

e,EE 	 vEVV,EV

Defining the matrix L D—A, we therefore see that (b) in the discrete bisection

problem 6.2 becomes

(b) 	mTLm is minimised. 	 (6.4)

If the graph is not weighted, so that we (eij) = 1 Veij E E, then L is known as

the Laplacian matrix of the graph, where the diagonal elements are equal to the

degree (number of incident edges) of the corresponding vertices, and off diagonal

elements are zero, except where there is an edge between the corresponding two

vertices, where they take the value -1. The Laplacian has a number of interesting

properties that will make solution of the continuous problem tractable and give

some guarantees as to the quality of that solution [Fie75, Fie731.

It is also interesting to recall our previous discussions in section 5.1.4, concerning

the structure of the stiffness matrix, and also in section 6.3.4, concerning the

relation of a matrix to its dependency graph, as the pattern of the sparsity of L

is clearly related.

So far, all we have achieved is to rewrite the problem in an equivalent form.

The problem, no matter how it is formulated, remains NP-complete, and we can

therefore still not expect to find an exact solution. However, now that we have

the problem in matrix form we can exploit this to find an approximate solution

by relaxing the constraint that m take only discrete values.

6.7.2.2 The Continuous Problem

In the discrete problem we only allow m E 1-1, +11T2 but, in order to exploit

the matrix form of 6.4, we would like to explore more of Rfb while still remaining

in the vicinity of the discrete solution space. Noting m T m = n, we therefore

look for minimisers of 6.4 in If E : fTf = n}.

We can interpret this geometrically, as shown if figure 6.32. The discrete solutions

lie at the corners of a hypercube centred on the origin in 	while the continuous

113

Solution -

Discrete
	

Continuous
(Solutions at any corner)

	
(Solutions anywhere on surface)

Figure 6.32: Discrete and continuous solution spaces.

solutions lie on the surface of a hypersphere which passes through the cube's

corners6 .

If we can find f such that fTLf is minimised, it is then our hope that we may

find some m, close to f, which will be a good minimiser of IMT L m.

Supposing we can indeed find such an f, how do we then map it to a 'nearby'

m? Fortunately, we have already encountered a mechanism to perform just this

task; we simply treat f as a separator field, just as we saw in section 6.5.2, and

thereby partition the graph into S and S_, which is equivalent to specifying the

values of rn.

We now define W = Diag(w), where w 2 = /w(v), and W = Diag(iJ), where

11we , noting that the vertex weights are all strictly positive.

The only part of the discrete bisection problem 6.2 that we have not yet studied

is the load balance constraint (a). Replacing m with f, we may now write this

as

w,(v)f = WTWf 0.
v EV

If we apply the change of variables f = Wg, this becomes

6A very similar analysis to the one presented here may also be applied to geometric bi-
section [Wi194]. By making a statistical approximation to the distribution of nodes with a
continuous density of nodes function, and to the connectivity of the graph with a continuous
pair distribttion function, we may arrive at a solvable continuous problem. If it is assumed
that the pair distribution function is sufficiently short range and linear solutions are sought,
the eigenvalue problem If = APf arises, where P is the pair distribution moment matrix and
I the moment of inertia matrix. If the pair distribution is isotropic, then P is proportional to
the unit matrix, and we recognise this as inertial bisection.

114

wTg ± 0,

as clearly W = W

--

Writing LW W
T
LW, equation 6.4 now becomes

gTWTLW g = gTLWg .

Correspondingly, the normalisation fTf = rl must now be gTWTWg = n.
However, to facilitate later analysis, we follow Hendrickson and Leyland [HL92]

and approximate the individual vertex weights with their average, <w(v2)>, as

follows

gTWTW g = 	g;2 	gTg

- <w(v)>'
viEV

so that the normalisation may be written 7

gTg <w(v1)>n= IvI v .

This approximation is reasonable given that the variation in vertex weights is

likely to be small, and certainly inconsequential compared to the sum of all vertex

weights, as n, is typically large. Also, there is an error associated with moving

from the discrete to continuous which will already be of a similar order.

THendrickson and Leyland do not, in fact, state this as an approximation, but a strict
equality.

115

We are now in a position to pose the continuous bisection problem:

Given a graph, G, find a vector in {g E Rrt : gTg = IVJ}, such that

(a) 	wTg 0 	 (6.5)

and

(b) 	gTLw g is minimised.

We now make some important observations about the matrix LW that will facil-

itate the solution of this problem. We base these observations on related obser-

vations for L, as follows, where we employ the notation 1 (1, 1, 1, ...)T e Rfb.

Theorem 6.1 The matrix L has the following properties:

L is symmetric and positive semi-definite.

The vector 1 is an eigenvector of L with eigenvalue zero.

If the graph is connected, then 1 is the only eigenvector with eigenvalue

zero.

Proof. L is clearly symmetric, given that it is the sum of D, which is diagonal,

and A, which is symmetric by definition. As L = - L, Vi, the row sum

of L is zero for all rows. It follows that Li = 0, and hence 2 is proved.

Gerschgorin's theorem tells us that, for a real symmetric matrix, the minimum

eigenvalue is (L11 - Ejoi IL ij I) min , which is zero by the same argument. All

eigenvalues must therefore be zero or positive, and hence L is positive semi-

definite and 1 is proved.

If we consider the discrete case, where m E {—1, +1}, then we can see that
mTLm = 0 if m = 1 (or allowed multiple thereof) for a connected graph. The

only way to partition a connected graph into two sub-sets without cutting an edge

is if one set is 0 and the other is V. This is precisely the partition described by

m = 1 and, as the quadratic form counts cut edges, the equivalence follows. Now,

for a symmetric positive semi-definite matrix, it is easy to show that xTLx = 0

if Lx = 0, so there is a direct correspondence between vectors which make the

quadratic form zero and those which are eigenvectors of eigenvalue zero. Taking

these two observation together would lead us to suspect that 3 is indeed correct,

but we refer the reader to [Moh88] for formal proof. U

116

It is now clear why the choice of D (as the sum of edge weights for edges incident

on a vertex) was made as it was; it is this that results in the row sum of L being

zero. Without this we could not prove Theorem 6.1 as we have.

Lemma 6.2 The matrix LW has the following properties:

LW is symmetric and positive semi-definite.

The eigenvectors of LW span 11 	and are orthogonal.

The vector w is an eigenvector of LW with eigenvalue zero.

. If the graph is connected, then w is the only eigenvector with eigenvalue

zero.

Proof. From property 1 of theorem 6.1, and the definition of LW as WTLW, 1

immediately follows.

The eigenvectors of any symmetric matrix may always be chosen to be pairwise

orthogonal, even in the presence of multiple eigenvalues, and will therefore span

the space. Thus, the symmetry of LW implies 2.

Although the transformation of of LW to WTLW is not a similarity transform-

ation, as W is not orthogonal, it does preserve eigenvalues which are zero. If

we consider x, such that Lx = 0, then clearly LWWX = 0. Hence, if x is an

eigenvector of L with eigenvalue zero, then Wx is an eigenvector of L' with

eigenvalue zero, also. As Wi = w, properties 3 and 4 follow from properties 2

and 3 of theorem 6.1, respectively. 0

We are now in a position to try to find a solution of the continuous bisection

problem 6.5.

6.7.2.3 Solution of the Continuous Problem

If we take the eigenvalues of LW to be ordered such that) i

with corresponding orthonormal eigenvectors e 1 , e 2 ,. . . , e 0 , then the solution is

given by the following theorem.

Theorem 6.3 The solution of the continuous bisection problem 6.5 is given by

g =

Proof. Property 2 of Lemma 6.2, shows that we may express any potential soiu-

tion in terms of the eigenvectors of LW.

117

Let E be a matrix whose columns are the orthonormal eigenvectors and A the

diagonal matrix of eigenvalues. We may then express a solution as g = Ec,

where c is a vector of real coefficients.

We may ensure that {g E JI4t : g T g = IVI} by taking c T c = IVI,, as clearly
gTg = cTc by the orthogonality of E given in property 2 of Lemma 6.2.

We know from property S of Lemma 6.2 that e1 = w. Making use of the

orthogonality of E once more, we see that g will only satisfy requirement (a) of

the problem if ci = 0.

We need now only satisfy the minimisation requirement (b), which may be written

as

gTLw g = cTETLtE c = CTA C =
i=2 ,flv

We note that the lower limit of 19TLwg is

= A 2cTc <

i=2

Here we rely on property 1 of Lemma 6.2 to ensure that the eigenvalues are non-

negative, the ordering we have imposed on the eigenvalues and the properties of

c we have so far established.

Clearly, if we choose ci = 0 Vi 	2 this lower limit may be achieved. The

normalisation, eTc = lV v , then gives c2 = /fVf and the required solution is

therefore /'[Vçe2. o

Further, we note that if the graph is connected then property 4 of Lemma 6.2

tells us that this is a non-trivial solution. Additionally, if A 2 A 3 this solution

is unique.

A theorem due to Fiedler [Fie75, Fie73] provides the guarantee of solution quality

alluded to in section 6.7.2.1. This theorem implies that if the graph from which

L is derived is bisected using the second eigenvector as a separator field then at

least one of the two sub-sets that result will be connected. Due to the theoretical

work carried out by Fiedler in relation to the eigenspectrum of the Laplacian and

its relation to the connectivity of graphs, the second eigenvector, e2, is widely

referred to as the Fiedler vector.

118

6.7.2.4 Multi-Dimensional Variants

When we introduced recursive methods, at the start of section 6.5, we also

considered the possibility of partitioning at each stage of recursion into 1 > 2

sub-sets, terming this multi-dimensional partitioning [HL93a, HL92]. We also

observed in section 6.5.1 that this would be necessary if we were to try to in-

corporate the hops (or indeed any other) metric of network distance into the

algorithm. We shall now extend the spectral approach to partitioning for 1 = 4,
and subsequently indicate how it may be extended to higher dimensional parti-

tioning.

Q uadrisection

If we are to use the hops metric then we must be partitioning such that 1 = 2"

at each level of recursion. The simplest non-trivial case will be drec = 2 as

the hops metric can have no bearing on drec = 1, as previously observed. The

drec = 2 case is quadrisection (as I = 4) and we may incorporate this into the

spectral partitioning as follows.

Sub-set 5 1 (-1,+1) 	 (+1,+1) Sub-set S 3

	

be 	t 	•d

	

eabi 	 ead

	

1/ 	 eac a 	 •c

	

Sub-set S (-1,-0 	I 	(+1,-i) Sub-set

Figure 6.33: The hops metric in two dimensions.

The mapping of vertices to sub-sets may now be described by the use of two

indicator vectors, m 1 , m 2 E {-1, +l}0. We interpret this as a binary number

for each vertex, so that —1 '-+ 0 and +1 -+ 1. Thus (+1, —1) i -+ 10 (binary) i—p

sub-set S2 (decimal), for example. The hops metric then weights the cost of a

cut edge, just as it did for message size in section 5.3.1.

119

We consider, without loss of generality, a vertex 'a' in sub-set S 0 of a quadrisec-

tion, and examine the edges connecting it to vertices 'b', 'c' and 'd' in each of

the other sub-sets, as shown in figure 6.33. The number of hops from sub-set S 0

to the other sub-sets are h01 = h02 = 1 and h03 = 2, for sub-sets S 1 , S2 and S3

respectively. The cost of the cut-edge Cab IS therefore hOlW e (Cab) = We (Cab) and

similarly the cost of the edge Cac is h02W e (Cac) = we (eac). However, the cost of

the cut edge to 'd' is h03W e (Cad) = 2W e (Cad).

This weighted sum of edge-cuts may be expressed as

(mLm 1 + mLm 2). 	 (6.6)

If we consider the edges in figure 6.33 in relation to their contribution to this

function, we see that Cab contributes W e (Cab) through the m 2 term, and nothing

through the m 1 term. The edge Cac evidently does the reverse, only contributing

it weight through the m 1 term, but the edge Cad contributes through both m 1

and m 2 terms, giving a net contribution of 2w e (eab). Hence, minimising 6.6

minimises the sum of the cut-edges, weighted by the hops metric.

The load balance constraint used in the bisection case may be generalised to

quadrisection. The naïve generalisation would be to only require 6.2 (a) for m 1

and m 2 , but this will only ensure balance between the pairs of sub-sets given

below.

w,(v)rni 	0 = balance between So U Si and S2 U S3 	(6.7)
v E V

w,(v 2)m 	0 ==> balance between S o U S2 and S U S3 	(6.8)
v E V

These two constraints are insufficient alone, as they do not preclude partitions

such that jSo j v = JS3 1 v = IVI/2 and Si = 52 = 0, or IS1 1, = 1521v = IVI/2 and

So = S3 = 0. However, if we add the following constraint this problem may be

avoided.

	

w(v)rn1(2)m2(1) 0 = balance between So U 53 and Si U S2 	(6.9)
vi EV

Now, if we apply constraints 6.7, 6.8 and 6.9 only partitions such that IS01V =

120

ISIJ V = 1S2 1 v = IS3 I v = VI/4 are permitted, which is exactly the load balance

between the four sub-sets that we require.

Moving from the discrete to the continuous case proceeds exactly as for bisection,

allowing us to formulate the continuous quadrisection problem:

Given a graph, G, find vectors g 1 and 92 in {g E R nV : g T g IVI}, such that

(a) 	wTg i wTg2 g 'g2 0 	 (6.10)

and

(b) 	(gLwgi + g'L°g 2) is minimised.

Given the similarity of 6.10 to the continuous bisection problem 6.5, it comes as

no surprise that the solution is as stated in the following theorem.

Theorem 6.4 A solution of the continuous quadrisection problem 6.5 is given

by g 1 = /{V[e2 and 9 2 = /fV[e3.

Proof. A trivial extension of the proof for Theorem 6.3 is sufficient to prove 6.4.

See [HL92]. D

This solution is no longer unique; in fact, we may choose any orthogonal pair

of appropriately normalised vectors in .span{e 2 , e3}, as all such pairs yield the

same value of 6.10 (b) and still satisfy the constraints of (a).

Such pairs will be given by

91 = /jV(cos Ge 2 + sinGe3),

and

92 = /[Vj(- sinGe 2 +cos Ge 3).

The rotational degree of freedom, 9, that this family of solutions gives us may

be exploited to recover some of the accuracy lost in moving from the discrete to

the continuous. If we reverse our change of variables, so that f1 = Wg 1 and

f2 = W921 we may then look for f1 and f2 as close to 1-1, +l} as possible.

This may be expressed as minimising

- fi2()) 2 + (1 - f22()) 2
v EV

121

with respect to 6. Substitution of the trigonometric expressions for f1 and f2

into this function gives a constant coefficient quartic equation in sines and cosines

of 6. This may be solved by a short sequence of local minimisations from random

starting points [D583].

There remains the problem of mapping from the continuous to the discrete solu-

tion. The separator method is no longer applicable, but the approach of looking

for the 'closest' solution in 1-1, +1}n. may be applied here also. If a metric

of distance is defined from (fi(), f2(*)) to (±1, ±1) (the square of the Euclidean

norm is used in [HL92]) then, within the constraints of load balance, we may

attempt to minimise the sum of these distances. This type of minimisation is

known as a minimum cost assignment problem, for which standard methods are

known [TN91].

Taking all this together, we have described Recursive Spectral Quadrisection, or

RSQ for short.

Higher Partitioning Dimensions

It may be thought that this approach might be extended for higher values of

drec, and this is indeed true up to a point.

Consider the continuous (unconstrained) multisection problem:

Given a graph, G, find vectors g1,... lgdrg c in {g E R'' : gTg = IVI}, such that

(a) 	wTg2 	0 ViE {1,...,d rec }

0 VjE{1, ... ,drec} 	 (6.11)

and

(b) 	
1 E g 'Lw g1 is minimised.

i 1 ,drc

Clearly for drec = 1 this is equivalent to the bisection problem 6.5 and for drec = 2

to the quadrisection problem 6.10. As we would therefore expect the solutions

to this problem are as given in the following theorem.

Theorem 6.5 A solution of the continuous (unconstrained) multisection prob-

lem 6.11 is given byg 1 = /fi7je +i , i = 1,drec .

122

Proof. As with Theorem 6.4, a trivial extension of the proof for Theorem 6.3 is

sufficient to prove 6.5. See [HL92]. U

Again this solution is not unique; any orthogonal set of appropriately normalised

vectors in span{e 2 ,. .. , 	will do just as well.

However, for drec = 3 an additional load balance constraint must be satisfied,

which 6.11 does not reflect, namely

j w(v)rn1(I)m2()m3(I) 	0.
vEV

This occurrence of additional constraints for drec > 3 is the reason that we have

termed 6.11 'unconstrained.'

For drec = 3 we have three rotational degrees of freedom in looking for a good

solution in spari{e2, e3 , e4 }, and this allows us to ignore this new load balance

constraint until we come to fix these degrees of freedom.

The minimisation with respect to rotational degrees of freedom now becomes

minimise

(1— f(1)) 2
v 2 EV d=1,3

subject to

:i: w(vI)f1(2)f2(I)f3() 	0.
vEV

Substitution of the appropriate trigonometric combination of e2 , e3 and e4 now

gives a constant coefficient polynomial in sines and cosines of the rotational

degrees of freedom. This optimisation problem may be solved exactly as in the

quadrisection case and the solution then mapped to {-1, +l} using minimum

cost assignment as before.

We have therefore extended the multi-dimensional approach to octasection (drec =

3, 1 = 8), which we term Recursive Spectral Octasection or RSO for short.

However, as we move to higher values of drec we find that the the number of new

constraints we must add to ensure load balance grows faster than the rotational

degrees of freedom we gain. For drec = 4 we find that we have five constraints to

satisfy and six degrees of freedom, so it is still possible to find a solution, although

the constraints include three cubic equations and one quartic, so solution would

prove challenging. When we reach dr c = 5 it is no longer generally possible to

123

find a balanced solution by this method, as there are sixteen constraints but only

ten degrees of freedom; for higher values of drec the situation is correspondingly

worse [11L92]. We conclude that drec = 4 is the maximum number of partitioning

dimensions to which this method may be extended.

6.7.3 Summary

In this study of spectral partitioning we have seen how, by the use of a continuous

approximation to an essentially discrete problem, we have reduced the problem

to that of eigensolution of the Laplacian matrix, after which the Fiedler vector

may be used as a separator field.

We have not discussed how this eigensolution may be carried out, and it is clear

that the efficiency of the algorithm depends almost entirely on the efficiency of

the eigensolution. We will not detail how this may be done here, but rather defer

discussion until we come to look at implementation details in section 7.4.8. For

now, we will merely state that an efficient algorithm for the calculation of the

extreme eigenvectors of a large sparse symmetric matrix, such as the Laplacian,

exists in the form of the Lanczos algorithm.

Spectral partitioning is one of the most complex algorithms we have discussed,

but it is found that, in practice, it produces partitions of very high quality. This

quality comes at the price of increased computational complexity, which leads

to a correspondingly greater time taken to calculate a partition by this method,

relative to any of the other recursive algorithms we have thus far encountered.

To illustrate the quality of results, we show a partition of the Widget data set

over eight processors by recursive spectral bisection in figure 6.34. If we visually

compare the result for RSB with the results obtained by the other recursive bisec-

tion methods we have studied, it may clearly be seen to be superior. Comparable

figures are 6.25, 6.28 and 6.31, which show the decompositions for the same data

set and number of processors provided by RCB, RIB and RLB, respectively.

Moreover, spectral partitioning is totally independent of coordinate information,

and can therefore be applied to graph partitioning problems unrelated to mesh

decomposition, where such information may not be available. It should also be

noted that it is independent of graph numbering.

If vertex or edge weights are specified for the graph, then both of these are

represented in the spectral approach. While any separator based technique may

124

Figure 6.34: Recursive spectral bisection of Widget over 8 processors.

always take into account vertex weights, no other will account for edge weights.

The higher dimensional variants we have discussed allow spectral techniques to

deal with the assignment of vertices, and therefore sub-domains, to processors in

such a way that network topology may be taken into account. In this respect,

they may approach the constrained partitioning problem 5.8 where H m models

hypercube hops, in a way no other recursive algorithm may do without resorting

to optimisation techniques.

For all these reasons, spectral partitioning is widely employed where high quality

decompositions are sought, and where the cost of arriving at that decomposition

is less of an issue. It is also particularly attractive, in that it produces high quality

decompositions reliably, without the need for the user to tune many parameters

relating to the algorithm.

When we later come to look at multilevel algorithms in section 6.9, we will

see that they may be used to lessen the cost of spectral partitioning without

significantly degrading the quality of results.

6.8 Local Refinement Algorithms

In our previous discussions concerning the application of optimisation algorithms

to mesh decomposition (section 6.4.7), we made the point that whether we should

regard those algorithms as global methods or local refinement techniques was

determined by the initial state from which they explore the search space. If an

essentially random start was given we would say that the algorithm was global,

while if a reasonable initial partition was provided then we would call them local.

125

Conversely, what we present here as local refinement techniques may be given a

random partition as their initial state, and so may also be employed as global

methods; whether this is advisable is a question of efficiency and the resulting

quality of decomposition.

In this section we shall examine the following algorithms; Kernighan and Lin,

Mob and the Jostle heuristic. The former, Kernighan and Lin, is almost always

used to refine an existing reasonable partition, for it is most efficient and reliable

when so employed. The same may be said concerning the efficiency of Mob,

although this is perhaps more arguable and, indeed, the algorithm was presented

initially as a global method. The Jostle heuristic, however, has the concept of

locality built-in and so may run into difficulties if not provided with a reasonable

partition to start with 8 . All of these algorithms are based on the dual graph of

the mesh.

Bearing in mind that the distinction between global and local is largely one

of usage, we will now turn our attention to a detailed examination of these

algorithms.

6.8.1 Kernighan and Lin

We will begin our discussion of Kernighan and Lin refinement (KL) by presenting

the algorithm as applied to an existing bisection of a graph with weighted edges,

but no vertex weights [KL70]. We will then indicate how it may be extended to

higher partitioning dimensions (1> 2) and graphs with vertex weights. Further

discussions may be found in the section on the implementation of KL in PUL-md,

section 7.5.2.

6.8.1.1 KL for Bisection

Suppose we have a bisection of a graph into the two sub-sets S 0 and S, and

also suppose that this is a balanced partition, i.e. IS0 I = IS1 = IVI/2, which

may not be optimal as far as communication is concerned. The KL algorithm

seeks to find a better solution to the partitioning problem 5.6 by moving vertices

between So and S1 in an effort to reduce IE t I e .

8More recent developments of Jostle can begin from a random start, but only the basic
algorithm will be presented here.

126

The algorithm selects which vertices to move by associating a gain value with

each vertex and preferentially moving those with the highest gain. The gain is

simply defined as the reduction in total cut edge weight that would result from

moving the vertex from the sub-set it is currently in to the other.

The gain gi of a vertex v- may be written as

gi = 	f +we(eij)

eij 	1. —we(euj)

if M2 (v 1) M2 (v,)

if M2 (v 2) = M2 (v3),
(6.12)

where M2 (v) = 0 if v E S0 and M2 (v) = 1 if v E Si.

In other words, gj is the sum over edges incident on the vertex, counting the

weights of those edges which connect it to another vertex in the same sub-set as

negative and those which leave the sub-set as positive. With this definition of gi

we see that, if vertex v i is is moved from its current sub-set to the other sub-set,

then the new total cut edge weight is - g.

Now, given that the partition is balanced to start with, load balance may be

maintained for a graph with uniform vertex weights, w(v2) = Const. Vi, by

simply swapping pairs of vertices. One way to proceed would be to swap a pair

with positive gains, update the gains for the neighbours of the pair, then swap

another such pair, and so on. This is essentially a gradient descent procedure,

and very soon would become trapped in a local optimum where there are no

more vertices with positive gains to be moved.

While this will have produced some improvement in the partition, it is likely that

we would be able to produce a greater improvement if we considered some moves

with negative gains along the way, so long as this yields a net benefit overall.

This is precisely what KL does and is the heart of its strength. The way it does

so is as shown in the pseudocode of figure 6.35.

We see from the figure that the algorithm consists of two nested ioops. A single

iteration of the outer loop we term a pass. In preferential order, a pass moves

pairs of vertices in turn, regarding all those already moved as 'taboo,' until there

are no more pairs to be moved.

The outer loop applies successive passes to the partition, each time using the

best configuration found on the previous pass as the starting point for the next.

There are several things to note about line 6 of the pseudocode, where the next

127

Pseudo: Kernighan and Lin

A'Ib es t = A/tcurrent = initial partition.
Repeat

Compute gi for Mcurr ent.
Mark all vertices as 'unmoved.'
While An unmoved pair of vertices remains.

Choose unmoved v 1 E So and v3 E Si,
such that g i + 9j - 2w e (eij) is at a mazimum.

Move v 1 to S1 and vj to So
Update gains for neighbours of v 2 and v3 .
If IEcut l e for Mcurren t < IEcut l e for Mbest Then

Mbest = Mcurrent

Endlf
EndWhile
14current = Mbest

Until No better partition found.

EndP seudo

Figure 6.35: The Kernighan and Lin algorithm.

pair of vertices to be moved is determined.

Firstly, we note that when a pair is interchanged the decrease in I.Ecut l e is not

g2 + gj, but g + gj - 2w € (e23) if there is an edge between v i and v3 , as illustrated

in figure 6.36.

1 e 2 	1 e 2 	1 e = 1 	I3

B\

+1 	 -1 	H +1

() \A 	- - 1 	0 	

1
-1

N

Initial 	A moved 	B moved 	Both moved

Figure 6.36: KL gains for a simple graph with unit edge weights. The dotted
line indicates the bisection boundary.

Secondly, note that we specify the maximum of gj +gj - 2W e (ij) which in no way

precludes an increase in IEcut l e , as the maximum may well be negative. While

there are pairs whose interchange produces a net reduction in IE t I e they will

be chosen, but if there are no such pairs then the least damaging moves will be

made.

128

Thirdly, and of key importance to the run time of the algorithm, is the question

of exactly how the most favourable (least unfavourable) pair is found. Kernighan

and Lin propose the following options:

Examine all possible combinations of pairs of vertices and choose the most

favourable. This makes each pass an 0(n24) procedure.

Sort the vertices in each half of the bisection on the key gj . If matching

pairs from each sorted set of vertices are considered in descending order of

g, then a cut off point, past which it can be shown that the most favourable

pair will not be found, may be established. Only combinations of vertices

found before this cut off point need then be considered. If this set is small

(experience indicates it is) and the sorting is carried out in O(n log(n))

time, each pass is therefore an O(n 2 1og(n)) procedure.

Scan through the g2 and choose the the pair with maximum individual

gain. This is equivalent to maximising gi + g3 , but will be a reasonable

approximation to maximising gi + gj - 2we (ejj) if the probability that ae 3

is small. A simple extension is to scan for two or three vertices from

each half of the bisection with largest individual gain and choose the most

favourable pair from this small set. In either case, the selection may be

carried out in linear time, so that each pass is an O(n) procedure.

Of these options, the exponential time of 1 clearly rules it out a a viable mech-

anism. Whether 2 or 3 is favourable depend largely on the connectivity of the

graph.

Kernighan and Lin were considering arbitrary graphs in [KL70], but for dual

graphs derived from unstructured meshes we can be sure that connections will

occur only between vertices representing geometrically local mesh elements. The

number of edges incident on a given vertex will therefore be bounded by some

constant n° << (ne, —1), and the probability that there will be an edge between

an arbitrary pair of vertices will be small. This would seem to indicate that 3 is

a reasonable choice for unstructured meshes. However, the fact that the vertices

with highest gain will most likely be on or near the bisection boundary is also a

factor and will increase the likelihood of a connection between the two vertices

with highest individual gain.

In practice, maximising gi + gj rather than gi + gj - 2we (ejj) proves quite accept-

able for unstructured mesh dual graphs. Moreover, an important extension of KL

129

due to Fiduccia and Mattheyses [FM82] allows this to be done in constant time,

making a pass an O(n) procedure. The Fiduccia and Mattheyses implementa-

tion (FM) provides by far the best performance and is almost always employed.

As this implementation is the one used by PUL-md, we will defer discussion of

the differences between it and the original KL algorithm until section 7.5.2.

This discussion has focused on line 6 of the pseudocode as the dominant factor

in the runtime of a pass, and implied that this is also the dominant factor for the

algorithm as a whole. This will only be the case if no other part of the algorithm

has worse time complexity. We will now show this to be the case.

Of the other actions involved in a pass, the interchange of vertices (line 7) and

keeping track of the best partition so far encountered (lines 9-11) only contribute

a constant factor per iteration of the inner loop. Updating the gains (line 8)

deserves some discussion, however.

Clearly, only the gains of the neighbours of each moved vertex are affected by the

move and, as there are at most n"'° of these per vertex, this too only contributes

a constant factor. If v3 is a neighbour of a moved vertex v, then the gain of the

neighbour may be updated according to

I g += 	
+2w(e) if M2 (v 1) M2(v) 	

(6.13)
—2w e (e jj) if M2 (v) =

where M2 (v 2) indicates the new location of v.

Turning to our attention to the outer loop, we see that the computation of the

gains (line 3) is the only expensive operation. For a densely connected graph this

is an O(n) operation, but given our observations regarding the connectivity of

the graphs we are likely to encounter in mesh decomposition, we can expect this

to be O(n).

The question now arises as to how many iterations of the outer loops there are

to be, that is; how many passes will the algorithm make? The answer is that it

generally requires very few, typically 5 or 6 at most. Kernighan and Lin did not

find any strong dependence of the number of passes on ne,, although they did

not look at graphs as large as might be found in present day unstructured mesh

applications, but more recent observations support this [HL93a].

To summarise, there are two significant costs associated with the KL algorithm;

initial calculation of the gain values and the cost of a subsequent pass, the latter

130

being most strongly influenced by the cost of selecting a favourable pair of vertices

to swap.

The progress of the KL algorithm is illustrated in figure 6.37. This figure shows

J E,,,, t l, through the course of the algorithm; the horizontal axis indicates vertex

moves made by KL, with the start of each new pass shifted to line up with M 8
as found by the previous pass. The dark line shows actual changes made to the

partition, while the lighter lines show explorations made by the algorithm that

did not yield a better configuration.

RLB+KL: 	 - Partition

Full Pass 	 - KL pass

500.0

400.0

a,
CC
V
w

- 300.0
a,
>
C)

iU
0

200.0

100.0
0.0

Final Partition

1000.0 	 2000.0

Vertex Moves

Figure 6.37: Progress of the KL algorithm from an initial layered (RLB) bisec-
tion.

The initial partition used in figure 6.37 was provided by a layered (RLB, without

Cuthill-McKee) bisection of the Widget data set. This partition before and

after application of KL refinement is shown in figures 6.38 and 6.39, where the

improvement in partition quality is clearly visible. In this case cut edges were

reduced by approximately 50% but it should be noted that the initial partition

was rather poor.

In general KL is most profitably employed in combination with a fast initial

decomposition algorithm that gives a starting state which is reasonable overall

but may be poor in terms of local detail. When used with a random initial

partition it is found to give erratic results little better than RCB [M095] and

taking far longer.

131

Figure 6.38: The initial layered (RLB) bisection of Widget.

Figure 6.39: The bisection of Widget after EL refinement.

In combination with RIB, refinement with EL may produce a final partition

of equivalent quality to RSB and may (depending on the relative efficiency of

implementations) be as fast or even faster. Of course, EL may be used with R.SB

just as easily, resulting in a partition of higher quality still, but at the cost of

increased runtime. KL is also employed as the local search heuristic in chained

local optimisation [M094, M095], as was mentioned in section 6.4.7.3.

6.8.1.2 Extensions to the Basic KL Algorithm

There are several extensions to the basic EL algorithm and we will now review

the most important of these.

The basic algorithm we have just described does not take into account non-

uniform vertex weights, neither will it improve the load balance of an unbalanced

initial partition. Kernighan and Lin [KL70] suggest that integer vertex weights

might be incorporated by representing a vertex with w(v) > 1 as a fictitious

cluster of w, (vi) vertices of unit weight bound together with edges of very high

132

weight to ensure that the algorithm does not separate them. This is really a

redefinition of the problem rather than a change to the algorithm.

A simpler approach, proposed by Hendrickson and Leyland [HL93a], is to no

longer swap pairs of vertices, but rather move one vertex at a time, only con-

sidering moves from a sub-set with greater than average total vertex weight to

those that are at or below average size to be valid. They also extend KL for

higher partitioning dimensions (1 > 2) which motivates this definition of a valid

move; for bisection this definition is equivalent to simply moving vertices from

the largest sub-set to the smallest, after all.

The extension of the algorithm in [HL93a] to higher partitioning dimensions is

also distinct from that originally proposed in [KL70], which suggested that the

standard algorithm for bisection be successively applied in a pairwise manner

(between selected pairs of the k sub-domains, that is) until no further improve-

ment occurs. Hendrickson and Leyland take the distinct approach of altering the

selection and movement of a vertex in the innermost loop of KL.

If the algorithm is refining an initial partition into 1 sub-sets then for the vertices

in a given sub-set there are 1 - 1 other sub-sets to which those vertices may be

moved. Consequently, rather than associate a single gain with each vertex, they

consider 1 - 1 gains per vertex and choose the most favourable of the vertices

based on all these gains, subject to the move being valid as previously defined.

If this approach is implemented as an extension to the FM version of KL, then

the resulting algorithm has 0(1(1 - 1)n) time complexity for move selection over

a single pass, as there are 1(1 - 1) types of moves to be considered. Further,

the memory required for the gains is increased to 0((1 - 1)n), compared to

0(n) for the basic algorithm. Both these considerations make this approach

uneconomic for use with 1 = k when there are many sub-domains, but neither

make the time and memory costs of the multi-dimensional algorithm prohibitive

for small 1, say I < 8. The extended algorithm may then be used in a recursive

manner, for instance in conjunction with multi-dimensional spectral partitioning,

and may also take into account network distance by biasing the vertex gains by

some inter-set cost metric, say hypercube hops.

Other extensions to the basic algorithm include early termination of a pass when

further improvement seems unlikely (a glance at figure 6.37 is sufficient to show

that most of the work of a full pass is wasted), and the addition of a certain

amount of randomness to move selection which may allow the algorithm to escape

133

from a local minimum it might otherwise become trapped in. These extensions

will be discussed in section 7.5.2, when we come to look at the implementation

of KL in PUL-md.

The final extension we will discuss is an optimisation to avoid computing the

gains for all of the vertices in the graph. If KL is working with a reasonable

initial partition then it is likely that most of the moves it will actually make will

be of vertices in the vicinity of the initial sub-set boundaries. If these vertices

can be identified then only their gains need be computed, with a corresponding

increase in performance and decrease in memory requirements. We will later

see how this identification may be made in conjunction with a separator field

(again in section 7.5.2); as part of a multi-level scheme in section 6.9.2 of this

chapter; and also in section 6.8.3, when we come to discuss the Jostle refinement

algorithm.

6.8.2 Mob

The Mob [SW91] algorithm seeks to refine an initial bisection in a way which

resembles KL in many respects.

It is based on a similar process of swapping vertices between the two halves of

the bisection in order to maintain load balance while reducing cut edges. The

algorithm chooses which vertices to swap based on exactly the same gain function

that KL uses, but is distinct in that it does not use the exchange of a pair of

vertices as its basic change of state, but rather exchanges whole groups, or mobs,

of vertices at once.

The way it does this is as shown in the pseudocode of figure 6.40. As with the

description of basic KL, it is assumed that the partition is already balanced, and

that vertex weights are uniform.

The mob schedule is of fundamental importance to the algorithm; it is a monoton-

ically decreasing sequence of len8che 	integers drawn from the range [1, n/21.

The first of these, 	 is typically given as some moderately large per-

centage of n/2, say 10%, and the last as MOB uie = 1, with the inter-

mediate values linearly decreasing in between, as suggested by the algorithm

originators in [SW91].

The algorithm uses the mob schedule to specify the size of the two sets of vertices

to be swapped between the two halves of the bisection, namely MOB 0 and MOB 1

134

Pseudo: MOB
Create the mob schedule, MOB:chedute,

where s = 1,len 8 chtle.

For required number of iterations
s = 1
For i = 1 to len5cldte

e = lEcut l e
MOB 0 = chooseM0B(M0Bdlle, S)
MOB1 = ChooSeMOB(MOB: ChedUte , S1)
Move MOB0 to S1 and MOB1 to So
Update gains.
If IEcutle > e Then

Endlf

EndFor
EndFor

EndPseudo

Function: chooseMOB(size, S)
Find maximal gmm such that

{v1 E V : gi gmin}I > SZC

Choose the Pre-Mob,
MOB = Ivi E V : g ~!

Choose a random sub-set, MOB, from MOBP
such that I MOB I = size.

Return MOB
EndFunction

Figure 6.40: The Mob algorithm.

in the pseudocode (see lines 6 and 7 of the main pseudocode). The vertices that

make up these mobs are chosen on the basis of their gain.

First a Pre-Mob is chosen from each half, consisting of all those vertices with

gain above a value, g2 (line 2 of function choo.seMOB), where g, is just

low enough that a mob of the specified size may be chosen from the resulting

Pre-Mob (line 1 of function chooseMOB). Once the Pre-Mob is determined, the
hedule actual mob is chosen from it as a random sub-set of size MOBc, where s

is the current index into the schedule. This index is incremented only when the

algorithm fails to find a better partition with the current mob size (line 10 in the

main pseudocode).

Thus the algorithm repeatedly swaps mobs of vertices that are a randomised

approximation of the best candidates for moving, decreasing the size of mob

whenever this fails to produce an improvement. As JMOB o l = IMOB 1 I =
MOB : ' for each swap, load balance is unaltered by the algorithm.

The selection of mobs has O(n) time complexity, as a loop through all vertices

135

in the partition is required to determine the Pre-Mobs, but no sorting of these is

required due to the random nature of choosing vertices from Pre-Mobs to form

the actual mob. This makes the algorithm as a whole O(n) if the number of

swaps is limited by some constant, although the real cost of each swap is rather

high.

Figure 6.41: The bisection of Widget after Mob refinement.

The effect of Mob refinement is illustrated in figure 6.41, where the initial par-

tition was the same as used to demonstrate the application of KL (figure 6.38).

Here 50 iterations of the outer loop in the pseudocode of figure 6.40 were applied,

with len8 edule = 40 and the schedule starting at 10% of sub-set size and linearly

decreasing, as previously discussed 9 . It can be seen that the overall shape of the

sub-set boundary has been improved and in particular the disconnected set in

the top right of figure 6.38 has been removed. However, the fine detail of the

border remains poor and in fact Mob has produced no improvement in lE cut l e
for this case.

In general Mob is found to be rather sensitive to the particular settings of the

various parameters that control its behaviour. Also, as the algorithm does not

keep track of the best partition it has encountered in the way KL does, there is

nothing to prevent a worse partition than was initially provided resulting from

Mob refinement' 0. We will examine this behaviour in more detail in chapter 8.

9Additional PUL-rnd features were used here to remove isolated individual vertices, and to
inhibit the swapping of vertices not on sub-set borders; the decomposition is worse without
use of these features (see section 7.5.1).

' °In the course of writing, correspondence with the authors of the Mob algorithm has made
clear that their implementation differs slightly from that described here. Firstly. the best
partition found is recorded and returned by the algorithm, so that a worse partition never
results. Secondly, the loop structure differs in such a way that a specified number of mobs
are exchanged and, as this number is generally much larger then the schedule length, the end
of the schedule is passed through at least once (probably several times). Hence, although the

136

The algorithm as presented here and in [SW91] was subsequently extended to

take into account the mapping of sub-domains to processors and the topology

of the processor network in [SW93]. As network topology may also be repres-

ented as a graph, the problem is referred to as graph embedding in [SW93] (the

dualgraph being embedded in the network graph). The basic structure of the

algorithm remains unaltered, but the selection of vertices to form the Pre-Mobs

is now restricted in order to take into account the network topology. Embed-

dings for 2-dimensional grids (grid embedding) and hypercube networks (hyper-

cube embedding) are considered, with the emphasis on VLSI design rather than

mesh partitioning.

The latter publication also contains the following intuitive explanation of the

algorithm, which provides a interesting interpretation of the function of reducing

the mob size:

"An analogy can be drawn between the movement of mobs and the
rolling of a ball in a solution space where the goal is to find a global
minimum. If the space is structured properly, a large ball rolling
downhill will quickly find the region containing the global minimum
but, due to its large size, will not find the global minimum itself.
Replacing the ball with a ball of smaller size allows the algorithm to
get closer to the global minimum."

6.8.3 Jostle

The Jostle algorithm [WCE95b, WCE95a] works directly with an existing k-way

graph partition, and seeks to compact the overall shape of each sub-domain as

well as improving the fine detail of the sub-domain boundaries. It attempts to

do this in a local manner, as it it designed with parallel implementation in mind

(see section 6.10). The analogy the algorithm's authors use to justify that a local

method may still approach a global optimum is that of the regularity of formation

of bubbles in a foam. Each bubble seeks to minimise its surface energy without

any global knowledge, except through contact with its immediate neighbours,

but the resulting regular pattern has very low energy overall.

Jostle is a three stage process, and we will focus particularly on the first stage

partition generated after the last mob exchange is essentially arbitrary, as the algorithm does
not necessarily terminate at the end of the schedule, an improved partition results. In many
ways the 'Mob Complete' algorithm detailed in the pseudocode of figure 7.3 in section 7.5.1 is
closer to the spirit of the original authors' implementation.

137

where the most major changes are made to the partition. These stages, in order

of application, are:

• The sub-domain heuristic which attempts to compact the overall shape of

each sub-domain, but which may result in some imbalance in sub-domain

size.

• The load balancing heuristic to adjust any imbalance resulting from the

sub-domain heuristic or already present in the initial decomposition.

• The localised refinement heuristic which attempts to tidy up the fine detail

of the result of the previous stages.

All of these stages migrate border vertices between adjacent sub-domains only,

and all make use of a gain function to do so, although the gain used by the

sub-domain heuristic differs from that used in the subsequent two stages.

6.8.3.1 Sub-Domain Heuristic

M 4

L 1

Layers 	 Layers 	 Result
Inward 	 Outward

Figure 6.42: Progress of the Jostle sub-domain heuristic.

The sub-domain heuristic explores the level structure within each sub-domain in

order to find its notional 'centre,' as shown in figure 6.42. To do this it starts with

the boundary of the sub-domain, L0 , and then proceeds to find successive level

sets inwards from the boundary. These level sets are found in exactly the same

way we have already encountered in the the context of Cuthill-McKee bandwidth

reduction, the greedy algorithm (when it is implemented on the dual graph of a

mesh) and layered partitioning; it may therefore be useful to look again at figure

138

6.5, the only difference here is that L0 is now the set of vertices on the boundary,

rather than an individual seed vertex alone.

As successive level sets are found inward, a point will be reached where the next

next level set is empty (i.e. the whole sub-domain has been explored) and the set

immediately prior to this is taken to be the centre set, as shown in the left-most

diagram of figure 6.42. We denote the centre set with index c. This set may not

be connected, but this does not impede the following steps.

Having found the centre set, L, the process is reversed taking L c as M0 , the

first level set in an outward expansion. The level set, M1 , in which a particular

vertex resides may now be used as a metric of distance relative to the sub-domain

centre. This is then used to define a distance, d1 , relative to some 'ideal' sub-

domain border, so that for a vertex vi E M1 we define d, c - 1.

As vertices not in any M1 will be in regions disconnected from the main part of the

sub-domain these are marked as such for later migration to other sub-domains.

The distance di may now be used to define a gain function such that those

vertices furthest from the centre, for example those in the set M8 in the middle

diagram, are preferentially transferred to a better location. However, it would be

inefficient to do this if the later load balancing and localised refinement stages

undo the changes made by the sub-domain heuristic, and so some additional

information is encoded in the gain to avoid this.

An empirical formulation which embodies the amount of vertex weight a sub-

domain, S,,, can hope to gain or lose according to the size of its border and the

average connectivity of the graph is given by

Sp = 20(IVI/k - ISI) < IVk
IL o I

This is used to give an adjusted distance

q!j = d + 5,,,

and thus to define the gains for a vertex on the sub-domain border, v 2 E L 0 C S,,,
as

qj +9eije
{v,ESp :2e j }

139

71= 	
:: 	

0+9IeI € pq
{vES 9 :2ei1 }

Here 9 indicates the relative importance of distance and edge weight, and is

generally incremented through the course of the run of the heuristic.

We now have a gain associated with leaving a border vertex where it is, g, and

a gain for moving to any adjacent sub-domain q, g.

Where the gains indicate that it is beneficial to do so, vertices are moved from

the sub-domain border to an adjacent sub-domain determined by whichever des-

tination, 8q, yields the maximum g. This destination is termed the preference.

This process is applied iteratively to the sub-domain borders, which are the only

regions for which gains are calculated. A figurative representation of the result

is shown in the right-most diagram of figure 6.42.

Additionally, disconnected sets are migrated to the sub-domains for which they

have preference in their entirety (the only time internal vertices are moved).

6.8.3.2 Load Balancing Heuristic

Having applied the sub-domain heuristic the definition of gain is now changed

to be the reduction in cut edges given by equation 6.12, just as for KL and

Mob. This is then used to choose which vertices should be moved in order to

re-establish load balance. The gain is calculated for any adjacent sub-domain

(not all other sub-domains, as it is in the extended implementations of KL we

previously discussed), and the preference defined as before.

Firstly, the number of nodes to be migrated is determined. In [WCE95b] an

approximate transfer policy algorithm due to Song [Son94] is used, although

a diffusion type scheme [Cyb89] could just as easily be employed, and indeed

is used by the originators of Jostle in more recent work focusing on dynamic

partitioning [WCE97].

Once this migration schedule has been determined, border vertices are sorted by

gain and the load specified by the schedule moved to the sub-domain for which

they have preference (never the current sub-domain). This process is iterated

until the migration schedule is satisfied.

140

6.8.3.3 Lo caused Refinement Heuristic

This final stage attempts to minimise cut-edges while maintaining load balance,

in a manner inspired by KL.

Gains are only calculated for vertices on the sub-domain borders and those that

come into the border during the course of this refinement stage, a process very

similar to the lazy evaluation of gains which we will encounter in section 6.9.2.

Again migration only occurs between adjacent sub-domains, this time in a pair-

wise exchange of vertices.

Each sub-domain considers the interfaces it has with its neighbours, and builds a

list for each interface of local vertices whose preference is the neighbouring sub-

domain at that interface. These lists are then sorted by gain and each interface

refined in turn. First, the sub-domain on one side of the interface migrates the

vertex at the head of its sorted list to the sub-domain on the other side, then

the other sub-domain reciprocates by migrating the vertex at the head of its list

in return. This process continues while the sum of the gains of the two nodes

selected for exchange is positive.

6.8.4 Summary

The combination of the three stages of the algorithm yield respectively:

• Good overall sub-domain shape and internal connectivity, leading to re-

duced sub-domain borders and hopefully reduced cut edges.

• Good load balance, although not exact as the migration schedule is only

approximate.

• Further reduced cut edges, although the exchange of vertices may lead to

some small load imbalance for weighted graphs.

In the next section we will examine multilevel schemes and see that Jostle may

be implemented in that manner. When this is done, it is found to be at least on a

par with the other sophisticated multilevel algorithms we shall encounter. Later,

in section 6.10, we shall see how it is also very amenable to parallel implement-

ation. Overall, Jostle appears to be one of the more competitive decomposition

algorithms available, particularly if a small (generally very small) load imbalance

is acceptable.

141

6.9 Multilevel and Hybrid Variants

In this section we will look at how a multilevel approach not only accelerates

the decomposition process, but also allows the development of hybrid techniques

that may be more powerful than the sum of their parts.

The multilevel approach will be familiar to anyone acquainted with multigrid

acceleration of CFD and related simulations [BMT96]. Here several levels of grid

are employed, each of a different resolution, those with lower resolution generally

being a coarse approximation to the finest grid. This allows the propagation of

information across the simulation domain to occur at a variety of length scales,

which accelerates convergence and may add numerical stability.

Typically a multigrid algorithm operates in a cycle, for example a 'V' cycle of

fine-coarse-fine, or 'W , indicating fine-intermediate-coarse-intermediate-coarse-

intermediate-fine. Data is interpolated between levels by restriction when moving

from fine to coarse, and by prolongation when moving from coarse to fine.

The similar multilevel approach to decomposition involves the construction of a

sequence of graphs, each a coarser approximation to the previous level, until the

problem is reduced to a manageable size; we call this graph contraction, although

it is also referred to as reduction. This smaller graph is then partitioned and

the resulting decomposition interpolated back through the levels in a process

analogous to multigrid prolongation.

We will now look at some of the ways in which this may be done, and then

examine the algorithms that make use of this approach.

6.9.1 Graph Contraction

There are two commonly used techniques for graph contraction, with little to

choose between them. The main distinction is in how the technique effects in-

terpolation of the decomposition, rather than any more fundamental interaction

with the decomposition algorithm. Thus, we will first look at these two tech-

niques in isolation, then see how they are actually employed.

Both of these techniques reduce the graph to a smaller graph which retains the

characteristics of the larger in some sense. The sequence of graphs in the multi-

level scheme is simply constructed by iteratively applying whichever contraction

142

technique is desired. If the contraction is given by a mapping C(G) such that

lC(G)I < J G J, , then the sequence of graphs G° , G',. . . , G ng is defined by G° = G
and G'' = C(G'). Clearly, G° I,, > IG'I > ... >

6.9.1.1 Edge Contraction

Edge contraction was first proposed in the context of multilevel Kernighan and

Lin partitioning [HL93b]. The principal operation involved is the reduction of

the two graph vertices that make up an edge to form a single vertex in the

contracted graph.

If eij is contracted, the weight of the new vertex, v, formed from its components

is simply w(v) = w,(v) + w(v 3). Similarly, if there is a vertex, Vk, such

that 3eik and 3eik then the weights of those two edges are combined so that

We(eck) w(e 2,) + we(ejk).

It is desirable that the edges selected for contraction be well dispersed through

the graph and so a maximal matching set, is chosen from E. This consists

of a maximal set of edges such that no two are incident on the same vertex, so that

e13 E E max = em max and e 3 V E max. Such a set is not unique, but may be

easily generated in a simple randomised manner. In general, there will always be

vertices not members of an edge in the maximal matching, Ivi E V:

and edges that are also unaffected, Jeij E E : e3 EX}. These vertices and

edges are inherited unaltered by the contacted graph.

The technique has the useful property that there is a direct correspondence

between a good partition of the coarsest graph in the sequence of levels and a

good partition of the finest, initial graph if a simple method of interpolation of

sub-domains is employed. This is because edge and vertex weights are preserved

by the contraction process.

Consider a vertex, v E G 1 , derived from a contracted edge, eij E G'. A sub-

domain, S,,, of a partition may simply be projected back through the levels so

that v E S' = v, V 3 E S,, where the superscript on S indicates the graph

level to which it applies. Likewise, if a vertex in was not derived from

a contracted edge in G', then its assignment to the sub-domain is projected

unaltered, so that it is taken to be in S also.

We will call this method of interpolation direct projection. If the sub-domain

assignment of vertices is inherited by direct projection, then the load balance

143

and total cut edge weight are the same for all levels of graph.

6.9.1.2 Vertex Clustering

In the same way that we seek a well dispersed set of edges for edge contraction,

we seek a well dispersed set of vertices for this clustering technique.

The technique, as presented in [BS92], proceeds by taking a maximal independent

set, Vmax, of vertices from V to be this well dispersed set. A set of vertices is

said to be independent if there are no edges connecting vertices in the set, that is

V 2 E Vmax and e 3 E E = V Vmax. Further, the set is maximal if the inclusion

of any additional vertex would render it no longer independent.

The vertices in the maximal independent set are taken as vertices in the contrac-

ted graph. The connectivity of the contracted graph is determined by growing

small domains, or clusters, out in level sets from the vertices in Vm ax and adding

an edge wherever these clusters intersect.

The resulting clusters will be quite small and not dissimilar to the sub-domains

that would result from applying the greedy algorithm for very high k, except

that here the clusters will always be internally connected and of varying sizes.

As it appears in [BS92], no account is taken of edge or vertex weight, but the

technique is clearly amenable to extension to include these features. This has

been done in various subsequent implementations, for example [WCE95b] and

[DR95]. Taking a vertex in the contracted graph G 11 to represent all the ver-

tices in the cluster in G' from which is was derived, a similar method of direct

projection to that described for edge contraction may be employed to interpolate

a partition back through the levels. If vertex and edge weights are accounted for

also, the same comments made regarding the preservation of the quality of de-

composition by direct projection still apply. However, this contraction technique

was developed in the context of spectral partitioning and there a less intuitive

method of interpolation is employed, as we shall see in section 6.9.3.

6.9.2 Multilevel Kernighan and Lin Partitioning

Having described graph contraction it is now straight-forward to describe multi-

level Kernighan and Lin partitioning. We follow [HL93b], where edge contraction

is used and full account is taken of vertex and edge weights. Although a similar

144

algorithm is described in [BJ93, Jon92}, it does not account for these important

features of the contracted graphs.

Firstly, the sequence of contracted graphs, G ° , G', . . . , GT, is constructed from

the initial graph to be partitioned. The coarsest of these, G' 2°, is then partitioned

and the algorithm proceeds as follows:

• Interpolate from G14 to G1 by direct projection.

• Refine the partition of G' with the k-way implementation of KL described

in section 6.8.1.2.

As rig is typically chosen to be large enough that I G ng I is of the order of a few

hundred vertices, the cost of using a very sophisticated algorithm to partition

G° is not a consideration. Therefore in [HL93b] multidimensional spectral par-

titioning, as described in section 6.7.2.4 and references [HL93a, HL92], is used.

This is also followed by additional KL refinement before the recursive steps back

through the levels described above are begun.

While it is obviously helpful to use a sophisticated algorithm to partition G°,

it is found not to be critical to the quality of the resulting final partition of

G0 [HL95]. This is because the significant operation in the algorithm is not the

partitioning of G°, but rather the subsequent refinement of the intermediate G'.

As KL is applied to every intermediate G', and the vertices in intermediate G'

represent a larger and larger number of vertices in the original G ° as 1 increases,

the refinement is operating on a correspondingly varying length scale at each

level; it is from this that the algorithm derives its success.

In practice KL is applied only periodically, say every couple of levels, to increase

the speed of the algorithm. A further optimisation is to make use of the know-

ledge of the locations of sub-domain borders that may be extracted during the

interpolation of the partition from level to level at no extra cost. If the borders

are known then the KL gains and associated data structures need only be set up

initially for border vertices.

Of course, as KL progresses, the sub-domain borders will change and vertices

not on the initial borders will almost certainly also migrate. To deal with this

a lazy evaluation scheme is used. Whenever a vertex is moved by KL, the gains

of it neighbours are updated. If however a neighbour has not yet had its gain

initialised, then storage is allocated and its gain calculated on an as-needed

basis. This not only reduces the runtime of the algorithm, but also its memory

145

requirements. It also offsets the increased cost of using the k-way implementation

of KL, where both runtime and memory costs are increased compared to the basic

bisection refinement algorithm.

The resulting hybrid algorithm, which is termed ?multilevel-KL, is found to be not

as fast as recursive inertial bisection followed by Kernighan and Lin refinement,

but produces much better partitions for the reasons described above. In most

cases it produces partitions at least as good, if not better, than recursive spectral

bisection followed by Kernighan and Lin refinement. It is the fast runtime of the

algorithm that makes it particularly attractive, as it is significantly faster than

any spectral method, and so is particularly suited to partitioning very large

graphs. If it has any disadvantage it is the memory required to store all of the

intermediate G'.

6.9.3 Multilevel Spectral Partitioning

Multilevel spectral partitioning was initially formulated using vertex clustering

[BS92], but it has also been successfully implemented using edge contraction

[HL95]. We will follow the original formulation to describe the algorithm here.

While multilevel-KL, makes use of the synergy between KL and the multilevel

process, multilevel spectral partitioning is essentially only an acceleration of the

eigensolution of the Laplacian required by the spectral method. As such, it

is unlikely to ever yield a better quality of partition than standard spectral

algorithm.

As before, the contracted sequence of graphs is constructed, but now G° is

not immediately partitioned. Rather, the Fiedler vector is calculated using the

Lanczos method (the eigensolution method that was introduced in section 6.7.2,

and that we shall examine in depth in section 7.4.8) and this vector interpolated

back between levels. Once the Fiedler vector has been interpolated all the way

back to G° , that graph is bisected using the Fiedler vector as a separator field

in the normal manner. The whole process (including graph contraction) is then

repeated recursively on each half of the resulting bisection until the required

number of sub-domains are generated.

It is in the interpolation of the Fiedler vector that the algorithm departs most

significantly from methods we have already encountered.

For the purposes of this discussion we will denote the Fiedler vector, (which

146

was previously known as e2) for graph level 1 as e1 , where we have omitted the

subscript so that it will not be confused with the subscript indicating the scalar

components of e1 , e.

Now, for the vertex clustering method of graph contraction there is a one-to--one

correspondence between the vertices in V, ar C G' and vertices in G. Thus,

if v 1 	corresponds to v E V ax , then we may set those components of

e1 accordingly, so that e = 	This step is termed injection and has only

determined components of et for v E V ax . The subsequent step, averaging, sets

the remaining components relating to vf 0 V ax These remaining components

are taken as the mean value of all the components relating to neighbouring

vertices. As V0 is a maximal independent sub-set of G' we know that all

neighbours of v V ax will be in Vax and therefore will already have been set

by injection.

Assuming e1 was a good approximation to the Fiedler vector for level 1 + 1,

by injection and averaging we now have a rough approximation for et . This

rough approximation may now be improved before it is interpolated on to the

next finest level. As we can expect e1 to be close to the true Fiedler vector,

Rayleigh quotient iteration (RQI) is well known to be a good choice as a method

to improve upon this [GL89, Par92]. RQI has the property that, if its iterations

start from a vector which is close to an eigenvector, then the components of the

iterate in that direction are magnified, which results in the process converging

to the nearby eigenvector.

The Rayleigh quotient of any arbitrary x, for the matrix A, is defined as

xTA x
p(x) 	xTx

For a symmetric matrix p(z) may be shown to be the best estimate for an

eigenvalue, A, if x is considered to be an approximation to an eigenvector of A.

Further, inverse iteration theory tells us that if we solve (A - AI)z = b for x

then this will be a good approximation to the eigenvector.

147

RQI combines these two observations to yield the following algorithm:

Ai = p(x 2)

Solve (A - 	= xi

=

where it is assumed that 1x012 = 1.

RQI requires the solution of A -)I and, as in our application A will be the

Laplacian of the graph at the current level, we need an efficient algorithm for

solving large, sparse symmetric systems of equations. Unfortunately, A - AJ

may clearly be an indefinite system, so the conjugate gradient method can not

be employed. Fortunately, a variant of CG known as SYMMLQ [PS74] has been

developed for systems which are symmetric but indefinite, and which is well

suited for large sparse systems too.

SYMMLQ derives the 'LQ' part of its name from the fact that it uses a LQ fac-

torisation to solve a tridiagonal system, where the 'L' indicates a lower triangular

factor, and the 'Q' an orthogonal factor. The normal CG algorithm effectively

computes the Cholesky factorisation of a tridiagonal system. This will be poorly

determined numerically if the tridiagonal is nearly singular, which is a situation

that will arise if A -)I is close to indefinite. Altering CG to make use of LQ

factorisation in place of Cholesky avoids this problem. While it is far from im-

mediately obvious, and a detailed study is far outside the scope of this thesis, the

CG and Lanczos methods are closely related. When we come to look in detail at

Lanczos tridiagonalisation in section 7.4.8, the connection may become clearer

to those already familiar with the derivation of CG; indeed, the similarity can

be seen in the structure of the algorithms as described by the defining sets of

equations, 5.2 and 7.3.

The steps we have described - injection, averaging, improving the Fiedler vector

with RQI and using SYMMLQ to solve the resulting system of equations - defines

the multilevel spectral algorithm. As we stated at the start of this section,

this is a simply a method of accelerating eigensolution of the Laplacian, and so

the question then arises as to how much faster is multilevel spectral compared

to the usual Lanczos approach? In [BS92] an order of magnitude increase in

performance is observed, while the implementation in [HL95] is found to be

'several times' faster than Lanczos with selective orthogonalisation (see section

7.4.8) which is one of the most efficient Lanczos variants. It avoids the large

148

memory requirements imposed by the use of Lanczos on the full graph, but off-

sets this against the memory requirements of the multi-level scheme itself. While

the multilevel spectral algorithm is more prone to misconvergence than Lanczos,

experience shows that eigenvectors other than the Fiedler vector may still result

in good partitions.

6.9.4 Multilevel Jostle

The Jostle algorithm has been implemented using both vertex clustering [WCE95b]

and edge contraction [WCE97]. In both cases, vertex and edge weights are ac-

counted for and the algorithm is basically unchanged; it is therefore straight-

forward to describe its operation.

In [WCE95b], two variants are detailed. The first is 'JOSTLE/fast reduction,'

which uses the full three-stage algorithm on Gr9 but only employs the load balan-

cing and localised refinement heuristics on G ° . The second is 'JOSTLE/reduction,'

which uses the sub-domain heuristic at both graph levels, although a limit of five

iterations on G° is imposed. It is unclear whether either variant operates on

the intermediate graph levels, or indeed by how much the graph is coarsened by

each contraction, but the standard algorithm and the two multilevel variants all

produce equivalent results in terms of partition quality. JOSTLE/reduction is

found to be almost twice as fast as the standard algorithm, while JOSTLE/fast

reduction is almost three times as fast. In comparison with the multilevel spec-

tral algorithm, the results from the multilevel Jostle algorithms are superior and

consistently several times faster at least. In particular, the runtimes for multi-

level Jostle increase only very gradually with k, while those for multilevel spectral

increase dramatically.

The edge contraction implementation in [WCE97] is studied primarily in the con-

text of dynamic partitioning and so comparison is not so easy, but performance

appears to be broadly similar.

149

6.10 Parallel Decomposition Algorithms and Dy-

namic Partitioning

Thus far we have detailed the available algorithms for mesh decomposition and

graph partitioning, but have said little about their implementation. In the fol-

lowing chapter we will look at the implementation of those algorithms which are

included in PUL-md, which is a serial utility, but first we will examine research

in the area of parallel decomposition algorithms and how it relates to adaptive

problems.

PUL-md is not alone in being a serial utility, as the same is true of most cur-

rently available decomposition packages; for example, Chaco [HL95], METIS' 1

[KK95a], TOP/DOMDEC [FLS93], DDT [FR94] and Party [PD97] all fall into

this category.

There are several reason for this, the most obvious being that parallel imple-

mentation is more challenging. Another is the success of the multilevel approach,

which allows fairly large meshes to be handled on workstations of moderate spe-

cification in a reasonable time, but there are other considerations too, as we shall

see.

Although the use of parallel platforms for unstructured mesh applications such

as finite element or volume calculations is now commonplace, pre- and post-

processing is generally still the province of serial workstations. Mesh generation

is often part of a serial pre-processing stage, and so it is unsurprising that de-

composition should often be viewed as part of this stage also. There are obvious

drawbacks to this approach, in that the runtime of the the pre-processing stage

may form an unacceptable bottle-neck and, moreover, that the memory required

to store and pre-process the whole mesh may be greater than is available on

the serial platform. Although the multilevel approach may go some way to al-

leviating these problems, it is of no help if even the initial mesh can not be

accommodated.

These drawbacks apply to mesh generation as much as decomposition, and we

would therefore like to be able to run all stages of processing in parallel if possible.

While a discussion of parallel mesh generation is certainly inappropriate here,

we will note in passing that it is an area of much current research and is far from

' 11n the course of writing, an alpha test parallel library has been released: ParMETIS Alpha
0.3 (May 1997) [KK97].

150

a solved problem; indeed, the same may be said of parallel partitioning.

Clearly, if the application in question uses a static mesh generated by a serial

pre-processor we have the choice of partitioning either in serial or in parallel. If,

however, the mesh was generated by a parallel pre-processor or the application is

adaptive, where dynamic re-meshing changes the mesh at run-time, then parallel

partitioning is the only reasonable option.

It is important to note the difference between parallel partitioning for a static

mesh application, so called static partitioning, and for an adaptive one; dynamic

partitioning. While the basic aims of static and dynamic partitioning are the

same - to assign parts of the simulation to processors so that load balance is

even and resulting communication is minimised - dynamic partitioning has other

factors to take into account which make it a quite distinct, if related, problem.

Static partitioning need only be carried out once, at the start of the calculation,

while dynamic partitioning must be carried out several times during the course

of solution. Thus dynamic partitioning forms an integral part of the overhead of

using a parallel platform, in that it does not, in itself, contribute to the solution

of the calculation. This tight coupling with the calculation also makes it harder

to produce libraries of wide applicability, such as have been developed for static

partitioning, for here it is much harder to abstract the problem away from the

application.

A dynamic partitioning scheme must fulfil the following criteria:

• Above all, it must be fast and therefore:

- Perform minimal changes to the partition.

- Preserve locality of mesh elements as much as possible.

• It must be storage efficient.

• It must be able to correct any load imbalance that has arisen.

• The scheme must be able to evaluate whether it is worth re-partitioning

after re-meshing at all.

The last point is a recognition that the cost of re-partitioning may out-weigh

the benefit gained in terms of the increased performance of the subsequent cal-

culation on the new mesh. While several of these points are just as valid for

static partitioning, it is the need to take into account the existing partition and

the increased emphasis on correcting load balance that are the most notable

151

differences. The former leads dynamic partitioning algorithms to most closely

resemble the refinement techniques we have encountered in section 6.8. The tech-

niques we have looked at mostly assume that load balance is already correct. In

a dynamic setting an additional stage which first tackles load balance is required

if such techniques are to be used; diffusion algorithms typically fill this role.

The idea behind diffusion [Cyb89] is to form a graph of the communication

topology induced by the current partition; the weighted processor communication

graph, GPOC. There are k vertices in GPOC which represent the processors and

these are given weight ISpl,, which is the load upon them. Edges in G70 are

then added between processors which own adjacent sub-domains and are given

a weight which is the number of cut edges in the dual graph of the mesh which

cross that boundary.

Gp70c is then considered as a physical thermal network, where the weight on its

vertices corresponds to temperature and the weight on its edges to the conduct-

ivity of the connections between vertices. If this system is simulated and allowed

to reach equilibrium, then each vertex will attain the same temperature (compu-

tational load) and the flow of thermal energy will correspond to the total vertex

weight in the dual graph which needs to be exchanged. This is exactly the sort

of algorithm that was introduced during our discussion of Jostle in section 6.8.3,

and as we said there does not determine which elements need to migrate to attain

load balance.

We choose to discuss diffusion here, not because we wish to present a complete

study of dynamic partitioning (for which we refer the interested reader to [Jim97])

but rather to provide an illustrative distinction with static partitioning, as diffu-

sion rarely finds place in the static context; indeed the one algorithm which we

have encountered that makes use of it, Jostle, has been designed very much with

dynamic partitioning in mind [WCE97].

Whether it is the static or dynamic partitioning problem for which we wish

to develop a parallel method, employing one of the standard algorithms that

works well in serial without regard to its suitability for parallel implementation

is inadvisable. A good illustration of this is the Kernighan and Lin algorithm.

As we have seen, the algorithm produces very good results and may be efficiently

implemented in serial, but in parallel its performance is very poor. Not only that,

but it is possible to formally demonstrate that it is fundamentally unsuitable for

parallel implementation.

152

In the same way that we have seen that computational problems may be classi-

fied into categories such as 'NP-complete,' a similar classification may be defined

relating to concurrency. The class NC contains those problems which can be

solved on a parallel machine with polynomially many processors in polylogar-

ithmic time, and so algorithms in NC may be regarded amenable to parallel

implementation. However, the Kernighan and Lin algorithm has been shown to

be P-complete under log-space reductions [SW91]. The proof of this involves

the reduction of Kernighan and Lin to the canonical P-complete problem; the

Boolean circuit value problem. As the definition of P-complete is such that find-

ing one instance of a P-complete problem that is also in NC would mean that

all problem in P are in NC (a highly unlikely result) we may therefore consider

Kernighan and Lin to be effectively outside NC. Additionally, the zero temper-

ature version of simulated annealing has been shown, again in [SW91], to be

P-hard, which is at least as difficult as P-complete 12 .

These considerations lead the authors of [SW91] to develop the Mob algorithm,

which they deemed to be more suitable to parallel implementation than either

Kernighan and Lin or simulated annealing. They produced a data parallel im-

plementation which ran on the Connection Machine CM-2 system, but the work

does not seem to have been subsequently followed up past the extension to the

embedding problem detailed in [SW93] or widely employed by other groups.

Despite the formal proofs in [SW91], parallel versions of both Kernighan and

Lin [GZ87] and simulated annealing [Wi191] have been implemented, but with

at best mixed results.

The parallel KL in [GZ87] was applied to sparse matrix factorisation with some

degree of success on the Intel hypercube. However, it does not make particu-

larly good used of parallelism, as its recursive structure is such that only two

processors perform computation for each bisection. It is unclear how well this

implementation would scale to very large problems as results are only detailed

for small (less than 2000 variables) matrices.

We have already examined some of the variants of basic simulated annealing

presented in [Wil9l] in section 6.4.7.2, and indicated there that a parallel vari-

ant, collisional simulated annealing, had been developed. Collisional simulated

annealing is not true simulated annealing, in that several moves are made con-

currently and the resulting SH is not the sum of the individual 5H values if the

12 For a more detailed and formal discussion to these classes see [JaJ92].

153

changes were made one at a time. Parallel collisions arise, where two or more

changes are made that may be individually beneficial but when taken together

are not. The result is an algorithm that is highly parallel, but not particularly

efficient. Some suggestions are made to tackle this problem, but the overheads

of employing them make them unattractive and tend to erode the inherent par-

allelism of the approach.

[Wi191] compares collisional simulated annealing with parallel implementations

of RCB and RSB on the NCUBE machine within the DIME' 3 programming

environment [Wi190J. Both recursive bisection implementations use the divide

and conquer approach in which there is only limited parallelism. The approach

is to perform each bisection sequentially, but to perform all the bisections at a

given level of recursion concurrently, effectively reducing the number of stages

from k - 1 to 1092 k. Thus, the first bisection occurs sequentially, then the two

halves which result are bisected in two concurrent operations (each sequential in

themselves), the four quarters which result are then bisected in four concurrent

operations, and so on. As the cost of each bisection is dependent on the size of

the sub-problem, this is a rather wasteful approach, particularly if we consider

the fact that the dominant cost in RSB is likely to be the the initial bisection.

Despite this, the divide and conquer RSB is still seen to be the best compromise,

giving better results than RCB and being both faster and more reliable than

collisional simulated annealing.

If a bisection algorithm is to be used efficiently in parallel then there must be

concurrency in both the recursion and the individual bisections. Clearly, similar

comments apply to any recursive multisection algorithm, for that matter. This

approach has been taken in at least two parallel implementations of RSB, as

follows.

Although we have yet to look at Lanczos eigensolution in detail, a glance ahead to

the algorithm as detailed in equations 7.3 of section 7.4.8 is enough to show that

the building blocks for a parallel implementation are concurrent sparse matrix-

vector and inner products, neither of which present any great problem in them-

selves. We have previously noted the similarity between Lanczos and the con-

jugate gradient method, and used the latter as an example of the sort of solution

procedure that is typical of many unstructured mesh applications, and now note

that very much the same parallel linear algebra is required by the two methods.

It is therefore evident that the efficiency of a parallel Lanczos eigensolution for

' 3DIME is the Distributed Irregular Mesh Environment developed at Caltech.

154

RSB will be influenced by how the mesh is distributed initially.

In a dynamic setting this may already be a reasonable distribution if the mesh

has not changed radically, but in a static setting this will either be an arbitrary

distribution (resulting, say, from parallel mesh generation) or else the mesh may

not yet be resident on the parallel machine (if a serial pre-processor was used).

In the latter case we need to use a 'cheap and dirty' decomposition algorithm

to get the mesh onto the parallel platform as fast as possible and then use RSB

to generate the actual decomposition that will be used by the application; good

choices here would be either lexicographic, if we expect some coherence in element

numbering, in which case we can probably just distribute the mesh in the order in

which it is read from file, or a simple direct partitioning by the greedy algorithm.

Further, how the distribution of the mesh is inherited from previous levels of

bisection is an issue. If the first bisection is calculated on all /c processors (we

assume the same number of sub-domains are required) then the two resulting sub-

domains will not, in general, be resident on two disjoint sub-sets of processors.

It may therefore be necessary to perform some redistribution of the mesh to take

this into account, if the recursion is to proceed independently on two disjoint

sub-sets of Jc/2 processors, which adds an undesirable software overhead to the

use of a parallel platform.

A parallel implementation that follows broadly these lines, but side-steps the

latter issue, has been implemented for the Connection Machine CM-5 system

[JMJH95] and is available as part of the Connection Machine Scientific Software

Library, CMSSL [Thi94]. Here a individual processor may be involved in the

calculation of more than one bisection, but this is to some extent hidden behind

the data-parallel language in which the implementation is written (CM Fortran).

The required array operations for the Lanczos method make use of a segmented

scan operation, where an additional integer delimiter vector provides a flag to

separate the concurrent bisections. In this manner, all processors cooperate on

the first bisection, then all cooperate on the two bisections at the next level of

recursion (which occur concurrently) and so on. However, it does not appear that

this parallel implementation significantly out-performs some of the accelerated

spectral methods such as multilevel spectral, but it at least allows the use of

consistent hardware between decomposition and problem solution.

Another implementation, this time one that performs each concurrent bisec-

tion on a disjoint sub-set of processors, has been carried out for the Cray T3D

155

[BS95, Bar95]. Here this sort of parallel control structure is referred to as Recurs-

ive Asynchronous Task Teams or RATTs. The main controlling operation of the

RATTs is to split the problem into sub-problems, each of which are independent

and may therefore be processed asynchronously. This implementation also takes

the next logical step in the development of parallel decomposition algorithm,

namely to incorporate the multilevel approach as well. This parallel implement-

ation builds on the work we have previously detailed in section 6.9.3 and refer-

ence [BS92], and uses the same RQI/SYMMLQ interpolation of the eigenvector,

which requires much the same linear algebra as Lanczos. There are additional

issues in efficiently parallelising the determination of the maximal independent

set for the graph contraction and in the detection of connected components for

the eigensolution, but these problems are solved by the use of parallel algorithms

due to Luby [Lub86] and Gazit [Gaz93], respectively. The performance of the

resulting implementation is very high, about a factor of 140 times faster on 256

T3D processors when compared both to the same algorithm running in serial

and to the CMSSL implementation which have very similar performance. The

implementation's speed-up is noticeably sub-linear, something that the authors

put down to poor initial partitioning (lexicographic is used) and the RATTs

overhead. This implementation makes heavy use of the high performance, but

Cray-specific, shared memory communication primitives, and is not therefore

portable to other platforms.

Another approach is to treat parallel decomposition as a multilevel refinement

problem, where redistribution of the mesh is now integral to the algorithm.

This is the approach taken by both the parallel multilevel Jostle implementa-

tion [WCE97] and the parallel multilevel k-way algorithm of [KK97], both of

which are MPI based and therefore widely portable' 4 .

The Jostle algorithm has the advantage when implemented in parallel that a

large part of the work involved, namely the determination of the level structure

within a sub-domain, is local to the processor on which it resides. Further, a halo

is added to each sub-domain to allow the local calculation of gains, although this

does add some complexity in the maintenance of the halo as the decomposition

is changed. As we have already looked at multilevel Jostle, there is little further

to say here, other than to reiterate our comments at the end of section 6.9.4,

where we noted that comparison with static partitioning methods such as the

14The algorithm in [KK97] is also available in an implementation that makes use of the Cray-
specific shared memory communication primitives which offer higher performance on platforms
where they are supported.

156

RSB implementations we have just discussed is difficult, but that it appears that

parallel multilevel Jostle is highly competitive and possibly one of the fastest

methods we have encountered.

The multilevel k-way algorithm of [KK97] is not one that we have previously en-

countered. It has a very similar structure to multilevel KL, but is more amenable

to parallel implementation (bearing in mind our earlier comments concerning the

unsuitability of KL for this purpose). It is based on the serial version of the al-

gorithm available in the METIS decomposition package, as detailed in [KK95b].

The refinement technique used is termed greedy refinement (not to be confused

with Farhat's greedy algorithm, which is unrelated) and is essentially a simplified

version of KL, with similar gain functions determined by cut-edges.

It is an iterative process where, at each iteration, all vertices on the sub-domain

borders are considered and are either:

• Moved to the neighbouring sub-domain that results in the maximum re-

duction in cut-edges, provided this is beneficial and does do not violate a

load-balance criterion.

• If no such move exists, the vertex is moved so as to improve load-balance,

provided this does not increase cut edges.

• Otherwise left in place.

While this process does not possess KL's ability to climb out of local minima, and

so might be thought to suffer from the deficiencies typified by gradient descent,

when it is coupled with the multilevel approach it nonetheless proves highly

successful. Although no direct comparison is offered in [KK97], it would appear

that performance is on a par with parallel multilevel Jostle and so is of a very

high level.

An advantage of both these parallel refinement algorithms is their suitability

for use in dynamic applications, as they implicitly take into account an existing

mesh decomposition. An extension to spectral methods which can explicitly take

into account an existing decomposition and the mapping of sub-domains to pro-

cessors originates in terminal propagation [DK85]. Here additional information is

inherited from one level of recursion to another, resulting in a constrained prob-

lem [DR94] which can be solved by the iterative application of the eigensolution

methods we have previously discussed. If constrained spectral methods are to be

used in conjunction with dynamic applications they must clearly run in parallel

157

themselves, but to date no parallel implementation for the constrained problem

has been attempted to this author's knowledge.

We will close this section with a short discussion of the sub-domain generation

method [KT93, ST971, which we previously introduced in section 6.4.7.5 in refer-

ence to its use of genetic algorithms. The sub-domain generation method (S GM)

performs parallel mesh decomposition as part of the mesh generation process

itself, which also runs in parallel. The mesh is initially defined only in terms of

a very coarse mesh sufficient to define the problem geometry and allow a reas-

onable initial decomposition to be performed. This initial decomposition of the

coarse mesh is based on a prediction of how many elements will be generated

within each coarse mesh element by subsequent refinement. This prediction is

provided by a back-propagation neural network (one where neurons are arranged

in layers, with information propagating from the input layer, through a number

of hidden layers, to the output layer [RHW861) which has been previously trained

with example data to enable it to make this prediction. Given this prediction,

the coarse mesh is decomposed by using a genetic algorithm to optimise the po-

sition of a line in 2D [KT93], or a plane in 3D [ST97] which bisects the mesh.

This bisection procedure is applied recursively in the usual manner to yield a

decomposition of the coarse mesh. The coarse mesh is then distributed and the

final mesh elements generated in parallel by refinement within the coarse mesh

elements. If the prediction by the neural network of the structure of the final

mesh was good then a reasonable final decomposition will result. This method

is evidently tightly coupled to the application in question and does not appear

to have found wide acceptance, perhaps for that reason. While it is inapplicable

to generic graph partitioning, where there may be no geometric information and

no notion of mesh generation, for example in problems arising from matrix fac-

torisation or circuit placement, SGM does have the useful property that it may

deal with load-balancing the parallel mesh generation process, which is not the

case with any other method we have encountered.

We will return to the discussion of genetic algorithms in chapter 10, where we

introduce a novel approach to their use for mesh decomposition and graph parti-

tioning that was originated at EPCC, as previously mentioned in section 6.4.7.5.

158

6.11 Summary

We have reviewed the range of methods that have been developed for the related

tasks of mesh decomposition and graph partitioning, presenting these methods

according to the classification we introduced at the beginning of this chapter

in section 6.1, which we shall not reiterate here. The comparison of algorithms

presented in this chapter has been a qualitative one, based primarily on the

consensus in the relevant literature and illustrated by example decompositions

of the Widget data-set.

While we have seen that a number of very powerful techniques exist, no one

method has been developed that is clearly the definitive choice of algorithm.

It remains the case that the choice of algorithm is strongly influenced by the

application, which has lead to the development of a number of public domain or

commercially available packages that implement a variety of algorithms, such as

those listed at the beginning of section 6.10 and indeed PUL-md itself.

Despite the volume of work carried out in the field, considerable room for further

study and development exists. The most promising and also most challenging

areas of development would seem to be parallel and multilevel techniques, or

a combination of the two. Not only are these promising directions for the de-

velopment of static partitioning algorithms, but parallel implementation is a

prerequisite if we wish to develop algorithms that are also applicable to dynamic

partitioning.

It is based on the qualitative comparison presented in this chapter that the

algorithms implemented in the PUL-md library have been selected. In the fol-

lowing chapter we look in detail at this implementation, thereafter turning to a

quantitative comparison of the implemented algorithms in chapter 8.

159

Chapter 7

Development of a Mesh

Decomposition Library

The subject of this chapter will be the development of the mesh decomposi-

tion library, PUL-md. The decomposition library is closely associated with the

runtime support library PUL-sm, which we introduced in section 5.1.6. As well

as providing the mesh decomposition, PUL-md provides various pre-processing

facilities that PUL-sm relies upon, for example setting up mesh halos and pro-

cessor blocked files. We will only briefly touch on these facilities, and primarily

focus on the implementation of the mesh decomposition and graph partitioning

algorithms, as this is the main topic of this thesis.

We begin with an overview of the capabilities and top-level design of the library,

then move on to look in detail at its data structures and the implementation

of the decomposition algorithms it supports. This will form the bulk of this

chapter, and will make reference to the previous chapter's survey of algorithms

wherever possible, as many of the concepts will already be familiar from that

study. Where PUL-md departs from the ideas presented in chapter 6, or where

discussion has been postponed from the previous chapter to the current, we shall

go into greater detail. In particular, the Lanczos method of eigensolution, which

is used by our implementation of RSB, and the Fiduccia and Mattheyses linear

time implementation of KL which we employ, will be presented here. Finally,

we shall close with a short demonstration of the visualisation that PUL-md's

interface to the AVS visualisation package allows.

160

7.1 Introduction

PUL-md, and its sister library PUL-sm, are together intended to support most of

the various aspects of computation and communication that parallel unstructured

mesh calculations have in common. In section 5.1.6 we detailed the features of

PUL-sm that support this, and will now do the same for the PUL-md library.

PUL-md provided the following features:

• It is a serial pre-processor for PUL-sm, but may also be used as a stand-

alone decomposition package.

• The input mesh may either be defined by a file in standard format, or from

application arrays by means of a registration function.

• The input mesh may be of arbitrary element type (subject to a few minor

restrictions).

• It will extract the dual graph of a mesh, based on either node, edge, or (in

three-dimensions) face connectivity.

• It will partition the dual graph with a variety of global methods and sub-

sequently refine the result with a variety of local techniques.

• Given a partition (which need not have been generated by PUL-md itself),

it will decompose the mesh constituents accordingly, a process which we

term mesh constituent localisation.

• It supports both the shadow node and halo models of mesh distribution.

• After mesh constituent localisation, halo structures may be generated if

required.

• It writes all files required by PUL-sm for initial mesh and application data

input at the start of parallel calculation, in processor blocked format.

Although it is implemented as a set of library functions, the PUL-md distribution

also provides code to allow its use as a stand-alone decomposition package with

no further user programming necessary. Its visualisation facilities are presented

in a similar manner, and do not therefore form part of the library proper.

161

7.2 Application Program Interface

The features of PUL-md which we have just outlined are presented to the user

through a set of functions, which form the library's application program interface

(API). Although PUL-md is implemented entirely in ANSI-C, like PUL-sm its

API supports both ANSI-C and FORTRAN-77 prototypes. As PUL-sm is also

implemented entirely in ANSI-C and makes use of the widely implemented MPI

standard for all message passing, the two libraries together allow PUL to support

a wide variety unstructured mesh application on a wide variety of platforms.

The full PUL-md API for C applications is as follows:'

. Mesh Initialisation and Registration:

- md_mit

- md_register

- md_dataSizes

• Mesh Decomposition:

- md_decompose

- md_tune

- mddua1Graph

• Mesh Constituent Localisation:

- md_localI'lodesElmts

- md_localFaces

- md_localEdges

• Mesh Halo Generation:

- md_nodeElementHalos

- md_faceHalos

- md_edgeHalos

• Mesh Input/Output:

'changing the 'md_' prefix to 'MD' yields the FORTRAN interface. In this thesis we restrict
ourselves to presenting code fragments and examples in C only.

162

- md.readDecomp

- md_writeMesh

- md_createDataFile

- md_writ eProcHeader

- mdwriteProcData

- md_writeGlobalHeader

- md_writeGlobalData

- md_closeDataFile

. Miscellaneous Functions:

- md_reportError

Of these, those functions concerned with initialisation, registration and decom-

position we will have more to say about. We will say no more than we already

have regarding mesh constituent localisation, halo generation and input/output

functions. Concerning the single function in the miscellaneous category,

mdreportError, we will simply note that it serves to interpret returned error

codes in the event of an internal library error. It is not our intention to duplicate

the complete specification of the API and file formats that is presented in the

PUL-md User Guide, and so we refer the reader to that document [BDT96] for

further details.

Our main concern will be with the implementation of the md_decompose function,

which performs the actual mesh decomposition, as its name would suggest. An

example of its usage is as follows:

#include pul-md.h"

result = md_decompose("meshFile", MD_EDGES, MD_RSB, MD_REF_KL,
resultFile", resultArray, 16)

Here we are decomposing the mesh given in meshFile" into 16 sub-domains

using RSB subsequently refined by KL. The dual graph on which RSB operates

is based on edge connectivity in the mesh, and the resulting decomposition is

written to "resuitFile" and the array resultArray. All of the symbolic con-

stants ("MD_EDGES", etc.) and function prototypes are defined in the include file

"pul-md . h".

163

Most of the decomposition algorithms available have associated tunable para-

meters which can modify their default behaviour if desired. This may be done

through the function md_tune, so that we might precede the call to md_decompose

with the following if we wished to modify the eigensolution used by RSB, for ex-

ample:

result = md_tune(MD_RSB_ORTI-IOG, MD_FALSE)

If we do not wish to read the mesh from "meshFile", but rather from applica-

tion arrays, then the functions md_mit and mthregister allow this. The former

specifies global features of the mesh, such as number of spatial dimensions and

so forth, while the latter reads the application arrays into an internal data struc-

ture. If this has been done, then we may substitute NULL for "meshFile in the

call to md_decompose and the decomposition function will then use the previ-

ously registered information. Similarly, output may be limited to either file or

application array by substituting NULL for the unrequired argument.

The remaining initialisation function, md_dataSizes, is used by PUL-sm for the

input of application data, and so need not concern us here.

The remaining decomposition related function, md_dualGraph, is used to extract

the dual graph of the mesh without subsequent partitioning. It is useful if an-

other, graph based, partitioning package is to be used in place of md_decompose

and may take its mesh description either from file or through mth.register, just

as we have seen for md_decompose itself. If an external partitioning package has

been used then mdreadDecomp enables the resulting decomposition to be read

prior to subsequent mesh constituent localisation, halo generation and output.

7.2.1 Stand-Alone Usage

The test program for PUL-md forms both an example of usage for the libraries

and a stand alone decomposition tool. It reads a mesh structure file and outputs

a file giving a processor assignment for each element, both in PUL standard

formats.

The program is called md_test and takes the following command line arguments

(in order):

• baseFileName, the mesh structure filename root.

164

• format; A (ASCII) or B (binary) - defining the format of the input file.

• dual; NODES, EDGES or FACES - defining the type of dual graph required.

• algorithm; RIB, RSB, etc. - defining the global decomposition algorithm.

• refine; NONE, KL, etc. - selecting any subsequent refinement.

• nParts, the number of sub-domains into which to decompose the mesh.

It looks for a standard mesh structure file in baseFileNaine . mdesc and places its

output in baseFileName . decomp. Optionally, if the file baseFileNaiue . parain is

present, then that file is read to adjust user tunable parameters. It also provides

statistics giving metrics of decomposition quality.

Thus, to decompose the mesh in the ASCII file widget.mdesc using the same

options as were used in the previous example, the appropriate command would

be:

unixshell$ md_test widget A EDGES RSB KL 16

Where the resulting decomposition would be written to widget . decomp.

Similarly, if we wished to tune the same parameter as we did in the previous

example, then the file widget . parain would contain the line:

MD_RSB_ORTHOG = MD_FALSE

Again, full details are available in the User Guide.

7.3 Design and Data Structures

We will now turn our attention to examining the implementation of the decom-

position function md_decompose.

The algorithms implemented in md_decompose fall into two categories; global

methods and local refinement techniques. These are specified as two separate

arguments to the decomposition function, as was illustrated in the example of

usage.

The global methods available are:

165

• Simple random (SR), cyclic (SC) and lexicographic (SL) partitioning.

• GREEDY, Farhat's greedy algorithm.

• RLB, a recursive layered (graph) bisection.

• RSB, a recursive spectral bisection.

• RCB, a recursive coordinate bisection.

• RIB, a recursive inertial bisection.

and may be used in combination with either:

• No refinement.

• MOB, the Mob refinement algorithm.

• KL, the Kernighan and Lin refinement algorithm.

We will examine each of these algorithms in turn later, but first will look at the

high level design of the code, then turn to the data structures and features that

the individual algorithms have in common.

7.3.1 Top Level Design

The top level of the decomposition function, in somewhat abbreviated form, is

as follows:

Partition *partn;

1* Timing point A *1

CALL(__dual_j&partn, dual, alg, meshFile));

/t Timing point B */

switch (aig)

{

case MD_RIB:
CALL(__rlb__(partn, nParts, refine));
break;

case MD_RSB:
CALL(__rsb__(partn, nParts, refine));
break;

166

default:
STOP (MD_NOTSUPPORTED);
break;

1* Timing point C *1

if (decompFile != NULL)
{

CALL(write_decomp(partn, decompFile));

P.

if (MS.decomp != NULL)
{

CALL(store_decomp(partn, MS.decomp));

}

CALL(print_stats(partn, nParts));

dummy = __partn_destroy__(&partn);

The first action is to declare a pointer to the Partition data structure which is

common to all PUL-md decomposition functions. The Partition data structure

essentially embodies both the dual graph and its partition into sub-domains. It

also includes addition information that the various decomposition algorithms

require, as we shall see.

The Partition data structure is allocated and initialized by the function

dual__, which extracts the dual graph of the mesh. In PUL-md all externed

functions that do not form part of the API are pre- and postfixed with ""to

avoid name-clashes with application functions or variables.

Next, the case statement chooses the global decomposition algorithm that is

to be used, after which the decomposition is written to file and/or array (func-

tions write_decomp and store_decomp), statistics of decomposition quality are

printed (print_stats) and finally the Partition data structure is destroyed

(__partn_destroy__).

It can be seen that there is no facility for the partitioning of arbitrary graphs

not arising directly from a mesh through the call to __dual__. The code could

easily be modified to accommodate this by simply substituting a new routine in

its place which sets the Partition data structure directly from a user-supplied

graph description.

167

7.3.2 The Partition Data Structure

All access to the Partition data structure is abstracted in the code, either

through functions like __partn_destroy__ or through CPP macros. We will

not detail the partition manager here, except insofar as it has direct bearing on

the coding of the decomposition algorithms, but further details may be found

in the original PUL-md Design Description [Tre95a]. However, the Partition

data structure itself is fundamental to the decomposition algorithms and has

particular bearing on their primarily recursive structure. Hence we will need at

least some understanding of it before proceeding to describe the implementation

of the algorithms themselves.

The basic unit of the Partition data structure is the dual graph vertex, which

is defined as:

typedef struct vertex Vertex;
struct vertex

{

short index;
short position;

short gain;
short nNeigh;
short locainNeigh;

mt 	layer;
Vertex **neighbours;

mt 	veclndex;

double *coords;
Dltem *list_].oc;

/* Index of sub-domain the vertex is in */
/* MD_BOWDARY or MD_INTERNAL (BIB) */
/* Gain in bWidth if vertex moved (MOB/KL) */
/* Number of edges from this vertex */
1* Number of edges from this vertex
* which do not leave the partition (RSB) */

/* Layer index within domain. (RLB) */
1* Array of ptrs to connected vertices */
/* Position of this vertex in a partition's
* array of vertex pointers (RSB) */

/* Pointer to coords of this vertex (RCB/RIB) */
/* Pointer to KL vertex gain list entry */

The connectivity of the graph is defined by the list of neighbours stored in the

array neighbours, which is of size nNeigh. Of the remaining fields, most are

algorithm specific (as indicated in the comments) with the exception of index,

which gives the sub-domain in which the vertex presently resides.

There is currently no provision in the Vertex data structure for either vertex or

edge weights, although these could easily be accommodated as additional fields in

the structure 2 . As we are primarily dealing with graphs arising from unstructured

meshes, most of which are of uniform element type, this is not a great drawback.

However, if general graphs are to be considered, or if elements are non-uniform

2This would result in the duplication of data for the edge weights on the two vertices that
make up the edge, but is still the most economic option.

168

in the mesh case, then such an extension would clearly be necessary.

The Partition data structure itself is defined as:

typedef struct Partition
{

mt size;
mt p1;
mt p2;
mt bWidth;
mt maxGain;
mt dims;
mt sep_vertex;

Vertex **vertexPtrs;
Vertex *vertices;
double *vertexCoords;
IntList **tmp;
SpaceMgr *space;

} Partition;

/* Total number of vertices */
/* Index of one side of partition */
/* Index of other side of partition */
/t Bisection width of the partition */
/* Maximum gain value for the vertices */
/* Number of dimensions for coords */
1* Array index of boundary vertex, in */
/* separator sorted order */
/t Array of pointers to partition vertices */
ft Array of all vertices */
ft Array of all vertex coords */
/t Workspace used during initialization */
/t Storage management *1

How this structure is used is illustrated in figure 7.1. This figure shows its

application to a mesh, the dual graph of which is not shown. The dual of the

mesh in the figure is partitioned according to two instances of the Partitior

data structure; one for the original partition and one for the current partition,

which is a sub-division of the former. Each instance determines a bisection of

the dual, and so we see the mesh split into three. We note that the fields in

the declaration of Part it ion which specify the indices of the sub-domains it

contains (p1 and p2) are two in number, which biases its use towards bisection.

From the figure we see the array of vertices, each of type Vertex, is only directly

referenced by the original partition. The current partition has its vertices

array undefined, which will be the case for all instances of the Part it ion data

structure except the initial instance created by __dual__. This allows efficient

use of storage, so that information is not unnecessarily duplicated when the data

structure is used in a recursive manner, as only the vertexPtrs array is used in

all instances. We also see the reference to the SpaceMgr structure which is made

through the space field; this data structure is used by the PUL-md memory

manager which the partition manager employs. This is of particular importance

in the initial specification of the dual graph in __dual__, where we have to take

into account that each vertex has an unknown number of neighbours, and so

the size of the required storage for the neighbours array in each instance of the

Vertex data structure is not known in advance.

169

... 	 Original Partition

FM_Gain structure
(if defined)

Vertex N 	Vertex

index: (I mdcx: 2
position: MD_BOUNDAR position: MD_INTERIOR
gain: —4 gain: —6

nNeigh: 10 (Vertex ordering is carried through from entity ordering nNeigh: 12

locainNeigh: 7 in the original mesh structure file) IalnNeigh: 	12
layer: undefined layer: undefined
neighbours: not shown neighbours:
vecindex: i (in original) vecindex: n (in current)
coords: not shown coords:

list_bc: 	undefined list_bc:

0

I SpaceMgr structure

51

Partition

size: 	35
I II
2

bWidth: 	27
maxGain: 	13
dims: 	2
sep_vertex: not shown
vertexPtrs:
vertices: undefined
vertexCoords: undefined
imp: undefined
space: Current Partition

Partition

size: 	52
0
2

bWidth: 28
maxGain: 13
dims: 	2
sep_vertex: not shown
vertexPtrs:
vertices:
vertexCoords: -
tmp: undefined
space:

Original Partition

n 	 34

Figure 7.1: The partition data-structure.

170

7.3,3 Recursive Routines

How the Partition data structure relates to the recursive nature of most of

the algorithms implemented in PUL-md is made clearer by examining a typical

example. Below we show the code for RSB, again in somewhat abbreviated form;

the code structure is similar for all the recursive algorithms, however.

extern mt __rsb__(Partition *partn, mt nParts, mt refine)
{

Partition *pl=NULL;

lSideSize = (nParts I 2);
rSideSize = (nParts I 2) + (nParts % 2);

PARTN_BWIDTH(partn) = 0;
PARTN_P2(partn) = PARTN_P1(partn) + lSideSize;

CALL (spectral_b isect ion (partn))

switch (refine)
{

case MD_REF_NONE:
break;

case MD_REF_KL:
CALL(__kl__(partn, 2));
break;

case MD_REF_MOB:
CALL(__mob__(partn, 0));
break;

default:
STOP (MD_NOTSUPPORTED);
break;

}

if ((splitPt = __partn_sort__(partn)) < 0) STOP(MD_ERROR);

if (iSideSize > 1)
{

CALL(__partn_split__(partn, PARTN_Pi(partn), splitPt, &pl));
CALL(__rsb__(pl, iSideSize, refine));
CALL(__partn_destroy__(&pl.));

}

if (rSideSize > 1)
{

CALL(__partn_split__(partn, PARTN_P2(partn), splitPt, &pi));
CALL(__rsb__(pi, rSideSize, refine));
CALL(__partn_destroy__(&pl));

}

171

if (p1 	NULL) dummy = __partn_destroy__(&pl);

}

The first action, again, is to declare a pointer to an instance of the Partition

data structure, this time one that will embody first one, then the other of the

two sub-domains that result from the bisection. As the recursion occurs in a

'depth-first' manner, only one such structure is needed.

The argument, nParts, determines how many sub-domains are to ultimately

be created from the current Partition. For bisection we can think of the two

resulting sub-domains as the 'left' and 'right' sides, so we denote the number of

sub-domains which must ultimately result down the two branches of recursion at

this level as iSideSize and rSideSize accordingly. If we are partitioning into

a power of two number of sub-domains in total, then iSideSize and rSideSize

will be equal at each and every level of recursion. If this is not the case, then we

must generate an unbalanced pair of sub-domains at some point in the recursion,

so that the final sub-domains are balanced. Not all algorithms in PUL-md take

this into account, so in general we assume that nParts is a power of two and a

balanced bisection is performed.

Next in the code fragment, we see the bWidth and p2 fields in partn being

set through the appropriate macros. Once this is done the actual bisection is

performed. In this case the bisection is spectral and so spectral_bisection

is called, but if, for example, an inertial bisection was required then a call to

inert iaLbisect ion would take its place here.

Following the bisection the resulting partition may be refined, if required, by

either Mob or KL, as determined by the case statement.

Of particular importance are the two partition manager functions that are called

before the recursive call to __rsb__. The first of these, __partn_sort__ sorts

the vertexPtrs array of the current partition, partn, according to the index

field of each vertex. The actual positions of the vertices in the vertices array

of the original partition are left unaltered. This function must be called before

the subsequent calls to __partn_split__.

__partn_split__ splits a sorted partition and returns a sub-partition corres-

ponding to one or the other of the two halves (i.e. sub-domains) of the current

partition. As the vertexPtrs array of the current partition has been sorted,

the new partition's vertexPtrs array can point to the appropriate part of its

172

parent's array and its vertices can be NULL, no extra storage need be allocated.

In this way we are able to implement this recursive process with only a very

small additional memory overhead associated with the depth of recursion, which

may be an important consideration if we are partitioning into a large number of

sub-domains.

After the new partition, p1, has been split from the left side of its parent, it is

then recursively partitioned by __rsb__. After the left side has been dealt with

p1 is then deallocated with __partn_destroy__ and reused in the recursion

down the right side in exactly the same manner.

Having introduced the concepts, design and data structures that form the frame-

work in which the decomposition algorithms are implemented, we will now ex-

amine each of them in turn, starting with the global algorithms, then moving on

to the local refinement techniques. In the course of doing so we will introduce

the various tunable parameters that influence their behavior.

7.4 Implementation of Global Algorithms

There are two features of PUL-md's implementation of its global decomposition

algorithms which are common to several of them, but which are not used by

any of the local refinement techniques. Hence we shall introduce these features

before proceeding.

7.4.1 Determining Layer Structures

Where the Cuthill-McKee algorithm is used in conjunction with lexicographic

partitioning or recursive layered bisection, and also where we employ a similar

process in the course of the greedy algorithm, we must compute a layer structure

for the graph.

Although there are distinctions between these various instances, the basic al-

gorithm used is the same, as shown in the pseudocode of figure 7.2.

The important feature to note is the use of the vertex queue, Q, which is imple-

mented as a singly linked list. As the algorithm proceeds, vertices are added to

the end of the queue (the tail of the list; line 15) when they are first encountered

as neighbours, n, of the vertex, v, which has just been taken from the front of the

173

Pseudo: Layers
i=O
layerc = 0
v = seed vertex
layer(v) = layercur

Vertex queue Q = v
WhuleQ:Aø

Pop vertex v from the head of Q
number(v) = i
i+=1
If layer(v) 1ayer 	Then

layerc += 1
Endlf
For All neighbours, n, of v not assigned a layer

1ajer(n) = 1ayer' + 1
Add n to the tail of Q

EndFor
EndWhile

EndPseudo

Figure 7.2: Computing the layer structure.

queue (head of the list; line 7). It is clear from this that Q is of variable length

and that we can make no a priori estimate of the maximum storage required,

save to say that it must be smaller than the current graph itself, hence the use

of a linked list data structure is to be preferred. When the list is empty (Q =A 0;

line 6) we know that the entire graph has been considered if it is connected, or

that at least a connected component has been found containing the seed vertex.

In the latter case we must re-start the procedure with a new seed vertex in a part

of the graph not yet visited. The numbering of the vertices (line 8) may be done

before or after they are included in the list, but assigning the vertex to a layer

(line 14) before it is added to the queue enables us to tell when an entire layer

has been exhausted and increment the layer counter (lines 10 to 12) accordingly.

It can be seen that this pseudocode differs from that shown in figures 6.6 (Cuthill-

McKee) and 6.12 (Farhat's greedy algorithm).

The process is actually equivalent to the Cuthill-McKee pseudocode, except that

we are unconcerned with the sorting of vertices by vertex degree that occurs in

line 11 of the pseudocode in figure 6.6. In point of fact, we prefer to keep the

order in which vertices are encountered as neighbours, as we might reasonably

expect there to be some coherence in the order that results within each layer.

Thus, if a layer is split between two sub-domains we would expect the resulting

boundary to be better than that which would result if the vertices were sorted

by degree, which has no relation to adjacency.

174

The difference in the case of the Farhat's greedy algorithm is an evident result

of the fact that the pseudocode in figure 6.12 is based on the mesh itself, not its

dual graph. That said, the pseudocode presented here explores the entire mesh

(or all of that connected part in which the seed vertex resides). If we wish to

use this approach to implement the greedy algorithm we simply need to halt the

process when sufficient vertices have been visited to fill an entire sub-domain and

restart from another seed.

7.4.2 Separator Fields

Separator fields are already familiar to us from section 6.5.2, and md_decompose

uses exactly the simple approach detailed the pseudocode of figure 6.22 in that

section.

We are primarily concerned with bisection and so a simple optimisation oppor-

tunity is offered to us here. Rather than bisecting the current graph into two

balanced sub-domains, we may allow some level of imbalance in return for a

reduction in cut edges.

Before any decomposition of the current graph takes place, md_decompose con-

siders all vertices to be initially in a single sub-domain determined by the p1 field

of the Partition data structure. It performs a bisection by moving the required

vertices to sub-domain p2, using the partition manager function __partn_move__,

which keeps track of various related data including the number of cut edges,

which is recorded in the bWidth field of the Partition data structure.

Separator bisection is performed by sorting the vertexPtrs array on the key

provided by the separator field and moving vertices in just this way. This means

that we can keep track of bWidth in the course of this process and choose a

bisection which minimizes it, subject to some maximum acceptable imbalance,

at no significant extra cost. This sorting is unrelated to that performed by

__partn_sort__ which is only called later, after local refinement, as we have

seen. The sorting here is done by a standard indexed implementation of the

Quicksort algorithm [FPTV92].

We note for future reference that a vertex in the sorted vertexPtrs array that

lies next to the bisection boundary is recorded in the sep_vertex field of the

Partition data structure, so that the split point in the array may subsequently

be identified.

175

If the user wishes to take this option, then the tunable parameter MD_SEP_IMBAL
should be set to MD_TRUE using md_tune. If this is done then the maximum accept-

able imbalance may be specified, via the the tunable parameter MD_SEP_MAX_IMBAL,

which is considered as a percentage of the number of vertices in the current graph.

The defaults for MD_SEP_IMBAL and MD_SEP_MAX_IMBAL are MD_FALSE and 5%,

respectively. An upper limit of 30% is imposed on MD_SEP_MAX_IMBAL.

7.4.3 Simple Partitioning

Global algorithm selected by: MD_SR, MD_SC and MD_SL

Tunable parameters: MD_SL_CM_TIMES (MD_SL only)

Simple random, cyclic and lexicographic partitioning, may be selected by calling

md_decompose with the symbolic constants MD_SR, MD_SC and MD_SL to specify the

global decomposition algorithm, respectively. In order that any subsequent local

refinement may proceed in a pair-wise fashion, all are implemented by means of

successive bisections.

Random and cyclic, as we saw in sections 6.3.1 and 6.3.2, are not feasible decom-

position algorithms in themselves, and their implementation is trivial. Hence

they do not warrant further discussion, except to note that they are largely in-

cluded for purposes of comparison and to give an arbitrary decomposition as the

start of subsequent local refinement. There are no tunable parameters associated

with these methods.

Lexicographic partitioning is again trivial to implement given some vertex num-

bering. This numbering may be either that implicit in the initial vertex order-

ing or may be provided by Cuthill-McKee renumbering, as we saw in section

6.3.4. If Cuthill-McKee is used then the method we have just detailed in 7.4.1

is employed. Whether this takes place or not is controlled by the tunable para-

meter MD_SL_CM_TIMES, which determines the number of Cuthill-McKee itera-

tions. The default is 2 and selecting 0 iterations preserves the original vertex

numbering.

7.4.4 Recursive Layered Bisection

Global algorithm selected by: MDRLB

176

Tunable parameters: MD_RLB_CM_TIMES and MD_RLB_CM_BEST

As we have already described the basic algorithm in section 6.7.1, and have just

detailed the mechanism used to determine the dual graph's layer structure in

section 7.4.1, there are only a few point left to discuss concerning the imple-

mentation of RLB.

Two points we must consider are the choice of initial seed point and the possibility

that the current graph may well be disconnected.

Looking back to the Vertex data structure, we see that is has a field, position,

which may take either the value MDBOUNDARY or MDJNTERNAL, depending on

whether the vertex represents an element on the external mesh boundary or not.

The initial seed point for the layer structure is found by cyclically traversing the

vertexPtrs array from a random starting point and taking the first vertex found

on the external boundary as the initial seed. If no such vertex is found then the

first vertex found on an internal sub-domain boundary is used.

If the current graph is disconnected then each connected component is identified

and considered in order of decreasing size. These components are associated, in

that order, with the first of the two sub-domains in the bisection until the addi-

tion of another component would cause the sub-domain to exceed the required

size; that connected graph component is then split between the two sub-domains

according to its layer structure and all the remaining (smaller) components are

assigned to the second sub-domain.

While we follow the pseudocode of figure 7.2 to determine the layer structure, in

many cases we may terminate the process if sufficient vertices have been identified

in a connected graph component to fill a sub-domain. We can not do this if

we wish to use the process in a Cuthill-McKee like manner to find a maximally

separated pair of vertices and take one of these as the seed point for the bisection,

except on the last iteration.

The number of Cuthill-McKee iterations is controlled by the tunable parameter

MD_RLB_CM_TIMES. If 0 iterations are selected the initial seed located on a border

is used to determine the bisection, otherwise the required number of iterations

are performed and the resulting last vertex found may be used.

We note that the bisection itself will occur along one of the layers we have found,

and that which layer this is may be identified as we go along. If we assume that

an approximate measure of the number of cut-edges that would result from a

177

bisection along this layer is given by the layer's size, then we may estimate the

quality of the resulting bisection at no significant extra cost. This is useful

because, although the Cuthill-McKee iterations tend to quickly settle down to

alternating between a maximally separated pair of vertices, using one of these

may result in a better bisection than the other and we may use our estimate

to choose between them. Hence we implement this optimisation, which may be

selected by setting MD_RLB_CM_BEST to the value MD_TRUE.

The default values of MD_RLB_CM_TIMES and MD_RLB_CM_BEST are 1 and MD_FALSE,

respectively.

7.4.5 The Greedy Algorithm

Global algorithm selected by: MD_GREEDY

Tunable parameters: none

Like RLB, the greedy algorithm makes use of the method detailed in the pseudo-

code of figure 7.2 and, as we said in section 7.4.1, we now halt the process when

we have filled a sub-domain. Again we must consider the choice of seed vertex

which will now determine the start of each new sub-domain; referring back to

figures 6.13 to 6.15, these are indicated by the elements marked in black.

In dual graph terms, Farhat's algorithm takes as the seed of each new sub-domain

a vertex with as few as possible neighbours that are not already part of an

existing sub-domain. Our implementation does not take this into consideration,

and simply uses the vertex that would have next been chosen after the last that

was actually taken by the previous sub-domain. If this seed is not valid (i.e. is

in an existing sub-domain) then an arbitrary one of its neighbours is used, or,

if no neighbours are valid, the new seed is simply taken as the first vertex in

the vertexPtrs array. As this is done after the call to __partn_sort__ which

defined the previous sub-domain the seed will always be valid. The very first

seed is also chosen as the first vertex in the vertexPtrs array.

Our implementation is essentially a modified version of RLB, where a unbal-

anced bisection is used to partition the graph into one new sub-domain and the

remainder of the, as yet unexplored, graph; hence the recursion is now single-

sided. This is done subject to the choice of seeds just outlined and, of course, has

none of the iterative aspects of Cuthill-McKee that RLB does. An additional con-

sideration is what to do if a sub-domain becomes 'trapped' by being completely

178

surrounded by previously generated sub-domains and/or external boundaries be-

fore enough layers have been added to bring it up to its required size. In this

case we must start from a new seed, in an as yet unexplored part of the graph,

and claim as many more vertices as are needed to bring the sub-domain up to

size. This results in a disconnected sub-domain being generated, but is unavoid-

able if balanced sub-domains are required. If this occurs then the new seed for

the disconnected portion of the sub-domain is found by cyclically traversing the

vertexPtrs array from a random starting point and taking the first valid vertex

found on the external boundary. If no such vertex is found then the first valid

vertex found on a internal sub-domain boundary is used. This is essentially the

same process used by RLB.

We implemented the algorithm in this way so that we might use pair-wise refine-

ment at each stage to improve the border between each new sub-domain formed

and the remainder of the graph. A difficulty arises if we do this, in that the

vertex on the boundary between the new sub-domain and the remainder of the

graph that we would otherwise have used as the seed for the next sub-domain

may no longer be on the border after local refinement. This issue is as yet un-

resolved, and so the current release of PUL-md does not support refinement in

conjunction with this algorithm.

7.4.6 Recursive Coordinate Bisection

Global algorithm selected by: MD.RCB

Tunable parameters: MD_RCB_CYCLE, MD_RCBF IXED,

MD_SEP_IMBAL and MD_SEPMAX_IMBAL

The implementation of RCB follow exactly that presented in section 6.6.1, where

the algorithm was introduced.

The required coordinate information is extracted from the mesh by __dual__ and

placed in the vertexCoords array pointed to by the Partition data structure,

and also by the coords field in the Vertex data structure. The coordinates of

each vertex are taken to be the mean of the nodes making up the corresponding

mesh element, but this information is only calculated and appropriate storage

allocated if a geometric (i.e. RCB or RIB) algorithm is to be used (hence the

aig argument to __dual__)

179

The chosen coordinate axis is then used as a separator field in the familiar man-

ner, and all that is left to discuss is which axis is to be used. This is determined

by the settings of the associated tunable parameters, as follows.

If MD_RCB_CYCLE takes the value MD_TRUE, the axis chosen cycles through the

available dimensions, changing at each level of recursion. For example, in two

dimensions, if the first bisection chooses the x-axis, then both of the next two

bisections, which occur at the first level of recursion, will choose the y-axis. The

next four bisections at the second level of recursion then cycle back to using the

x-axis, and so on. This is option 3 presented in section 6.6.1, which we termed

there orthogonal recursive bisection, and results in a decomposition like that

illustrated in figure 6.26.

If, on the other hand, this parameter takes the value MD.FALSE, then the axis is

chosen according to the shape of the mesh being bisected. Each axis is examined

and the extent of the mesh in that direction found. The chosen axis is then

that with maximum extent i.e. the long axis of the mesh. It is hoped that this

results in a minimal cut surface area. This is option 2 presented in section 6.6.1,

which we termed there (true) recursive coordinate bisection, and results in a

decomposition like that illustrated in figure 6.25.

A further tunable parameter, MD_RCB_FIXED, if set to MDTRUE results in op-

tion 1 from section 6.6.1 being taken. Now the direction of maximum extent

is found only once, at the first level of recursion, and is always used. This we

previously termed direct coordinate partitioning, and results in a decomposition

like that illustrated in figure 6.24. It is an error to set both MD_RCB_CYCLE and

MD_RCB_FIXED to MD_TRUE, for the obvious reasons.

7.4.7 Recursive Inertial Bisection

Global algorithm selected by: MDRIB

Tunable parameters: MD.SEP_ IMBAL and MD_SEP_MAX_IMBAL

Having just described ROB, and previously presented the inertial algorithm in

section 6.6.2 all we really have to say concerning the implementation of RIB

is how the eigensolution of the moment of inertia tensor is carried out. As

this is a small real symmetric matrix, eigensolution is straight-forward; we use

a standard implementation based on Jacobi transformations [FPTV92]. The

180

actual implementation of RIB will cope with an arbitrary number of dimensions,

but we only expect to ever have to deal with the two and three dimensional cases.

There are no tunable parameters associated specifically with RIB and we do not

implement the direct inertial partitioning referred to in section 6.6.2.

7.4.8 Recursive Spectral Bisection

Global algorithm selected by: MDRSB

Tunable parameters: MD_RSB_TOL, MD_RSB_ ORTHOG,

MD_SEP_IMBAL and MD_SEP_MAX_IMBAL

In section 6.7.2 we showed how the basis of spectral partitioning is the evaluation

of the Fiedler vector, that is the second eigenvector of the (possibly weighted)

Laplacian matrix of the graph. We did not then go. into detail as to how this

may be carried out, so as to not distract from the derivation of the method. We

stated there that this eigensolution could be implemented efficiently and we will

now show this to be the case.

We will turn our attention first to what our requirements are, then see that the

Lanczos algorithm is the method of choice to satisfy them. Subsequently we will

look at the stability issues that need to be addressed in any practical Lanczos

procedure, finally turning to the details of the PUL-md implementation.

7.4.8.1 Eigensolution

We are faced with the task of calculating a particular eigenvector of the large

sparse symmetric matrix Lw. If we take the eigenvalues to be ordered such that

Al < A2 < ... A,, with corresponding orthonormal eigenvectors e 1 , e 2 ,. . . , e,

then the eigenvector we seek is e 2 , which is the Fiedler vector.

A complete eigensolution would be wasteful if a more efficient method could be

found that would give us just the second eigenpair. Indeed, as LW e and

n may be in the millions, complete eigensolution is almost certainly out of the

question. Additionally, we have the useful knowledge that e 1 = w, the vector of

the square roots of the vertex weights, and would like to exploit this.

A method that satisfies these requirements is the Lanczos algorithm. The al-

gorithm does not directly yield the eigensolution of LW, but rather a tridiagonal

181

matrix which is similar to it (i.e. has the same eigenvalues). However, the ei-

gensolution of a tridiagonal matrix is straight-forward and may be carried out

in linear time by standard methods. The eigenvectors of the tridiagonal matrix

may then be mapped back to those of LW, so this an acceptable way to proceed.

For the early part of its history Lanczos was discounted in favour of Householder's

tridiagonalisation when a complete eigensolution is required, the latter being

more efficient even when the matrix is sparse and much more stable. It is in

situations such as the partial eigensolution of LW that Lanczos wins out, in that

only a partial tridiagonalisation need be performed if it is the extreme eigenvalues

that are required.

7.4.8.2 The Lanczos Algorithm

There are several ways to motivate the derivation of the Lanczos algorithm, but

we shall follow [Par92] and take the Rayleigh-Ritz procedure as our starting

point.

Say we have a symmetric matrix, A E R 1 'T2 , whose eigenpairs we wish to ap-

proximate from the rn-dimensional subspace 5m C W4 . If a basis for 5m is

given by the vectors Si, S2, . . , si,,, so that span{s i , S2,. , Sm} = Sm, then the

Rayleigh-Ritz procedure can be shown to give the best possible approximation

to the eigenpairs from the given subspace.

The Rayleigh-Ritz procedure is as follows:

Orthonormalise the s. Call the orthnormalised vectors qj and write them

as the columns of the matrix Q E Rnxm

Form the (matrix) Rayleigh quotient 3 of Q, p(Q) QTAQ E RrnXrn.

Compute the eigenpairs, 19, f}, of p(Q).

The approximate eigenvalues of A are then 9, with the approximate ei-

genvectors being given by gi = Qf.

Compute residual error bounds, which need not concern us here.

The approximate eigenpair 19, g} is known as the Ritz pair, where Oi is the

Ritz value and g i the Ritz vector. As Q is orthogonal, p(Q) is a similarity

- x
3The Rayleigh quotient of any arbitrary e, for the matrix A, being p(z) 	

TAZ
	=(a scalar) XTX

as we saw in section 6.9.3.

182

transformation of A if rn = n, which justifies taking the eigenvalues of p(Q) as

approximations of the eigenvalues of A.

Now suppose that we have a subspace Siand we wish to expand that subspace

to another, $j+1 D S, in such a way that the new subspace contains estimates

of the true extreme eigenvalues of A, A, and A n , which are improved as much as

possible.

The best estimate for A n from Siis Oj = p(g3). We would therefore expect

that expanding the subspace to include the gradient of the Rayleigh quotient,

Vp(g), would maximise the increase in the estimate of An7 as p(g3) increases

most rapidly in that direction.

In other words, (remembering that g3 is calculated from $3) we should take

S 1 = Si U span{Vp(g 3)}.

Similarly, the best estimate from the smaller subspace for) is Gi = p(g 1), so

we should expand the subspace to include —Vp(g 1) to maximise the decrease in

the estimate of A 1 subsequently calculated from Si+1.

Hence, (remembering that g 1 is calculated from $3) we should have also

S' = Si U span{Vp(g 1)}.

We now note that

Vp = 2
x) xTx (Ax — p(x)x) e span{x, Ax},

so we may satisfy both these requirements if

= span{si , As 1 , A 2 s 1 ,. .. , Am181}, 	 (7.1)

so that

= Si U AS 3 .

As it will now be the case that

53 c 53+1

183

and

Ag 1 ,Ag 3 E 5.7+1

We now recognise 5m as the Krylov subspace, ?Cm(A, Si).

We conclude that if we are to apply the Rayleigh-Ritz procedure to a sequence

of subspaces, such that we get increasingly better estimates for the extreme

eigenvalues of A, then that sequence should be the sequence of Krylov subspaces

Km(A, Si). It is therefore stage (1.) of the Rayleigh-Ritz procedure that is the

next obstacle to be overcome; namely the orthogonalisation of 1Cm.

If we form the Krylov matrix, K m (A, s 1) = [Si, As 1 , A 2 s 1 ,. . . 	 and

apply Gram-Schmidt orthogonalisation to the columns of K m then the resulting

vectors are know as the Lanczos basis. Moreover, if the Lanczos basis is written

as the orthonormal matrix Qm then we have the QR factorisation of the Krylov

matrix

K m = Qm Rm,

where Rm is upper triangular.

In general such a factorisation is burdensome, but for the Krylov sequence we

may simplify the process considerably to yield a three term recurrence connecting

the q 2 .

We first observe that P(Qm) in the Rayleigh-Ritz procedure is tridiagonal. From

the orthogonality of Qm and the definition of Xm we know that q j I AC' and

Aq 3 E K7. Consequently

q(Aq)=O Vi>j+1.

By symmetry the same is true for j <i - 1, and so P(Qm) = QAQ m T. is

tridiagonal.

Let us now denote the elements of Tm as

cx 1

181 a2 82

Tm 	 P2 	•. 	•.

Prn-i

Pm-i am

184

so that from AQ m = Q m Tm we have

Aq 3 = /3_ iq_ 1 + cEjq3 + /3q31 	/30q0 0. 	 (7.2)

The orthogonality of the q 3 allows us to determine that c, = qAq 3 after which

we can use the recurrence 7.2 to evaluate 3q 1 . We may then take ,3j as the

appropriate normalisation factor and find that we have an iterative procedure

for generating q3+1 from q 3 and q,. 1 without ever having to make reference to
jçm at any stage.

This process is the Lanczos algorithm [Lan50] and is fully described by

V 3 =

aj = qv j

(,@=O)

Z j = v j —crq 3

IGi = 1z312

q31 = (11/3)z 3

(7.3)

Clearly the algorithm must terminate if 3j = 0. In exact arithmetic this will

occur when j = rank(K(A, q 1)), so that we have found the smallest invariant

subspace containing q 1 [GL89].

As our application requires only an extreme eigenpairs to be found, and our

derivation of the method would indicate that this information will emerge before

this stage, we would like to find some better termination criteria.

Firstly, we note that our derivation does not conclusively prove the preferential

emergence of extreme eigenvalues, after all Vp(z) may be zero at the points

used in the derivation. Nonetheless the convergence theory of Kaniel and Saad

[Kan66, Saa801 shows that these values will emerge for j as small as But

how do we know when this has indeed happened?

Let us first write 7.2 as

AQ 3 - QT 3 = /3q +1u, 	 (7.4)

185

where u3 = [0,... ,O,1] E 1l.

If we now consider a Ritz pair {, g}, we find that we can get an error bound

without having to calculate g by observing that

Ag-9g 2 = (AQ—Q,T)f 2 byg = Q,f and Of = T 3 f

= (13q 1 u')fI 2 by 7.4

=since Iq+1I = 1. 	 (7.5)

Hence, it is the product of I3, and uTf, the bottom element of the normalised

eigenvector of T 3 , which signals convergence for a particular eigenpair.

7.4.8.3 Stability Issues

We emphasised that 7.3 terminates for flj = 0 in exact arithmetic, but in finite

precision arithmetic this is almost never the case. The root cause of this is that

round-off effects completely destroy the orthogonality of Q,. This was known to

Lanczos when he first published the algorithm [Lan5O], and was a large part of

the reason that the algorithm was for so long discounted.

It might be thought that this breakdown of orthogonality would render the al-

gorithm useless. Paige [Pai72], however, found that accurate results could be

obtained nonetheless. It was observed that the breakdown of orthogonality is

not simply due to the gradual build up of error in the course of the calculation,

but was intimately liked to the convergence of a Ritz pair.

The behaviour of the Lanczos algorithm as formulated in 7.3 is to generate q,+1
with an unwanted non-trivial component in the direction of any converged Ritz

vector. The loss of orthogonality therefore occurs at the same time as the first

Ritz pairs start to emerge. If the algorithm is continued past this point it does

not fail to produce the correct results, but rather begins to compute unwanted

copies of the already converged Ritz pairs.

If this behaviour is to be prevented one solution is complete orthogonalisation.

This may be done by explicitly orthogonalising each new q+1 against all previous

q3 using Gram-Schmidt. This is clearly a very costly operation, as the set of

vectors we have to consider grows larger with each iteration, and one that we

sought to avoid in the very derivation of Lanczos. It is possible to half the

cost of complete re-orthogonalisation by storing Q 3 factorised into a series of

186

Householder matrices [GUW72] but the cost remains large.

Parlett and Scott [PS79] made use of the singular way in which orthogonality

deteriorates in a scheme known as selective orthogonalisation. Here each new

is orthogonalised only against the set of 'good' Ritz vectors, namely those

that are close to convergence, as defined by the relation

Ag - 9g 2 	/(unit round-off error)1Al2.

As the set of good Ritz vectors will generally be small in comparison to the set of

Lanczos vectors, orthogonalising only against the former is much more efficient.

However, it should be noted that calculating the Ritz vectors themselves costs

half as much as complete orthogonalisation at a given iteration. The major gain

in efficiency of this method comes from the fact that an easily calculated measure

of the overall loss of orthogonality may be employed. When, and only when, this

measure indicates it is required, the algorithm 'pauses' to update the set of good

Ritz vectors. This new set is then used for orthogonalisation at each subsequent

iteration until the algorithm is forced by a fresh breakdown of orthogonality to

pause once more. As this does not occur very often, selective orthogonalisation

is considerably more efficient than complete orthogonalisation.

7.4.8.4 Implementation

As we stated at the beginning of this discussion, we would like to exploit the

useful knowledge that the trivial eigenvector of the weighted Laplacian, Lw, is

e 1 = w.

If we are using the Lanczos method for eigensolution then we may effectively

deflate the problem by explicitly orthogonalising each new Lanczos vector, q1

in 7.3, against w as it is generated. This will ensure that the subspace from which

we are approximating L'° never contains any component of w, so that Sj+1 I e.

We can therefore reasonably expect that convergence of the Lanczos algorithm

at the left hand end of the spectrum will be preferentially to A 2 , allowing us to

determine e 2 with the minimum of calculation.

This is the approach taken in our implementation of the Lanczos algorithm for

spectral bisection. As we only consider unweighted graphs, we simply orthogon-

alised against 1, the vector of all ones.

This leaves open the question of choosing an initial Lanczos vector, q 1 . In the

187

absence of any other information a random starting vector is appropriate, but

it may well be the case that the vertex numbering in the graph contains useful

information which we can also exploit. We follow the recommendation of [PSL90]

in this respect and choose i - (n + 1)/2 as q 1 , which also ensures that q 1 1 1,

which it clearly must be.

Examining the Lanczos algorithm as presented in 7.3, we see that a major op-

eration our implementation must perform is the product of L with q 3 . We can

perform this operation without ever having to explicitly form L, by making dir-

ect use of the connectivity information stored in the neighbours array given

in each Vertex data structure. As vertices are only identified by their position

in the partition's vertexPtrs array, we would not know which vertex we had

reached if we only encountered it as the result of following a pointer in another

vertex's neighbours array. For this reason our implementation of RSB initially

records this information in the vec Index field of each Vertex data structure that

forms part of the current partition. In this way neighbours may subsequently be

identified in the course of performing this sparse matrix-vector product.

We also need to consider that fact that, at all levels of recursion except the first,

a vertex's neighbours array may point to vertices not in the current partition.

We could simply check the index of each neighbour to see whether it is local to

the current partition, but as we expect to perform this matrix-vector product

for the Laplacian many times in the course of the Lanczos algorithm this could

be expensive. A better option is to sort each vertex's neighbours array so that

local neighbours are listed first and then only loop over that portion of the array.

The number of local neighbours is stored in the locainNeigh field of the Vertex

data structure, and may also be used to determine the diagonal entries in L.

Of course, Lanczos does not give the entire eigensolution, only a tridiagonalisa-

tion obtained through a similarity transformation, so we still need to solve the

resulting tridiagonal for its eigenvalues. To do this we use we use a standard

implementation for tridiagonals based on QL factorisation with implicit shifts

[FPTV92]. Once we have the eigenvalues, we take the lowest eigenvalue to be

our estimate for '2 at the current Lanczos iteration and calculation of the cor-

responding eigenvector follows trivially. We can then use the product of the last

element of this eigenvector and 3j to monitor convergence, exactly as detailed in

equation 7.5.

We terminate the Lanczos iterations when this product falls below a specified

IM

tolerance. This tolerance may be set via the tunable parameter MD_RSB_TOL, so
that the tolerance used is 10-MD_RSB_TOL We also calculate the final residual

of the Ritz pair, which is output to give a true measure of the accuracy of the

eigensolution.

Another tunable parameter associated with RSB is MD_RSB_ORTHOG, which con-

trols the orthogonalisation method used. If it takes the value MD_TRUE then

complete orthogonalisation by Gram-Schmidt is performed, but if it takes the

value MD_FALSE then orthogonalisation is against the trivial eigenvector only. The

latter is much faster and will, in most cases, converge satisfactorily. In either

case, we store all the Lanczos vectors in memory, although this is not strictly

necessary for the latter instance, where they could be placed in a backing store

and only recalled after convergence when they are needed in order to calculate

the Fiedler vector. We may allocate contiguous blocks of memory for each new

Lanczos vector as it is generated, storing them as in simple linked list, and so

need not make use of the PUL-md memory manager. It is, however, a very

real possibility that we may run out of memory when dealing with very large

problems.

The default values of MD_RSB_TOL and MD_RSB_ORTHOG are 5 (tolerance lO s)

and MD_TRUE, respectively.

7.5 Implementation of Local Refinement

Algorithms

We implement two local refinement algorithms, Mob and KL, both of which

attempt to reduce cut edges while maintaining the existing load balance.

As we are concerned with pair-wise refinement between the two sub-domains

resulting from a prior bisection, the gains used by these algorithms are a single

integer per vertex which we store in the gain field of the Vertex data structure.

Both algorithms make use of the same definition of vertex gain, namely that

previously presented in equation 6.12 of section 6.8.1, during our discussion of

KL.

The initialisation and update of vertex gains are handled by the partition man-

ager and related functions. Gains are initialised whenever a new Partition data

structure is created, either for the original graph by __dual__ or by

Im

__partn_split__ for subsequent sub-graphs, and are given the value minus the

number of (local) neighbours; all vertices are considered to be in one sub-domain

prior to bisection, the other sub-domain being initially empty. When a bisection

is performed the required vertices are moved to the other sub-domain with the

__partn_move__ function. As __partn_move__ updates vertex gains increment-

ally according to equation 6.13 and vertices are only ever moved using it, gains

are always kept up-to-date. Thus all gains are already correct before local refine-

ment commences. During the course of local refinement __partn_move__ is also

used to keep track of gains as vertices are swapped from one sub-domain to the

other. This process also keeps track of the maxGain field of the Partition data

structure, so that —maxGain gain < maxGain for all vertices in the current

partition.

7.5.1 Mob

Local refinement algorithm selected by: MDREFJ10B

Tunable parameters: MD_MOBCOMPLETE, MD_MOBS IZE,

MD_MOBSCHED,MD_MOB ITERS,

MD_MOBCLEANUP, MD_MOBCHOICE

and MD_MOBVARY

Having considered how gains are initialised and updated the implementation of

Mob largely follows the pseudocode of figure 6.40 in section 6.8.2. There is,

however, one simple but significant algorithmic difference that may optionally

be taken which leads to quite distinct results.

There are several tunable parameters associated with Mob that can be related

to the pseudocode of figure 6.40 and our previous discussion of the algorithm.

Firstly, MD_MOBITERS determines the number of iterations the algorithm should

perform, as given in line 2 of the pseudocode. Secondly, the length of the

mob schedule is determined by MD_MOBSCHED, as given by len"hedule previously.

Thirdly, the initial mob size in the schedule is determined by MD_MOBS IZE, which

equates to MOBeth. These last two parameters completely determine the

mob schedule, as the last entry in the schedule is always one and intermediate

values linearly decrease.

We implement two versions of the algorithm, both of which have the previous

parameters in common. The first version is exactly that presented in the pseudo-

190

code of figure 6.40. We note that in the inner ioop of that pseudocode s (the

index into the schedule) will only ever reach if a worse partition res-

ults from every exchange of mobs; an unlikely and unhelpful event. This means

that the full schedule is not used and last mobs swapped will (depending on the

schedule) probably be quite large. They are therefore likely to have contained at

least some vertices whose movement was detrimental to the partition.

In view of this observation, we offer an alternative version of the algorithm that is

always guaranteed to reach the end of its schedule, which we call Mob Complete.

This version is selected by setting the tunable parameter MD_MOBCOMPLETE to the

value MD_TRUE and follows the pseudocode of figure 7.3 below.

Pseudo: MOB
Create the mob schedule, MOB:c h e du l e,
where s = l,lenscdluIe.

For required number of iterations
s=1
Repeat

e = IEcut l e
MOB0 = chooseMOB(MOBhee, S0)

MOB1 = chooseMOB(MOBle, S1)

Move MOB0 to S1 and MOB 1 to So
Update gains.
If IEcutle > e Then

s+=1
Endlf

Until s = ten 	dule

EndFor
EndPseudo

Figure 7.3: The Mob Complete algorithm.

While the pseudocode of figure 6.40 was such that exactly

MDJ40BSCHEDxMDJI0BITERS mob exchanges always took place, now the number

of exchanges is not explicitly limited. However, we now use IEcut l e e, rather

than IEcut l e > e, as the test to increment s. This prevents the cyclic swapping

of vertices that result in no improvement and ensures that the inner loop always

terminates.

The differences in the behaviour of the original Mob algorithm (which is selected

when MD_MOBCOMPLETE takes the value MDFALSE, its current default) and the

Mob Complete version will be further detailed in chapter 8, where we come to

evaluate the effects of tuning these parameters.

As well as the options that control the top-level structure of the algorithm, there

are two tunable parameters which relate to the function chooseMOB in the

191

pseudocode, namely MDJ1OBCHO ICE and MDJIOBVARY.

Setting the tunable parameter MDJ4OBCHOICE to MD_TRUE causes vertices in the

Pre-Mob to be placed in the following categories:

Category 1: all edges cut (isolated vertices).

Category 2: some edges cut (border vertices).

Category 3: no edges cut (interior vertices).

Now, when we come to select vertices from the Pre-Mob to form the actual mob

to be swapped, we first choose from those in category 1, then from those in

category 2 and finally from those in category 3. As we only choose a sub-set of

the Pre-Mob, this means that we are preferentially choosing the vertices in low-

numbered categories, which we hope will be the best candidates for swapping.

If this option has been chosen then the MDJ1OBVARY tunable parameter allows

the mob size to vary according to the number of 'good' candidates available

for swapping. By restricting the choice of vertices from the Pre-Mob to those

vertices in categories 1 and 2 only, two mobs of less than the size specified in the

schedule may be swapped. This is done in such a way that an equal mob size is

still taken from each half of the bisection, so load balance is maintained.

The default values for MDMOBCHOICE and MDJIOBVARY are both MD_FALSE.

MDMDBVARY has no effect unless MDJIOBCHOICE takes the value MD_TRUE.

The last tunable parameter associated with the Mob algorithm is MDJIOBCLEANUP.

If set to MD_TRUE then - after Mob refinement - we check for isolated vertices (i.e.

those category 1) in the entire partition and swap their sub-domain assignment.

This may result in an unbalanced partition, so the default is MD_FALSE.

7.5.2 Kernighan and Lin

Local refinement algorithm selected by: MD.REFJ(L

Tunable parameters: MD_KL_TERM_OBJ, MD_KL_TERM_FAILS,

MD_KL_TERN_FAILS_MAX, MD_KL_BORDER_ONLY,

MDKL.BORDER_SIZE, MD_KL_RANDOM_RETRIES

Our implementation of KL retains the overall structure of the algorithm as we

presented it in the pseudocode of figure 6.35 in section 6.8.1 but (unlike Mob)

192

differs in many of its details. As we saw in section 6.8.1, the inner ioop runs

through a pass of the algorithm, during which pairs of vertices are exchanged

between the two sub-domains in the bisection based on their gains, and the best

partition found is recorded. The best partition found in the previous pass is then

used as the starting point of another, and so on, until no further improvement

can be found. This basic structure is maintained in our implementation.

However, as it would obviously be too expensive an operation to 'record' the

entire partition by simply copying it as we notionally did in line 10 of the previous

pseudocode, we need to employ some sort of incremental scheme to keep track

of the progress of the algorithm. In the previous section we also referred the

Fiduccia and Mattheyses (FM) linear time implementation of KL which we make

use of. The FM implementation is based, as we shall see, on a particular data

structure in which vertices are stored according to their gain, and so we can

make use of this to essentially keep a copy of the current state, distinct for that

defined by the partition data structure.

Our implementation is detailed in the pseudocode of figure 7.4, where we see that

the bisection defined by the partition data structure, P, lags behind that defined

by the FM data structure, GFM, and is only brought up-to-date with it when a

better state is found (line 8 of the pseudocode). It may be helpful to look again

at figure 6.37, which showed the progress of the KL algorithm; we may think of

P as taking the path illustrated by the bold line in that graph, and of GFM as

taking the paths illustrated by the fine lines on each pass.

We shall detail the FM data structure shortly, but first we will look at how the

FM_update function is employed in our implementation.

The FM_update function is called twice in the pseudocode, once for each sub-

domain in the bisection. Each call selects a vertex in the specified sub-domain

that has maximum gain, removes it from the FM data structure so that it is

not reconsidered in the course of the current pass, and updates the gains of its

neighbours in the usual manner. This means that the selection of the second

vertex in the pair to be swapped takes into account the movement of the first,

which will have altered the gain of the second if the pair are neighbours. This

falls somewhere between the options of maximising gi + g3 or gi + g3 - 2we(euj),

which we examined in section 6.8.1. Our experience is that this is superior to

simply selecting two vertices without considering how the movement of one effects

the other, particularly if the vertices are presented to the algorithm in a highly

193

Pseudo: Kernighan and Lin

Let P be the initial Partition data structure.
Repeat

Initialise the FM_Gain data structure, GFM, based on P.
Repeat

Call FMit pd ate(G'M , 0)
Call FMu pd ate(G'M ,
If J E ut l, for GFM < IEcut l e for P Then

Bring P up-to-date with GFM.

Endlf
Until GFM is empty or termination criteria met.

Until No better partition found.

EndPseudo

Function: FM_update(G'M , i)

Choose v 1 from sub-domain Si induced by GFM

such that g1 is at a maximtrni.
Move v 1 other sub-domain and remove it from GFM

vertex lists.
Update GFM to reflect altered gains of neighbours of v1 .

Return

EndFunction

Figure 7.4: The Kernighan and Lin algorithm.

ordered manner, as they will be if they have previously been sorted by separator

field, which increases the probability that a pair which are neighbours will be

selected.

As we also saw in section 6.8.1, for the algorithm as a whole to run in linear time

with respect to number of vertices, n e,, the selection of vertices and update to

neighbours which we have now embodied in the FM_updaie function must run in

constant time. Given that we expect there to be a limit on the maximum

number of neighbour per vertex, imposed by the origin of the dual graph as a

representation of an unstructured mesh, this can be achieved by use of the FM

data structure 4 .

Our version of the FM data structure has type FM_Gain, and is defined as follows:

typedef struct {
Dltem *item_loc;
Item_Data *item_data_loc;
mt nBuckets;
Bucket *bucket;
mt maxGamn;

} FM_Gain;

41f there is no limit on n 0X , then n, is a more appropriate measure of the size of the
problem than n, as overall complexity will still be linear in that measure. The distinction need
not concern us here.

194

typedef struct {
mt best_non_empty;
DList *gain_list;

} Bucket;

typedef struct {
Vertex *vertex;
mt gain;

} Item_Data;

How this structure is used is illustrated in figure 7.5. The basic idea originated

by Fiduccia and Mattheyses is to maintain a set of lists of vertices which are

bucket sorted according to their gain. This is done for both sub-domains in the

bisection, so selecting a vertex with maximum gain from either one is simply a

matter of taking an arbitrary vertex from the appropriate list, so long as we have

kept track of the non-empty list which currently has highest gain.

In our data structure a Bucket is associated with each sub-domain and has a

field, best.non_empty, which keeps track of this information. The gain.J.ist

field in each Bucket points to an array of doubly linked lists, of type DList,

dimensioned from —maxGain to +maxGain, as defined by the FM_Gain structure.

The Bucket's themselves are given as an array pointed to by FM_Gain, so that

we might easily extend the data structure for 1-way refinement in the manner

described in section 6.8.1.2 and reference [HL93a]. In that instance there are

1(1 - 1) types of move and we would therefore require l(l - 1) Buckets. For

bisection we only require 2, as indicated by the nBuckets field in FM_Gain.

Selecting a vertex with maximum gain from a given Bucket is therefore simply a

question of going to the DList indicated by bestnon_empty and taking a Dltem

list member from it. We always remove items from the tail of a list, for reasons

that will become clear. As we do not replace the selected vertex into FM_Gain

subsequent to moving it, we never reconsider a vertex during the course of a

pass.

The Dltem points to the ItemData, which specifies both a vertex and its gain

and, as we can see from figure 75, the gain given in the Vertex need not be

the same as that given in the ItemData. Further, the index for the Vertex

need not indicatethat it is part of the same sub-domain that its assignment to

a particular Bucket would indicate. In this way we are able to entirely define a

bisection and related gains by the FM_Gain structure; this has no relation to the

bisection defined through the Vertex items in the Partition structure.

195

Vertex Vertex

index: 	0 index: 	I

gain: 	I gain: 	0

list_Icc: list_bc:

(other fields\ (other fields
not shown)J I 	not shown)

Ditem

Bucket

best_non_empty: 	0

gain_I st.

I 	 I Ditem 	 array

I .

V

array

Item Data

arra verbs

cliii 	- I

DList 2 empty

empty

	

IMtem 	Dltem

- 	
1)11cm 	Dltem

[
Dltem

	

- Item 	lDItem Llrntem

DUst I

DUst 0

Dust —I

DUst —2

V
Vertex

index 	0

gaIn: 	2

neighbours -

list_bc: —

(other fields
not shown)

- empty

- empty

.-. empty

Ditem 	Dltem [j Ditem

- 	
1)11cm F 	l)l(em

. 	
Dltem

Figure 7.5: The FMGain data-structure. The data in the shaded boxes all
relates to the same vertex.

196

Note that the item_bc and item_data_bc fields in FM_Gain are only used for

allocation and deallocation, and that the data in the shaded boxes in the figure

all relates to the same vertex. Thus, the two shaded Dltems are in fact the same

data.

Selecting and moving a vertex proceeds as we have just outlined, but we still need

to update the gains of its neighbours and move them in the gain_lists to reflect

any changes. If a vertex is moved we consider each of its neighbours in turn.

As the list_bc for each neighbour gives the position of its associated Dltem in

the lists, and the Dltem itself points to the Item_Data which in turn gives the

neighbour's gain (as far as the FM_Gain structure is concerned) we know both

where to find the appropriate list item and the list it is a member of. We may

therefore remove the neighbour's Dltem from its current location, recompute its

gain and add it to the tail of the list associated with that gain. As a neighbour

may be anywhere in a DList, we have to use a doubly-linked list, rather than

singly-linked, or we would not be able to remove it without corrupting the list.

If at any point removing a vertex from a particular Bucket or moving its neigh-

bours within the Bucket results in a change in the maximum gain, then the

Bucket's bestnon_empty field is changed accordingly. Also, we always set a

Vertex's list _loc to NULL when it has been selected for movement and removed

from the FM_Gain structure. This ensures that if we subsequently encounter it

as the neighbour of another vertex we do not inadvertently return it to the data

structure.

We emphasise that we always select a vertex for movement from the tail of

the most favourable list and that, when we have removed neighbouring vertices

in order to update their gain, we always append them to the tail of the list

appropriate to their new gain. This means that when we next come to select

a vertex for movement it is quite likely that we shall select a neighbour of the

previous selection. Thus, the implementation tends to move clumps of adjacent

vertices, even though this is not explicitly specified.

Having described our implementation, we are now in a position to describe the

various tunable parameters associated with it and see how they affect its beha-

viour.

The first group of tunable parameters we shall look at affect the termination of

a pass, as given in line 10 of the pseudocode of figure 7.4. Referring again to

figure 6.37 in section 6.8.1, we see that the majority of vertex moves do not result

197

in productive work being done. If we can set some criteria that will determine

when in a pass we think it unlikely that further improvement will occur, we can

avoid excessive redundant computation taking place.

The first option we implement is selected by setting the tunable parameter

MD_KL_TERM_OBJ to the value MD_TRUE. In this case we terminate a pass if the

number of cut edges for the bisection defined by the FM_Gain structure rises above

the value it took at the beginning of the pass plus maxGain.

The second option is selected by setting MD_KL_TERM_FAILS to the value MD_TRUE,
in which case we terminate a pass if a specified number of consecutive (individual)

vertex moves fails to produce any reduction in cut edges. The number of vertex

moves is itself a tunable parameter, namely MD_KL_TERN_FAILS_MAX, and is given

as a percentage of the size of the current Partition.

RLB+KL: 	 - Partition

Terminate on Objective 	- KL pass

400.0

350.0

300.0
a,
C)

-D w

2. 250.0
a,
>
U

8 2000

150.0

inn n

Final Partition

0.0 	 200.0 	 400.0 	 600.0
Vertex Moves

Figure 7.6: Progress of the KL algorithm from an initial layered (RLB) bisection.
Each pass is terminated according to cut edges.

The effects of employing these termination criteria are illustrated in figures 7.6

and 7.7. The data-set and initial bisection is the same as was used in figure 6.37,

and the same improvement in cut edges also results from KL refinement in these

two new cases. Figure 7.6 shows the effect of setting MD_KL_TERM_OBJ to the

value MD_TRUE, while figure 7.7 shows the effect of setting MD_KL_TERM...FAILS

to the value MDTRUE and MD_KL_TERM_FAILS_MAX to 5%. For robustness the

default values of these parameters are MD_FALSE for MD_KL_TERM_OBJ, while

RLB+KL: 	 - Partition

Terminate on 5% Fails 	 KL pass

400.0

350.0

300.0 a,
C,

w

2. 250.0
a,
>
C,

8 200.0

150.0

inn n

Final Partition

• '0.0 	 100.0 	200.0 	300.0 	400.0 	500.0
Vertex Moves

Figure 7.7: Progress of the KL algorithm from an initial layered (RLB) bisection.
Each pass is terminated according to the number of consecutive vertex moves
that failed to find an improvement.

MD_KL_TERN_FAILS defaults to MD_TRUE and MD_KL_TERN_FAILS_MAX to 20%. In

most cases faster setting may be used.

An unrelated tunable parameter is MD_KL_RANDOM_RETRIES, which allows the in-

troduction of a certain amount of randomisation into the order of the gain_lists

so that the algorithm may attempt another pass even if the previous one resul-

ted in no improvement, in violation of line 11 of the pseudocode of figure 7.4.

As the order in which vertices are chosen is determined by their order in the

gain_lists, which is totally arbitrary, it is quite possible for us to change this

order and allow the algorithm to escape from a state which may only be locally

optimal, potentially giving it the opportunity to find a better configuration.

We implement this by going through each DList, randomly alternating between

the list's head and tail and removing a certain number of vertices. The order

of the removed vertices is then randomised before they are placed back in the

list by appending them to its tail. This is considerably more economic that

randomising the entire list and, we hope, has a similar effect, as it is focusing

the randomisation on the tail of the list which is precisely where vertex selection

occurs. The number of vertices removed and randomised is fixed (i.e. not tunable

with md_tune) at compile time by the symbolic constant N_RAND_ITEMS which

199

currently takes the value 40.

The tunable parameter MD_KL_RANDOM_RETRIES determines the number of con-

secutive times a pass may result in no improvement. If it takes the value 0 (its

default) then no randomisation is ever performed and the algorithm terminates

as normal. If it takes a value greater than zero then the gainiists are always

randomised before each pass and the specified number of consecutive unproduct-

ive passes are permitted.

The final two tunable parameters associated with KL make use of the information

provided by prior separator field based bisection. If such a bisection was employed

then the vertexPtrs array will have been sorted by separator field value and

we can use this to determine the border region surrounding the initial bisection

boundary.

This is illustrated in figures 7.8 and 7.9. These figures show the border region for

the Widget mesh when partitioned by RCB and RSB, respectively. In both cases

the border region contains 18% of the mesh elements. With coordinate bisection

the border can be seen to be defined by two lines (planes in 3D), one to either

side of the sub-domain boundary and parallel to it. This will also be the case

for inertial bisection (not illustrated), although the lines (planes) will no longer

be aligned with the coordinate axes. For spectral bisection the situation is less

intuitive, but may be thought of as analogous to taking an isosurface through

the separator field.

As we can expect the majority of improvements to the bisection made by KL

to be in the vicinity of the initial bisection boundary, it may be beneficial to

restrict the operation of the algorithm to the border region surrounding it. We

can implement this easily by initialising the FM_Gain structure with vertices in the

border region only. These may be identified by simply indexing the appropriate

range in the sorted vertexPtrs array. Even if an unbalanced initial partition

has been generated as a result of setting MD_SEP_IMBAL to MD_TRUE, we may

still take this approach as the sep_vertex field of the Partition data structure

records where the cut-off point between the two halves of the bisection lies in

the vertexPtrs array.

The benefits of restricting KL to this border region are two-fold; a reduction in

the storage required by the FM_Gain structure and a potential decrease in run-

time. The former is self evident but we shall examine the latter in more detail

in chapter 8.

IIc

Figure 7.8: The KL border region defined by taking the x-coordivate (horizontal)
as a separator field for the Widget data-set. The border region contains 18% of
the mesh.

Figure 7.9: The KL border region defined by taking the Fiedler vector as a
separator field for the Widget data-set. The border region contains 18% of the
mesh.

201

If this option is to be taken then the tunable parameter MD_KL_BORDER_ ONLY

should be set to the value MD_TRUE. If this is done then the number of ver-

tices in the border may be specified through the parameter MD_KL_BORDER_SIZE,

where the number of vertices is given as a percentage of the size of the current

Partition. The default values of these two parameters are MD_FALSE and 20%,

respectively.

7.6 Visualisation

A utility has been included in PUL-md to provide a simple interface to the

popular AVS visualisation package, allowing visualisation and analysis of both

mesh decomposition and application data in either 2 or 3 dimensions. This

utility consists of a file translation program, mdesc2ucd. It takes as input a

mesh structure file, a mesh decomposition file and/or an application data file.

As output it writes a file in AVS unstructured cell data (ned) format.

The AVS file format includes a material type which may be used to indicate

processor assignment for the mesh elements (cells, in AVS parlance). The mesh

can then be 'exploded' into its component sub-domains, each defined by their

different material type.

mdesc2ucd takes the following command line arguments (in order):

• -nodata, -nodecomp, -order ijk; options respectively indicating not to

read data, not to read decomposition and to reorder element nodes, as

specified. Other, application specific, options are also available.

• baseFileName, the mesh structure filename root.

Like the md_test program, it looks for a standard mesh structure file in

baseFileName.mdesc, but additionally looks for a decomposition in

baseFileName . decomp and/or application data in baseFileNaine . data. It then

writes its output to baseFileNaine. inp, ready for input into AVS.

Example visualisations are shown in figures 7.10 to 7.14. These illustrate two

data-sets; the Wedge3 data-set and the m6 data-set, both tetrahedral finite ele-

ment meshes derived from the FLITE3D aerospace CFD project [BMT96]. We

will use these or closely related meshes as examples in our subsequent evaluation

of decomposition algorithms, and further details of their origin and structure may

202

Figure 7.10: The \Vedge3 data-set, showing surface mesh and flow solution.

Figure 7.11: The \Vedge3 data-set, showing decomposition into 4 sub-domains.

203

Figure 7.12: The mG data-set, showing surface mesh of the entire simulation
domain together with flow solution.

Figure 7.13: The muG data-set. sho\villg a wire-frame view of the mG-wing and
surrounding surface mesh.

204

Figure 7.14: The m6 data-set, showing a close up of the m6-wing and a slice-plane
perpendicular to it through the flow solution.

be found in appendix A, where we present statistics relating to the meshes, their

dual-graphs and decomposition by a variety of algorithms. It should be noted

that the earlier visualisations of the Widget data-set originate from a simple

Open-GL based tool developed specifically for the HEAT2D demonstration code,

not from AVS as (in two dimensions) this is somewhat more convenient.

205

Chapter 8

Evaluation and Discussion of

Decomposition Algorithms

Having detailed the algorithms implemented in PUL-md together with the range

of tunable parameters associated with them in the previous chapter, we now move

on to evaluating their relative merits. We base this evaluation on a thorough ex-

ploration of the various combinations of algorithms (initial decomposition and

subsequent refinement) and associated parameter settings, tabulating the result-

ing decomposition statistics in appendix A. Here we will discuss and evaluate

these results, referring to the relevant tables in the appendix as necessary.

The results presented in appendix A are derived from three data-sets; the Widget

data-set, the Wedgel data-set and the m6 data-set. Each of these data-sets is

described at the beginning of the relevant section of appendix A, although the

Widget data-set is already familiar to us, while visualisations of the Wedge3 and

m6 data-sets were presented in figures 7.10 to 7.14 in section 7.6 of the previous

chapter.

Before discussing these results, we must first describe the data we have gathered

(metrics of quality, execution times, etc.), its derivation and the form of its

presentation in appendix A.

8.1 Collection and Presentation of Results

If required, the md_decompose function can provide statistics relating to decom-

position quality; whether it does so or not is determined by the user's choice of

206

compile time options. The md_test program is compiled so as to provide these

statistics, and it is from this that we derive our data.

A typical example of the output of the md_test program in this respect is as

follows:

Dualgraph: total vertices 1746, total edges 10072
neighbours: min 5, avg 11.54, max 16

Domain Domain-Size Bdry-Vertices Bdry-Cuts Adj-Domains (which)
0 354 24 80 1(1)
1 432 51 194 3(023)
2 528 55 165 2(13)
3 432 57 205 2(12)

tot: 	1746 	 187 	644 	8
result was 1

Examining this example, we see that statistics relating to the dual graph are

presented first, followed by statistics relating to the quality of its partition into

4 sub-domains.

The dual graph statistics, total vertices and total edges, equate to n,, =

V, and n = JEJ, in our notation 1 . The neighbours line then gives the min-

imum, mean and maximum number of neighbours for a vertex in the dual graph,

which we shall denote ri', rnax, respectively. For each of the three

data-sets these statistics are tabulated (tables A.1, A.16 and A.31), together

with timings for the extraction of the dual from the mesh; we shall say more on

the subject of timing figures shortly.

Turning to the decomposition statistics, we see that the sub-domains are iden-

tified as 0, 1, 2, 3 under the first column, which is labelled Domain. The

Domain-Size column then gives IS, I for each sub-domain S1. The next column,

Bdry-Vertices, gives 11vi E S1 : 3eij E which is the number of vertices

in the sub-domain which have at least one edge connecting them to a vertex in

another sub-domain; i.e. those that are on the sub-domain boundary. Cut edges

for each sub-domain are given under the Bdry-Cuts column, which is simply

defined as Ifeij e : v 1 E Si}Ie. Finally, the number of adjacent sub-domains

is listed for each sub-domain under the Adj -Domains column, where sub-domain

Sm is considered to be adjacent to Si if 3eij E E : v, E S and V 3 E 5m the

sub-domains in question are then listed in brackets at the end of the row.

'Note that, for the unweighted dual graphs used by PUL-md, IVI = IVI (and similarly for
edges) but we retain the sub-scripts for clarity.

207

The totals for these quantities are listed in the row beginning tot. Clearly the

total under Bdry-Cuts will be 2 IEcutIe, as each cut edge will have been counted

twice, once for each of the two sub-domains it connects.

From the Domain-Size column we may derive a measure of load imbalance,

max(S11,) - IVI/k, by noting that run-time of an application using a

given decomposition will depend on load balance through the sub-domain that

requires most calculation, as measured by max(ISjj), and that for a perfectly

balanced partition max(ISiI) = IV/k and L is therefore zero.

We are now in position to define the quantities tabulated in the tables relating

to decomposition presented in appendix A; these are A 8 , which we have just

defined; J VbJ, which is the total for the Bdry-Vertices column; IE t I e , which

requires no further explanation; and 5adj, the total for the Adj -Domains column.

It may now be helpful to look ahead to table A.8 in appendix A, as the example

data presented above forms part of that table. In the example, we employed

RSB with no subsequent refinement to partition a node-based dual graph de-

rived from the Widget data set into 4 sub-domains. We have set MD.SEP_IMBAL

to MD_TRUE and permitted a maximum imbalance of 5% in each bisection. Com-

plete orthogonalisation was not employed, and Lanczos termination was set with

MDRSBTOL = —3.

Examining the relevant table, we see that the algorithm used is listed at its

head, while the associated parameters are listed at the left-hand side, where 'T'

indicates that the parameter takes the value MD_TRUE, 'F' the value MD_FALSE,

and '-' a setting which is not relevant. The metrics we have just described are

then given for both node- and edge-based (and in three dimensions, face-based)

dual graphs of the data-set, with the resulting data split up into blocks according

to the number of sub-domains, k, in the partition.

Each row in the table is identified as a different 'case', as this determines the

parameter settings used and number of sub-domains requested, and therefore

completely determines the behaviour of the decomposition algorithm(s) in ques-

tion. Comparing table A.8 with the description of the parameter setting for the

example used here, we see that it forms case 9 of that table.

For convenience, where we henceforth require to refer to a set of statistics for a

particular numerical experiment, we shall use an abbreviation of the form A.8:9,

to refer to case 9 of table A.8, and further add the suffix 'n' for the node-based

graph, 'e' for the edge-based graph, and (in three dimensions) 'f' for the face-

based graph. Thus our example would be A.8:9n.

As well as the graph and decomposition statistics, the tables in appendix A also

include timing information. All runs of the program were performed on a Sun

Ultra Enterprise 3000 server with 1024Mb of main memory. This system is based

on the U1traSPARC-II 64-bit RISC processor, running at a clock rate of 250MHz.

The code was compiled with the native SunSoft C compiler and optimised for this

system2 . The timings were made by inserting calls to the getrusage C library

function at the relevant 'points in the md_decompose function and calculating

amount of time spent executing in user mode to microsecond accuracy. These

points are marked as /* Timing point A */, B and C of the codepresented in

section 7.3.1.

The timings for dual graph extraction presented in tables A.1, A.16 and A.31

are taken as the time elapsed between timing points A and B and therefore rep-

resent the time spent in the __dual__ function. Examining these tables we see

that times marked 'Coord,' 'Border,' and 'Other' are listed, which represent the

slightly different requirements of the decomposition functions. RCB and RIB

both require coordinate information which is not otherwise calculated and res-

ulting timings are listed under 'Coord'; GREEDY and RLB both may require

an initial seed vertex on the graph border, and an identification of such vertices

is only made in this instance, as listed under 'Border'; finally 'Other' gives the

timings when no additional information is required.

The timings for decomposition presented in the remaining tables are taken as

the time elapsed between timing points B and C, and so represent the time spent

in the chosen decomposition function. Note that, as the refinement routines are

called from within the decomposition functions, this timing represents the sum

of all initial bisections and subsequent refinement steps.

8.2 Analysis of Results

We will now consider each algorithm in turn, and see how the setting of the

associated tunable parameters affects the quality of the resulting partition, also

comparing the relative merits of the algorithms as we go along. Before doing so,

we will discuss the dual graphs that may be extracted from the three example

2We found cc -fast -x04 -xdepend -fsimple2 -xarchv8plusa most effective.

209

meshes we study and the consider the implications the process of graph extraction

has for the performance of the library as a whole.

8.2.1 Dual Graph Statistics

As the time taken for dual graph extraction depends both on the type of graph

required (nodes, edges or faces) and on the decomposition algorithm that we

intend to use, we must discuss the cost of this process as well as that of the

decomposition itself; indeed, the two should not be viewed in complete isolation.

For a given dual graph type, the timings in tables A.1, A.16 and A.31 show that

the added cost of calculating coordinate or border information is small compared

to the cost of basic graph extraction. However, there is a much more significant

variation in the runtime between the different graph types, with (for the three

dimensional data-sets) an edge-based graph taking almost twice as long to extract

as faces, and nodes taking almost five times as long 3 .

Previously we have discussed the computational complexity of partitioning primar-

ily in terms of n,,, having used the justifiable claim that n, is proportional to

ri,, for graphs extracted from unstructured meshes. Although this simplified the

comparison of the asymptotic behaviour of algorithms with increasing problem

size, it ignores the fact that many of the algorithms that we have discussed have

runtimes dominated by rio , and that the constant of proportionallity between nv

and n, depends on the type of graph we are dealing with.

Examining the values of n in the relevant tables shows that there is a marked

increase as we move from face- to edge- to node-based graphs; for example, the

node-based graph for the m6 data-set has approximately 20 times the number of

edges as does the face-based graph. Clearly this will make itself seen whenever

we use any algorithm that exploits graph connectivity, which most algorithms

do. This is shown graphically in figure 8.1 for several representative algorithms

applied to the Wedgel data-set. We see that there is generally a linear relation-

ship between n, and runtime, although this is not always the case, indeed for

the RSB plot with tolerance set to —5 solution for the faces graph actually takes

3Although the PUL standard mesh structure file format may include a specification of edges
and faces, the three data-sets studied here do not include this information. If this information
is provided then _dual_ makes use of it; otherwise it is calculated, as needed, according to
the required dual graph type. Hence, the relative cost of dual graph extraction will differ if
that information is available.

210

6.0

5.0

4.0

.. 3.0

2.0

1.0

0.0
0

NODES
*—*RLB

RIB

[3-E) RSB (tol -3, scaled)
O—E) RSB (tol -5. scaled)

FACES 	
EDGES

.0 	 200000.0 	 400000.0 	 600000.0
GRAPH EDGES

Figure 8.1: Runtime of sample decomposition algorithms as a function of n , for
the Wedgel data-set. The algorithms used are as A.19:17, A.21:15, A.22:16 and
A.22:18, all with k = 16. Note that times for the two RSB plots have been scaled
by a factor of 0.1.

longer than for edges; we shall discuss this further in the subsequent sections

appropriate to each of these algorithms.

8.2.2 Simple Algorithms

The results for the simple algorithms SR, SC and SL are tabulated in tables A.2

and A.17 for the Widget and Wedgel data-sets, respectively.

As we noted in sections 6.3.1 and 6.3.2, neither SR nor SC are feasible decom-

position a'gorithms in themselves, and this is made quite clear by comparing the

results for those two algorithms in the bisection cases with even the worse res-

ults for SL, which is itself a rather naïve algorithm. Comparing A.2:1 and A.2:2

with A.2:3 we see that boundary vertices and cut edges are well over an order

of magnitude worse for the first two cases, which confirms this for the widget

data-set. Similarly, comparing A.17:1 and A.17:2 with A.17:3, we see that SL

is far superior, although not to such a large degree, indicating that the element

numbering for this data-set has less locality implicit in it than does the widget

data-set, which is to be expected for a three dimensional mesh compared to one

211

in two dimensions.

It is only when we employ Cuthill-McKee renumbering with SL that we begin to

se&results of any quality. It is clear that after two Cuthill-McKee iterations the

algorithm has settled down to alternating between two well separated vertices, as

indicated by the alternating values of IVb l and jEcut l e seen in A.2 for both graphs,

and A.17 for the nodes-based graph. The edges and faces graphs for Wedgel also

show a broadly alternating behaviour with Cuthill-McKee iterations, although

not with the same precision; in any event we may conclude that a few iterations

is all that is needed to produce a considerable improvement in partition quality.

This improvement does, however, come at the cost of significantly increased

runtime, particularly for the larger Wedgel data-set. However, even given one

one Cuthill-McKee iteration, SL produces some of the lowest values of Sadj that

we shall encounter.

As we noted in the previous section, runtime may be seen to depend on Tie ,

as determined by the dual graph type. Compare, for example, A.17:15n with

A.17:15f; runtime for the former is about 2.6 times that for the latter.

As we shall see, even the best results for SL turn out to be rather poor in compar-

ison to most other algorithms in PUL-md and we do not therefore present results

for the m6 data-set, as we restrict ourselves to studying the better algorithms

and parameter settings in the context of that mesh.

8.2.3 Greedy

If we compare the quality of results for GREEDY with SL applied to the Widget

data-set (A.2 and A.3) we see that execution time are similar, but that the

best results for SL are superior for k = 2 and k = 4, while GREEDY becomes

competitive (in all but Sadj) when k = 8, particularly for the edge-based graph.

In general, we would expect this sort of behaviour; as k increases the sub-domains

generated by SL become more elongated, with JVb J and IE t I increasing accord-

ingly, while each sub-domain should still have just two neighbours. GREEDY,

on the other hand, generates quite compact sub-domains irrespective of k, and

therefore will win out for higher k. This can be seen more clerly by making

the same comparison for the Wedgel data-set, where the highest value of Ic used

is 16, rather than 8 for the Widget data-set. Here the values of IVbI and IEcut l e

for the better results of SL compared to GREEDY show that SL is superior for

212

k = 2, roughly equivalent for k = 4, but significantly worse for k = 16.

Although we are not able to make a similar comparison for the m6 data-set,

A.32 does show one feature of our implementation quite clearly; the increase in

runtime of GREEDY with k.

While we might expect the runtime of Farhat's greedy algorithm itself to be

largely independent of k on the basis of the pseudocode of figure 6.12 which

follows [Far88J, as some authors have claimed (see, for example [DR961) there

are other factors to consider. The pseudocode, like the paper from which it was

taken, says nothing about the action taken when a sub-domain becomes trapped

and a new seed has to be found 4 . As k increases it is increasingly likely that

this will occur, and new valid seeds also become harder and harder to find as

successive sub-domains are claimed.

Our implementation searches for a new valid seed on a boundary, and so we

would expect the cost of this operation to increase with k. Consider the case

where the second to last sub-domain becomes trapped; if k is large then only a

small number of valid vertices will exist compared to lower values of k, where

(relatively speaking) more of the graph remains unclaimed in what will eventually

form the later sub-domains. Therefore we would expect, as k increases, not only

to have to make these searches more frequently, but also for the cost of each

search to increase also.

If we did not perform this search, either by opting to produce unbalanced sub-

domains and ignoring the whole issue, or by adopting some more sophisticated

approach (perhaps by maintaining a list of good candidates as we go along), then

this effect might be avoided. Of course, the recursive implementation we have

chosen has added overheads associated with it, but we do not feel that they are

significant in this respect, as such an unfavourable scaling with k is not seen in

any of the other algorithms that have recursive implementations (compare with

RLB, which we shall look at next, for example).

A closer examination of the execution times presented in table A.32 reveals a clear

linear dependence on k for all three types of dual graph (not illustrated). While

this is not particularly desirable, neither does it result in prohibitive runtimes and

the motivation behind choosing this implementation was made clear in section

7.4.5. Overall, GREEDY may still be seen to be a reasonable choice for a simple

4 Although [Far88] contains Fortran source for the original implementation, it is incomplete
as regards this detail.

213

graph-based algorithm, even for large problems and large values of k.

Finally, we note that the runtimes for GREEDY do not include the initial de-

termination of external border vertices, which adds approximately 0.01s, 0.23s

and 2.12s to the time taken for the dual graph extraction of the Widget, Wedgel

and m6 data-sets, respectively. This also applies to RLB, which we study next.

8.2.4 RLB

RLB uses the essentially same exploration of the layer structure of the dual

graph which SL employs, but with one significant additional feature; RLB has

an option to estimate the quality of a bisection resulting from the choice of an

initial seed point and, if Cuthill-McKee is used, to take the best seed (based on

this estimate) found in the course of the Cuthill-McKee iterations as that which

will define the bisection.

For the Widget and Wedgel data-sets we examine a range of Cuthill-McKee

iterations without choosing the best seed for bisection only (A.4:1 to A.4:6 and

A.19:1 to A.19:6, respectively) and see exactly the same alternating behaviour as

we did for SL. While the algorithm quickly settles down to alternating between

two seed points, the quality of the bisection may be significantly better for one of

these two seeds; for example, looking at the Wedgel data-set, IE t I alternates

between 20068 and 17800, which represents a 12% increase of the larger figure

over the smaller.

If we now examine the corresponding results for bisection where we choose the

better seed (A.4:7 to A.4:9 and A.19:7 to A.19:9) we can see that this undesir-

able alternating behaviour is successfully avoided, and the better decomposi-

tion is found almost immediately. We therefore conclude that it is desirable for

MD_RLB_CM_BEST, the parameter that controls this option, to be set to the value

MD_TRUE in all cases. There is certainly little increase in runtime incurred by

taking this option; at worst another Cuthill-McKee iteration will need to be per-

formed, and, if the final seed was the best already found, then no action need be

taken. This is may be seen by comparing the runtimes for an equivalent number

of iterations in the two cases (either taking the best seed or not). Comparing

A.19:8n with A.19:3n we see a small increase (0.80s as opposed to 0.68s, respect-

ively) in runtime, while comparing A.19:9n with A.19:4n we see that runtimes

are identical.

214

We take this advice to heart for all higher values of Ic (i.e. k > 2) studied for

these two data-sets, and examine how the partition quality varies with iterations

when we always choose the best seed. For the Widget data-set, two iterations

are sufficient for the node-based graphs, while one is optimal for the edge-based

graph. For the Wedgel data-set values of either one or two are found to be

optimal, depending on graph type and value of k.

We might expect the trend with increasing iterations to be as we have seen for

the node-based graph of the Widget data-set when k = 4, where I E Ie takes the

values 687, 483, 450 and 450, for 0, 1 1 2 1 3 iterations on choosing the best seed;

in other words, a monotonic improvement with increasing iterations until a limit

is reached. However, this is not always the case, as is particularly visible for the

node-based graph of the Wedgel data-set when k = 16, where the corresponding

sequence in 154,803, 137,855, 136,258 and 137,710; the result for three iterations

actually being inferior to that for two. We regard this as a largely coincidental

occurrence, where we suspect a better bisection has been chosen at one level of

recursion that may well have led to an inferior bisection (or bisections) being

found at deeper levels of recursion. Moreover, we are only estimating which seed

is preferable, and this estimate may not be sufficiently accurate in some cases.

As the results for k = 2 show a monotonic improvement with increasing iterations

for both the Widget and Wedgel, we feel that opting for a larger number of

iterations is likely to be beneficial if we are choosing the best seed, and so choose

three iterations for the m6 data-set.

Comparing the results for the the better runs of RLB against GREEDY for all

three data-sets produces no clear picture of which algorithm is preferable. For

the Widget data-set RLB generally produces better quality results, and has an

equivalent runtime to GREEDY; for the Wedgel data-set results for RLB are of

better quality only for Ic = 2 and 4 (particularly for 2) but take slightly longer on

average; while for the m6 data-set RLB produces better results only for k = 2,

being slightly worse for Ic = 8 and 32, here its runtime is slower in all cases other

than k = 32 on the node- and edge-based graphs, being significantly faster for

the former.

Finally, we note that the linear dependence of runtime for the algorithm with

respect to n, illustrated in 8.1 is unsurprising, as the determination of the layer

structure of the graph requires the exploration of the neighbours of each vertex

and so is directly dependent on the connectivity.

215

8.2.5 RCB

We now examine the first of the coordinate based algorithms we shall study,

namely RCB. However, before looking at the results for RCB, we note that

the runtimes presented in tables A.5, A.20 and A.34 do not include the initial

calculation of vertex coordinates. This adds approximately 0.05s, 0.27s, 1.67s

to the time taken for dual graph extraction of the Widget, Wedgel and m6

data-sets, respectively, and also applies to RIB, which we study next.

There are three basic modes of operation for RCB; firstly to choose the coordinate

axis along which the mesh has greatest extent once, at the first level of recursion,

and always partition perpendicular to that axis (option 1, see A.5:1); to cycle

through the axes, alternating at each level of recursion (option 3, see A.5:2); or

to choose the axis of greatest extent at every level of recursion (option 2, see

A.5:3). These three options are exactly those illustrated in figures 6.24, 6.26 and

6.25 of section 6.6.1, respectively.

We explore all three options for the Widget and Wedgel data-sets, and see that

for bisection options 1 and 2 produce identical results, as we would expect. At

higher values of k, however, I Vb I and I E Ie are significantly better for option 2.

Comparing A.20:15 with A.20:17 provides a good illustration of this for k = 16

on the Wedgel data-set, where IEcut l e is a factor of 2.3 greater in the former case

compared to the latter, when averaged over the three dual graph types.

It is only in terms of Sadj that the former case (using a fixed axis) is superior; here

it behaves in a similar manner to SL, given at least one Cuthill-McKee iteration.

This is due to each sub-domain generated by the versions of RCB and SL in

question rarely possessing more than two neighbours.

We see that for bisection the remaining option, 3, produces worse results than

either of the other two options for both Widget and Wedgel data-sets. While this

is entirely coincidental, in that performing the appropriate rotations on the two

data-sets could produce identical results in all three cases, it is this sensitivity

to orientation that is precisely the deficiency of this option. However, for higher

values of k this option produces results of quality intermediate between the other

two options in terms of IVb I and lEcut l e . Making a similar comparison to that

made before for k = 16 on the Wedgel data-set, we see that the values of IEcvt l e
for A.20:16 are (again averaged over the three dual graph types) 1.3 times greater

than those for A.20:17.

216

To evaluate the relative merits of GREEDY, RLB and RCB, it is useful to turn

to the results for the m6 data-set, which clearly shows that RCB using option

2 produces vastly better results than either GREEDY or RLB and in a much

shorter time too. Examining the relevant tables (A.32, A.33 and A.34) we see

that there is no instance where this is not the case. RCB is particularly favourable

for the higher values of k on the more densely connected graphs, especially in

terms of runtime. A good example of this occurs for k = 32 on the nodes-based

graph; examining Ecutle, we see that GREEDY gives a value of 1,449,350 in

235s, RLB a value of 1,617,416 in 139s while RCB gives 1,257,892 in only 47s.

If we look for instances where this RCB option fares worse in such comparisons,

they may be found in the smaller two data-sets, but these are the exception

rather than the norm. For the Widget data-set, A.3:2e is a better partition

than A.5:10e, but no other comparable set of results on those two tables shows

GREEDY to be superior in any respect. RLB also shows a few instances where

it is superior, for example A.4:11e and A.4:16n, but only marginally so. For

the Wedgel data-set, we find that GREEDY is slightly faster in some instances,

such as A.18:2e and A.18:2f compared to A.20:10e and A.20:10f, but produces

partitions of worse quality and, in any event, is slower in most other cases. The

more favourable results for RLB on the Wedgel data-set never manage to better

RCB with this option, either in terms of quality or runtime.

A point of interest is the relative runtime of the three RCB options. For k > 2 7

we would expect option 3 to be faster than option 1, as it never evaluates which

is the axis of greatest extent, and option 1 to similarly be faster than option 2,

as the former only evaluates this information once, while the latter does so at

every level of recursion. However, if we look at the runtimes for A.20:15, A.20:16

and A.20:17, we see that option 1 seems to take anomalously long. We suspect

that this is due to the larger number of cut edges that result from this option; in

our implementation we anticipate the subsequent use of a refinement algorithm

by calculating gains as part of the bisection process, and so a larger number of

cut edges may well influence runtime at this stage. More detailed profiling of the

code would be required to ascertain if this is indeed the case; if so, then clearly

it would be beneficial to ignore graph connectivity entirely for coordinate based

algorithms when subsequent refinement is not required.

We have so fax only discussed the behaviour of RCB for balanced partitions, but it

will have been noticed that we also tabulate results where we set MD_SEP_IMBAL to

MD_TRUE and vary MD_SEP_MAX_IMBAL to produce imbalanced partitions. We will

217

not discuss those results here, as they show broadly the same behaviour as we ob-

serve for RIB in this respect, and we explore a wider range of MD_SEP_MAX_IMBAL
for that algorithm. Neither will we discuss the variation in runtime with li e , as

it is also similar to that observed for RIB, and so we refer the reader to the

following section for a discussion of these topics.

8.2.6 RIB

Before examining the topics just alluded to, we will first compare RIB with the

RCB, where we require a balanced partition and use option 2 for RCB. The best

test of the relative merits of the two algorithms will be for the larger data-sets

and for the larger values of k. If we compare A.34:3 and A.35:3, which show

these results for the m6 data-set with k = 32, we see RIB produces slightly lower

for the node-based graph, but higher for edge- and face-based graphs,

although only marginally so. For the bisection case RIB is uniformly superior in

both I V,I and IEcut l e , but only to a relatively modest degree.

It is important to note that the results for RIB are invariant under rotations of the

mesh, as we observed in section 6.6.2 and illustrated in figure 6.27; the similarity

of the results for bisection are an indication that the mesh is strongly aligned with

the coordinate axes. The Widget and Wedgel data-sets also show the quality of

partition produced by RIB to be generally similar to those for RCB, although

sometimes better for higher values of k, particularly for the former data-set. This

leads to the same conclusion for the Widget and Wedgel data-sets regarding their

alignment with the coordinate axes.

Looking at the runtimes for the the two algorithms on the m6 data-set, we see

that RIB is only slightly slower; for example, 50.14s for A.35:3n, compared to

47.28s for A.34:3n. In view of this, we would tend to regard the cost of the

extra runtime incurred by RIB relative to RCB as an acceptable price to pay

for the added robustness of its rotational invariance. Of course, if it is known

in advance that the mesh is strongly aligned with the coordinate axes, then the

simpler algorithm may be employed.

Looking back to figure 8.1, we see that RIB exhibits a linear dependence between

its runtime and n,. The explanation for this is implicit in our comment in the

previous section regarding the calculation of gains as part of the bisection process;

clearly, as the number of neighbours a vertex has increases, so does the cost of

218

recalculating gains when it is moved by __partn_move__. As we discussed in

section 7.5, when a vertex is moved, the gains of all its neighbours are updated

incrementally according to equation 6.13, so a higher connectivity implies more

calculation in __partn_move__. As can be seen from figure 8.1, the scaling of

runtime with n , is rather benign, so this should not concern us overmuch. Of

course, exactly the same behaviour can be observed for RCB, although we do

not present this graphically.

In figures 8.2 and 8.3 we study the effects of setting MD_SEP_IMBAL to MD_TRUE

and varying MD_SEP_MAX_IMBAL to produce imbalanced partitions in the hope of

reducing lEcut l e . This functionality is available with any of the separator field

based decomposition algorithms implemented in PUL-md (RCB, RIB, RSB).

For RIB the graphs plot two quantities, cut edges and load imbalance, against

the chosen value of MD_SEP_MAX_IMBAL. Cut edges are plotted against the scale

on the leftmost vertical axis, where they are given as as a percentage of IEcut l e
for the balanced partition. On the rightmost vertical axis, imbalance is given

as simply /.. The first figure shows the results for the Widget data-set, while

the second those for the Wedgel data-set (we do not explore this option for the

m6 data-set); in both cases we illustrate bisection and the highest value of k
tabulated (8 and 16, for the two data-sets, respectively). These graphs are based

on the data in tables A.6 and A.21.

We see from the two figures that there is a clear improvement in IEcut l e as

MD_SEP_MAX.IMBAL is increased, although this evidently comes at the cost of

degraded load balance, as the plots for & show. For both data-sets we see that

allowing a maximum imbalance of 5% leads to a reduction in IE t I of at least

10%, regardless of Ic. It is for bisection of the Widget data-set that we see the

most marked improvements, where allowing a maximum imbalance of 10% leads

to a reduction in e of over 60%; a very large improvement indeed.

To explain this it is helpful to examine figure 6.28 once more, where we depicted

the results of RIB for the Widget data-set with k = 8. In that figure, the

initial bisection is clearly visible as the vertical border just to left of centre.

Now, if we allow some imbalance, then that border is free to move either to the

left or the right along the principle axis of rotation of the mesh. Subject to

MD_SEP_MAX_IMBAL, the border chosen will then be that which minimises IE t le.
Hence the border will move progressively further to the right as we permit greater

imbalance, for it is here that the length of the cut made through the mesh by

the border will be minimised.

219

/'.
/. 	\.

\

i

1o.0

MD_SEP_MAX_IMBAL

100.0

0 Elk=16

0
Ui

90.0
-J

a)

C,)
Ui
a

80.0
I-

0

4000.0

3000.0

w

2000.0
z
0
m

0- -O k=2
1000•0 0--E:lk=16

70.0.
0

.

.0
- 0.0
30.0

100.0

Dflk=8
	

400.0

0 / -- .fJ .

/
/.

!j . x /

./ 	----

/

i_n 	 inn 2flfl qn

80.0
0
z
-J

. 60.0
(0
w
0
0
Ui

40.0
0

20.0

300.0

w

200.0
m

0- -O k=2
0-- 0 k=8

100.0

0.0
D

MD_SEP_MAX_IMBAL

Figure 8.2: Imbalanced partition resulting from RIB with Ic = 2 and k = 8 for
the Widget data-set, as tabulated in A.6.

Figure 8.3: Imbalanced partition resulting from RIB with k = 2 and k = 16 for
the Wedgel data-set, as tabulated in A.21.

220

There are two obvious implications of this; firstly, that the benefits gained by

this procedure are strongly dependent on the mesh geometry; and secondly, that

we would expect an upper limit to be reached (for bisection of this data set),

imposed by the sudden widening of the mesh towards the right. This latter effect

can be seen quite clearly in figure 8.2, where no further improvement in I Ecijt l e is
gained past MD_SEP_MAX_IMBAL = 20%. Although this effect is a product of the

mesh geometry, it is interesting to note that it is also clearly visible for bisection

of the Wedgel data-set, as shown in figure 8.3.

The influence of mesh geometry is likely to be lessened for higher values of k,
where the essentially arbitrary shapes of the sub-domains found at intermediate

levels of recursion lessen the influence of the overall geometry. For both data

sets, the higher values of k show this procedure producing little benefit past

MD_SEP_MAX_IMBAL = 10%.

We conclude our discussion of this matter by noting that the reduction in IEcut l e

(and any associated improvement in 114,1 or Sad,) may or may not translate into

a improvement in application runtime, as the corresponding increase in L will

mitigate against this. Simply minimising lEcut l e is a crude approach, and it would

be better to minimising a more accurate objective function, say a weighted sum

of IE t I, VbI, 3adj and z. Of course, the weights that should be used in such

an objective function are dependent on both the application and the platform

on which it is running, as so would have to be provided by the user and may be

hard to determine.

8.2.7 RSB

RSB is the most sophisticated decomposition algorithm implemented in PUL-md

and the quality of results it produces are significantly superior to any of the other

algorithms we have thus far studied, as we shall see. In order to ascertain how

to get the best performance from RSB, we first study the tunable parameters

that influence the behaviour of the Lanczos eigensolution in isolation from the

separator based parameters we have just discussed in the context of RIB, which

also apply to RSB.

There are two aspects of the eigensolution that may be altered by the user; the

convergence tolerance used, and the optional use of full orthogonalisation. For

the Widget and Wedgel data-sets we investigate the effects of varying the tunable

221

parameters associated with these aspects, tabulating the results in A.7 and A.22,

respectively. In these two tables, we study the full range of values for MD_RSB_TOL

between —5 and —1, with both full orthogonalisation (MD_RSB_ORTHOG = MD_TRUE),

and partial orthogonalisation against the trivial eigenvector only (MD_FALSE).

Turning first to orthogonalisation, we see that for the Widget data set the qua!-

ity of results with either full or partial orthogonalisation are, without exception,

identical. This is almost true of the corresponding results for the Wedgel data-

set, where there are only a few exceptions and none that differ to a significant

degree. Of those results that do differ, several actually show a small improve-

ment through not using full orthogonalisation; compare A.22:13n with A.22:18n,

A.22:11f with A.22:16f and A.22:14f with A.22:19f, for example. The only detri-

mental instance is seen in comparing A.22:13e with A.22:18e, where Ecutle takes

the value 13,985 with full orthogonalisation and 13,993 if only partial orthogon-

alisation is used; hardly a cause for concern.

Regardless of orthogonalisation, if we examine the behaviour to RSB as we vary

the convergence tolerance, we find it remarkably robust. In most cases, settings

for MD_RSB_TOL between —5 and —2 produce results of equivalent quality to

within a few percent. The worst exception to this is A.22:19f, where the result

for a tolerance of —2 is approximately 19% worse than that given by A.22:18f,

where a tolerance of —3 was used. We may conclude that generally a tolerance

of —2 is sufficient, but —3 may be a safer choice.

If we examine the runtime of RSB in relation to orthogonalisation and conver-

gence tolerance, we find a considerable benefit in avoiding full orthogonalisation,

and in keeping the tolerance as loose as possible.

If we take a tolerance of —3 as representative and compare timings, respectively

with full and only partial orthogonalisation, then we see the large increase in

runtime associated with the former option clearly. The Widget data-set for k = 8

gives these times as 1.46s versus 0.65s for the node-based graph, and 2.47s versus

0.91s for edge-based. The Wedgel data-set for k = 16 similarly gives; 58.62s

versus 39.87s (nodes), 49.72s versus 17.04s (edges), and 75.00s versus 12.45s

(faces). In view of the fact that there is no observed difference in the quality

of results, we conclude that there is little need to employ full orthogonalisation.

Nonetheless, it may be the case that graphs exist for which it may be necessary

to the stability of the Lanczos algorithm to use full orthogonalisation, but the

situation does not arise for any of the dual graphs derived from the data-sets we

222

have studied.

200.0

G-ONODES
0-EJ EDGES

150.0 	G-EFACES

-J
-J
D
U-

100.0

-J

50.0
I-

0

0.0
-1.0 	-2.0 	-3.0 	-4.0 	-5.0

MD_RSB_TOL

Figure 8.4: Runtime for RSB as a function of convergence tolerance for the
Wedgel data-set with k = 16 as tabulated in A.22.

Figure 8.4 also illustrates the effects of orthogonalisation on runtime, but is

primarily a depiction of the effects of imposing increasingly strict convergence

tolerance. From that graph we see a largely linear increase in runtime as we

make the convergence tolerance stricter, although the greater runtimes are per-

haps most noticeable for the less densely connected graphs. We see that, for

full orthogonalisation, the runtimes for both edge- and face-based graphs have

overtaken that for a node-based graph once the tolerance has reached —5. This

is less noticeable when only partial orthogonalisation is used, where we see that

the runtime for the face-based graph overtakes that for the edge-based, but not

the node-based graph.

The primary computational cost involved in the Lanczos algorithm (disregarding

orthogonalisation for the moment) is the matrix-vector product of the Laplacian,

L, with the Lanczos vector, q3 , at each iteration. This cost is evidently propor-

tional to the graph connectivity, as the number of non-zero entries in the row

representing a given vertex is proportional to its number of neighbours, so it

must be the case that the dual graph types with lower connectivities take more

iterations to reach the specified tolerance if they have a longer runtime. If we add

the extra cost of full orthogonalisation, this exaggerates the effect as the cost, at

iteration j, is proportional to the number of Lanczos vectors so fax generated, of

223

which there will be j. This goes some way to explaining the behaviour seen in

figure 8.4, but does not explain the increase in iterations itself. Nonetheless, it

is clear that it is uneconomic to use a needlessly strict convergence tolerance, as

doing so increases runtime but may not produce a commensurate improvement

in quality.

We conclude that setting convergence tolerance to —3 and employing only partial

orthogonalisation is a reasonable choice of tunable parameters for RSB, and apply

the algorithm to the m6 data-set in this manner, as tabulated in A.36. Comparing

the quality of results produced by RSB against those produced by any of the

other decomposition algorithms we have so far applied to the data-set, shows

that RSB is superior in every case. A representative comparison is provided by

examining the quality of partition for RIB and RSB with k = 32 (A.35:3 and

A.36:3, respectively). We see an approximately uniform improvement of 30%

in lEcut l e as a result of using the more sophisticated algorithm. However, even

using RSB with tunable parameter settings chosen for maximum efficiency, the

runtime of the algorithm for a large problem such as this is considerable; while

RIB for the node-based graph takes less than a minute (A.35:3n, 50.14s), RSB

takes slightly over an hour (A.36:3n, 3721.42s).

Another consideration here is the memory requirements of RSB. Because we

store the Lanczos vectors in main memory, even if we are only using partial

orthogonalisation, the memory requirements of the algorithm may be very large;

almost 400Mb for the face-based dual of this data-set, which is the worst behaved

in this respect. Memory utilisation for this data set is shown in table 8.1 for

both RIB and RSB. It should be noted that these figures include the memory

requirements of __dual__, which accounts for the variation in the figures for RIB

with graph type, as it is unlikely that the decomposition routine will exceed the

requirements of the dual graph extraction routine.

MEMORY REQUIREMENTS 11 	RSB 	11 RIB
Dual 	I Iter's I Mb 11 Mb

NODES 154 311 86
EDGES 184 314 44
FACES 248 399 33

Table 8.1: Memory requirements for partitioning the m6 data-set with RSB and
RIB, together with number of iteration to converge for RSB. Algorithm used are
as A.35:1 and A.36:1.

Just as for RIB, we studied the effects of setting MD_SEP_IMBAL to MD_TRUE

224

100.0

DO k=8

80.0
0
z
-J

. 	60.0
Cl)
w
a
w
uJ
I-

40.0
0

20.0

0

D. 	 - .9 .43 w

- I

0 	 e_.
7 ,

7/

/
/ 	..

•0...

0.0 	 10.0 	 20.0 	 30.

400.0

300.0

w
I-
>

200.0
m

e- -o k=2
0-- 0 k=8

100.0

0.0
0

MD_SEP_MAX_IMBAL

Figure 8.5: Imbalanced partition resulting from RSB with k = 2 and k = 8 for
the Widget data-set, as tabulated in A.8.

100.0
':..

4000.0

G-Ok=2
0.... 0k=16 .. 0

3000.0
z 	90.0 •.. .® 	/

/

ca / , 	
........

/ /
2000.0

z (/)
w '

.
o

80.0 ,"
"b.

........

..--

........ h1

G--Ok=2
9--EJk=16

1000.0

/ 	
---

0------------------ &............
7 	---

70.OJ' 0.0
0.0 10.0 20.0 30.0

MD_SEP_MAX_IMBAL

Figure 8.6: Imbalanced partition resulting from RSB with k = 2 and k = 16 for
the Wedgel data-set, as tabulated in A.23.

225

0

and varying MD_SEP_MAX_IMBAL to produce imbalanced partitions, we perform

the same study for RSB, again on the Widget and Wedgel data-sets. This is

illustrated in figures 8.5 and 8.6, where the graphs shown are based on the data

in tables A.8 and A.23, respectively. Again we see a marked improvement in

IE t I by allowing a 5% maximum imbalance for bisection, particularly for the

Widget data-set, but now the benefits gained at higher values of k are not as

noticeable as they were for RIB. Previously, at this level of imbalance, results

for bisection were comparable to those for the higher values of k, but, in the

case of RSB, we see only about half the improvement when partitioning into a

larger number of sub-domains. Moreover, if we allow a maximum imbalance of

greater than 5% at the higher values of k, then we see little further return for

the increased load balance. This would seem to indicate that, for real problems

where k is likely to be larger than 2, this technique of permitting some imbalance

is less useful in combination with RSB than it is with RIB.

8.2.8 KL

As it is not feasible for us to examine the use of KL in combination with all of the

global decomposition algorithms implemented in PUL-md, we attempt instead

to examine its use in combination with three representative methods. We first

examine using KL from an arbitrary initial configuration, in this case provided

by SR so that the 'refinement' algorithm does all the work of partitioning, to

see if it is competitive with any of the other algorithms we have discussed. We

then look at refining the partitions provided by RIB and RSB, in the hope that

KL, in combination with the former, may provide a faster route to good quality

partitions than the time consuming spectral algorithm alone, and subsequently

examine whether we can improve on RSB itself, in the hope of producing parti-

tions of the very highest quality.

The results for SR refined by KL (SR+KL) are presented for bisection of the

Widget and Wedgel data-sets in tables A.9 and A.24, respectively. If we ex-

amine these results for the node-based graph of the Widget data-set, then we

see that the best value of lEcut l e achieved is 147, which is superior to the best

corresponding result for RSB, which was 154 (although a value of '..173 is more

representative, see A.7). However, the fastest time taken by SR+KL to achieve

this promising result was 2.51s (A.9:1n), approximately five or more times that

for RSB. Further, if we turn to the edge-based graph, we note that none of the

226

results for SR+KL are superior RSB, or even RIB, although runtimes are now

sometimes more comparable.

Making a similar comparison for the Wedgel data-set, firstly for its node-based

graph, we see that the best value of IEcute achieved by SR+KL is 11,032, while

RSB gave 11,656. For this larger data-set the runtimes are no longer so dis-

proportionate, with the former now taking only approximately twice as long as

the latter. The results of SR+KL for the node-based graph are of quite uniform

quality, but the other two graphs show more mixed results; for edge-based we do

see many results significantly superior to RSB, while for face-based we see that

all results are significantly inferior to both RSB and RIB.

For SR+KL we have no concept of a border region, as we would if the initial

partition was provided by a separator field based technique, and so can not ex-

plore the MD_KL_BORDER_ ONLY option, but we can study the effects of termination

criteria and randomisation on the performance of KL. For the Widget data-set

we see marked improvements in runtime as a result of setting the termination

criteria so that a full KL pass is not performed at each iteration, but we also see

that the quality of final partition is badly degraded. However, for the Wedgel

data-set we see that (up to a point) little or no degradation in quality occurs for

the node-based graph and significant improvements in runtime are still evident.

The quality of partition for the edge- and face-based graphs does seem to be more

sensitive to early termination of IKL, although runtime is nonetheless improved.

Finally, for the SR+IKL combination, we note that some impiovement in quality

occasionally results from allowing a certain number of random retries, as de-

termined by the MD_KL_RANDOM_RETRIES parameter. For the Widget data-set,

comparing A.9:5n with A.9:15n we see a drop in IE g I from 313 to 215, where

we have allowed 3 retries. For the Wedgel data-set this is much less marked, for

example compare the same cases, A.24:5n and A.24:15n, where the drop is only

from 11,043 to 11,032, which is hardly worth the cost of increased runtime.

We conclude that using KL from an arbitrary initial partition is a rather un-

predictable and relatively inefficient course of action, considering that it only

occasionally betters RSB alone, and is usually very much more time consuming.

Moving on to looking at refining an initial partition provided by RIB with KL

(RIB+KL), we find we have a much more competitive combination. Looking

first at table A.10, where we present results for bisection of the Widget data-set,

we see that the quality of partition for RIB+KL is generally almost as good as

227

that resulting from RSB alone. While RSB gives 	Ie of 173 for the node based

graph, RIB+KL generally gives a value of '184, and in some cases as little as

144, but while RSB takes 0.32s, RIB+KL takes as little as 0.04s for the former

result and 0.28s for the latter. For the edge-based graph RIB+KL uniformly

gives lEcut l e of 23, which is a similar figure to RSB which gives 21, but RIB+KL

is again much faster.

It is interesting to note that the better results on the node-based graph (lEcutle
of 144) for RIB+KL come as a result of allowing KL at least one random retry.

Looking at A.10:4n and A.10:5n, we see that one random retry gives the same

improvement as do five retries. It would therefore seem that one retry is sufficient,

and we take this position in a more through examination of the contrast between

no randomisation and one random retry for k = 4 on table A.11, where we explore

a range of other KL tunable parameters both with and without randomisation.

We see that, while the quality of partition for the edge-based graph is unaffected,

the quality for the node-based graph, is improved by randomisation and to a

degree which makes the difference between RIB+KL being superior or inferior

to RSB. Looking at the same cases for the Wedgel data-set, we do not see such a

noticeable improvement with randomisation. In fact, for the bisection case there

is no change in EI€ as a result of randomisation, as shown on table A.25.

For the higher value of k tabulated in A.26, there is a marginal improvement

with randomisation, but not one which really justifies the associated increase in

runtime.

This behaviour would seem to indicate that the benefits of the randomisation

method we use are limited to smaller graphs. This may well be a result of our

randomising only a small fixed number of vertices from each gain list; something

which will not necessarily scale with problem size. This is, however, speculation

as we have not had the opportunity to investigate this and so all our results are

based on N_RAND_ITEMS = 40 (set at compile time).

The importance of setting sensible termination criteria for KL also are partic-

ularly apparent on table A.26. For the node based-graph, KL with a full pass

at each iteration takes 223.52s (A.26:1n), while if we set termination criteria

based on IEctzt l e then KL takes only 21.94s (A.26:2n) and termination based on a

maximum number of consecutive unproductive vertex moves of 5% takes 26.81s

(A.26:3n). The quality of results in these three cases is equivalent, with no early

termination giving a value of 83,307, and both the faster options a similar figure

of 83,370. As the two termination criteria generally behave similarly, we tend to

228

favour termination based on Et e, as there is no 'associated percentage value

that also needs to be tuned by the user.

For the m6 data-set we therefore use the IEcut l e based termination criteria, but

do not employ randomisation for the reasons previously stated. With these

parameter settings we see that RIB +KL produces a similar quality of partition

to RSB alone across a range of values of k, although it is on the more densely

connected graphs that it fares best in this comparison. Comparing A.36:3n with

A.37:11n, we see that RSB took 3721.42s to give a IEcute of 886,179, while

RIB+KL took only 487.93s to give a EtI of 854,272. Although not all results

of RIB+KL are superior (see the corresponding results for the edge-based graph

of m6, for example), runtimes are considerable better and always by a large

factor, sometimes as much as an order of magnitude faster.

A feature of KL that we can investigate for RIB that we could not examine

for SR, as we did not have a separator field to work with in that case, is the

effect of restricting KL to the border region surrounding the initial bisection

boundary. Although the results for k = 2 of the Widget and Wedgel data-sets

indicate that it is only when we take the defined border size as low as 5% that

this procedure starts to influence the quality of partition for the worst (compare

A.25:10n through A.25:13n, for example), for higher values of k on these data-

sets the transition is less well defined. This is also true for any value of k to the

m6 data-set. If we turn to this larger data-set to provide an illustration of the

effect of restricting KL to the border region, we can see that reducing the size

of this region reduces runtime, but that it also prevents KL from refining the

partition to as great a degree as it otherwise would have been able to do. This

is shown in figure 8.7, where we plot both IE t I and runtime against the size of

the border region. For reference, we also show the values of IEcut l e for RIB and

RSB alone, as the horizontal lines on that graph. We see that, while runtime

is always reduced by restricting KL to a smaller region, even taking a border

region as large as 60% still prevents KL from refining RIB enough to produce a

better partition than RSB. That said, a significant improvement in I.Ecut l e always

occurs.

We close this discussion of KL by examining its behaviour when used in com-

bination with RSB (RSB+KL). Here we are less concerned with runtime, as

the additional cost of KL is rather small compared to the long runtimes typ-

ical of RSB. For the Widget data-set we see a good improvement in quality for

RSB+KL on the node-based graph, but only a quite modest improvement for the

229

1 .3e+06

1 .2e+06

co 1.le+06

LLJ

1.Oe+06

9.Oe+05

R

500.0

400.0

300.0

i.e.
200.0

100.0

An

100 	 60 	 20 105
MD_KL_BORDER_SIZE

Figure 8.7: Influence of MDLBORDER.SIZE on runtime and IEctzt l e for RIB+KL
applied to the m6 data-set with k = 32, as tabulated in A.37:11n onward.

edge-based graph; this may well be an indication that RSB has already provided

a near optimal partition on this very small graph, rather than being an indica-

tion of any failure on KL's part, however. For the Wedgel data-set, making the

same comparisons show that KL can always improve on RSB alone, regardless of

dual graph type. For the m6 data-set we make this comparison more explicit by

noting that KL has reduced IEcut l e by '-'7% for the node- and edge-based graphs

and by over 20% for face-based. These statistics are for k = 32 when comparing

A.36:3 with A.39:13.

Finally, we note that the degradation of partition quality when KL is restricted to

the border region is much less obvious when the initial partition originates from

RSB, than RIB. This can be seen by comparing A.26:11 onwards with A.27:17

onwards for the Wedgel data-set, and also by comparing A.37:11 onwards with

A.39:11 onwards for the m6 data-set. For some graph types IEcut l e is actually

less when KL is restricted to a border region as small as 20%, although we

suspect this to be largely coincidental. A possible explanation for the increased

efficiency of using KL border restriction with RSB compared with RIB, might

be that the border region is much more suitably defined by the Lanczos vector

acting as separator field than the vertex coordinates in the inertial direction. As

the Lanczos vector is derived from the graph structure directly it is likely to give

a definition of a border region that is more closely allied to the region in which

230

KL prefers to operate, as KL is itself entirely dependent on graph structure.

Unfortunately this is of largely academic interest, as the reduction in runtime

gained by restricting KL to the border region is negligible compared to the overall

runtime of RSB.

8.2.9 Mob

In order to be able to make a meaningful comparison with KL refinement, we

study Mob applied to the same set of initial partitions, namely those provided

by SR, RIB and RSB.

We look first at the results for SR refined by Mob (SR+MOB) tabulated in A.13

and A.28, for bisection of the Widget and Wedgel data-sets, respectively. There

we notice immediately a wide variation in both partition quality and runtime with

the various tunable parameter settings explored. This variation is a significant

one; if we consider the node-based graphs of the two data-sets, then we see that

the best result in terms of IEctte for Widget is 178 (A.13:17n) but that the

worst is 1,997 (A.13:3n), while for Wedgel the best is 11,103 (A.28:22n) but that

the worst is 116,014 (A.28:3n). The fact that we see a variation of easily an

order of magnitude would seem to indicate that Mob is rather sensitive to its

parameter settings, but it should be noted that the poorer results are found when

the MDJ1OBCOMPLETE tunable parameter takes the value MDFALSE. Depending on

the setting of this parameter two quite different versions of the algorithm are

executed; this is something we shall discuss in more depth shortly, when we

come to look at refining partitions provided by RIB.

Overall, it is difficult to find evidence in A.13 and A.28 that SR+MOB fares

any better in comparison with RSB than did SR+KL; there are occasions where

SR+MOB is faster and occasions where it gives equivalent results, but it does not

reliably do both together. We conclude, as we did for SR+KL, that SR+MOB is

relatively inefficient, although we do not rule out the possibility that, given the

correct choice of parameter settings, partitions of reasonable quality may still be

found.

If we supply Mob with an initial partition produced by RIB (RIB+MOB), then

the better results obtained are of a similar quality to RIB+KL. However, on

examining the relevant tables (A.14 and A.29), we see that there is one important

distinction between the two refinement algorithms, in that Mob may actually

231

make the partition worse if unfavourable parameter settings are used. The reason

for this is that our implementation of Mob, unlike KL, does not record the

best configuration found during its execution and will often be required to swap

vertices with negative gain when there are insufficient vertices of positive gain

available to fill a mob of the size determined by the current entry in the mob

schedule. We can see this clearly in cases where larger mob sizes are used, for

instance in A.14:1 or A.14:2 for the Widget data-set, and in A.29:1 or A.29:2,

which are the same cases for the Wedgel data-set.

If we examine the results in more detail however, then a question arises; if this

undesirable behaviour is the result of a large mob size, then why do we only

see the effect when MDJIOBCOMPLETE takes the value MD_FALSE? This parameter

was false in all four of the cases we just referenced, but if we look at the cor-

responding cases where the mob size is just as large, but MDJIOBCOMPLETE takes

the value MD_TRUE (A.14:10 or A.14:11 for the Widget data-set, and A.29:10 or

A.29:11 for the Wedgel data-set), we see much more reasonable results, and even

some worthwhile improvement over RIB alone (although this may be subject to

the number of iterations performed). As we mentioned before, the setting of

MDJIOBCOMPLETE results in one of two quite different versions of the algorithm

being executed. If the parameter is false, then we are not guaranteed to reach

the end of the mob schedule, while if it is true, then we always will.

The effect of this on the progress of the algorithm is illustrated in figures 8.8 and

8.9 where we plot iEcut l e against the number of mob exchanges for the Widget

data-set. In each of these graphs we compare the progress of the algorithm for

the two possible settings of MDJIOBCOMPLETE, using a fixed schedule length and

initial mob size. The only other difference in parameter settings for the two plots

on each graph is the larger number of iterations in the instance where we do not

complete the mob schedule, which allows us to plot an equivalent total number

of exchanges for the two versions of the algorithm.

From figure 8.8, we can see that the action of Mob is such that, early on in the

schedule, a large amount of 'noise' is introduced into the state of the partition.

As we only increment the counter into the mob schedule when the state becomes

worse (or no better) then the resulting initial degradation in quality may be as

large as the mob size itself. However, as we progress through the schedule and

the mob size reduces, we see the algorithm settling back down towards a better

configuration. It is here that the two versions of the algorithm depart; if we

complete the schedule then we generally remove the noise that was previously

232

1000.0

800.0

(I) 	600.0
w

LU
I-

0 400.0

200.0

0.0
0.0 100.0 	 200.0 	 300.0 	 400.0

MOB EXCHANGES

RIB

1000.0

800.0

0 600.0
LU

g
LU
I-

0 400.0

200.0

0.0
0.0 100.0 	 200.0 	 300.0 	 400.0

MOB EXCHANGES

RIB

- MD_MOBCOMPLETE = F
- MD.JViOBCOMPLETE = T

Figure 8.8: Progress of the Mob algorithm with MDJIOBSIZE = 10 5/c sub-
sequent to RIB. MOB.ITERS was 5 for MDJIOBCOMPLETE = MDFALSE, and 10 for
MDJIOBCOMPLETE = MD..TRUE. MDJIOBSCHED was 40 in both cases.

- MD...MOBCOMPLETE = F
MD_MOBCOMPLETE = I

Figure 8.9: Progress of the Mob algorithm with MDJIQBSIZE = 5% subsequent
to RIB. Other Mob parameters as for figure 8.8.

233

added and often find a better partition, but if we do not then the partition is

invariably left in a worse state than when we started. In figure 8.9 we have

reduced the initial mob size and see that the version of the algorithm where we

do not complete the schedule performs better in comparison, but that the other

version of the algorithm is not now given sufficient freedom to allow it to make

any significant improvement over the initial RIB partition for this small data-set.

It is clear from this, and from the results for bisection in tables A.14 and A.29

where we make the appropriate comparisons, that the version of the algorithm

where we insist that the mob schedule be completed is the preferred option.

Hence, where we examine the behaviour of the algorithm for higher values of k,

we generally set MDJ1OBCOMPLETE to MDTRUE.

Comparing the results for k = 4 for the Widget data-set with RIB+KL we see

that similar improvements are made to partition quality by Mob and KL, and

also that runtimes of the two algorithms are similar. For k = 16 and the Wedgel

data-set the same is also true, and here the results for the node-based graph

provide a good illustration that not only is a smaller mob size preferable for

this larger data-set (compare A.29:20 with A.29:22), but also that good results

can sometimes be obtained in as few as two iterations (i.e. two complete cycles

through the schedule; compare A.29:22 with A.29:23).

For the m6 data-set we find that it is necessary to restrict ourselves to one

iteration of Mob if runtimes are to be competitive with KL, but that results are

quite promising even so. While RIB+KL took 487.93s to give its best result

with IEcut l e of 854,272 when partitioning with k = 32 on the node-based graph

(A.37:11n), RIB+MOB gave a Ecutle of 867,014 in just 207.64s (A.37:12n). It

will also be seen that the mob sizes and schedule lengths are reduced compared

to those we used on the smaller data sets in order to better KL on this large

data-set; it should be noted that it required some experimentation to estimate

the region of the parameter space in which the better settings lay.

Our final comments concern the use of Mob with RSB (RSB+MOB), as tabu-

lated in A.15, A.30 and A.40, for the Widget, Wedgel and m6 data-sets. Our

conclusions here are largely the same as those for RSB+KL; that the additional

runtime due to refinement is small in comparison to that of RSB itself and that

improvements over the initial RSB partition of a similar degree also result. Turn-

ing again to the m6 data-set with k = 32, we see that RSB+MOB is marginally

superior to RSB+KL for the node- and edge-based graphs, but that RSB+MOB

234

for the face-based graph gives rather erratic results which are generally inferior.

8.3 Summary

We now summarise our conclusions from this discussion, with particular reference

to the individual characteristics of the algorithms and their preferred parameter

settings.

For each algorithm we have observed the following:

SR and SC:

. Not feasible decomposition algorithms in themselves.

SL:

• Without Cuthill-McKee quality determined arbitrarily by element number-

ing.

• Cuthill-McKee results in great improvements in quality after even two it-

erations, thereafter exhibiting alternating behaviour.

• Overall quality nonetheless poor for large k, except in terms of 3adj.

GREEDY:

• Better jVbI and Ecutle than SL when k is large.

• Runtime increases linearly with k.

• Without Cuthill-McKee quality determined arbitrarily by element number-

ing.

• Cuthill-McKee results in great improvements in quality after even two it-

erations, and any undesirable alternating behaviour may be avoided via

MD_RLB_CM_BEST.

• Similar performance to GREEDY.

• Runtime increases linearly with n.

ptpwja

• Added cost of calculating vertex coordinates negligible.

235

• Using a fixed axis gives similar behaviour to SL with Cuthill-McKee; overall

quality poor for large k, except in terms of 3adj.

• Evaluating the axis of greatest extent at every level of recursion gives best

performance.

• Reasonable quality partitions produced with very short runtime.

• Superior to SL, GREEDY and RLB.

• Many features in common with RIB (see below), but quality dependent on

alignment of mesh with coordinate axes.

RIB:

• Similar performance to RCB for the data-sets analysed, but more robust

in general, due to rotational invariance.

• RIB only marginally slower than RCB.

• Runtime increases linearly with n6 , but quite benignly.

• Allowing imbalanced partitions may reduce IE t I, but is counter product-

ive if the imbalance is allowed to be too great.

RSB:

• Very high quality partitions reliably produced; superior to all previous

algorithms above.

• May be prohibitively slow for large problems.

• Memory requirements very large.

• Loose convergence tolerances may be used to reduce runtime without corn-

promising quality.

• Full orthogonalisation unnecessary.

• While runtime per iteration increases with n, number of iterations may

decrease, occasionally leading to longer runtime for less densely connected

graphs. However, for reasonable convergence tolerance runtirne increases

linearly with n,.

• Allowing imbalanced partitions may reduce I E. e, but is counter product-

ive if the imbalanced is allowed to be too great.

236

KL:

• SR+KL not competitive.

• RIB+KL can produce results as good as RSB with much shorter runtime.

• RSB+KL improves on RSB alone, and the additional runtime is small

compared to that of RSB.

• Randomisation may produce better quality results, but only on smaller

problems; we suspect this indicates our implementation should introduce

more randomisation for larger problems than it does at present.

• Runtime greatly reduced by setting sensible termination criteria for each

KL pass without compromising quality.

• Runtime may also be reduced by restricting KL to the border region (when

used with separator field based techniques), but this may compromise qual-

ity. This compromise is more noticeable when used with RIB than RSB.

• KL never increases Ecutle.

Mob:

• Mob may increases jEcutle, particularly if MDJ1OBCOMPLETE is false.

• It is almost always preferable for MDJ1OBCOMPLETE to be true.

• SR+MOB not competitive.

• RIB+MOB can produce results as good as RSB with much shorter runtime.

• RSB+MOB may improve on RSB alone, and the additional runtime is

small compared to that of RSB.

• Smaller mob size, reduced schedule length and number of iterations may

be required for larger problems if runtime is to be competitive to KL.

• Overall, more erratic than KL, due to sensitivity to parameter settings, but

may sometimes be superior if the correct settings can be found.

237

Chapter 9

A Demonstration Application

In the previous chapter we based our evaluation of the decomposition algorithms

implemented in PUL-md on the metrics of partition quality L, IVI, I and

5ad3, with particular emphasis falling on the first two of these metrics. It is

evident from our discussions in section 5.3, where we examined the factors that

affect the runtime of parallel unstructured mesh calculations, that these are an

approximate abstraction at best, and that even a weighted sum of these metrics

fails to capture the full complexity of the interaction between decomposition,

application and hardware (for example, network distance does not figure in these

metrics). While a full empirical exploration of the validity of these metrics would

involve a survey of a variety of applications running on a variety of platforms,

which is far outside the scope of this thesis, these metrics are often quoted in the

literature and it is proper that we should examine their applicability in practice.

To this end, we study the runtime of an example application as a function of

these metrics.

The example application we use is pheat2d, a parallel version of the HEAT2D

finite element heat transfer code due to Usmani and Huang [HU94]. The im-

plementation of the parallel version of this code was used as a demonstration of

the capabilities of PUL-md and PUL-sm as part of the collaboration between

EPCC and Fujitsu Parallel Computing Centre. This demonstration showed that

real gains are to be made by the use of a parallel platform, and that PUL-md

and PUL-sm together vastly simplified the task of parallelisation, as documented

in [BD96, BDH97]. These two publications discuss, amongst other topics, de-

tails of the parallelisation of the code and the resulting performance on several

parallel platforms; the Fujitsu AP1000, the Meiko CS-2, and a cluster of Sun

238

IPX workstations connected by Ethernet. A worthwhile parallel speed-up was

observed up to k = 8 for the test cases studied running on either the AP1000

or CS-2 (in fact, almost identical speed-ups were observed), but performance on

the cluster of workstations was poor past k = 4. We refer the reader to these

two publications for full details of these comparisons, as here we shall restrict

ourselves to examining performance on the CS-2 as a function of decomposition

only. However, before doing so, we shall introduce the finite element code itself,

and say a little regarding some pertinent details of its parallelisation.

9.1 The Serial Code

The HEAT2D program offers a range of options for solving the two-dimensional

heat conduction equation on unstructured meshes of 3 and 4-noded linear, and

6 or 9-noded quadratic elements. Both steady state and transient analysis may

be performed for two dimensional or axisymmetric problems. Phase change,

internal heat generation and forced convection may all be studied and non-linear

material properties are permitted.

In order to analyse these phenomena, the code uses the finite element method

to solve the differential equation

ö/ ÔT\
- (k_j + Q = cc- 	 (9.1)

Ox j
- at

where the unknown of interest is the temperature field T, Q is the heat-source

term, p the density of the material in question, c its specific heat capacity and

k23 the conductivity tensor. This equation is the basic governing equation of heat

conduction in a solid; HEAT2D solves both this and related equations incorporating

convective and radiative flows 1

If we restrict ourselves to looking for a steady-state solution, we can apply the

condition ôT/ô = 0. The approximating matrix equation can then be written

as

Kr=f
	

(9.2)

where K is the global conductivity matrix, r is now the discretised temperature

1 See Chapter 2 of [HU94] for further details.

239

field (which gives the solution for T) and f the load vector (incorporating the

continuum source term Q). Solving 9.1 thus comes down to solving the above

matrix equation.

The serial program takes as input a file specifying the problem mesh geometry,

material properties and boundary conditions. It then calculates each element's

contribution to the matrix K, namely the element conductivity matrices K 6 ,

and similarly the element load vectors f 6 and assembles these into a global form,

finally applying a suitable matrix solver to the global matrix equation 9.2.

9.2 The Parallel Code

The tasks requiring the most significant amount of computation involved in solv-

ing 9.1 in this manner fall in calculating each element's K6 and in solving the

matrix equation 9.2. As we saw in chapter 5, the individual K 6 may be cal-

culated in parallel without incurring any communication overheads, as they are

independent. The resulting distributed global matrix, K, which is their sum,

may then be solved in parallel with communication occurring only for elements

which are physically adjacent, but reside on different processors as we also saw

in section 5.1.4 of that chapter. Thus the areas requiring attention in order to

parallelise the serial code are the initial input phase and the matrix solver.

The use of the PUL-md and PUL-sm libraries enables the adoption of a relatively

straightforward strategy in parallelising HEAT2D:

• Write a serial preprocessor, heat2dpp 2 , to convert HEAT2D input files into

parallel equivalents. This may be done by calling md_decompose to provide

a decomposition of the mesh, then using PUL-md's output functions to

write the data files accordingly.

• Replace the serial code input routine with a routine based on PUL-sm's

mesh distribution functions which read the files written by heat2dpp.

• Replace the existing direct solver (a Cholesky profile solver) routine with

a parallel iterative solver using PUL-sm's halo swapping functions.

The resulting parallel code is pheat2d.

2heat2dpp is a C program, while pheat2d is written in Fortran 77.

240

Some of the facilities of the serial code have been restricted in the parallel version;

in particular the parallel meshes are restricted to 3-noded linear elements (i.e.

triangles) only.

We chose one of the simplest iterative solvers to implement in parallel, the over-

relaxed Gauss-Seidel algorithm. It was felt that this would suffice for the demon-

stration purposes, although for 'production' use of the code, particularly for

large meshes, we would obviously prefer a more sophisticated algorithm (conjug-

ate gradient or minimal residual, for example). As we saw in section 5.1.5, the

key operation in any iterative matrix solution is the distributed matrix-vector

product. Hence, although our Gauss-Seidel is admittedly crude, it should ex-

hibit the same dependence on decomposition quality that the more sophisticated

algorithms would be expected to display.

9.3 Effects of Decomposition Quality

In order to study the effects of decomposition quality on the runtime of the par-

allel code, we partition a single mesh by a variety of means and examine how the

metrics of quality we have previously employed relate to the runtimes observed.

The mesh we use for this comparison is the the familiar Widget data-set, for

which we already have many example decompositions tabulated in appendix A,

and which we have discussed in detail in the previous chapter.

We look first at balanced decompositions, so as to examine the other metrics in as

much isolation from the effects of / as is possible. We then look at unbalanced

decompositions where there may be a trade off between A, and the other metrics

which are related to communication costs.

The timings we present in the following sections are derived from a series of runs

on four processors (Ic = 4) of the CS-2 where the overall execution time, the

total time spent in solving 9.2 and the time spent in PUL-sm communication

routines during solution were recorded. As the overall execution time is greater

than the total solver time only by a constant factor (the difference being in I/O

and calculation of individual K which are unaffected by decomposition), where

we refer to total time henceforth we understand it to mean the latter. Similarly,

where we refer to communication time, we understand it to mean communication

during matrix solution.

241

For the Widget data-set, setting a convergence tolerance for the matrix solution

of 1.0 x 10-6 gives solutions in agreement with the serial code to the order of iO,

which is quite satisfactory. Typically this level of accuracy requires approxim-

ately 700 iterations, but this figure is not entirely independent of decomposition.

While this effect is discussed in [BD96, BDH97], we wish to avoid it influencing

our results here and so use a fixed number of iterations. As the runtimes for the

code are rather short, we use 5000 iterations so that fluctuations in timings due

to other loads on the machine are averaged out.

In a finite element code such as pheat2d, elements are required to communicate

wherever they share a mesh node, as it is at the nodes that the unknowns (the

temperature in this case) reside. We therefore use the node-based dual graph of

the Widget data-set in all cases.

9.3.1 Balanced Decompositions

In table 9.1, we present decomposition statistics for the Widget data-set together

with corresponding total runtimes. The choice of parameter settings and com-

binations of algorithms have been based on the analysis of our results presented

in the previous chapter, and we have tried to choose the most representative

of settings and combinations. We summarise the parameter settings for each

algorithm in parentheses after its name, while the second column indicates the

corresponding table entry in appendix A, so that the precise settings used are

available for reference. For SR+KL and SR+MOB there is no corresponding

entry for k = 4, as indicated, but the parameter settings may still be determined

from the k = 2 tables.

The first thing we note from table 9.1, is that the slowest runtime is found in

the first entry, SL (0 Cuthill-McKee), and corresponds to the highest values of

I VbI and Ecutle, and the joint highest value of 3adj. However, we also see that the

other algorithm with the same high value of Sadj, namely GREEDY, exhibits a

comparatively reasonable runtime, implying that a high value of this metric on

its own is not necessarily detrimental. While we do see some variation in 3adj, its

scope is limited by the rather low value of k, so it may well be that a stronger

dependence on this metric may be seen for higher k, but we do not investigate

this here.

The fact that there is a notable correspondence between both IVbI and IE t I e with

242

PHEAT2D RUNTIMES

Algorithm
[

Param's as I 144 IEcut l e Sadj} t(s)

SL (0 Cuthill-McKee) A.2:8 659 1273 12 131.219
SL (2 Cuthill-McKee) A.2:10 262 479 6 67.368

GREEDY A.3:2 298 542 12 64.126
RLB (0 Cuthill-McKee) A.4:10 310 558 8 69.447

RLB (best of 3 Cuthill-McKee) A.4:13 248 452 8 62.778
RCB (fixed axis) A.5:8 342 576 6 70.833
RCB (best axis) A.5:10 307 528 8 71.561

RIB A.6:8 292 512 8 68.881
RSB (tol -3, no orthog.) A.8:8 230 404 8 59.504

SR+KL (full pass, one retry) A.9:8 (k = 2) 204 350 8 58.253
RIB+KL (full pass, one retry) A.11:8 191 324 8 57.156
RSB+KL (full pass, one retry) A.12:14 205 346 8 59.112
SR+MOB (complete schedule) A.13:17 (k = 2) 265 427 8 64.531
RIB+MOB (complete schedule) A.14:22 212 353 8 60.571
RSB+MOB (complete schedule) A.15:22 207 358 8 58.647

Table 9.1: Runtimes of pheat2d for balanced decompositions of the Widget
data-set with k = 4.

runtime for this first entry, where the observed time is almost 130% greater than

that of the fastest run tabulated, indicates that these metrics are of some use in

practice. Further, we note that the fastest run, that for RIB+KL, corresponds

to the lowest values of IVbI and IEcut l e (but interestingly, not of Sad3).

To investigate whether I Vb I and 	are capable of capturing the finer details

of the behaviour of the code, we plot runtime against each of these two metrics in

figures 9.1 and 9.2, respectively. In these two graphs, we have included the data

for every algorithm appearing in table 9.1, with the one exception of the SL (0

Cuthill-McKee) entry, so as to focus on the more competitive algorithms. Losing

this outlying data point does not preclude significant variations in runtime, as

there is still a variation of 25% between the slowest remaining entry, RCB (best

axis), and the fastest run tabulated.

Examining the two figures, we see that both show an overall increase in runtime

with the metric plotted, but in neither case is the relationship clearly identifiable.

Both show considerable departures from the linear regression plotted through

the points, indicating that other factors are at work here. The 'other factors,'

it would seem, do not include 5ad3, as an identification of the data points of the

two graphs with the data in table 9.1 shows no correspondence between Sadj and

the variations seen in figures 9.1 and 9.2.

243

75.0

70.0

.2. 65.0

60.0

55.0 '-
191.0
	

241.0 	 291.0 	 341.0
BOUNDARY VERTICES

Figure 9.1: Variation in total time of pheat2d with IVb I. Dotted line is a linear
regression.

75.0

70.0

.2. 65.0

60.0

55.0 '-
324.0
	

424.0 	 524.0
CUT EDGES

Figure 9.2: Variation in total time of pheat2d with IEct I e . Dotted line is a linear
regression.

244

9.3.2 Unbalanced Decompositions

In sections 8.2.6 and 8.2.7 of the previous chapter, for RIB and RSB respect-

ively, we studied the effects of setting MD_SEP_IMBAL to MD_TRUE and varying

MD_SEP_MAX_IMBAL to produce imbalanced partitions in the hope of reducing

I Ecute. We now examine whether this procedure can deliver an improvement in

performance in practice for the application and data-set we are studying.

In figure 9.3, we plot Ecutle, total and communication time against A,, for the

Widget data-set decomposed using RIB with k = 4. We have obtained this data

from a series of runs where MD_SEP_MAX_IMBAL was varied between OW and 10%.

E-------* CUT EDGES

600.0

400.0
Cl) w
a w
I-

0
200.0

0.0
0.0

0-- -O TOTAL
9----flCOMMS

-'-----i 100.0

80.0

60.0

C),

40.0

20.0

irL

 -- r - -.- - Wflfl

50.0 	 100.0 	150.0

IMBALANCE

Figure 9.3: Variation in timings of pheat2d and lEcut l e with L for RIB.

Examining that figure, we see a general reduction in lEcut l e as t increases,

with the plot for communication time following that for lEcut l e to a remarkable

degree. Communication time does, however, reach a point around A., = 100

beyond which no further reduction is seen (presumably due to communication

latency rather than volume being most significant here), although by this point

it has been reduced by over an order of magnitude relative to the balanced

paitition. As this reduction in communication time goes hand in hand with the

3Technically, 4DSEPIMBAL set to MDSALSE, but the implication that a balanced partition
was specified is clear. The actual values of MDSEPJ4AXJMBAL used were 1% to 6%, 8% and
10%.

245

-* CUT EDGES

600.0

400.0

lz,

w
I-

0

200.0

fin

0-- -OTOTAL
13---0 COMMS

100.0
)

/

- - - 	
80.0

---_---
*..._ 	 60.0

*..
40.0

/

/

20.0
/

El

0.0
0.0 	 50.0 	100.0 	150.0

IMBALANCE

Figure 9.4: Variation in timings of pheat2d and IE t I with & for RSB.

increase in &, we would expect that total time would be improved for some

small level of imbalance, but eventually worsen as the inefficiency in unbalanced

computational loads on the processors comes to dominate the overall behaviour.

This is precisely what we observe, with the largest improvement occurring when

MD_SEP_MAX_IMBAL is set to 2% (the third data point on the plot), where there

is an 8% decrease in total time compared to the balanced partition.

While the observed behaviour for RIB is promising, and largely what we would

have hoped to see, the situation for RSB is not so clear. Turning to figure 9.4,

we see that, although IE t e does still decrease as & increases, this does not

translate into any improvement in total time. This, in itself, is easily explained,

in that IEcvt l e starts at a much lower value for RSB compared to RIB, and so the

cost associated with the unbalanced computational loads may dominate from the

beginning. However, when we look at the plot for communication time, we see

no relationship to lEI 6 at all; moreover, the wide variations in communication

time does not appear to have any noticeable impact on total time.

246

9.4 Summary

From our study of balanced partitions, we conclude that runtime, by and large,

increases with both IE t I and IVb I, and that neither seems to be a superior

metric to the other. It should be noted that the two metrics are particularly

related for the node-based dual graph we have used, but this would be much less

the case for edge- or face-based dual graphs. Certainly minimising either of these

quantities for a balanced decomposition leads to clearly observable increases in

application performance for the node-based graph we have studied.

For imbalanced partitions, we have observed that (as seen for RIB) it is indeed

sometimes possible to improve application performance by permitting some level

of imbalance in return for reduced communication costs. However, this is not

always the case (as seen for RSB) and the resulting behaviour may be unexpected.

Clearly, numerical experiments with other, preferably larger, data-sets would be

necessary before we could go so far as to conclude that this procedure is generally

beneficial.

247

Chapter 10

A Seed-Based Optimisation

Approach to Partitioning

In the course of a Summer Scholarship project a novel approach to mesh decom-

position originated at EPCC was investigated [Wen96]. The approach was to

use optimisation techniques, in particular genetic algorithms, to find favourable

seed vertices in the dual-graph whose positions would then determine the full

partition.

10.1 Seed-Based Partitioning

This seed-based approach to partitioning is designed to alleviate some of the

problems normally associated with the use of optimisation techniques for this

purpose. If individual vertices are treated separately then, although the whole

search space may be explored, fragmented or ill-formed sub-domains tend to

dominate the procedure (statistically most possible partitions are poor, after all)

and efficiency is impaired. Steps therefore need to be taken to restrict the search

space to what we hope will be mostly 'reasonable' partitions (see [Wi191]).

In the seed-based approach each sub-domain is associated with a single seed

vertex. Starting from these seeds, successive layers of adjacent vertices are built

up around them in a deterministic manner, until the layers added to different

sub-domains meet and form the sub-domain boundaries. This has the advantage

that each sub-domain will always be a connected set of vertices and hopefully

compact in shape.

248

This can be seen as akin to Farhat's greedy algorithm, but starting from each

seed simultaneously, as it were. However, in Farhat's algorithm, growth of a sub-

domain is not halted if it is trapped by neighbouring sub-domains in a region too

small for it to reach its required size, as another seed is then sought from which

growth continues. Thus balanced, but potentially disconnected sub-domains

result. Our approach is to optimise the locations of the seeds for good load

balance and minimal communication, but the partitioning options we explored

(with one exception) do not guarantee either.

Several variations on the details of how best to grow sub-domains out from their

seed vertices were studied:

Each sub-domain gains an entire layer at a time.

Each sub-domain gains a vertex at a time.

Each sub-domain gains a vertex at a time, but preferentially chooses new

vertices neighbouring previous additions.

Trapped sub-domains may 'steal' vertices from their neighbours, thus guar-

anteeing load balance.

The smallest sub-domain gains an entire layer at a time.

Each sub-domain gains an entire layer at a time, but sub-domains that

collide coordinate their growth to be at the same rate.

These partitioning options were compared qualitatively and statistically (by ex-

amining the quality of results for a number of random seed configurations) to

determine if there was a bias that would favour a particular method. From this

perspective, option 5 proved to be most competitive. Option 1 tended, statist-

ically, to produce more imbalanced partitions; option 2 behaved reasonably, but

was poor in fine detail; option 3 was an attempt to remedy the failings of 2, but

performed little better; option 4 produced very ill-formed and often disconnec-

ted sub-domains; finally, option 6 failed in its attempt to improve load balance

relative to option 5.

10.2 Optimisation

Given one of the deterministic methods for arriving at a partition from the seed

vertices just outlined and a specified objective function, standard optimisation

249

techniques may then be employed. The objective function used to model ap-

plication execution time was a linear combination of L 5 , lEcut l e , IV& I and Sadj,

although it would be a simple matter to substitute a more complex relation

without affecting the actual optimisation technique employed.

The project examined three techniques for optimising the seed point locations:

• Gradient Descent

. Simulated Annealing

• Genetic Algorithms

Gradient descent was able to improve the seed locations, but produced widely

differing results depending on their initial configuration, indicating that it was,

as we would expect, prone to becoming trapped in local minima. Simulated

annealing produced better results but was still somewhat subject to the initial

configuration, although a different choice of cooling schedule might have allevi-

ated this. The more promising partitioning options were compared when used

with these two optimisation techniques, and the qualitative and statistical ana-

lysis they had previously been subject to was largely born out, with options 2

and 5 showing themselves to be superior. Genetic algorithms received particular

attention, as they are much more amenable to parallel implementation than the

other techniques, and, indeed proved to be the best approach.

10.3 Genetic Algorithms

The actual implementation was carried out using RPL2 1 , which may easily be

run in parallel and provides a variety of evolution and populations models.

10.3.1 Representation

A critical requirement for the efficient application of genetic algorithms is a

good choice of representation. Clearly, if the genotype is a full specification of

the partition then each individual will be quite large and this may impose a

limit to the size of the population due to memory constraints. This, together

1The Reproductive Plan Language developed at EPCC to facilitate experimentation with
genetic algorithms, and now marketed by Quadstone Ltd [Qua95]

250

with the potential impairment of efficiency due the unwanted exploration of

unpromising regions of the search space mentioned previously, makes this a poor

representation. The representation provided by the seed-based method is not

subject of these deficiencies, as each genotype will only consist of a number of

integers equal to the number of processors, and will be implicitly biased towards

good solutions.

RPL2 provides a built-in set representation, suitable for our genotype, which

is merely a set of integers (not ordered), but a bespoke library of operators for

evaluation, mutation and recombination were needed to address the specifics of

the partitioning problem.

10.3.2 Evaluation

The evaluation operator is required to return the value of the objective (fitness)

function for a given configuration of seeds. Thus it is required to partition the

graph according to our seed-based scheme 2 before this value can be calculated.

Here we see the down side of our approach, in that going from the genotype

(the seeds) to the phenotype (the partition) in order to evaluate the objective

function is a computationally expensive operation.

10.3.3 Mutation

The mutation operator we choose simply moves a seed's location to a neighbour-

ing vertex. This was implemented by considering each seed in turn and, with a

specified probability, moving it to a randomly chosen neighbour.

10.3.4 Recombination

If the seed-based representation is to be used, then we would also like to ensure

that the recombination operator does not unduly garble the good qualities of the

parents. However, this is not straight-forward unless additional information is

used.

We provide this additional information by dividing the graph into segments and

only allow the exchange of two seeds between parents if those seeds are both

2 Partitioning option 5 was the only one explored for GA's.

251

in the same segment, thus introducing some notion of locality to the recombin-

ation operator. Fortunately, we have a easy source from which to define these

segments so that they do in fact reflect locality; namely the best partition found

in a particular generation. The segments are initially defined from the starting

population, and then are updated every tenth generation.

The recombination operator used was thus to select a certain number of seeds

(defined by the crossover rate, typically one or two seeds) from one parent and

exchange them with seeds taken from the other parent only if they fall in the

same segment.

10.3.5 Population Models

The project implemented the following population models:

• The unstructured model, which is the basic form of GA outlined in section

6.4.5.

• The structured island model, where the population on each 'island' evolves

independently, except for occasional migration of the fittest individuals to

other islands.

• The fine grained structured model, where each individual has a spatial

location.

Two types of migration were permitted for the island model; either to a root

island that was populated with the fittest individuals from the other islands, or

to neighbouring islands where we consider the islands to be arranged in a one-

dimensional array. The fine grained structured model, on the other hand, used a

two-dimensional array (in fact, a torus) upon which each individual was sited at

a separate grid point and was only permitted to interact with individuals within

four grid points of its site.

All of these models may, in theory, be implemented in parallel, with the is-

land model being particularly suited to parallel execution, as each island can be

mapped to a processor and very little communication is required. In practice,

RPL2 provided very poor speed-up for the unstructured model (a factor of 1.1

on seven processors), and the fine grained model could not be run in parallel

due to deficiencies in the release of RPL2 used. The island model, however, pro-

duced a speed-up of just under five running on seven processors, which is quite

252

encouraging.

10.4 Summary

The seed-based genetic algorithm developed in the course of this project proved

itself to be a quite promising partitioning algorithm, superior to either of the

other optimisation techniques explored. Due to the large computational cost in-

volved in the execution of the evaluation operator, it is thought that the genetic

algorithm is unlikely to be cpmpetitive compared to the more traditional al-

gorithms employed for graph partitioning when implemented in serial. However,

experience with the island model has demonstrated that the cost of the evaluation

operator may be mitigated by the efficiency gained in parallel implementation.

While the algorithm has many attractive features (always produces connected

sub-domains, amenable to parallel implementation, etc.) further study and de-

velopment is required if it is to be shown that the seed-based genetic algorithm

represents a useful new addition to the array of partitioning algorithms already

available to us.

253

Chapter 11

Conclusions

In closing we review our conclusions, and also look at what issues remain out-

standing regarding the development of PUL-md and related software so as to

provide an outline of possible future work.

11.1 Review

We began this thesis by presenting motivating and background material relating

to mesh decomposition. This entailed short studies both of unstructured mesh

calculations, as typified by the finite element and finite volume methods, and of

high performance computing with particular reference to large scale parallelism.

An examination of general decomposition techniques for parallel computation

and implementation details for parallel unstructured mesh calculations then lead

us to a precise definition of the the task of mesh decomposition in terms of graph

partitioning.

We have presented an exhaustive survey of algorithms for mesh decomposition

and graph partitioning, and compared them qualitatively according to the con-

sensus in the relevant literature. Based on this we have implemented a variety of

algorithms in the PUL-md library, including both global methods and local re-

finement techniques. Many of these implemented algorithms contain considerable

optimisations which may be controlled by associated user-tunable parameters.

From numerical experiments performed on three representative example data-

sets, where we explored a range of combinations of global and local techniques

and also a range of tunable parameter settings, we were able to evaluate the

254

merits of the implemented algorithms based on several metrics of quality.

We concluded that it is most favourable to use a reasonable global technique to-

gether with subsequent refinement, rather than to use refinement from a random

or arbitrary initial configuration. We saw that simple graph based techniques

such as the Greedy algorithm or recursive layered bisection can produce ser-

viceable, though far from optimal, partitions. Where Cuthill-McKee was used

in the course of lexicographic or layered partitioning it was found to produce

considerable improvements in a very few iterations, although its alternating be-

haviour necessitates an estimate of partition quality to ensure the best results.

Recursive coordinate or inertial bisections proved superior to the simple graph

based techniques, but may only be used where there is geometric information

available. The inertial algorithm did not show itself to be significantly superior

to coordinate for the data-sets studied, but is clearly the more robust method in

general.

Recursive spectral bisection is superior in terms of partition quality to any of the

other global techniques when used alone, but may exhibit unacceptable runtime

or memory requirements. It was found that an equivalent quality could often be

attained by a simpler algorithm together with subsequent refinement, but that

the very best partitions are produced by a combination of the spectral algorithm

and refinement. Further, the added cost of refinement is small compared to

the latter global technique's runtime. For none of the data-sets studied did the

Lanczos eigensolution employed show any signs of misconvergence in the absence

of explicit orthogonalisation, nor did convergence criteria appear to be a critical

factor, with good partitions being obtained at very low tolerances.

In comparing the two implemented refinement techniques, we found that the

Kernighan and Lin algorithm was the more reliable option, but that Mob could

sometimes prove superior given the correct parameter settings, although it is not

entirely clear a priori what these settings may be. Kernighan and Lin has the

advantage that it will never increase cut-edges, which is not the case for our

implementation of Mob. Of the two variants of Mob explored, the version where

the end of the mob-schedule is always reached is seen to be most predictable and

beneficial. Our optimisations of Kernighan and Lin include tunable termination

criteria for a pass of the algorithm, randomisation of the Fiduccia and Mattheyses

gain data-structures and the restriction of the action of the algorithm to a border

region defined by a separator field. We demonstrated that reasonable termination

criteria greatly reduced runtime and had little impact on refined partition quality.

255

Randomisation permitted greater refinement, but this was less noticeable for

large problems. Restriction to the border region was seen to reduce runtime and

memory costs, although the degree of refinement may be compromised if this

border region is made too small.

Our numerical experiments recorded metrics which sought to abstract partition

quality away from application or platform dependence, and it is on these that the

previous conclusions are based. In order to validate these metrics we examined

how the runtime of a typical application depends on decomposition quality. The

application used was the pheat2d parallel finite element code; a version of the

serial HEAT21) program [HU94] parallelised using the PUL-sm runtime support

library.

We first examined balanced partitions and conclude that runtime, by and large,

increases with both cut edges and boundary vertices, and that neither seems to

be a superior metric to the other, although they are not unrelated quantities.

Turning to imbalanced partitions, we have observed that it is indeed possible to

improve application performance by permitting some level of imbalance in return

for reduced communication costs; a procedure PUL-md permits for separator field

based recursive bisection algorithms.

The seed-based genetic algorithm detailed towards the end of this thesis showed

itself to be a quite promising approach to partitioning, and was certainly superior

to either of the other optimisation techniques explored in that context. Due to the

large computational cost involved in the execution of the evaluation operator, it is

thought that the genetic algorithm is unlikely to be competitive compared to the

more traditional algorithms employed for graph partitioning when implemented

in serial. However, the cost of the evaluation operator may be mitigated by the

efficiency gained in parallel implementation.

In summary, we conclude from the results presented in this thesis, from exper-

ience gained during the FLITE3D project [BMT96], and from parallelisation of

the HEAT2D code that the PUL-md decomposition and PUL-sm runtime sup-

port libraries together represent a well proven and powerful set of tools to support

efficient parallel unstructured mesh calculations.

256

11.2 Future Work

In terms of development of the PUL-md library, we may divide possible future

work into two areas; incremental development of the current algorithms and

major changes.

Incremental development could include many minor improvements and perform-

ance optimisations. There are several instances when the library performs un-

necessary computation, which could be avoided with little further work. For

instance, dual graph extraction, which we have seen can be time consuming,

is not required if a geometric algorithm is used alone. Similarly, the calcula-

tion of vertex gains is unnecessary if there is to be no subsequent refinement. A

performance optimisation to the Kernighan and Lin algorithm is possible by 'un-

rolling' the changes made to the Fiduccia and Mattheyses gain data-structures

which result from unproductive changes to the partition; in combination with

good termination criteria this may be less time consuming than reinitialising the

data-structures at the start of each pass. While these are simple performance op-

timisations, higher degrees of refinement may be possible if we scaled the degree

of randomisation in the Kernighan and Lin algorithm with problem size. Also,

if we kept track of the best partition found by our implementation of the Mob

algorithm, then we could ensure that no degradation of partition quality results

from its use as a refinement algorithm. However, it may well be the case that

this adds significantly to the algorithm's runtime, as we do not have two copies

of the partition effectively already in place as there are in our Kernighan and

Lin implementation. The final incremental development we propose is to add an

objective function to the evaluation of imbalanced partition quality, rather than

imposing a crude upper limit on imbalance as we do now.

Major development of the library should clearly aim towards parallel, multi-level

algorithms, as the consensus in the literature shows clearly that this is the most

promising direction currently known. This would not only vastly improve the

performance of the decomposition library as a static partitioning tool, but would

also open the way to merging the decomposition and runtime libraries so that

dynamic partitioning could be tackled. However, this would require significant

redesign which may necessitate abandoning much of the current code, as it very

much assumes that serial recursive bisection is the favoured approach and does

not take into account graph weighting. Extension to allow the partitioning of

weighted graphs is desirable in itself, but is a requirement for the introduction of

257

multi-level features into the library. If multi-level refinement is to be added then

the current refinement algorithms must be extended to handle k-way partitions,

rather than simply bisections as they do now; our implementation of Kernighan

and Lin anticipates this, but Mob does not. A quick route to the addition

of parallel partitioning would be to incorporate the currently unrelated Refine

utility (parallel Jostle sub-domain heuristic) into PUL-md proper in such a way

that the functionality of both may be accessed through a common interface, but

without merging the code with that already in place.

Another avenue of research is to expand on the work done on the seed-based

optimisation approach to partitioning. Possible routes include speeding the ex-

ecution of the evaluation operator - perhaps by making updates to the partition

due to the movement of a single seed a local procedure involving only the sub-

domain concerned and its immediate neighbours - and also parallelisation of this

stage. A variant of the algorithm that could be explored would be to allow the

seeds to exert a repulsive short-range 'force' on each other via the layer structure

they impose. This would ensure migration of the seeds to a well distributed

configuration, without any of the overheads associated with optimisation. As it

stands, further study and development is required if it is to be shown that these

seed-based algorithms represent a useful new addition to the array of partitioning

algorithms already available to us.

Bibliography

[Ak189] 	S. A. Aki. The Design and Analysis of Parallel Algorithms. Prentice

Hall, 1989.

[A1193] 	M. Allen. Parallel methods for static mesh decomposition. Summer

Scholarship Report EP CC-S S93-O 1, Edinburgh Parallel Computing

Centre, 1993.

[Bar82] 	E. R. Barnes. An algorithm for partitioning the nodes of a graph.

SIAM J. Algebraic Discete Methods, 3(4):541-550, 1982.

[Bar95] 	S. Barnard. PMRSB: Parallel Multilevel Recursive Spectral Bi-

section. In Proceedings of the 1995 ACM/IEEE Supercomputing

Conference, 1995. Published on CD-ROM by ACM (ACM Press

order #415952) and IEEE (IEEE Computer Society Press order

#FW07435) also on http: / /www.supercomp.org/sc95/proceedings/.

[BBC94] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-

garra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Tem-

plates for the Solution of Linear Systems: Building Blocks for Iterat-

ive Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994. Available

from http://www.netlib.org/linalg/html-templates/Templates.htrril.

[BD96] 	R. M. Baxter and R. A. Davey. Unstructured mesh libraries for

the AP1000. PCW '96, Proceedings of the Sixth Parallel Computing

Workshop, pages S-A-i to S-A-14, 1996. Fujitsu Parallel Computing

Research Center.

[BDH97] R. M. Baxter, R. A. Davey, and D. S. Henty. Unstructured mesh

applications at Edinburgh Parallel Computing Centre: Libraries, ap-

plications and interactive learning. In B.H.V. Topping, editor, Ad-

vances in Computational Mechanics with Parallel and Distributed

Processing, pages 81-95. Civil-Comp Press, 1997. Proceedings of

259

Euro-Conference on Parallel and Distributed Computing for Com-

putational Mechanics 1997, Pre-Processing and Solution Procedures:

EURO-CM-PAR97.

[BDT96] R.M. Baxter, R.A. Davey, and S.M. Trewin. PUL-md Prototype User

Guide. Technical Report EPCC-KTP-PUL-MD-PROT-UG 1.0, Ed-

inburgh Parallel Computing Centre, October 1996.

[BJ93] 	T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix fac-

torisation. In Proceedings of the Sixth SIAM Conference on Parallel

Processing for Scientific Computing, pages 445-452. SIAM, 1993.

[BJW90] C.F. Baille, D.A. Johnston, and R.D. Williams. Computational as-

pects of simulating dynamically triangulated random surfaces. Com-

puter Physics Communications, 58(105), 1990.

[BMT96] R. M. Baxter, K. D. Murphy, and S. M. Trewin. Experiences in

parallelising FLITE3D on the Cray T3D. Concurrency: Practice and

Experience, 8(10): 741-755, December 1996.

[Boo96] 	S. Booth. Lattice QCD simulation programs on the Cray T3D. Tech-

nical Report EPCC-TR96-03, EPCC, 1996.

[Boy94] 	R. Boyd. Echinodome design curves using a task farm. Summer

Scholarship Report EPCC-5S94-14, EPCC, 1994.

[Br93] 	T. Brãunl. Parallel Programming an introduction. Prentice Hall,

1993.

[BS92] 	S. T. Barnard and H. D. Simon. A fast multilevel implementation of

recursive spectral bisection for partitioning unstructured problems.

Technical Report RNR-92-033, NASA Ames, 1992.

[B595] 	S. Barnard and H. Simon. A parallel implementation of multilevel

recursive spectral bisection for application to adaptive unstructured

meshes. In Proceedings of the seventh SIAM conference on Parallel

Processing for Scientific Computing, pages 627-632, 1995.

[CM69] 	E. Cuthill and J. McKee. Reducing the bandwidth of sparse sym-

metric matrices. In ACM Proceedings of 24th National Conference,

New York, 1969.

[Cyb89] 	G. Cybenko. Dynamic load balancing for distributed memory multi-

processors. J. Par. Dist. Comput., 7:279-301, 1989.

260

[Dah90] 	E.D. Dahi. Mapping and compiled communication on the connection

machine system. In Proceedings of the Fifth Distributed Memory

Computing Conference, pages 756-766. IEEE, 1990.

[DER86] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse

Matrices. Oxford University Press, 1986.

[DH73] 	W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning

of graphs. IBM J. Res. Develop., 17:420-425, 1973.

[DK85] 	A. E. Dunlop and B. W. Kernighan. A procedure for placement of

standard-cell VLSI ciruits. IEEE Trans. CAD, CAD-4:92-98, 1985.

[DM91] 	R.A. Davey and G.R. Marion. Monte carlo investigations of ran-

dom surfaces. Master's thesis, Dept. of Mathematics, University of

Edinburgh, 1991.

[DPPS95] R. Davey, J. Parker, M. Parsons, and M. Sawyer. Unstructured mesh

partitioning and improvement on the AP1000. In PCW '95, Proceed-

ings of the Fourth International Parallel Computing Workshop, pages

219-223. Imperial College/Fujitsu Parallel Computing Research Cen-

ter, 1995.

[DR94] 	R. Van Driesche and D. Roose. A spectral algorithm for constrained

graph partitioning 1: the bisection case. TW Report 216, Dept.

Computer Science, Katholieke Universiteit Leuven, Belgium, 1994.

[DR951 	R. Van Driessche and D. Roose. A graph contraction algorithm for

the fast calculation of the Fiedler vector of a graph. In D. H. Bailey

et al., editor, Proceedings of the Seventh SIAM Conference on Parallel

Processing for Scientific Computing, pages 621-626. SIAM, 1995.

[DR96] 	R. Van Driesche and D. Roose. Load balancing computational fluid

dynamics calcualtions on unstructured grids. Preprint, 1996. Dept.

Computer Science, Katholieke Universiteit Leuven.

[DS83] 	J. J. Dennis and R. Schnabel. Numerical Methods for Unconstrained

Optimisation and Non-Linear Equations. Prentice-Hall, Inc., Engle-

wood Cliffs, NJ, 1983.

[Duf96] 	I.S. Duff. A review of frontal methods for solving linear-systems.

Computer Physics Communications, 97(1-2):45-52, 1996.

261

[Ego92] 	T. Alan Egoif. Computational performance of CFD codes on the

Connection Machine. Parallel Computational Fluid Dynamics, pages

271-280, 1992. Horst D. Simon, Editor.

[Far88] 	C. Farhat. A simple and efficient automatic FEM domain decom-

poser. Computers and Structures, 28(5):579-602, 1988.

[Fie73] 	M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mat hem-

atics Journal, 23(98):298-305, 1973.

[Fie75] 	M. Fiedler. A property of eigenvectors of non-negative symmetric

matrices and its application to graph theory. Czechoslovak Mat hem-

atics Journal, 25(100):619-633, 1975.

[FJL88] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker.

Solving Problems on Concurrent Processors. Prentice Hall, 1988.

[FL93] 	C. Farhat and M. Lesoinne. Automatic partitioning of unstructured

meshes for parallel solution of problems in computational mechanics.

Internat. J. Numer. Meth. Eng., 36(5):745-764, 1993.

[F1e76] 	R. Fletcher. Conjugate gradient methods for indefinite systems. In

C.A. Watson, editor, Proc. Dundee Conf. on Num. Anal., pages 73-

89. Springer-Verlag, 1976.

[FLS93] 	C. Farhat, S. Lanteri, and H. D. Simon. TOP/DOMDEC - a software

tool for mesh partitioning and parallel processing. Technical Report

RNR-93-011, NAS, NASA Ames, 1993.

[F1y66] 	M. Flynn. Very high speed computing systems. Proceedings of the

IEEE, 54:1901-1905, 1966.

[FM82] 	C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for

improving network partitions. Proc. 19th IEEE Design Automation

Conference, pages 175-181, 1982.

[For94] 	Message Passing Interface Forum. MPI: A message-passing inter-

face standard. International Journal of Supercomputing Applications,

8(3/4), 1994.

[FPTV921 B.P. Flannery, W.H. Press, S.A. Teukolsky, and W.T. Vetterling.

Numerical Recipies in C. Cambridge University Press, second edition,

1992.

262

[FR94] 	N. Floros and J. Reeve. Domain decomposition tool, an abridged

user's guide. University of Southampton, Dept. of Electronics and

Computer Science, 1994.

[FWM94] G. C. Fox, R. D. Williams, and P. C. Messina. Parallel Computing

Works! Morgan Kaufmann Publishers, Inc., 1994.

[Gaz93] 	H. Gazit. Randomised parallel connectivity. In J. H. Reif, editor,

Synthesis of Parallel Applications, pages 197-214. Morgan Kaufman

Inc., 1993.

[GJS76] 	M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-

complete graph problems. Theoretical Computer Science, 1:237-267,

1976.

[GL89] 	G. H. Golub and C. F. Van Loan. Matrix Computations. Johns

Hopkins University Press, 1989.

[GUW72] G. H. Golub, R. Underwood, and J. H. Wilkinson. The Lanczos

algorithm for the symmetric Ax = ..\Bx problem. Technical Re-

port STAN-CS-72-270, Dept. Computer Science, Stanford University,

Stanford, Califonia, 1972.

[Gwi95] 	C. S. Gwilliam. The OCCAM global ocean model. Coming of Age

(The Proceedings of the Sixth ECMWF Workshop on the use of Par-

allel Processors in Meteorology), pages 446-454, 1995.

[GZ87] 	J. R. Gilbert and E. Zmijewski. A parallel graph partitioning al-

gorithm for a message passing multiprocessor. International Journal

of Parallel Programming, 16(6) :427-449, 1987.

[Haj88] 	B. Hajek. Cooling schedules for optimal annealing. Math. Oper. Res.,

13:311, 1988.

[Ham92] S. Hammond. Mapping unstractured grid computations to massively

parallel computers. PhD thesis, Dept. of Computer Science, Rens-

selaer Polytechnic Institute, Troy, NY, 1992.

[Hig93] 	High Performance Fortran Forum. High performance fortran lan-

guage specification. Scientific Programming, 2(1/2), 1993.

[HL92} 	B. Hendrickson and R. Leland. An improved spectral graph par-

titioning algorithm for mapping parallel computations. Technical

263

Report SAND92-1460, Sandia National Laboratories, Albuquerque,

New Mexico 87185, 1992.

[HL93a] 	B. Hendrickson and R. Leland. Multidimensional spectral load balan-

cing. Technical Report SAND93-0074, Sandia National Laboratories,

Albuquerque, New Mexico 87185, 1993.

[HL93b] 	B. Hendrickson and R. Leland. A multilevel algorithm for parti-

tioning graphs. Technical Report SAND93-1301, Sandia National

Laboratories, Albuquerque, New Mexico 87185, 1993.

B. Hendrickson and R. Leland. An empirical study of static load

balancing algorithms. In Proc. Scalable High-Perf. Comput. Cori,f.,

pages 682-685. IEEE, 1994.

B. Hendrickson and R. Leland. The Chaco user's guide Version

2.0. Sandia National Laboratories, Albuquerque, New Mexico 87185,

1995.

[Hol75] 	J. H. Holland. Adaptation in natural and artificial systems. University

of Michigan Press, Ann Arbor, 1975.

[HU94] 	H-C. Huang and A.S. Usmani. Finite Element Analysis for Heat

Transfer. Springer-Verlag, 1994.

[JaJ92] 	J. JaJa. An introduction to parallel algorithms. Addison-Wesley Pub.

Co., 1992.

[JAMS89] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Op-

timisation by simulated annealing: an experimental evaluation; part

1: graph partitioning. Opns. Res., 37:865-892, 1989.

[Jim97] 	P. Jimack. An overview of dynamic load-balancing for parallel ad-

aptive computational mechanics codes. Parallel and Distributed Pro-

cessing for Computational Mechanics, 1997. Pre-print acquired at

EURO-CM-PAR97.

[JM92] 	A. Jennings and J. J. McKeown. Matrix Computation. John Wiley,

1992.

[JMJH93] Z. Johan, K. K. Mathur, S. L. Johnsson, and T. J. R. Hughes. An

efficient communication strategy for finite element methods on the

Connection Machine CM-5 system. Technical Report Series 256,

Thinking Machines Corporation, Cambridge, Massachusetts, 1993.

264

[JMJH94] Z. Johan, K. K. Mathur, S. L. Johnsson, and T. J. R. Hughes. Mesh

decomposition and communication procedure for finite element ap-

plications on the Connection Machine CM-5 system. Technical Re-

port TR-08-94, Harvard Univ. Center for Research in Computing

Technology, apr 1994.

[JMJH95] Z. Johan, K. K. Mathur, S. L. Johnsson, and T. J. R. Hughes. Paral-

lel implementation of recursive spectral bisection on the connection

machine CM-5 system. Parallel Computational Fluid Dynamics: New

Trends and Advances, pages 451-459, 1995. A Ecer et al, editors.

[Jon92] 	C. Jones. Vertex and edge partitions of graphs. PhD thesis, Penn.

State, Dept. Computer Science, State College, PA, USA, 1992.

[Kan66] 	S. Kaniel. Estimates for some computational techniques in linear

algebra. Math. Comp., 20:369-378, 1966.

[Ker69] 	B. W. Kernighan. Some Graph Partitioning Problems Related to

Program Segmentation. PhD thesis, Princeton University, January

1969.

[KJV83] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimisation by

simulated annealing. Science, 220:671-680, 1983.

[KK95a] G. Karypis and V. Kumar. MeTiS: Unstructured Graph Part ition-

ing and Sparse Matrix Ordering System Version 2.0. Department of

Computer Science, University of Minnesota, Minneapolis, MN, USA,

1995.

[KK95b] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for

irregular graphs. Technical Report 95-064, Department of Computer

Science, University of Minnesota, Minneapolis, MN, USA, 1995.

[KK97] 	G. Karypis and V. Kumar. A coarse-grain parallel formulation of

a multilevel k-way graph partitioning algorithm. In Eighth SIAM

Conference on Parallel Processing for Scientific Computing, 1997.

[KL70] 	B. W. Kernighan and S. Lin. An efficient heuristic procedure for

partitioning graphs. Bell System Technical Journal, 49(1):291-307,

1970.

[KLS94] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., and

M.E. Zosel. The High Performance Fortran Handbook. MIT Press,

265

1994.

[KR92] 	J. De Keyser and D. Roose. Grid partitioning by inertial recursive

bisection. Technical Report TW 174, K.U. Leuven, Deptartment of

Computer Science, Belgium, July 1992.

[KT93] 	A. I. Kahn and B. H. V. Topping. Subdomain generation for paral-

lel finite element analysis. Computing Systems in Engineering, 4(4-

6):473-488, 1993.

[Lan50] 	C. Lanczos. An iteration method for the solution of the eigenvalue

problem of linear differential and integral operators. J. Res. Nat.

Bur. Standards, 45:255-280, 1950.

[LL96] 	S. Lanteri and M. Loriot. Large-scale solutions of three-dimensional

compressible flows using the parallel N3S-MUSCL solver. Concur-

rency: Practice and Erperience, 8(10):769-798, December 1996.

[Lub86] 	M. Luby. A simple parallel algorithm for the maximal independent

set problem. SIAM J. Comput., 15(4), 1986.

[Mat90] 	K. Mathur. On the use of randomised address maps in unstructured

three-dimensional finite element simulations. Technical Report Series

CS90-4, Thinking Machines Corporation, Cambridge, Massachusetts,

1990.

[Mat92] 	Kapil K. Mathur. Unstructured three dimensional finite element sim-

ulations on data parallel architectures. Unstructured scientific com-

putation on scalable multiprocessors, pages 65-79, 1992. P. Mehrotra,

J. Saltz and R. Voigt, Editors.

[Mic96] 	Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution

Programs. Springer, third edition, 1996.

[MJ90a] 	K. Mathur and S.L. Johnsson. Data parallel algorithms for the finite

element method. Technical Report Series CS90-2, Thinking Machines

Corporation, Cambridge, Massachusetts, 1990.

[MJ90b] K. Mathur and S.L. Johnsson. Data structures and algorithms for

the finite element method on a data parallel supercomputer. Inter-

national Journal for Numerical Methods in Engineering, 29:881-908,

1990.

[MJ92] 	K. Mathur and S.L. Johnsson. Communication primitives for un-

structured finite element simulations on data parallel architectures.

Computing Systems in Engineering, 3(1-4):63-71, 1992.

0. C. Martin and S. W. Otto. Combining simulated annealing with

local search heuristics. Preprint submitted to Metaheuristics in Corn-

binatoric Optimisation, 1994.

0. C. Martin and S. W. Otto. Partitioning of unstructured meshes for

load balancing. Concurrency: Practice and Experience, 7(4):303-314,

1995.

[MOF91] 0. C. Martin, S. W. Otto, and E. W. Felten. Large-step markov

chains for the travelling salesman problem. J. Complex Syst.,

5(3):299, 1991.

[Moh88] B. Mohar. The Laplacian spectrum of graphs. In 6th Intl. Conf.

Theory and Applications of Graphs, Kalamazoo, MI, 1988.

[MPPC97] T. MacFarland, J. Pichlmeier, F. Pearce, and H. Couchman. MP

Hydra: A parallel P 3 M code for very large scale cosmological sim-

ulations. In Proceedings of the Third European CRAY-SGI MPP

Workshop, 1997.

[MRR53] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,

and E. Keller. Equation of state calculations for fast computing

machines. Journal of Chemical Physics, 21:1087-1092, 1953.

[MV95] 	W. Malalasekera and H.K. Versteeg. An introduction to computa-

tional fluid dynamics : the finite volume method. Longman Scientific

and Technical, 1995.

[MW97] E. Minty and M. Westhead. MPI on Line: A Teaching Environment

for MPI. In Supercomputing '97, 1997.

[NORL86] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving finite element

equations on concurrent computers. In A. K. Noor, editor, Parallel

computations and their impact on mechanics, pages 209-227, New

York, 1986. American Soc. Mech. Eng.

[Pai72] 	C. C. Paige. Computational variants of the Lanczos method for the

eigenproblem. J. Inst. Maths. Applics., 10:373-381, 1972.

267

[Par92] 	B. N. Parlett. The Symmetric Eigenvalue Problem. Computational

Mathematics Series. Prentice-Hall, 1992.

[PD97] 	R. Preis and R. Diekmann. Party - a software library for graph par-

titioning. In B.H.V. Topping, editor, Advances in Computational

Mechanics with Parallel and Distributed Processing, pages 63-71.

Civil-Comp Press, 1997. Proceeding of EURO-CM-PAR97, Loch-

inver, Scotland.

[PS74] 	C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems

of linear equations. SIAM J. Num. Anal., 12:617-629, 1974.

[PS79] 	B. Parlett and D. Scott. The lanczos algorithm with selective ortho-

gonalisation. Math. Comp., 33:217-238, 1979.

[PSL90] 	A. Pothen, H. D. Simon, and K. P. Liou. Partitioning sparse matrices

with eigenvectors of graphs. SIAM J. Matrix. Anal. Appi., 11(3):430-

452 1 July 1990.

[PVMZ87] J. Peraire, M. Vahdati, K. Morgan, and 0. Zienkiewicz. Adaptive

remeshing for compressible flow calculations. Journal of Computa-

tional Physics, 72:449-466, 1987.

[Qua951 	Quadstone. The Reproductive Plan Language RPL2, Documentation

for Version 1.OA, Issue 1. Quadstone Ltd., 16 Chester Street, Edin-

burgh, E113 7RA, 1995.

[Ree84] 	A. P. Reeves. Parallel pascal: An extended pascal for parallel com-

puters. Journal of Parallel and Distributed Computing, 1:64-80, 1984.

[RHW86] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning repres-

entations by back-propagating errors. Nature, 323:533-536, 1986.

{Rot85] 	J.M. Rotter. Bending theory of shells for bins and silos. In J.M.

Rotter, editor, Design of Steel Bins for the Storage of Bulk Solids.

University of Sydney, School of Civil and Mining Engineering, 1985.

Workshop on Loading, Analysis and Stability of Thin-Shell Bins,

Tanks and Silos.

[RS91] 	V. Rao and Y. Saab. Combinatorial optimisation by stocastic evolu-

tion. IEEE Tran. on CAD, I.U., pages 525-535, April 1991.

[Saa801 	Y. Saad. Error bounds on the interior Rayleigh-Ritz approximations

from Krylov subspaces. Soc. Ind. Appl. Math. J. Num. Anal., 17,

991-1

uLii,1

[Sar93] 	W. Sane. Kangaroos. Article posted on comp.ai .neural-nets, Septem-

ber 1993.

[SGDM94] V.S. Sunderam, G.A. Geist, J. Dongarra, and R. Manchek. The

PVM concurrent computing system. Parallel Computing, 20(4):531-

545, 1994.

[Sim9l] 	H. D. Simon. Partitioning of unstructured problems for parallel pro-

cessing. Computing Systems in Engineering, 2(2/3):135-148, 1991.

[Son94] 	J. Song. A partially asynchronous and iterative algorithm for distrib-

uted load balancing. Parallel Computing, 20:853-868, 1994.

[SS86] 	Y. Saad and M. Schultz. GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM Journal

on Scientific and Statistical Computing, 7:856-869, 1986.

[ST93] 	H. D. Simon and S-H. Teng. How good is recursive bisection? Tech-

nical Report RNR-93-012, NAS, NASA Ames, 1993.

[ST97] 	C. Seale and B. H. V. Topping. Towards three-dimensional sub-

domain generation. In B.H.V. Topping, editor, Advances in Com-

putational Mechanics with Parallel and Distributed Processing, pages

53-61. Civil-Comp Press, 1997. Proceeding of EURO-CM-PAR97,

Lochinver, Scotland.

[SW91] 	J. E. Savage and M. G. Wioka. Parallelism in graph-partitioning.

Journal of Parallel and Distributed Computing, 13:257-272, 1991.

[SW93] 	J.E. Savage and M.G. Wloka. 	Mob - a parallel heur-

istic for graph-embedding. 	Technical Report CS-93-

01, 	Brown University, 	Computer Science Department,

Providence, 	Rhode Island 02912 USA, January 1993.

http://www.cs.brown.edu/publications/techreports/reports/CS-

93-0 1 .html.

[TB96] 	S.M. Trewin and R.M. Baxter. PUL-sm (Halo) User Guide. Technical

Report EPCC-PG-SM-HALO-UG 0.3, Edinburgh Parallel Comput-

ing Centre, October 1996.

[Thi93a] Thinking Machines Corporation, Cambridge, Massachusetts. C* Pro-

gramming Guide, 1993.

[Thi93b] Thinking Machines Corporation, Cambridge, Massachusetts. CMSSL

for CM Fortran, CM-200 Edition, version 3.1 edition, 1993.

[Thi94] 	Thinking Machines Corporation, Cambridge, Massachusetts. CMSSL

for CM Fortran, CM-5 Edition, version 3.2 edition, 1994.

[TN91] 	T. Tokuyama and J. Nakano. Geometric algorithms for a minimum

cost assignment problem. In Proc. 7th Annual Symposium on Com-

putational Geometry, pages 262-271. ACM, 1991.

[TR89a] 	J.G. Teng and J.M. Rotter. Elastic plastic large deflection analysis of

axisymmetric shells. Computers and Structures, 31(2):211-233, 1989.

[TR89b] J.G. Teng and J.M. Rotter. Non-symmetric bifurcation of geomet-

rically nonlinear elastic-plastic axisymmetric shells under combined

loads including torsion. Computers and Structures, 32(2):453-475,

1989.

[Tre95a] S.M. Trewin. PUL-md Prototype Design Description. Technical Re-

port EPCC-KTG-FUJITSU93-MD-PROT-DD 1.2, Edinburgh Par-

allel Computing Centre, 1995.

[Tre95b] S.M. Trewin. PUL-sm Prototype User Guide. Technical Report

EPCC-KTP-PUL-SM-PROT-UG 0.2, Edinburgh Parallel Comput-

ing Centre, Feb 1995.

[WCE95a] C. Walshaw, M. Cross, and M. Everett. A localised algorithm for op-

timising unstructured mesh partitions. mt. J. Supercomputer Appi.,

9(4):280-295, 1995.

[WCE95b] C. Waishaw, M. Cross, and M. Everett. A parallelisable algorithm

for optimising unstructured mesh partitions. Technical Report

95/IM/03, University of Greenwich, London SE18 6PF, UK, 1995.

[WCE97] C. Walshaw, M. Cross, and M. Everett. Parallel dynamic graph-

partitioning for unstructured meshes. Technical Report 97/IM/20,

University of Greenwich, London SE18 6PF, UK, 1997.

[Wen96] 	C. Wendl. Domain decomposition using parallel genetic algorithms.

Summer Scholarship Report EPCC-SS96-01, Edinburgh Parallel

Computing Centre, 1996.

[Wes96] 	M. Westhead. EPIC: Building a structured learning environment. In

WebNet '96 (World Conference of the Web Society). AACE, October

270

1996.

[Wi190] 	R. D. Williams. DIME: A User's Manual. Concurrent Computation

Report C3P 861, Caltech, Feb. 1990.

[W1191] 	R. D. Williams. Performance of dynamic load balancing algorithms

for unstructured mesh calculations. Concurrency: Practice and Ex-

perience, 3(5):457-481, 1991.

[Wi194] 	R. Williams. 	Unification of spectral and inertial bisection.

http://www.ccsf.caltech.edu/ —roy/papers.html, 1994.

[Zie89] 	O.C. Zienkiewicz. The finite element method, volume 1-2. McGraw-

Hill, 4th edition, 1989.

271

Appendix A

Decomposition Statistics

272

A.1 Widget Data-Set

In this section we present decomposition statistics for the Widget data-set. This data-set
is a two dimensional finite element mesh with triangular elements, which originates from
the HEAT2D heat transfer code [HU94] detailed in chapter 9.

The physical geometry of the mesh is already familiar to us, as it has been extensively
used as an example in this thesis, being initially introduced in figure 6.1 of chapter 6, and
featuring frequently in subsequent discussions.

We present decomposition statistics for all the most significant combinations of decom-
position and refinement algorithms implemented in PUL-md. For each combination we
attempt, so far as the size of this document permits, to explore as much of the space of
settings of the tunable parameters that control the algorithm's behaviour as possible.
However, even restricting ourselves to a small sub-set of this parameter space yields a
large number of options, so we have tried to focus on the most pertinent of parameter
settings and hope that personal bias and expectation have not influenced the choices
made unduly.

Table A.1:

A.1 Widget Data-Set 	 273

SIMPLE =

'

=

Ii

NODES EDGES

IVI Sadj 	I t(s) 	11 A. V, IEcutle 	I Sadj 	I t(s)

SR
k = 2

1 	
-

0 	1745 	5054 	2 	1 0.01 	0 	115 12 I 	1269 	2 	0.01

Sc

k = 2
2 	

- 	
0 	11746 	5303 	2 	1 0.01 	0 	1614 	1473 	2 	0.01

SL
k = 2

3 0 	11 0 167 322 2 0.01 0 79 44 2 0.00

4 1 	11 0 152 269 2 0.02 0 69 45 2 0.02

1
107 107 198 2 0.04 0 50 31 2 0.03

6 3 116 220 2 0.06 0 57 36 2 0.04

7 4 107 198 2 0.08 0 50 31 2 0.05

k = 4
8 0 1 659 1273 12 0,02 1 338 221 12 0.01

9 1 1 517 944 6 0.04 1 224 144 6 0.02

10 2 1 262 479 6 0.06 1 125 74 6 0.04

11 3 1 285 531 6 0.07 1 138 87 6 0.05
12 4 1 262 479 6 0.09 1 125 74 6 0.06

13 0 1 1269 2831 46 0.02 1 751 543 40 0.02

14 1 1 1055 1938 14 0.04 1 467 307 14 0.03

15 2 1 553 1014 14 0.06 1 264 161 14 0.04

16 3 1 606 1121 14 0.08 1 291 195 14 0.06
17 4 1 553 1014 14 0.10 1 264 161 14 0.07

Table A.2:

A.1 Widget Data-Set 	 274

GREEDY

IVbI I JE,.,I, 	 A. 	IVI Ecutle 	Sadj 	t(s)

1 II 0 I 168 I 	298 	I 	2 	I 0.01 II 0 I 69 I 	45 	I 	2 	I 0.01

k = 4
2 	1 	1 298 I 	542 12 	0.03 11 	1 	1 	121 	76 	I 	8 	0.02

k = 8
3 11 1 1 564 1 1053 I 28 1 0.06 11 1 1 214 1 	139 	1 28 1 0.04

Table A.3:

A.1 Widget Data-Set 	 275

RLB [- =

V

=
U)
DLI

'

-
I-
U)

NODES EDGES

/. IEcut l e J KJ IEcutle 80.j t(s)

k = 2
1 0 - 0 106 194 2 0.01 0 52 34 2 0.01

2 1 F 0 153 279 2 0.02 0 59 36 2 0.02

3 2 F 0 106 194 2 0.04 0 52 34 2 0.03

4 3 F 0 153 279 2 0.05 0 59 36 2 0.05

5 4 F 0 106 194 2 0.06 0 52 34 2 0.06

6 5 F 0 153 279 2 0.08 0 59 36 2 0.07

7 1 T 0 106 194 2 0.03 0 52 34 2 0.03

8 2 T 0 106 194 2 0.04 0 52 34 2 0.03

9 3 T 0 1 	106 1 	194 2 0.06 0 52 34 2 0.06

k=4
10 0 - 1 381 687 6 0.03 1 	1 169 111 6 0.02

11 1 T 1 259 483 8 0.06 1 119 74 8 0.05
12 2 T 1 247 450 8 0.08 1 120 79 8 0.07
13 3 T 1 247 450 8 0.12 1 	1 114 76 8 0.10

k=8
14 0 - 1 720 1343 24 0.04 1 330 214 22 0.03
15 1 T 1 486 898 22 0.09 1 215 141 22 0.08
16 2 T 1 454 839 22 0.13 1 209 143 22 0.11
17 3 T 1 454 839 22 0.17 1 208 142 22 0.15

Table A.4:

A.1 Widget Data-Set 	 276

RCB
[- -

-

)

-

o
-

o

<
-4

0

- NODES EDGES

A. IV& I I 	lEcutle I 	Sadj t(s) 	1 1 A. 	I 1141 I 	IEctIe I 	Sadj I 	t(s)

k=2
1 F I T F - 0 116 188 2 0.01 1 	0 49 32 _2 0.01

2 T I F F - 0 147 245 2 0.01 0 67 40 2 0.00

3 F F F - 0 116 188 2 0.01 0 49 32 2 0.01

4 F F T 5 84 82 143 2 0.01 87 34 19 2 0.01

5 F F T 10 171 39 71 2 0.01 171 19 10 2 0.01

6 F F T 15 239 36 63 2 0.01 -223 -T 17 9 2 0.01

7 F F T 20 315 27 48 2 0.01 315 12 7 2 0.01

k=4

8 F T F - 1 342 576 6 0.02 1 148 92 6 0.01

9 T F F - 1 298 531 10 0.01 1 136 80 10 0.01

10 F F F - 1 307 528 8 0.02 1 135 82 8 0.01

11 F F T 5 45 279 498 8 0.02 45 126 67 8 0.01

12 F F T 10 98 218 392 6 0.02 98 103 54 6 0.01

13 F F T 15 166 159 279 6 0.02 150 101 53 6 !.02

14 F F T 20 242 148 256 6 0.02 242 70 38 6 .02

k=8
15 F T F - 1 713 1222 14 0.03 1 313 190 14 0.02
16 T F F - 1 566 1032 28 0.02 1 264 154 24 0.02
17 F F F - 1 499 862 22 0.03 1 222 136 22 0.02

18 F F T 5 41 426 755 22 0.03 43 191 103 22 0.02
19 F F T 10 88 368 647 20 0.03 101 178 96 22 0.02
20 F I 	F I T 15 151 338 576 20 1 0.03 123 179 97 24 0.02
21 F I F I T 20 255 1 358 594 18 0.04 234 159 85 18 0.03

Table A.5:

A.1 Widget Data-Set 	 277

RIB = = = NODES EDGES

V

.
I-I

I-I

&

--

IVtI IEcttIe Sadj t(s) A. IVl lEcut i e Sadj t(s)

k = 2
1 F - 0 111 188 2 0.01 0 47 31 2 0.01

2 T 5 85 80 147 2 0.01 85 34 19 2 0.01

3 T 10 167 45 71 2 0.01 170 19 10 2 0.01

4 T 15 257 32 60 2 0.01 221 16 9 2 0.01

5 T 20 316 25 47 2 0.02 313 12 7 2 0.01

6 T 25 316 25 47 2 0.02 313 12 7 2 0.01

7 T 1 	30 	11 316_L_?L_L 47 2 0.02 313 12 7 2 0.01

k=4

8 F - 1 292 512 8 0.03 1 130 79 8 0.02

9 T 5 59 258 445 8 0.03 86 111 62 8 0.03

10 T 10 188 195 319 8 0.03 177 90 48 8 0.03

11 T 15 176 169 283 6 0.03 115 75 40 6 0.03
12 T 20 205 157 262 6 0.03 229 66 36 6 0.03
13 T 25 205 157 262 6 0.04 229 66 36 6 0.03
14 T 30 205 155 257 6 0.04 229 66 36 6 0.03

k=8

15 F - 1 480 838 24 0.04 1 216 136 20 0.04
16 T 5 38 416 706 20 0.05 51 176 98 20 0.05
17 T 10 96 339 568 18 0.05 93 158 85 18 0.04

18 T 15 166 344 578 16 0.05 134 151 82 18 0.04
19 T 20 225 320 551 16 0.05 230 142 77 18 0.04
20 T 25 260 314 534 16 0.06 262 139 75 18 0.05
21 T 30 294 299 1 	504 18 0.06 300 137 74 18 0.05

Table A.6:

A.1 Widget Data-Set 	 278

RSB

cD

i-
0

u

0
D
x
F-.
94

en

-

E

NODES EDGES

A.

--

IVbI IEctitIe sjj t(s) 	1 1 A. IVbI 	I IEcutle 	I sj 	I t(s)

k=2

1 -5 T F - 0 100 172 2 1.91 0 46 1 	26 2 4.84

2 -4 T F - 0 100 172 2 2.41 0 46 26 2 3.59

3 -3 T F - 0 101 173 2 0.84 0 41 21 2 1.32

4 -2 T F - 0 100 175 2 0.40 0 38 22 2 0.23

5 -1 T F - 0 91 154 2 0.10 0 65 39 2 0.02

6 -5 F F I 	- 0 100 172 2 0.65 0 46 26 2 1.59

7 -4 F F - 0 100 172 2 0.43 0 46 26 2 1.09

8 -3 F F - 0 101 173 2 0.32 41 21 2 0.39

9 -2 F F - 0 100 175 2 0.17 0
1~0

38 22 1 	2 0.08
10 = F - 0 91 154 2 0.06 0 65 39 1 	2 0.01

k=8

11 -5 T F - 1 397 687 16 3.20 1 175 107 16 8.86

12 -4 T F - 1 395 688 16 2.16 1 175 105 16 5.64

13 -3 T F - 1 396 689 16 1.46 1 171 90 16 2.47
14 -2 T F - 1 393 691 16 0.75 1 200 116 20 0.49

15 -1 T F - 1 453 792 22 0.25 1 409 253 34 0.05
16 -5 F F I 	- 1 397 1 	687 16 1.37 1 175 107 16 3.64
17 -4 F F - 1 395 688 16 0.95 1 175 105 16 2.15

18 -3 F F - 1 396 689 16 0.65 1 171 90 16 0.91

19 -2 F F - 1 393 691 16 0.39 1 200 116 20 0.22
20 -1 F F - 1 453 792 22 0.18 1 409 253 34 0.04

Table A.7:

A.1 Widget Data-Set 	 279

RSB

V

-

In

'IRM

D
x

co
U

-

-

.4

NODES EDGES
--

A. IVtI Ectitle Sadj t(s) A. IV'I 	I IEct tI e 8a4j 	I t(s)

k=2
1 -3 F F - 0 101 173 2 0 41 21 2 0.39

2 -3 F T 5 87 63 114 81 29 16 2 0.39

3 -3 F T 10 164 39 70 2 162 19 10 2 0.39

4 -3 F T 15 258 34 59 2
RO.3

 212 16 9 2 0.39

5 -3 F T 20 316 25 47 2 313 12 7 2 0.39

6 -.., F T 25 316 25 47 2 313 12 7 2 0.39

7 -3 F T 30 316 25 47 2 313 12 7 2 0.39

k=4

8 -3 F F - 1 230 404 8 0.53 1 97 50 8 0.75

9 -3 F T 5 92 187 322 8 79 89 47 8 0.74

10 -3 F T 10 184 173 287 6 179 75 40 6 0.50

11 -3 F T 15 268 161 263 6 E 263 71 38 6 0.54
12 -3 F T 20 383 142 248 6 384 66 36 6 0.86
13 -3 F T 25 383 142 248 6 453 67 36 6 0.86
14 -3 1 F T 1 30 515 134 238 6 0.52 453 1 	67 36 6 0.86

k=8
15 -3 F F - 1 396 689 16 0.65 1 171 90 16 0.92
16 -3 F T 5 64 337 574 18 1.43 48 157 85 18 0.95
17 -3 F T 10 116 329 557 18 0.73 106 150 81 18 0.84

18 -3 F T 15 234 339 560 16 0.82 211 143 78 16 0.98
19 -3 F T 20 341 308 540 16 0.79 317 139 75 16 1.43
20 -3 1 389 310 531 16 0.79 406 134 73 20 1.66

21 -3 F T 30 420 279 493 18 0.89 493 130 72 22 1.78

Table A.8:

A.1 Widget Data-Set 	 280

SR+KL

R i

pDo

i ru rui

NODES EDGES

1a 141 IEcutle Sad.j t(s) & V IEcutl e Sodj t(s)

k = 2
1 T F - - - 0 0 94 147 2 2.51 0 92 47 2 0.91

2 T F - - - 0 0 183 313 2 0.65 0 172 86 2 0.37

3 F T 50 - - 0 0 110 185 2 1.32 0 118 59 2 0.61

4 F T 20 - - 0 0 183 313 2 0.60 0 166 83 2 0.40

5 F T 10 - - 0 0 183 313 2 0.50 0 172 86 0.33

6 F T 5 - - 0 0 236 405 2 0.47 0 215 108 0.28

7 F T 1 - - 0 0 276 474 2 0.27 0 544 272 0.13

8 F F - - - 1 0 94 147 2 2.77 0 84 42 1.41

9 F F - - - 3 0 94 147 2 3.27 0 84 42 1.68

10 F F - - - 5 0 94 147 2 3.76 0 80 40 2.82

11 T F - - - 1 0 183 313 2 0.69 0 172 86 0.40

12 T F - - - 3 0 183 313 2 0.76 0 172 86 0.46

13 T F - - - 5 0 183 313 2 0.84 0 172 86 z 0.51

14 F T 10 - - 1 0 183 313 2 0.55 0 172 1 	86 2 0.32

15 F T 10 - - 3 0 122 215 2 0.95 0 172 1 	86 2 0.40

16 F T 10 - - 5 0 122 215 2 1.06 0 172 86 2 0.47

17 F T 5 - - 1 0 236 405 2 0.51 0 182 91 2 0.67

18 F T 5 - - 3 0 241 403 2 0.83 0 182 91 2 0.75

19 F T 5 - - 5 0 241 403 2 0.92 0 182 1 	91 2 0.80

Table A.9:

A.1 Widget Data-Set 	 281

RIB+KL

NODES EDGES

I—I
—i -, rz

L.a JVt, lEcutle sj.j t(s) A. IV6I IEcutle I 	Sad.j I 	t(s)

k=2
1 F - F F - F - 0 0 99 184 2 0.51 0 46 23 2 0.27

2 F - T F - F - 0 0 99 184 2 0.09 0 46 23 2 0.06

3 F - F T 5 F - 0 0 99 184 2 0.09 0 46 23 2 0.07

4 F - T F - F - 1 0 86 144 2 0.28 0 46 23 2 0.09

5 F - T F - F - 5 0 86 144 2 0.41 0 46 23 2 0.19

6 F - F F - T 60 0 0 99 184 2 0.31 0 46 23 2 0.17

7 F - F F - T 20 0 0 99 184 2 0.11 0 46 23 2 0.07

8 F - F F - T 10 0 0 99 184 2 0.06 0 46 23 2 0.04

9 F - F F - T 5 0 0 103 186 2 0.03 0 46 23 2 0.02

10 F - T F - T 60 0 0 99 184 2 0.07 0 46 23 2 0.04

11 F - T F - T 20 0 0 99 184 2 0.05 0 46 23 2 0.03

12 F - T F - T 10 0 6-1-9-9- 1 184 2 0.04 0 46 23 2 0.02

13 F - T F - T 5 0 0 1 	103 1 	186 2 0.03 11 	0 46 23 2 1 	0.02

Table A.10:

A.1 Widget Data-Set 	 282

RIB+KL
NODES EDGES

cn

i-i I
.4
r
-i

.4
r
-1 ri rzl 0

0)

12 a IVI Ecutle 8a1jj t(s) a 1141 I Ec., I I 	Sadj t(s)

k=4

1 F - F F - F - 0 1 214 375 8 1.89 1 121 61 8 0.54

2 F - T F - F - 0 1 241 416 8 0.26 1 121 61 8 0.13

3 F - F T 5 F - 0 1 241 416 8 0.24 1 121 61 8 0.15

4 F - T F - T 60 0 1 241 416 8 0.20 1 121 61 8 0.09

5 F - T F - T 20 0 1 239 418 8 0.13 1 121 61 8 0.06

6 F - T F - T 10 0 1 249 436 8 0.08 1 121 61 8 0.05

7 F - T F - T 5 0 1 275 484 8 0.06 1 129 65 8 0.04

8 F - F F - F - 1 1 191 324 8 2.78 1 1 	121 61 8 0.80

9 F - T F - F - 1 1 207 351 8 0.49 1 121 61 8 0.18

10 F - F T 5 F - 1 1 210 356 8 0.46 1 	1 121 61 8 0.21

11 F - T F - T 60 1 1 203 353 8 0.45 1 121 61 8 1 0.13

12 F - T F - T 20 1 1 211 377 8 0.25 1 121 61 8 0.07

13 F - T F - T 10 1 278 477 8 0.20 1 121 61 8 0.06

14 F - T I 	F - T 5 1 1 275 484 8 0.07 1 129 65 8 0.04

Table A.11:

A.1 Widget Data-Set 	 283

RSB+KL
- -

- NODES EDGES

-
NO

E

0

u cn N N
I

s-i
I

s-I
I

s-I -I s-i s-I

IVbI IEutIe t(s) A. I%'bI lEcutle Sadj t(s) Ls Sadj

k = 2

1 -3 F F - F F - F - 0 0 89 148 2 1.08 0 40 20 2 0.65

2 -3 F F - T F - F - 0 0 89 148 2 0.44 0 40 20 2 0.45

3 -3 F F - F T 5 F - 0 0 89 148 2 0.44 0 40 20 0.45

4 -3 F F - T F - F - 1 0 94 147 2 0.68 0 40 20 0.47

5 -3 F F - T F - F - 5 0 94 147 2 0.68 0 40 20 0.57

6 -3 F F - F F - T 60 0 0 89 148 2 0.77 0 40 20 2 0.54

7 -3 F F - F F - T 20 0 0 89 148 2 0.47 0 40 20 2 0.44

8 -3 F F - F F - T 10 0 0 89 148 2 0.40 0 36 18 2 0.44

9 -3 F F - F F - T 5 0 0 85 149 2 0.34 0 40 20 2 0.40

10 - T F - T 60 0 0 89 148 2 0.41 0 40 20 2 0.42

11 - T F - T 20 0 0 89 148 2 0.38 0 40 20 2 0.40

12
W3F

 - T F - T 10 0 0 89 148 2 0.36 0 36 18 2 0.41

13 - T F - T 5 0 L_L_L 85 149 2 0.33 0 40 20 2 0.40

k=4____
14 - F F - F - 1 1 205 346 8 3.12 1 95 48 8 1.55

15 - T F - F - 1 1 205 346 8 0.97 1 95 48 8 0,93

16 - F T 5 F - 1 1 205 346 8 0.98 1 95 48 8 0.95

17
fIF

 - T F - T 60 1 1 204 342 8 0.84 1 94 47 8 0.89

18 - T F - T 20 1 1 230 364 8 0.68 1 95 48 8 0.81

19 - T F - T 10 1 1 213 356 8 0.67 1 90 45 8 0.75

20 - T F - T 5 1 1 221 367 8 0.57 1 94 47 8 0.79

Table A.12:

A.1 Widget Data-Set 	 284

SR+MOB

D 0 0 0 0

NODES EDGES

& IV'I 	I lEcutle 1 	Sadj t(s) 	11 A. IV'I I 	IEcut l e I 	s-dj I 	t(s)

k = 2

1 F 50 40 20 F F - 0 594 1553 2 3.27 0 894 733 2 2.51

2 F 50 40 10 F F - 0 585 1470 2 1.66 0 762 727 2 1.28

3 F 50 40 1 F F - 0 899 1997 2 0.17 0 699 632 2 0.14

4 F 10 40 20 F F - 0 115 182 2 0.91 0 192 144 2 0.76

5 F 10 40 10 F F - 0 274 457 2 0.46 0 206 141 2 0.39

6 F 10 40 1 F F - 0 407 659 2 0.06 0 362 221 2 0.05

7 F 5 40 20 F F - 0 202 322 2 0.63 0 170 119 2 0.54

8 F 5 40 10 F F - 0 251 398 2 0.32 0 147 94 2 0.28

9 F 5 40 1 F F - 0 347 568 2 0.04 0 399 211 2 0.04

10 F 10 40 20 F T F 0 231 429 2 1.37 0 181 140 2 1.29

11 F 10 40 20 F T T 0 157 278 2 1.38 0 186 144 2 1.29

12 F 10 40 20 T T T 0 157 278 2 1.37 4 1 	126 1 	74 2 1.28

13 T 50 40 20 F F - 0 108 193 2 4.69 0 184 92 2 3.81

14 T 50 40 10 F F - 0 131 205 2 2.37 0 228 114 2 1.93

15 T 50 40 1 F F - 0 328 529 2 0.25 0 162 81 2 0.20

16 T 10 40 20 F F - 0 111 182 2 1.40 0 64 33 2 1.26

17 T 10 40 10 F F - 0 104 178 2 0.73 0 100 50 2 0.62

18 T 10 40 1 F F - 0 269 454 2 0.10 0 282 141 2 0.08

19 T 5 40 20 F F - 0 198 324 2 1.07 0 138 69 2 0.95

20 T 5 40 10 F F - 0 189 325 2 0.55 0 154 77 2 0.49

21 T 5 40 1 F F - 0 252 420 2 0.09 0 340 170 2 0.07

22 T 10 40 20 F T F 0 146 226 2 2.05 0 92 46 2 1.98

23 T 10 40 20 F T T 0 132 224 2 2.08 0 104 52 2 1.96

24 T 10 40 20 T T T 0 132 224 2 1 	2.08 0 104 52 2 3.38

Table A.13:

A.1 Widget Data-Set 	 285

- 	 RIB+MOB

)

D

-

0 0 0 0

NODES EDGES

A. IVI 	I IEcu tl e sacij t(s) IVbI IEtI Sadj t(s)

k=2

1 F - F 50 40 20 F F - 0 597 1535 2 3.45 0 564 486 2 2.60

2 F - F 50 40 1 F F - 0 719 1557 2 0.17 0 451 374 2 0.15

3 F - F 10 40 20 F F - 0 182 291 2 0.85 0 147 121 2 0.75

4 F - F 10 40 1 F F - 0 222 403 2 0.05 0 234 153 2 0.05

5 F - F 5 40 20 F F - 0 129 214 2 0.58 0 99 67 2 0.52

6 	j F - F 5 40 1 F F - 0 139 218 2 0.04 0 100 60 2 0.04

7 F - F 5 40 20 F T I F 0 133 230 2 0.82 0 102 72 2 0.79

8 F - F 5 40 20 F T I T 0 123 206 2 0.82 0 86 61 2 0.79

9 F I 	- F 5 40 20 T T T 0 123 206 2 0.82 3 76 47 2 0.79

10 F - T 50 40 5 F F - 0 89 152 2 1.14 0 156 78 2 0.84

11 F - T 50 40 1 F F - 0 184 307 2 0.23 0 186 93 2 0.17

12 F - T 10 40 5 F F - 0 99 149 2 0.34 0 89 46 2 0.33

13 F - T 10 40 1 F F - 0 126 194 2 0.08 0 126 63 2 0.08

14 F - T 5 40 5 F F - 0 105 177 2 0.26 0 51 27 2 0.24

15 F - T 5 40 1 F F - 0 109 185 2 0.06 0 69 35 2 0.06

16 F - T 10 40 5 F T F 0 107 180 2 0.48 0 44 23 2 0.47

17 F - T 10 40 5 F F T T 0 109 179 2 0.50 0 76 38 2 0.48

18 F - T 1 	10 40 5 1 T T T 0 109 179 2 0.50 0 1 	76 38 2 0.54

k=4

19 F - F 5 40 20 F F - 1 255 436 12 1.16 1 	1 224 146 12 1.04

20 F - T 10 40 5 F F - 1 227 354 8 0.69 1 179 92 8 0.67

21 F 10 40 2 F F - 1 211 361 8 0.29 1 175 91 10 0.28

22 5 40 5 F F - 1 212 353 8 0.51 1 127 66 8 0.48

23 5 40 2 F F - 1 218 374 8 0.22 1 156 81 8 0.21

Table A.14:

A.1 Widget Data-Set 	 286

RSB+MOB

)

I-.

in

I

U)

I

r'

.4

1

rl

C
U

C

i-i
U

0

x
U
U

)

0

rzl
E-
I-I

0

ri
U

0

C

U

0

.4

0

NODES EDGES --

IVbI I 	IEtI 8a

--

t(s) 	11 A. lVt'I IEcutl e

-

Sadj t(S)

k = 2

1 -3 F F - F 50 40 20 F F I - 0 660 1 	1384 2 3.55 0 352 203 2 3.07

2 -3 F F - F 50 40 1 F F - 0 776 1810 2 0.50 0 446 395 2 0.58

3 -3 F F - F 10 40 20 F F - 0 193 342 2 1.17 0 168 135 2 1.13

4 -3 F F - F 10 40 1 F F - 0 158 253 2 0.36 0 176 122 2 0.43

5 -3 F F - F 5 40 20 F F - 0 142 251 2 0.89 0 98 63 2 - 0.91

6 -3 F F - F 5 40 1 F F - 0 100 159 2 0.35 0 99 71 2 0.42

7 -3 F F - F 5 40 20 F T F 0 140 264 2 1.15 0 81 71 2 1.16

8 -3 F F - F 5 40 20 F T T 0 97 158 2 1.14 0 104 79 2 2.80

9 -3 F F - F 5 40 20 T T T 0 97 158 2 1.15 13 76 45 2 1.15

10 -3 F F - T 50 40 5 F F - 0 160 277 2 1.44 0 138 69 2 1.23

11 -3 F F - T 50 40 1 F F - 0 238 407 2 0.54 0 138 69 2 0.56

12 -3 F F - T 10 1 40 1 	5 F F - 0 84 149 2 0.65 0 81 42 2 0.71

13 -3 F F - T 10 1 40 1 F F - 0 87 149 2 0.39 0 106 53 2 0.46

14 -3 F F - T 5 40 5 F F I 	- 0 83 151 " 0.56 0 76 38 2 0.63

15 -3 F F - T 5 40 1 F F - 0 88 151 2 0.37 0 57 1 	29 2 0.44

16 -3 F F - T 10 40 5 F T F 0 85 148 2 0.80 0 49 25 2 0.82

17 -3 F F - T 10 40 5 F T T 0 95 150 2 1 	0.81 0 74 38 2 0.88

18 -3 TY F - T 10 40 5 T T T 0 95 1 	150 0.81 L 0 74 38 2 0.88

k = 4
19 -3 F F - F 5 40 20 F F - 1 315 552 10 1 	1.75 1 	1 190 124 12 2.26

20 -3 F F - T 10 40 5 F F - 1 211 357 8 1.19 1 154 80 12 2.29

21 -3 F F - T 10 40 2 F F - 1 225 371 8 0.80 1 204 106 12 1.44

22 -3 F F - T 5 40 5 F F - 1 207 358 8 1.02 1 172 88 10 1.80

23 -3 F F - T 5 40 2 F F - 1 218 358 8 0.71 1 148 77 1 	10 1.11

Table A.15:

A.1 Widget Data-Set 	 287

A.2 Wedgel Data-Set

In this section we present decomposition statistics for the Wedgel data-set. This data-set

is a three dimensional finite element mesh with tetrahedral elements, which originates
from the FLITE3D project [BMT96]. This was an EPCC industrial consultancy project
to parallelise a British Aerospace unstructured mesh Euler-solver used in aircraft design.

The physical geometry which the mesh models is that of a rectilinear region, spanned by
a solid wedge-shaped intrusion. This mesh forms the most dense mesh in a series of three
multigrid meshes; Wedge3, Wedge2, Wedgel (in ascending order of mesh density). The
Wedge3 mesh is that previously illustrated in figures 7.10 to 7.11 of section 7.6. Each
of the three meshes have elements of approximately uniform size within themselves, and
differ only in their mesh density relative to one and other.

Here we explore essentially the same set of algorithms and parameter settings as we did for
the Widget data-set, with the one exception of table A.27, where MDJ(LRANDOLRETRIES
takes the value zero, compared to its value of one in the corresponding table in the previous
section (table A.12). Further, the highest values of k used is now 16, rather than 8 as it

was for the Widget data-set.

t(s) 	II 	 Statistics 	 I
Dual I Coord I Border Other 	 I

NODES 5.79 5.76 5.53 567104 15 62.8 99
EDGES 2.58 2.56 1 	2.33 146419 6 1 	16.2 22 18037
FACES 1 	1.65 1.57 1 	1.35 34788 2 1 	3.8 4

Table A.16:

A.2 Wedgel Data-Set 	 288

SIMPLE = = NODES EDGES FACES

)

El

Uj

La IVbl IEtI Sadj t(s) A. IVbI IEcu tl e Sa4j t(s) /. IVbI IEtI S acjj t(s)

SR

k=2

1 	
-

1 	18037 I 283481 	2 	0.19 	1 	118035 	73225 	2 	0.10 	1 	116753 17454 	2 	0.07

Sc

k=2
2 	

- 	
1 	18037 I 288042 	2 	0.17 	1 	18037 I 	77100 	2 	0.08 	1 	17825 	21687 	2 	0.06

SL

k = 2____

3 0 1 13943 119336 2 0.15 1 8997 19679 2 0.07 1 4427 2658 2 0.05

4 1 1 4079 32433 2 0.69 1 2341 5071 2 0.30 1 1269 923 2 0.23

5 2 1 2204 17175 2 1.21 1 1362 2927 2 0.53 1 630 488 2 0.39

6 3 1 2022 15786 2 1.74 1 1261 2649 2 0.79 1 583 437 2 0.48

7 4 1 2204 17175 2 2.22 1 1370 2917 2 0.97 1 646 485 2 0.62

k=4

8 0 16799 205747 12 0.88 1 12877 34832 12 0.64 1 7349 4814 12 0.57

9 1 10516 84573 6 1.45 1 6728 14563 6 0.88 1 3400 2560 6 0.71

10 2 7077 58014 6 1.96 1 4568 9913 6 1.10 1 2072 1582 6 0.86

11 3 6954 56914 6 2.47 1 4326 9304 6 1.32 1 2015 1504 6 0.99

12 4 7077 58014 6 3.01 1 4575 9979 6 1.65 1 2084 1562 6 1.13

k = 16
13 J[0 1 17768 295649 240 1.59 1 15607 52055 240 1.03 1 10378 7452 240 0.87

14 1 1 17088 277775 56 2.20 1 16589 62023 48 1.30 1 13906 11388 30 1.03

15 J{ 2 1 16940 244197 44 2.79 1 15962 44493 30 1.53 1 9136 6848 30 1.18

16
]

3 1 16853 246474 44 3.37 1 16064 43094 30 1.74 1 9156 6871 30 1.33

JL 1 16940 244197 44 3.76 1 1 15799 43277 30 1.96 1 9270 6995 30 1.45

Table A.17:

A.2 Wedgel Data-Set 	 289

GREEDY

NODES EDGES FACES 1

IVbI lEcu tl e 8ad,~ A . IVbI I 	JE..,J laY' l t(s) &F__ -_ IVbI IE t I t(s)

1 5313 I 	41439 2 0.25 1 2551 1 	5530 2 0.14 1 1258 906 2 0.10

k = 4

2 1 7354 I 	62169 12 0.77 1 4628 	10281 12 0.34 1 2008 I 	1515 12 0.22

k = 16
1 13388 137969 136 3.47 1 9363 I 	23688 122 1.34 1 4245 3372 112 0.78

Table A.18:

A.2 Wedgel Data-Set 	 290

RLB = =

E
'-4

-

Cl)

NODES EDGES FACES

A. IV'I IEcutle Sa4j t(s) L 3 IVt,I IEcutl e 8a4j t(s) A. IVI lEcutle ..!2L.

k = 2

1 0 - 1 4419 33591 2 0.25 1 2337 5066 2 0.14 1 972 729 2 0.10

2 1 F 1 2300 17800 2 0.47 1 1595 3386 2 0.27 1 649 482 - 0.21

3 2 F 1 2588 20068 2 0.68 1 1450 3182 2 0.41 1 565 430 2 0.33

4 3 F 1 2300 17800 2 0.89 1 1595 3386 2 0.55 1 649 482 - 0.44

5 4 F 1 2588 20068 2 1.11 1 1450 3182 2 0.68 1 565 430 2 0.55

6 5 F 1 2300 17800 2 1.33 1 1595 3386 2 0.81 1 649 482 2 0.67

7 1 T 1 2300 17800 2 0.49 1 1595 3386 2 0.27 1 649 482 2 0.21

8 2 T 1 2300 17800 2 0.80 1 1450 3182 2 0.41 1 565 430 2 0.33

9 3 T 1 2300 17800 2 0.89 1 1450 3182 2 0.66 1 565 430 2 0.50

k = 4
10 1 	0 - 1 8566 71407 12 0.65 1 5797 12679 8 0.31 1 2178 1683 12 0.20

11 1 T 1 6940 56401 10 1.08 1 4288 9495 10 0.61 1877 1349 10 0.44

12 2 T 1 6940 56401 10 1.72 1 4342 9766 10 0.91
It

1836 1390 10 0.68

13 3 T 1 6940 56401 10 1.93 1 4342 9766 10 1.22 1836 1390 10 1.01

k = 16
14 1 	0 - 1 14637 154803 136 1.42 1 10755 27392 114 0.64 1 	1 4868 3909 114 0.44

15 1 T 1 13856 137855 104 2.28 1 9272 22688 94 1.23 4564 3592 108 0.94

16 2 T 1 13838 136258 104 3.47 1 8893 22091 110 1.82
it

4318 3372 104 1.43

17 3 T 1 14064 137710 102 4.03 22735 108 2.46 4339 3392 92 2.05

Table A.19:

A.2 Wedgel Data-Set 	 291

RCB]

-

)

L)
-

0
01

-

Q

'

0

-

s-I

E

- NODES EDGES FACES

A. lVbI IEcutle 	I Sadj 	I t(s) 	I I A. IVbI IEcu tla Sacjj t(s) 	II A. 1¼1 IEctstI Bad t(s)

k=2
1 - 1 1708 11816 2 0.18 1 993 2024 2 0.09 1 478 318 2 0.06

2 - 1 3775 28145 2 0.18 1 2150 4621 2 0.09 1 1035 694 2 0.06

3 - 1 1708 11816 2 0.18 1 993 2024 2 0.09 1 478 318 2 0.06

4

ffF

 5 900 1555 10722 2 0.20 827 903 1829 2 0.10 731 443 267 2 0.07

r 10 1802 1427 9672 0.23 1802 816 1683 2 0.10 1356 392 243 2 0.07

6 15 2684 1281 8912 2 0.23 2676 736 1476 2 0.11 2594 354 214 2 0.08

 20 2792 1383 8890 0.25 3079 726 1447 2 0.12 3079 340 206 2 1 	0.08

k=4___
8 F T F - 1 5783 42716 6 0.98 1 3311 6946 6 0.67 1 1597 1059 6 0.58

9 T F F - 1 5794 46324 12 0.55 1 3420 7532 12 0.23 1 1670 1142 12 0.14

10 F F F - 1 5460 41320 8 0.76 1 3162 6782 8 0.45 1 1531 1038 8 0.36

11 F T T 5 868 5017 37705 8 0.75 585 2912 6123 8 0.43 606 1440 890 8 0.33

12 F F T 10 1954 4786 34291 8 0.81 1700 2718 5706 8 0.46 750 1357 844 8 0.37

13 F F T 15 3097 4171 31284 8 0.88 3039 2487 5148 8 0.52 3034 1208 756 8 0.40

14 F F T 20 3758 4245 30551 8 0.94 3924 2337 4845 8 0.55 3900 1 	1132 701 8 0.44

k = 16

T F - 1 17886 211045 54 1.83 1 15671 34862 30 1.10 1 7902 5458 30 0.92

 T F F - 1 12975 111075 104 1.19 1 8056 18423 104 0.47 1 4088 2839 96 0.27

F
18

F

 F F F - 1 9682 85626 126 1.44 1 6099 14156 110 0.72 1 3113 2181 96 0.51

 F F T 5 491 9434 82929 126 1.50 397 5812 13272 112 0.72 406 3014 1939 84 0.51

 F F T 10 989 9526 81527 114 1.59 751 5818 13155 94 0.78 618 2954 1883 90 0.55

20 F F T 15 1182 1 	9405 79759 102-1 1.72 1325 5791 12888 100 0.85 1343 2949 1876 82 0.59

21 F F T 20 1140 1 	9438 79124 98 1.83 1672 5577 12448 86 1 	0.91 1653 2859 1792 78 0.64

Table A.20:

A.2 Wedgel Data-Set 	 292

RIB

o

NODES EDGES FACES

A. IVtI IEcut l e 	I s t(s) 	1 1 L IVbI 	1 IEcttIe 	I Sadj t(s) As IVbI 	1 IEcut l e 	1 Sacj t(s)

k = 2

1 F - 1 1720 11813 2 0.26 1 996 2040 2 0.17 1 478 327 2 0.15

2 T 5 901 1556 10711 2 0.28 833 898 1825 2 0.18 696 443 266 2 0.15

3 T 10 1802 1414 9666 2 0.29 1799 813 1674 2 0.18 1362 393 245 2 0.15

4 T 15 2676 1264 8916 2 0.31 2687 726 1478 2 0.19 2597 357 219 2 0.18

5 T 20 2790 1389 8908 2 0.33 3079 722 1450 2 0.20 3165 338 204 2 0.19

6 T 25 2790 1389 8908 2 0.37 3079 722 1450 2 0.21 3165 338 204 2 0.17

7 Ll L30 2790 1389 8908 2 0.40 3079 722 1450 2 1 	0.22 3165 338 204 2 0.18

k = 4

8 F - 1 4932 36529 12 0.71 1 2860 6123 12 0.41 1 1395 957 12 0.31

T 5 545 4734 34228 8 0.76 584 2687 5531 8 0.42 569 1474 914 8 0.33

10 T 10 1973 4676 32349 8 0.79 1844 2597 5324 8 0.44 1554 1268 786 8 0.33

ii T 15 3063 4397 31863 8 0.83 3091 2525 5190 8 0.44 2316 1234 764 8 0.35

[1 T 20 3756 4452 31980 8 0.89 3868 2442 5113 8 0.46 3825 1174 734 8 0.35

13 T 25 4347 4229 30097 8 0.95 4223 2354 4848 8 0.48 3825 1157 718 8 0.38

14 T 30 4911 4057 28510 8 1.00 5168 2241 4610 8 0.50 5169 1099 674 8 0.37

k=16

15 F - 1 10434 93577 130 1.54 1 6638 15462 112 0.82 1 3425 2388 102 0.63

ri T 5 368 9615 84349 120 1.65 343 5985 13623 104 0.86 348 3597 2327 98 0.65

17 T 10 1120 9559 81704 112 1.76 781 5874 13207 92 0.90 777 3035 1950 82 0.66

18 T 15 1476 9545 81791 92 1.86 1426 5892 13214 92 0.95 973 2988 1888 78 0.70

19 T 20 2900 9589 82795 94 1.91 2973 5958 13496 90 0.96 2679 3057 1979 88 0.71

20 T 25 3835 1 	9206 77740 96 2.14 3772 5609 12573 90 0.99 3316 2929 1866 90 0.76

21 T 30 	11 3022 1 	8643 73142 98 1 	2.22 11 3700 1 5398 11970 88 1.06 4548 2722 1723 1 	78 1 	0.76

Table A.21:

A.2 Wedgel Data-Set 	 293

RSB
=

4)

=

.3
o

U)

Oi

=

a
E-.
W.

U)

=

-

C9U

NODES EDGES FACES
-

A. IVtI IEtI 4 8aj t(s) 'a IVbI EtI Socki t(s) 1a V I&tI Sj t(s)

k = 2

1 -5 T F - 1 1641 11659 2 31.08 1 1 	958 1954 2 31.66 1 457 294 2 68.73

2 -4 T F - 1 1641 11659 2 22.42 1 957 1953 2 24.31 1 456 295 2 50.00

3 -3 T F - 1 1646 11656 2 18.71 1 955 1950 2 18.56 1 454 311 2 30.21

4 -2 T F - 1 1643 11665 2 14.21 1 959 1981 2 11.71 1 421 297 2 7.01

5 -1 T F - 1 1662 11736 2 10.22 1 924 1891 2 3.32 1 2217 1504 2 0.42

6 F - 1 1641 11659 2 15.75 1 958 1954 2 7.53 1 457 294 2 7.50

7 F - 1 1641 11659 2 13.25 1 957 1953 2 6.43 1 456 295 2 5.84

8

B
F - 1 1646 11656 2 11.55 1 955 1950 2 5.31 1 454 311 2 4.05

9 F - 1 1643 11665 2 9.51 1 959 1981 2 3.98 1 421 297 2 1.58

10 F - 1 1662 11736 2 7.27 1 924 1891 2 1.82 1 2217 1504 2 0.30

k = 16

11 -5 T F - 1 9574 84641 124 83.72 1 6080 13963 106 85.71 1 3026 2093 90 178.59

12 -4 T F - 1 9564 84637 124 70.49 1 6076 13957 106 66.04 1 3021 2086 88 119.10

13 -3 T F - 1 9547 84643 124 58.62 1 6082 13985 106 49.72 1 3031 2074 94 75.00

14 -2 T F - 1 9589 84692 124 45.78 1 6087 13955 106 28.98 1 3529 2469 94 17.07

15 -1 T F - 1 9645 85224 116 29.84 1 7323 17036 104 9.14 1 7646 5685 200 1.58

16 -5 F F - 1 9574 84641 124 52,17 1 6080 13963 106 24.70 1 3026 2091 90 27.37

17 -4 F F - 1 9564 84637 124 45.90 1 6076 13957 106 20.69 1 3020 2086 88 18.18

18 F F - 1 9545 84640 124 39.87 1 6081 13993 104 17.04 1 3031 2074 94 12.45

19 ft-2 F F - 1 9589 84692 124 32.97 1 6087 13955 106 11.73 1 3529 2467 94 468

20 F F - 1 9645 85224 116 23.05 1 7330 17051 104 5.62 1 7646 5685 200 1.16

Table A.22:

A.2 Wedgel Data-Set 	 294

RSB
=

a)

=

- o

cn
Ei p-1

=

C,
C

I-.

U

=

-

= NODES EDGES FACES

La IVbI IEcutle Sajj t(s) a 114,1 IEcutl e 8arjj t(s) A . Il4I lEtI 8acj t(s)

k=2

1 -3 F F - 1 1646 11656 2 11.43 1 955 1950 2 7.13 1 454 311 2 3.93

2 -3 T T 5 899 1549 10596 2 11.60 864 872 1793 2 5.40 715 428 269 2 3.96

-- T: T T 10 1800 1391 9440 2 11.68 1682 800 1611 2 5.38 1774 383 238 2 3.94

4 -3 F T 15 2703 1252 8717 2 11.55 2675 707 1413 2 5.22 2527 347 208 2 3.91

5 -3 F T 20 2887 1346 8613 2 11.70 2675 707 1413 2 5.31 3487 332 193 2 3.90

6 -3 F T 25 2887 1346 8613 2 11.62 2675 707 1413 2 5.27 3487 332 193 2 4.06

7 -3 F T 2887 1346 8613 2 11.70 2675 707 1413 2 5.32 3487 332 193 2 4.01

k=4

8 -3 F F - 1 4176 30324 8 24.95 1 2379 4925 8 11.30 1 1109 728 8 8.54

9 -3 F T 5 623 4054 28800 8 24.91 677 2217 4562 8 10.94 589 1285 801 8 6.00

10 -3 F T 10 1101 3904 27640 8 25.96 1067 2144 4366 8 11.32 1754 1230 766 8 6.61

11 -3 F T 15 1491 3732 26967 8 26.03 1523 2053 4168 8 11.21 2462 1201 745 8 5.89

12 -3 F T 20 3824 3721 26088 8 25.92 1523 2053 4168 8 11.21 3937 1068 647 8 5.54

13 -3 F T 25 4395 3522 24530 8 26.04 4247 1940 3910 8 11.25 4665 1070 645 8 5.59

14 -3 F T 30 5011 3271 23572 10 25.99 4673 1903 3849 8 11,48 5458 1022 628 8 5.61

k = 16
15 -3 F F - 1 9545 84640 124 39.33 1 6081 13993 104 16.75 1 3031 2074 94 12.52

16 -3 F T 5 391 9429 81742 112 40.35 359 5908 13347 98 17.32 232 2981 1894 82 9.88

17 -3 F T 10 873 9331 80493 106 41.15 731 5716 12784 102 17.17 827 3182 2038 88 11.22

18 -3 F T 15 1405 9337 78568 90 40.53 1040 5629 12494 88 16.61 1447 3245 2068 92 10.56

19 -3 F T 20 2889 9103 75826 78 42.30 1472 5517 12162 80 16.90 1574 2846 1767 80 12.78

20 -3 F T 25 3862 8691 72048 82- 1 42.23 1 3191 5417 11864 80 18.09 2452 2859 1791 80 11.32

21 -3 F T 30 3031 7943 66943 1 	94 1 44.54 11 2570 5196 11247 66 17.99 5124 2475 1552 76 11.96

Table A.23:

A.2 Wedgel Data-Set 	 295

SR+KL
- =

R

-

r1

- - -

rzD

-

cn
NODES EDGES FACES

& I1'I IEcutl e Sa4j t(s) A. IVbI IEcutle Sa1jj t(s) 1.s IVbI 8arj t(s)

k= 2
1 F F - - - 0 1 1631 11043 2 72.45 1 926 1806 2 26.79 1 2099 1081 2 26.68

2 T F - - - 0 1 1631 11043 2 16.69 1 926 1807 2 13.39 1 4739 2463 2 3.96

3 F T 50 - - 0 1 1631 11043 2 45.42 1 926 1807 2 17.13 1 4739 2463 2 5.38

4 F T 20 - - 0 1 1631 11043 2 25.39 1 926 1807 2 11.17 1 4739 2463 2 3.71

5 F T 10 - - 0 1 1631 11043 2 18.52 1 926 1807 2 9.21 1 4739 2463 2 3.02

6 F T 5 - - 0 1 1631 11043 2 15.24 1 1691 3365 2 7.22 1 4739 2463 2 2.71

7 F T 1 - - 0 1 1598 11271 2 10.85 1 3990 8032 2 5.24 1 4735 2465 2 2.46

8 F F - - - 1 1 1667 11033 2 154.66 1 922 1803 2 39.91 1 2060 1060 2 38.59

9 F F - - - 3 1 1673 11032 2 525.58 1 913 1792 2 70.08 1 2060 1060 2 41.52

10 F F - - - 5 1 1673 11032 2 236.72 1 913 1792 2 76.43 1 2060 1060 2 44.35

11 T F - - - 1 1 1667 11033 2 19.76 1 926 1807 2 13.70 1 4734 1 	2459 2 4.84

12 T F - - - 3 1 1673 11032 2 22.14 1 926 1807 2 14.26 1 4734 1 	2459 2 5.56

13 T F - - - 5 1 1673 11032 2 22.79 1 926 1807 2 14.86 1 4737 2458 2 7.67

14 F T 10 - - 1 1 1667 11033 2 29.92 1 926 1807 2 9.77 1 4734 2459 2 4.17

15 F T 10 - - 3 1 1673 11032 2 87.82 1 926 1807 2 11.00 1 4734 2459 2 5.69

16 F T 10 - - 5 1 1673 11032 2 41.39 1 926 1807 2 12.19 1 4737 2458 2 9.50

17 F T 5 - - 1 1 1667 11033 2 22.35 1 1691 3365 2 7.71 1 4734 2459 2 4.36

18 F T 5 - - 3 1 1673 11032 2 27.79 - iT 3365 F 8.56 4734 2459 2 4.32

19 F T 5 - - T 1 1673 11032 29.67 1691 3365 2 9.45 1 4737 2458 2 6.95

Table A.24:

A.2 Wedgel Data-Set 	 296

RIB+KL
[

--

- -

- NODES EDGES FACES
cn

.. ..c

ri 0

V I IEcutl e t(s) I I.a IVbI E,. I le Sadj t(s) A. I%"bI IEeutle Sadj t(s)
Sadj

k = 2

1 F - F F - F - 0 1 1547 1 243 2 51.15 1 931 1845 2 13.37 1 478 246 2 4.56

2 F - T F - F - 0 1 1547 1 243 2 2.70 1 931 1845 2 1.31 1 478 246 2 0.93

3 F - F T 5 F - 0 1 1547 1 243 2 5.02 1 931 1845 2 1.92 1 478 246 2 1.53

4 F - T F - F - 1 1 1547 1 243 2 3.16 1 931 1845 2 1.58 1 478 246 2 1.21

5 F - T F - F - 5 1 1547 1 243 2 4.97 1 931 1845 2 2.62 1 478 246 2 2.18

6 F - F F - T 60 0 1 1547 1 243 2 29.57 1 931 1845 2 7.91 1 478 246 2 2.80

7 F - F F - T 20 0 1 1547 11243 2 9.32 1 931 1845 2 2.68 1 478 246 2 1.02

8 F - F F - T 10 0 1 1547 11243 2 4.33 1 931 1845 2 1.37 1 478 246 2 0.58

9 F - F F - T 5 0 1 1658 1 	11512 " 1.24 1 934 1861 2 0.84 1 1 478 246 2 0.36

10 F - T F - T 60 0 1 1547 11243 2 2.22 1 931 1845 2 0.91 1 478 1 	246 2 0.64

11 F - T F - T 20 0 1 1547 11243 2 1.72 1 931 1845 2 0.52 1 478 246 2 0.34

12 F - T F - T 10 0 1 1547 11243 2 1.41 1 931 1845 2 0.41 1 478 246 2 0.26

13 F - T F - T 5 0 1 1658 11512 2 0.76 1 934 1861 2 0.36 1 478 246 2 0.22

Table A.25:

A.2 Wedgel Data-Set 	 297

RIB+KL

NODES EDGES FACES

r IN

a)

A. IVtI IEcutle t(s) A. IVbI lEcut l e I 	Sad.j t(S) L JEcut le Sa..i.i I 	t(s) Sa4j

k - 16

1 F - F F I - F - 0 1 9905 83307 106 223.52 1 6170 13658 98 57.72 1 3455 1880 94 19.46

2 F - T F I - F - 0 1 9882 83370 106 21,94 1 6173 13642 98 6.95 1 3455 1880 94 4.07

3 F - F T 5 F - 0 1 9882 83370 106 26.81 1 6173 13642 98 8.57 1 3455 1880 94 4.72

4 F - T F - T 60 0 1 10039 84989 104 17.58 1 6173 13642 98 5.32 1 3443 1866 96 2.88

5 F - T F - T 20 0 1 10884 94047 124 9.30 1 6424 14422 110 2.85 1 3443 1866 96 1.56

6 F - T I F - T 10 1 	0 1 11234 99870 128 5.59 1 6434 14539 106 2.09 1 3423 1859 90 1.24

7 F - T F - T 5 0 1 10716 93302 126 3.30 1 6391 14421 112 1.48 1 3465 1902 88 0.98

8 F - F F - F - 1 1 9909 83305 106 266.65 1 6065 13364 96 81.22 1 3429 1856 90 29.52

9 F - T F - F - 1 1 9873 83373 106 25.02 1 6133 13524 96 9.43 1 3429 1856 90 5.84

10 F - F T 5 F - 1 1 9873 83373 106 31.92 1 6151 13624 94 11.14 1 3429 1856 90 6.89

11 F - T F - T 60 1 1 10039 84989 104 19.56 1 6138 1 	13586 100 6.43 1 3443 1866 96 3.52

12 F - T F - T 20 1 1 10880 93940 1 	124 11.15 1 6339 14176 106 3.73 1 3443 1866 96 1.81

13 F - T F - T 1 	10 1 1 11347 100649 1 	122 6.56 1 6435 14512 108 2.45 1 3423 1859 90 1.37

14 F - T F - T 1 	5 1 	1 1 10710 93301 1 	126 3.75 t 	1 6378 14392 116 1.68 1 3461 1901 90 1.10

Table A.26:

A.2 Wedgel Data-Set 	 298

RSB+KL -

-
-
-

-
-
-
- -

-
-

-
-

-
-
-
-
-
-

rz

-

a

NODES EDGES FACES

A. IVI IEcude Sadj t(s) &e IVb I IEtI Sadj t(S) L IVb I IEcutle I (s)

k = 2

1 -3 F F - F F - F - 0 1 1556 11227 2 53.67 1 923 1832 2 22.20 1 463 238 2 12.99

2 -3 F F - T F - F - 0 1 1556 11227 2 13.74 1 923 1832 2 6.80 1 463 238 2 4.73

3 -3 F F - F T 5 F - 0 1 1556 11227 2 15.48 1 923 1832 2 7.61 1 463 238 2 4.91

4 -3 F F - T F - F - 1 1 1556 11227 2 14.14 1 923 1832 2 7.06 1 463 238 2 5.09

5 -3 F F - T F - F - 5 1 1556 11227 2 15.61 1 921 1831 2 9.51 1 463 238 2 5.98

6 -3 F F - F F - T 60 0 1 1556 11227 2 35.70 1 923 1832 2 15.28 1 463 238 2 6.66

7 -3 F F - F F - T 20 0 1 1556 11227 2 19.08 1 923 1832 2 8.55 1 463 238 2 4.85

8 -3 F F - F F - T 10 0 1 1556 11227 2 15.04 1 923 1832 2 6.91 1 463 238 2 4.42

9 -3 F F - F F - T 5 0 1 1582 11277 2 13.62 1 922 1834 2 5.97 1 463 238 2 4.20

10 -3 F F - T F - T 60 0 1 1556 11227 2 13.38 1 923 1832 2 6.46 1 463 238 1 	2 4.47

11 -3 F F - T F - T 20 0 1 1556 11227 2 13.06 1 923 1832 2 5.80 1 463 233 2 4.14

12 -3 F F - T F - T 10 0 1 1556 11227 2 12.75 1 923 1832 2 5.67 1 463 238 2 4.09

13 -3 F F - T F - T 5 0 1 1582 11277 2 12.45 1 922 1834 2 5.58 1 1 	463 238 2 4.00

k = 16
14 -3 F F - F F - F - 0 1 9784 82191 108 186.93 1 5856 12915 94 68.56 1 3122 1695 88 30.79

15 -3 F F - T F - F - 0 1 9830 82871 108 48.71 1 5856 12915 94 21.25 1 3122 1695 88 15.51

16 -3 F F - F T 5 F - 0 1 9830 82871 108 53.63 1 5856 12915 94 23.51 1 3122 1695 88 16.25

17 -3 F F - T F - T 60 0 1 9830 82871 108 47.26 1 5856 12915 94 19.74 1 3122 1695 88 14.31

18 -3 F F - T F - T 20 0 1 9839 82847 108 44.86 1 5856 12915 94 18.23 1 3122 1695 88 13.10

19 -3 F F I 	- T I F I 	- T 1 	10 0 1 9860 82875 108 42.52 1 5866 12963 96 17.27 1 3117 1686 88 12.76

20 -3 F I F I 	- T I F I 	- T 1 	5 0 1 9793 82794 108 1 	41.02 11 	1 1 5850 1 	13004 1 	96 17.31 1 3103 1689 86 12.59

Table A.27:

A.2 Wedgel Data-Set 	 299

SR+MOB
- -

En I 0 0 0 0

NODES EDGES FACES

A . I 	1½'I I 	IEcut l e L Sadj t(s) A. IVbI 8acj t(s) La IVbI IEcutle Sadj t(s)

k=2

1 r 50 40 20 F F - 1 6091 58833 2 1 	95.76 1 5674 20949 2 47.50 1 7734 8708 2 31.86

2 F 50 40 10 F F - 1 6351 59104 2 48.54 1 5928 22119 2 24.06 1 8532 10028 2 15.92

3 F 50 40 1 F F - 1 12425 116014 2 5.60 1 8931 27544 2 2.46 1 8954 10486 2 1.75

4 F 10 40 20 F F - 1 1696 11775 2 21.52 1 1880 3995 2 12.73 1 2126 1989 2 10.44

5 F 10 40 10 F F - 1 1874 11908 2 11.42 1 1930 4175 2 6.54 1 2663 2295 2 5.37

6 F 10 40 1 F F - 1 5025 35180 2 1.60 1 5377 11484 2 0.82 1 5596 4122 2 0.65

7 F 5 40 20 F F - 1 3371 22246 2 14.25 1 1957 4003 2 8.79 1 2431 1759 2 7.47

8 F 5 40 10 F F - 1 3306 22220 2 7.40 1 2515 5187 2 4.52 1 3298 2103 2_ 3.77

9 F 5 40 1 F F - 1 4841 31744 2 1.07 1 5934 12209 2 0.61 1 5292 3385 2 0.49

10 F 10 40 20 F T F 1 2679 17432 2 32.67 1 2322 6031 2 19.33 1 2320 2074 2 15.54

11 F 10 40 20 F T T 1 1727 11942 2 32.07 1 1982 4286 2 19.49 1 2320 2074 2 15.55

12 F 10 40 20 T T T 1 1707 11923 2 32.08 4 1944 4234 2 19.39 23 2020 1552 2 15.60

13 T 50 40 20 F F - 1 1634 11204 2 131.64 1 948 1893 2 72.54 1 2883 1587 2 59.17

14 T 50 40 10 F F - 1 1668 11250 2 66.23 1 970 1921 2 36.76 1 3028 1672 2 29.61

15 T 50 40 1 F F - 1 2431 16536 2 8.05 1 3091 6245 2 4.23 1 3518 1919 2 2.89

16 T 10 40 20 F F - 1 1679 11403 2 34.62 1 887 1767 2 21.31 1 949 521 2 20.41

17 T 10 40 10 F F - 1697 11411 2 18.86 1 1204 1 	2406 2 11.04 1 1426 763 2 11.01

18 T 10 40 1 F F - 2980 20464 2 2.96 1 2626 5242 2 1.63 1 4830 2547 2 1.40

19 T 5 40 20 F F - 1719 11518 2 23.28 1 908 1791 2 15.59 1 1 	1608 848 2 16.40

20 T 5 40 10 F F - 2904 19409 2 12.40 1 1333 2649 2 8.06 1 2080 1073 2 8.33

21 T 5 40 1 F F - 3269 22237 2 2.28 1 4749 9636 2 1.17 1 5188 2731 2 1.15

22 T 10 40 20 F T F 1 1725 11103 2 48.79 1 886 1759 2 29.54 1 752 419 2 25.85

23 T 10 40 20 1 	F T I T 1556 11223 1 	2 1 	48.14 1 913 1810 2 30.19 1 729 1 	393 2 26.40

24 T 1 	10 1 40 1 	20 1 T T I T 11 	1 1 	1556 11223 1 	2 1 	48.15 11 	1 1 	913 1810 2 30.42 1 729 1 	393 2 39.80

Table A.28:

A.2 Wedgel Data-Set 	 300

RIB+MOB
-

)

-

I
p.

-

-1

ri

0
U

0

-

U)

o

-

U)

0

-

En

0

-

U

0

-

U

0

-

0

NODES EDGES FACES

& IVI .9 adj t(s) IVbI IE t I sj t(s) A. V .9aci t(s)

k = 2

1 F - F 50 40 20 F F - 1 9450 89524 2 89.93 1 6524 21716 2 42.40 1 4811 5738 2 26.38

2 F - F 50 40 1 F F - 1 6868 63729 2 4.92 1 8462 25940 2 2.28 1 4811 5738 2 1.46

3 F - F 10 40 20 F F - 1 1736 11619 2 18.26 1 1685 3924 2 11.30 1 1748 1680 2 8.17

4 F - F 10 40 1 F F - 1 1754 11974 2 1.19 1 1754 3990 2 0.69 1 1745 1739 2 0.54

5 F - F -5 40 20 F F - 1 1703 11540 2 11.69 1 1208 2556 2 6.84 1 956 927 2_ 5.67

6 F - F 5 1 40 1 F F - 1 1704 11651 2 0.87 1 1115 2356 2 0.50 1 1013 928 2 0.42

7 F - F 5 40 20 F T F 1 1741 11617 2 16.81 1 1236 2703 2 9.90 1 706 726 2 8.37

8 F - F 5 40 20 F T T 1 1665 11278 2 16.28 1 1067 2267 2 9.77 1 802 806 2 8.09

9 F - F 5 40 20 T T T 1 1665 11278 2 16.42 2 1059 2260 2 9.81 25 581 447 2 8.48

10 F - T 50 40 5 F F - 1 1656 11240 2 31.63 1 1664 3381 2 15.55 1 2966 1560 2 10.00

11 F - T 50 40 1 F F - 1 1591 11245 2 6.41 1 1413 2817 2 3.20 1 1515 831 2 1.97

12 F - T 10 40 5 F F - 1 1642 11205 2 7.26 1 923 1828 2 4.37 1 1119 591 2 162

13 F - T 10 40 1 F F - 1 1596 11263 2 1.65 1 935 1861 2 0.99 1 	1 802 425 2 0.85

14 F - T 5 40 5 F F - 1 1708 11416 2 4.67 1 917 1 	1826 2 3.01 1 990 516 2 2.75

15 F - T 5 40 1 F F - 1 1691 11406 2 1.15 1 930 1870 2 0.73 1 579 296 2 0.68

16 F - T 10 40 5 F T F 1 1664 11204 2 1 	10.23 1 926 1848 2 6.27 1 493 263 2 4.74

17 j F - T 10 40 5 F T T 1 1644 11189 2 10.17 1 936 1849 2 6.29 1 701 369 2 5.26

18 F - T 10 40 5 T T T 1 1644 11189 2 10.14 1 936 1849 2 6.25 1 701 369 2 5.20

k = 16

19 F - F 5 40 20 F F - 1 9999 83578 98 46.73 1 6651 15193 132 27.40 1 4603 3334 238 22.92

20 F - T 10 40 5 F F - 1 10515 85498 100 28.86 1 6486 14167 94 16.89 1 4410 2485 134 14.37

21 F - T 10 40 2 F F - 1 10249 84724 102 12.67 1 6456 14114 100 7.22 1 4514 2462 122 6.22

22 F - T 5 40 5 F F - 1 10054 83975 100 18.71 1 5839 12858 94 11.98 1 4299 2364 102 10.91

23 F - T 5 40 2 F T - 1 9955 83576 100 8.45 1 6398 14229 110 5.33 1 3784 2078 108 4.72

Table A.29:

A.2 Wedgel Data-Set 	 301

RSB+MOB -

-

)

- -

0

- - - - - - - -

- NODES EDGES FACES

A. IVbI IEcut l e Sadi t(s) A. IVbI JEc.tj, Sadj t(s) A. IV'I IEcutle Sa4j t(s)

k=2____

1 -3 F F - F 50 40 20 F F - 1 6183 61223 2 100.22 1 7516 24978 2 47.71 1 5384 6458 2 32.11

2 -3 F F - F 50 40 1 F F - 1 10152 91879 2 16.08 1 8169 25116 2 7.54 1 5384 6458 2 5.35

F F - F 10 40 20 F F - 1 1761 11857 2 29.73 1 1698 3945 2 15.62 1 1688 1663 2 11.88

4 -3 F F - F 10 40 1 F F - 1 1911 12071 2 12.42 1 1747 4036 2 5.79 1 1752 1763 2 4.35

5 -3 F F - F 5 40 20 F F - 1 1683 11372 2 22.42 1 1209 2534 2 12.17 1 1050 969 2 9.41

6 -3 F F - F 5 40 1 F F - 1 1673 11510 2 12.14 1 1122 2366 2 5.74 1 972 877 2 4.26

7 -3 F F - F 5 40 20 F T F 1 1862 12383 2 27.78 1 1421 3574 2 15.14 1 742 754 2 14.38

8 -3 F F - F 5 40 20 1 F T T 1 1653 11273 2 27.71 1 1069 2263 2 16.83 1 886 872 2 11.89

9 -3 F F - F 5 40 20 T T T 1 1653 11273 2 27.73 2 1061 2256 2 16.87 72 609 456 2 12.54

10 -3 F F - T 50 40 5 F F - 1 1690 11232 2 43.28 1 1451 1 	2915 2 20.92 1 2151 1136 2 13.95

11 -3 F F - T 50 40 1 F F - 1 1544 11279 2 17.68 1 1488 2972 8.50 1 1620 887 2 5.93

12 -3 F F - T 10 40 5 F F - 1 1614 11187 2 18.19 1 938 1843 2 9.44 1 849 449 2 7.61

13 -3 F F - T 10 40 1 F F - 1 1671 11318 2 12.98 1 931 1849 2 6.20 1 875 451 2 4.65

14 -3 F F - T 5 40 1 	5 1 F F - 1 1628 11204 2 15.71 1 918 1812 2 8.15 1 752 390 2 6.77

15 -3 F F - T 5 40 1 F F - 1 1611 11242 2 12.35 1 926 1853 2 5.94 1 528 273 2 4.52

16 -3 F F - T 10 40 5 F T F 1 1663 11235 2 21.60 1 915 1 	1813 2 11.54 1 510 1 	280 2 8.51

17 -3 F F I 	- T 10 40 5 F T T 1 1638 11181 2 21.40 1 930 1 	1853 2 11.52 1 686 356 2 8.98

18 -3 F F I 	- T 10 40 5 T T T 1 1638 11181 2 21.21 1 930 1 	1853 2 11.50 1 686 356 1 	2 8.92

k = 16
19 -3 F F - F 5 40 20 1 F F - 1 10170 83920 104 82.26 1 8024 18173 134 47.79 1 5100 3682 236 35.10

20 -3 F F - T 10 40 5 F F - 1 9991 82998 104 65.05 1 5884 12793 84 31.88 1 4623 2593 154 27.21

21 -3 F F - T 10 40 2 F F - 1 9936 83239 108 49.02 1 5813 12793 94 23.03 1 4503 2522 144 16.55

22 -3 F F - T 5 40 5 F F - 1 9916 82992 104 55.21 1 5875 12888 98 27.09 1 3852 2111 110 21.00

23 -3 F F - T 5 40 2 F F - 1 9997 83320 106 44.68 1 5843 12952 100 21.57 1 3862 2149 108 16.39

Table A.30:

A.2 Wedgel Data-Set 	 302

A.3 m6 Data-Set

In this section we present decomposition statistics for the m6 data-set. This data-set is a

three dimensional finite element mesh with tetrahedral elements, which again originates

from the FLITE3D project [BMT96].

The physical geometry which the mesh models is that of the ONERA m6-wing, a standard
test case used in aerospace CFD. The mesh is that previously illustrated in figures 7.12 to
7.14 of section 7.6, and forms the most dense mesh in a series of three multigrid meshes
(the smaller two meshes are not detailed in this thesis).

This is the largest and most realistic of the data-sets we study, being typical of the sort
of mesh encountered in medium to large scale aerodynamics calculations. Of note is
the large variation in element size for this mesh compared to the Widget and Wedgel
data-sets; here element dimensions vary over almost three orders of magnitude.

We do not explore the wide range of algorithms and tunable parameters that we studied
for the previous two data-sets in this appendix, but rather focus on those algorithms and
parameter setting that our previous studies have indicated might be most suitable for
'production' use of the decomposition library.

AL
Statistics

Dual
	

ne 	I 	 I 	nV

NODES 1 	77.89 1 	79.13 1 	76.83 7366374 11 74.4 120
197797 EDGES 33.19 33.38 31.38 1831873 6 18.5 29

FACES 1 	19.89 1 	19.83 1 	17.75 387413 2 3.9 4

Table A.31:

A.3 m6 Data-Set 	 303

cnI.Elmy 	 I
NODES EDGES FACES

V A, 1141 lEcutl e t(s) 	V IVbI t(s) LA. I 	iv IEcutle Ft (s)J
k= 2

1 44377 I 	407301 2 6.50 1 1253091 63992 2 2.42 1 19275 7198 2 1.53

k=8

2 1 86900 I 	877106 I 	50 I 	55.21 1 54056 	144431 50 17.08 1 20150 15926 I 	46 I 	7.27

k=32

E11 1 131472 1449350 414 235.17 1 84846 	238850 I 	390 I 70.32 1 34350 27582 I 	316 28.03

Table A.32:

A.3 m6 Data-Set 	 304

=
RLB

= NODES EDGES FACES

'1
I-I r

/.a IVI lEcut l e sj t(s) & IVtI IEcutle 8aj t(s) L YbI IEcutle Sadj t(s)

k=2

3 T 	II 1 30857 284950 2 23.73. 1 20058 I 	49309 2 10.04 1 7830 I 	6104 2 6.98

k = 8

2 3 T 1 89679 904155 44 82.99 1 57319 150669 44 38.51 1 23245 18519 42 30.32

k=32

[3 	II 3 T 1 140734 1617416 386 139.10 1 91581 257693 382 63.63 1 38361 30999 I 	380 I 53.16

Table A.33:

RCB - - - - - NODES EDGES FACES

()
ri
.4

I

rIi-1

0 0
Q)

A. IVbI Sa4j I 	t(s) 	1 1 A s IVI I 	IEcutic I 	Sa4j t(s) A. I 	IVbI IEc tI 3aj t(s)

k=2

1 F F F 1 - 1 13992 117256 2 4.30 1 	8002 18711 2 1.82 1 3494 2425 2 F 1.10

k=8
2 F I F I F - 1 60379 I 	545462 48 I 	24.63 1 	35980 I 	87878 46 8.81 1 116138 11220 44 4.78

k = 32

3 F F F - 1 119337 I 1257892 466 47.28 1 	76757 201979 406 119.84 	II 1 36276 25783 314 112.58

Table A.34:

A.3 m6 Data-Set 	 305

RIB
= = - NODES EDGES FACES

.4

i-1
.4

I

A. JVbj IEcu tl e t(s) A s IVbI IEcutle I 1 8a4j t(s) L8 1 1 1161 I IEcutle Sacj t(s)
I Sacij I I

k = 2

1 IIFI - 1 12227 104886 2 5.16 1 7040 I 	16557 2 12.70 1 13093 2106 2 12.09

k = 8

2 F - 1 66488 I 	628358 56 27.83 1 40656 I 101073 56 12.41 1 18651 12992 42 8.49

k = 32

3 F - 1 1118207 11247893 I 	596 I 	50.14 1 77219 I 204244 478 I 21.86 1 37334 I 	26806 350 14.73

Table A.35:

RSB
- - - - NODES EDGES FACES

.4
0

o C4
-.

A. 1141 lEc tl e Sacj t(s) L a 1161 lEcutle Sadj t(s) A. IVbI Ecutle Saj t(s)

k = 2

1 lI -3 IFIFI - II 1 1 11911 1 100628 1 2 11757.0611 1 1 6717 1 15571 1 2 1 553 • 49 11 1127371185612 219.74

k = 8

2 -3 F F I 	- 1 43752 393446 44 2988.66 1 1 25213 60569 I 	38 I 	987.07 	II 1 10863 7393 42 399.44

r
Ei -3 I F F - 	II 1 91494 886179 304 3721.42 1 1 55261 I 138207 I 	278 1275.80 1 I 26909 18672 I 302 554.13

Table A.36:

A.3 m6 Data-Set 	 306

RIB+KL
-

NODES EDGES FACES

9 9
.41 R -i Q

G)

& IVbI IEct'tle t(s) &, IVtI IEcutl e s,.aj t(s) & IVI I 	IEcutle 	I Sa4 I 	t(s) sjj

k=2

1 F - T F - F - 0 1 11641 94205 2 51.40 1 6661 15031 2 19.24 1 3096 1654 2 13.97

2 F - T F - T 60 0 1 12103 97707 2 35.05 1 6665 15128 2 13.58 1 3100 1657 2 9.52

3 F - T F - T 20 0 1 12160 98756 2 22.65 6678 15138 2 7,77 1 3100 1660 2 4.93

4 F - T F - T 10 0 1 12228 99782 2 16.95 6678 15196 2 6.85 1 3104 1669 2 3.79

5 F - T F - T 5 0 1 12213 100559 2 13.98 1 6707 15285 2 5.38 1 3092 1674 2 3.21

k = 8
6 F - T F - F - 0 1 42357 369865 46 266.84 1 29497 68062 40 96.44 1 18246 9962 42 47.39

7 F - T F - T 60 0 1 47837 428547 54 189.39 1 33150 78198 52 59.17 1 18350 10048 46 33.81

8 F - T F - T 20 0 1 57335 516793 56 102.19 1 37002 88160 56 35.01 1 18399 10148 42 17.87

9 F - T F - T 10 0 1 62578 574138 56 69.17 37848 90653 54 25.68 1 18408 10241 42 14.27

10 F - T F - T 5 0 1 64348 595289 56 55.70 1 38527 92861 54 20.86 1 18546 10508 42 12.37

k = 32

11 F - T F - F - 0 1 90517 854272 334 487.93 1 	1 60056 144894 330 240.91 1 36409 20311 360 77.20

12 F - T F - T 60 0 1 94305 916124 462 331.10 1 65851 163015 414 106.09 1 36753 20601 384 56.35

13 F - T F - T 20 0 1 109602 1102009 508 178.66 1 70341 176776 470 61.37 1 36375 20575 364 31.19

14 F - T F - T 10 0 1 113070 1158129 602 t 119.73 1 71063 180320 476 44.79 1 36470 20859 360 25.19

15 F - T F - T 5 0 1 115578 1186380 572 92.27 1 73098 187389 474 35.88 1 36984 21626 354 21.48

Table A.37:

A.3 m6 Data-Set 	 307

RIB+MOB
-

a)

- - - - - - - - - NODES EDGES FACES

s IVI IEcutl e .j t(s) L.a IVbI IEcutle Socij t(s) A. IVbI IEcu tl e Sadj t(s)

k = 2

F - T 5 40 1 F F F 1 11663 95406 2 54.30 1 6608 14780 2 1 	39.15 1 3928 2104 2 27.32

F - T 2 40 1 F F F 1 12170 97333 2 36.37 1 6533 14565 2 30.12 1 3806 2053 2 24.61

F - T 2 20 1 F F F 1 12141 97837 2 38.86 1 6648 14885 2 25.17 1 3490 1923 2 18.09

4 F - T 1 20 1 F F F 1 12337 97964 2 28.97 1 6661 15001 2 17.11 1 3113 1727 2 16.27

5 F - T _LL 10 1 F F F L 1 12167 9832LI 2 32.99 L 1 6673 15086 2 23.97 1 3183 1795 2 15.20

k = 8

6 F - T 5 40 1 F F F 1 45352 400423 1 	40 193.34 1 30467 70207 44 106.49 1 20699 11573 52 82.85

7 F - T 2 40 1 F F F 1 45259 398057 46 138.37 1 33814 77897 44 85.97 1 17674 9848 50 77.26

8 F - T 2 20 1 F F F 1 45978 402389 46 124.93 1 36413 84620 42 65.76 1 17350 9746 50 51.60

9 F - T 1 20 1 F F F 1 45895 402993 48 111.46 1 36347 84619 46 56.95 1 16646 9283 48 46.16

10 F - T 1 10 1 F F F 1 46291 406340 44 146.98 1 36605 85539 46 59.22 1 18554 10511 50 39.67

k = 32

11 F - T 5 40 1 F F F 1 93413 879009 322 276.34 1 64894 157293 336 154.04 1 38677 22175 468 133.11

12 F - T 2 40 1 F F F 1 92140 867014 316 207.64 1 62875 151762 330 131.49 1 35905 20490 402 117.05

13 F - T 2 20 1 F F F 1 92682 873781 308 179.33 1 67000 162880 352 95.79 1 37498 21545 378 76.94

14 F - T 1 20 1 F F F 1 92007 869796 326 180.81 1 68158 165481 348 82.79 1 34050 19540 364 70,37

15 F - T 1 10 1 F F F 1 92603 873494 332 209.75 1 67823 164770 340 83.57 1 36682 21203 374 55.53

Table A.38:

A.3 m6 Data-Set 	 308

RSB+KL
- - - - - - - - - - - NODES EDGES FACES

tn

a)
LS-4i I A. LJVb 0 1 0 1 0 1 0,0 1 0 A. IV'l IEcutic t(s) &' IVI IEcutle li(s) JEcu t le Sadj t(s)

Sadj

k = 2

1 -3 F I F - T F - F - 0 1 11324 91470 2 1811.59 1 6401 14312 2 574.99 1 2819 1526 2 232.26

2 -3 F F - T F - T 60 0 1 11324 91470 2 1810.57 1 6401 14312 2 571.27 1 2819 1526 2 227.55

3 -3 F F - T F - T 20 0 1 11662 94275 2 1770.55 1 6401 14312 2 572.24 1 2819 1526 2 222.81

4 -3 F F - T F - T 10 0 1 11559 95105 2 1753.43 1 6407 14313 2 551.89 1 2819 1526 2 221.26

5 -3 F F - T I F - TT 5 0 1 11880 96365 2 1753.44 1 6430 14383 2 552.73 1 2818 1526 2 221.17

k = 8

6 -3 F F - T F - F - 0 1 39734 349361 44 3080.57 1 24201 56050 36 1037.56 1 11053 6054 42 434.52

7 -3 F F - T F - T 60 0 1 39734 349361 44 3058.75 1 24201 56050 36 1023.15 1 11053 6054 42 420.92

8 -3 F F - T F - T 20 0 1 41637 363561 42 2997.45 1 24188 55992 36 1003.22 1 11053 6054 42 407.75

9 -3 F F - T F - T 10 0 1 42760 373875 44 3056.25 1 24226 56129 38 1000,13 1 11049 6040 42 404.84

10 -3 F F - T F - T 5 0 1 43902 384412 44 3021.87 1 24280 56234 38 1002.80 1 11037 6047 42 402.91

k = 32

11 -3 F I F - T F - F - 0 1 89390 833906 312 3910.86 1 	1 53655 129242 268 1342.53 1 26412 14680 268 1 598.26

12 -3 F I F - T F - T 60 0 1 89024 831386 306 3876.10 1 53655 129242 268 1318.04 1 26412 14680 268 576.54

13 -3 F F - T F - T 20 0 1 88550 826477 294 3748.94 1 53405 128322 266 1294.03 1 26407 14679 268 554.43

14 -3 F F - T F - T 10 0 1 90156 842661 300 3754.63 1 53406 128720 278 1293.31 1 26415 14668 268 549.30

15 1 	-3 F I F - T F - T 5 0 1 91651 859351 292 3740.39 1 53510 129245 282 1294.03 1 26456 14741 266 551.17

Table A.39:

A.3 m6 Data-Set 	 309

RSB+MOB -

-

()

-

I-.
U)
U)

U)
0

I
l ri

-,
P.
ri

0
0
U) o

121",2

U)
U)
0

0

U)
0

U)
1-'

U)
0

-

4

U)
0

U)
0

-

U)
0

NODES EDGES FACES

& IVI IEctI s t(s) E VbI ItI s.aj t(s) &, VI IEL s t(s)

k = 2

1 -3 F F - T 1 	5 40 1 F F F 1 11717 93507 2 1808.74 1 6324 14122 2 596.84 1 4684 2554 2 253.36

2 -3 F F - T 2 40 1 F F F 1 11741 94999 2 1822.82 1 6380 14198 2 582.88 1 4109 2209 2 245.93

3 -3 - T 2 20 1 F F F 1 11778 95173 2 1792.90 1 6395 14355 2 578.90 1 3256 1831 2 235.90

4 -3
tFF

 - T 1 20 1 F F F 1 11889 95385 2 1778.32 1 6416 14386 2 566.74 1 2839 1584 2 235.97

5 -3 - T 1 10 1 F F F 1 11982 95549 2 1794.30 1 6431 14418 2 574.33 1 2840 1604 2 234.54

k = 8

6 -3 F F - T 5 40 1 F F F 1 41478 357115 36 3119.73 1 23946 55076 42 1076.34 1 19198 10790 54 598.51

7 -3 F F - T 2 40 1 F F F 1 41773 360765 36 3045.22 1 23863 54933 40 1057.46 1 21121 11801 54 630.57

8 -3 F F - T 2 20 1 F F F 1 41930 362874 36 3036.71 1 23964 55475 40 1036.93 1 14426 8143 46 528.56

9 -3 F F - T 1 20 1 F F F 1 41976 363735 36 3025.20 1 24097 55703 38 1025.28 1 11098 6245 42 437.32

10 -3 F F - T 1 10 1 F F F 1 41989 363736 38 3040.06 1 24256 56013 38 1026.06 1 11165 6379 42 431.28

k= 32

11 -3 F F - T 5 40 1 F F F 1 88925 825183 272 3841.48 1 53270 127787 288 1396.56 1 36530 21127 508 823.96

12 -3 F F - T 2 40 1 F F F 1 89366 826261 280 3773.62 1 53229 127202 272 1373.69 1 34046 19462 422 811.30

13 -3 F F - T 2 20 1 F F F 1 89524 827417 278 3761.43 1 53278 127887 278 1346.72 1 30388 17536 330 682.49

F F - T 1 20 1 F F F 1 89582 832975 288 3749.62 1 53397 128238 274 1333.57 1 28468 16309 278 611.78 F15 -3
 -3 F F - T 1 10 1 F F F 1 88885 832493 282 3771.26 1 53384 128585 Th 1339.72 F 27150 15729 282 616.54

Table A.40:

A.3 m6 Data-Set 	 310

