4,498 research outputs found

    A new adaptive neural network and heuristics hybrid approach for job-shop scheduling

    Get PDF
    Copyright @ 2001 Elsevier Science LtdA new adaptive neural network and heuristics hybrid approach for job-shop scheduling is presented. The neural network has the property of adapting its connection weights and biases of neural units while solving the feasible solution. Two heuristics are presented, which can be combined with the neural network. One heuristic is used to accelerate the solving process of the neural network and guarantee its convergence, the other heuristic is used to obtain non-delay schedules from the feasible solutions gained by the neural network. Computer simulations have shown that the proposed hybrid approach is of high speed and efficiency. The strategy for solving practical job-shop scheduling problems is provided.This work is supported by the National Nature Science Foundation (No. 69684005) and National High -Tech Program of P. R. China (No. 863-511-9609-003)

    Scheduling Jobs in Flowshops with the Introduction of Additional Machines in the Future

    Get PDF
    This is the author's peer-reviewed final manuscript, as accepted by the publisher. The published article is copyrighted by Elsevier and can be found at: http://www.journals.elsevier.com/expert-systems-with-applications/.The problem of scheduling jobs to minimize total weighted tardiness in flowshops,\ud with the possibility of evolving into hybrid flowshops in the future, is investigated in\ud this paper. As this research is guided by a real problem in industry, the flowshop\ud considered has considerable flexibility, which stimulated the development of an\ud innovative methodology for this research. Each stage of the flowshop currently has\ud one or several identical machines. However, the manufacturing company is planning\ud to introduce additional machines with different capabilities in different stages in the\ud near future. Thus, the algorithm proposed and developed for the problem is not only\ud capable of solving the current flow line configuration but also the potential new\ud configurations that may result in the future. A meta-heuristic search algorithm based\ud on Tabu search is developed to solve this NP-hard, industry-guided problem. Six\ud different initial solution finding mechanisms are proposed. A carefully planned\ud nested split-plot design is performed to test the significance of different factors and\ud their impact on the performance of the different algorithms. To the best of our\ud knowledge, this research is the first of its kind that attempts to solve an industry-guided\ud problem with the concern for future developments

    Asymptotically Optimal Approximation Algorithms for Coflow Scheduling

    Full text link
    Many modern datacenter applications involve large-scale computations composed of multiple data flows that need to be completed over a shared set of distributed resources. Such a computation completes when all of its flows complete. A useful abstraction for modeling such scenarios is a {\em coflow}, which is a collection of flows (e.g., tasks, packets, data transmissions) that all share the same performance goal. In this paper, we present the first approximation algorithms for scheduling coflows over general network topologies with the objective of minimizing total weighted completion time. We consider two different models for coflows based on the nature of individual flows: circuits, and packets. We design constant-factor polynomial-time approximation algorithms for scheduling packet-based coflows with or without given flow paths, and circuit-based coflows with given flow paths. Furthermore, we give an O(logn/loglogn)O(\log n/\log \log n)-approximation polynomial time algorithm for scheduling circuit-based coflows where flow paths are not given (here nn is the number of network edges). We obtain our results by developing a general framework for coflow schedules, based on interval-indexed linear programs, which may extend to other coflow models and objective functions and may also yield improved approximation bounds for specific network scenarios. We also present an experimental evaluation of our approach for circuit-based coflows that show a performance improvement of at least 22% on average over competing heuristics.Comment: Fixed minor typo

    Models and Strategies for Variants of the Job Shop Scheduling Problem

    Full text link
    Recently, a variety of constraint programming and Boolean satisfiability approaches to scheduling problems have been introduced. They have in common the use of relatively simple propagation mechanisms and an adaptive way to focus on the most constrained part of the problem. In some cases, these methods compare favorably to more classical constraint programming methods relying on propagation algorithms for global unary or cumulative resource constraints and dedicated search heuristics. In particular, we described an approach that combines restarting, with a generic adaptive heuristic and solution guided branching on a simple model based on a decomposition of disjunctive constraints. In this paper, we introduce an adaptation of this technique for an important subclass of job shop scheduling problems (JSPs), where the objective function involves minimization of earliness/tardiness costs. We further show that our technique can be improved by adding domain specific information for one variant of the JSP (involving time lag constraints). In particular we introduce a dedicated greedy heuristic, and an improved model for the case where the maximal time lag is 0 (also referred to as no-wait JSPs).Comment: Principles and Practice of Constraint Programming - CP 2011, Perugia : Italy (2011

    An improved adaptive neural network for job-shop scheduling

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2005 IEEEJob-shop scheduling is one of the most difficult production scheduling problems in industry. This paper presents an improved adaptive neural network together with heuristic methods for job-shop scheduling problems. The neural network is based on constraints satisfaction of job-shop scheduling and can adapt its structure and neuron connections during the solving. Several heuristics are also proposed to be combined with the neural network to guarantee its convergence, accelerate its solving process, and improve the quality of solutions. Experimental study shows that the proposed hybrid approach outperforms two classical heuristic algorithms regarding the quality of solution

    Resource-constrained project scheduling.

    Get PDF
    Abstract: Resource-constrained project scheduling involves the scheduling of project activities subject to precedence and resource constraints in order to meet the objective(s) in the best possible way. The area covers a wide variety of problem types. The objective of this paper is to provide a survey of what we believe are important recent in the area . Our main focus will be on the recent progress made in and the encouraging computational experience gained with the use of optimal solution procedures for the basic resource-constrained project scheduling problem (RCPSP) and important extensions. The RCPSP involves the scheduling of a project its duration subject to zero-lag finish-start precedence constraints of the PERT/CPM type and constant availability constraints on the required set of renewable resources. We discuss recent striking advances in dealing with this problem using a new depth-first branch-and-bound procedure, elaborating on the effective and efficient branching scheme, bounding calculations and dominance rules, and discuss the potential of using truncated branch-and-bound. We derive a set of conclusions from the research on optimal solution procedures for the basis RCPSP and subsequently illustrate how effective and efficient branching rules and several of the strong dominance and bounding arguments can be extended to a rich and realistic variety of related problems. The preemptive resource-constrained project scheduling problem (PRCPSP) relaxes the nonpreemption condition of the RCPSP, thus allowing activities to be interrupted at integer points in time and resumed later without additional penalty cost. The generalized resource-constrained project scheduling (GRCPSP) extends the RCPSP to the case of precedence diagramming type of precedence constraints (minimal finish-start, start-start, start-finish, finish-finish precedence relations), activity ready times, deadlines and variable resource availability's. The resource-constrained project scheduling problem with generalized precedence relations (RCPSP-GPR) allows for start-start, finish-start and finish-finish constraints with minimal and maximal time lags. The MAX-NPV problem aims at scheduling project activities in order to maximize the net present value of the project in the absence of resource constraints. The resource-constrained project scheduling problem with discounted cash flows (RCPSP-DC) aims at the same non-regular objective in the presence of resource constraints. The resource availability cost problem (RACP) aims at determining the cheapest resource availability amounts for which a feasible solution exists that does not violate the project deadline. In the discrete time/cost trade-off problem (DTCTP) the duration of an activity is a discrete, non-increasing function of the amount of a single nonrenewable resource committed to it. In the discrete time/resource trade-off problem (DTRTP) the duration of an activity is a discrete, non-increasing function of the amount of a single renewable resource. Each activity must then be scheduled in one of its possible execution modes. In addition to time/resource trade-offs, the multi-mode project scheduling problem (MRCPSP) allows for resource/resource trade-offs and constraints on renewable, nonrenewable and doubly-constrained resources. We report on recent computational results and end with overall conclusions and suggestions for future research.Scheduling; Optimal;
    corecore