
A New Adaptive Neural Network and Heuristics Hybrid Approach for
Job-Shop Scheduling †

Shengxiang Yanga∗, Dingwei Wangb

Abstract

A new adaptive neural network and heuristics hybrid approach for job-shop scheduling is
presented. The neural network has the property of adapting its connection weights and biases
of neural units while solving the feasible solution. Two heuristics are presented, which can be
combined with the neural network. One heuristic is used to accelerate the solving process of
the neural network and guarantee its convergence, the other heuristic is used to obtain non-
delay schedules from the feasible solutions gained by the neural network. Computer simulations
have shown that the proposed hybrid approach is of high speed and efficiency. The strategy for
solving prctical job-shop scheduling problems is provided.

Scope and purpose

Job-shop scheduling is usually a strongly NP-complete problem of combinatorial optimiza-
tion problems and is the most typical one of the production scheduling problems. It is usually
very hard to find its optimal solution. Practically researchers turn to search its near-optimal
solutions with all kind of heuristic algorithms. The scope of this paper is to present a new hybrid
approach in dealing with this job-shop scheduling problem based on adaptive neural network
and heuristics.
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1 Introduction

It is well known, the job-shop scheduling problem is the most complicated and typical problem
of all kinds of production scheduling problems, the allocation of resources over time to perform
a collection of tasks [1]. Job-shop scheduling can be stated as follows [2]: given n jobs that
have to be processed on m machines in a prescribed order under certain restrictive assumptions,
the objective is to decide how to arrange the processing orders and starting times of operations
sharing the same machine for each machine, in order to optimize certain criteria. Manufacturing
systems with different objectives require different optimization criteria [3], such as stock size,
due date reliability, mean lead time and makespan.

Traditionally there are three kinds of approaches to solve job-shop scheduling problems:
priority rules, combinatorial optimization and constraints analysis [5]. The first kind of method
has the merit of being computationally very efficient and easy to be applied to real cases,
but there is no guarantee with respect to the quality of the obtained solution. Especially if
some temporary constraints should be respected [6]. The optimization methods are much more
rigorous but are not tractable in large size problems if the optimal solution is required [8]. The
third method, originated from Erschler et al. [7], looks for a set of feasible solutions that meet
several technological constraints for the user to choose the final solution.

It has been demonstrated [4] that job-shop scheduling is usually an NP-complete (nonde-
terministic polynomial time complete) problem. Because of the NP-complete characteristics of
job-shop scheduling, it is usually very hard to find its optimal solution, and an optimal solution
in the mathematical sense is not always necessary in practices [8]. Researchers turned to search
its near-optimal solutions with all kind of heuristic algorithms [9]. Fortunately the searched
near-optimal solutions usually meet requirements of practical problems very well. Recently sev-
eral knowledge-based scheduling systems have been presented [10, 11], which are much general
than above traditional methods because of its using constraints systematically, its implement-
ing heuristic knowledge and its generality as a framework for stating and solving combinatorial
optimization problems.

Since Hopfield [12] first used a neural network to solve an optimization problem, Hopfield
networks have been successfully applied to solving a variety of problems, such as the analog-
to-digital conversation problem [13], the traveling-salesman problem [14], the combinatorial
optimization problem [15], the linear and nonlinear programming problems [16]. However, Hop-
field networks have the drawbacks of nonconvergence to valid solutions, inability to locate the
global minimum and poor scaling properties due to the use of quadratic energy functions, as
pointed out by DARPA [17]. Since Foo and Takefuji [18, 19] first used neural networks to solve
job-shop scheduling problems, several neural network architectures have been presented to solve
job-shop scheduling (see e. g., [20, 21, 22, 23]). All above mentioned neural networks are basicly
non-adaptive networks with the connection weights and biases prescribed in advance before the
networks begin to work.

In Yang and Wang [24] we have proposed an efficient constraint satisfaction adaptive neural
network (CSANN) and heuristics combined approach for job-shop scheduling problems. CSANN
differs itself from above mentioned networks in its adaptivity. CSANN has the property of
adaptively adjusting its weights of connections and biases of neural units according to the ac-
tual constraint violations during its processing to remove these violations for obtaining feasible
solutions. In order to improve the performance of CSANN several heuristics are presented in
[24].

In this paper we present a new heuristic based on the property of non-delay schedules. This
new heuristic together with one of the heuristics presented in [24] can be combined with CSANN
to form a new hybrid approach for job-shop scheduling problems. In the hybrid approach,
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CSANN is used to obtain feasible solutions, the heuristics from [24] is used to accelerate the
solving process of CSANN and guarantee feasible solutions, the new heuristic is used to obtain
the non-delay solution from the feasible solution obtained by CSANN with determined orders of
operations. The new hybrid approach presented in this paper is simpler and equivalently efficient
(see e. g., [24]). The computational simulations have shown that the proposed hybrid approach
has good performance with respect to the quality of solution and the speed of computation.

This paper is organized as follows. Section 2 presents a mathematical formulation of the
job-shop scheduling problem. The model of CSANN is presented in section 3. In section 4
the heuristics used are described, the hybrid approach is also described in this section. Section
5 presents the computer simulation results with two examples to show the performance of the
proposed new hybrid approach for job-shop scheduling. Finally the conclusions about the hybrid
approach are presented in section 6.

2 Formulation of the job-shop scheduling problem

Generally for the job-shop scheduling problem there are two types of constraints: sequence

constraint and resource constraint. The first type states that two operations of a job cannot be
processed at the same time. The second type states that no more than one job can be handled
on a machine at the same time. Job-shop scheduling can be viewed as an optimization problem,
bounded by both sequence and resource constraints. For a job-shop scheduling problem, each
job may consist of different number of operations, which subject to some precedence restrictions.
Commonly the processing orders of each job by all machines and the processing time of each op-
eration are known and fixed. Operations can not be interrupted once started (non-preemption).
This kind of scheduling is usually called deterministic and static scheduling. In this paper we
consider the deterministic and static job-shop scheduling problem.

Denote N = {1, · · · , n} and M = {1, · · · ,m} as the job set and the machine set, where
n and m are the numbers of jobs and machines. Let ni be the operation number of job i.
Oikq represents operation k of job i to be processed on machine q, Tikq and Pikq represent the
starting time and processing time (which is known in advance) of Oikq respectively, Tieiq and
Pieiq represent the starting time and processing time of the last operation of job i respectively.
Denote ri and di as the release date (earliest starting time) and due date (latest ending time)
of job i. Let Si denote the set of operation pairs [Oikp,Oilq] with precedence restriction of job
i, where operation Oikp must precede operation Oilq. Let Rq be the set of operations Oikq that
will be processed on machine q. Commonly the starting time and the processing time of an
operation are assumed to be integers.

We use the pure integer representation model to transfer the sequence constraints, resource
constraints, the release date and due date constraints of jobs into integer linear inequalities.
Taking minimizing the makespan as the optimization criterion, the mathematical formulation
of the job-shop scheduling problem considered is presented as follows:

Minimize E = Maxi∈N (Tieiq + Pieiq)
subject to

Tilq − Tikp ≥ Pikp, [Oikp, Oilq] ∈ Si, k, l ∈ {1, · · · , ni}, i ∈ N (1)

Tjlq − Tikq ≥ Pikq or Tikq − Tjlq ≥ Pjlq, Oikq, Ojlq ∈ Rq, i, j ∈ N, q ∈ M (2)

ri ≤ Tijq ≤ di − Pijq, i ∈ N, j ∈ {1, · · · , ni}, q ∈ M (3)

where the cost function is the ending time of the latest operation, i.e., maximal complete time of
the job-shop scheduling problem. Minimizing the cost function means minimizing the makespan.
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Eq. (1) represents the sequence constraint; Eq. (2), in a disjunctive type, represents resource
constraints; Eq. (3) represents the release date and due date constraints.

For a n/m/J/Cmax (notation system of Conway [2]) problem, there are at most n(m −
1) sequence constraint inequalities of Eq. (1) type, at most mn(n − 1) resource constraint
inequalities of Eq. (2) type, at most mn starting time constraint inequalities of Eq. (3) type,
resulting in a total number of at most n(mn + m − 1) constraint inequalities. There are also
at most mn number of variables Tikqs. The objective of job-shop scheduling is to solve these
variables so that they satisfy all the constraint inequalities while minimizing the makespan.

3 Model of CSANN

To solve the job-shop scheduling problem, the previous pure integer representation model
has to be mapped onto the CSANN. The proposed CSANN will be discussed in details with
respect to its basic components of units and connections, its architecture and its solving process
for job-shop scheduling.

3.1 Neural units of CSANN

Generally a neural unit consists of a linear summator and a nonlinear activation function which
are serialized [25] (see e. g., Fig. 1). The summator of unit i receives all activations Aj(j =
1, · · · , n) from connected units and sums the received activations, weighted with connection
weight Wij , together with a bias Bi. The output of summator is the net input Ni, this net input
Ni is passed through an activation function f(.), resulting in the activation Ai of unit i. The
summator and the activation function are defined as follows:

Ai = f(Ni) = f(
n
∑

j=1

(Wij ×Aj) +Bi) (4)

where Wij is the connection weight from unit j to unit i.
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Fig.1. General neural unit model.

Usually for neural units to perform different functional behaviors, there are several types of
activation functions, such as linear threshold function, linear-segmented function and S-shaped
function [26]. In this paper two kinds of linear-segmented function A and B (see e. g., Fig. 2(a)
and Fig. 2(b)) are used as the activation functions of neural units.
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Fig.2. Linear-segmented activation functions.

Based on the general neural unit, CSANN contains three kinds of units: ST-units, SC-units
and RC-units. The first kind of units represent the starting times of all operations. Each ST-
unit represents one operation of job-shop scheduling problem with its activation representing
the starting time of the operation. The second represent whether the sequence constraints are
violated. The third represent whether the resource constraints are violated.

The net input of a ST-unit (e.g., STi) is calculated by

NSTi
(t) =

∑

j

(Wij ×ASCj
(t)) +

∑

k

(Wik ×ARCk
(t)) +ASTi

(t− 1) (5)

where the net input of unit STi is summed from three parts. The first part comes from the
weighted activations of SC-units connected with STi, which implements feedback adjustments
because of sequence violations. The second part comes from the weighted activations of RC-
units connected with STi, implementing feedback adjustments because of resource violations.
The third part comes from the previous activation, with weight being +1, of unit STi itself.

The activation function of ST-units is deterministic linear-segmented function of type B (as
shown in Fig. 2(b)) and is defined as follows:

ASTi
(t) =











ri, NSTi
(t) < ri

NSTi
(t), ri ≤ NSTi

(t) ≤ di − PSTi

di − PSTi
, NSTi

(t) > di − PSTi

(6)

where ri and di are the release date and due date of job i to which the operation, corresponding
to unit STi, belongs. PSTi

is the processing time of the operation relevant to unit STi. This
activation function implements the release date and due date constraints described by Eq. (3).

SC-units receive the incoming weighted activations from the connected ST-units, representing
operations of the same job. The RC-units receive the incoming weighted activations from the
connected ST-units, representing operations to be processed on the same machine. The net
input of an SC-unit or RC-unit has the same definition form as follows:

NCi
(t) =

∑

j

(Wij ×ASTj
(t)) +BCi

(7)

4



where Ci means SCi or RCi, and BCi
is the bias of the neural unit SCi or neural unit RCi.

The bias BCi
is added to the incoming weighted activations of the connected ST-units STj’s and

equals the processing time of a relative operation, described in Eq. (7).
The activation function of an SC or RC-unit is a deterministic linear-segment function of

type A (as illustrated in Fig. 2(a)), defined as follows.

ACi
(t) =

{

0, NCi
(t) ≥ 0

−NCi
(t), NCi

(t) < 0
(8)

The activation of an SC-unit or RC-unit being greater than zero means that the correspond-
ing sequence constraint or resource constraint is violated. Hence there are feedback adjustments
from this SC-unit or RC-unit to connected ST-units through adaptive weighted connections.

3.2 Connections of adaptive weights and biases

Generally for neural networks performing constraint satisfaction, the determination of connec-
tion weights between the neural units is executed by the designer of the neural network and the
weights are set according to the constraint satisfaction problem in advance before the network
begins to work. In CSANN, the connection weights and biases are adaptive in accordance with
the actual activations of ST-units while network is running, together with the sequence and
resource constraints of the specific problem.

All units of CSANN are connected according to the two kinds of sequence and resource con-
straints of the specific job-shop scheduling problem, resulting in two blocks: SC-block (sequence
constraints block) and RC-block (resource constraints block). Each unit of SC-block contains
two ST-units, responding to two operations of a job, and one SC-unit, representing whether
the sequence constraint between these two operations is satisfied (see e. g., Fig. 3). Each unit
of RC-block contains two ST-units, responding to two operations sharing the same machine,
and one RC-unit, representing whether the resource constraint between these two operations is
satisfied (see e. g., Fig. 4).
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Fig.3. A SC-block unit SCBikl.

Fig. 3 presents an example of SC-block unit, representing the constraint equation Tilq−Tikp ≥
Pikp, denoted by SCBikl. ST-units STikp and STilq represent two operations Oikp and Oilq of

5



"!
# 

"!
# 

"!
# 














�

-

J
J
J
J
J
J
Ĵ�
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Fig.4. A RC-block unit RCBqikjl.

job i. Their activations ASTikp
and ASTilq

represent the starting times Tikp and Tilq of Oikp and
Oilq. The SC-unit SCikl represents whether the sequence constraint of Eq. (1) between Oikp

and Oilq is violated, with BSCikl
being its bias. The weights and bias are valued as follows:

W1 = −1, W2 = 1, W3 = −W, W4 = W, BSCikl
= −Pikp (9)

where W is positive feedback adjustment parameter (the same with subsequent equations where
W appears).

At time t during the processing of CSANN, when the sequence constraint between Oikp and
Oilq is satisfied, the activation ASCikl

(t) of SCikl equals zero. If the constraint is violated, the
activation of SCikl becomes greater than zero and can be calculated by

ASCikl
(t) = −NSCikl

(t) = ASTikp
(t) + Pikp −ASTilq

(t) = Tikp(t) + Pikp − Tilq(t) (10)

and ASCikl
(t) should be applied as a corrective signal for STikp and STilq. The feedback adjust-

ments from SCikl to STikp and STilq are shown as follows:

ASTikp
(t+ 1) = Tikp(t+ 1) = Tikp(t)−W ×ASCikl

(t) (11)

ASTilq
(t+ 1) = Tilq(t+ 1) = Tilq(t) +W ×ASCikl

(t) (12)

From the above equations we can see the feedback adjustments from unit SCikl puts back
the starting time Tikp of operation Oikp in time axis, while putting forward Tilq of Oilq. Thus
the sequence violation between Oikp and Oilq can be removed.

Fig. 4 presents an example of RC-block unit, denoted by RCBqikjl, which embodies the
resource constraint Eq. (2), representing the resource constraint between Oikq and Ojlq on
machine q. At time t during the processing of network, the weights and bias are adaptively
valued as following two cases show.

Case 1: If ASTikq
(t) ≤ ASTjlq

(t), that is, Tikq(t) ≤ Tjlq(t), Eq. (13) holds

W5 = −1, W6 = 1, W7 = −W, W8 = W, BRCqikjl
= −Pikq (13)
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In this case RCBqikjl represents a sequence constraint described by the first disjunctive
equation of Eq. (2). If violation exists, the activation of RCqikjl and the feedback adjustments
from RCqikjl to STikq and STjlq are calculated by

ARCqikjl
(t) = ASTikq

(t) + Pikq −ASTjlq
(t) = Tikq(t) + Pikq − Tjlq(t) (14)

ASTikq
(t+ 1) = Tikq(t+ 1) = ASTikq

(t) +W7 ×ARCqikjl
(t) = Tikq(t)−W ×ARCqikjl

(t) (15)

ASTjlq
(t+ 1) = Tjlq(t+ 1) = ASTjlq

(t) +W8 ×ARCqikjl
(t) = Tjlq(t) +W ×ARCqikjl

(t) (16)

Case 2: If ASTikq
(t) ≥ ASTjlq

(t), that is, Tikq(t) ≥ Tjlq(t), equation (17) holds

W5 = 1, W6 = +1, W7 = W, W8 = −W, BRCqikjl
= −Pjlq (17)

In this case RCBqikjl represents a sequence constraint described by the second disjunctive
equation of Eq. (2). If there exists violation, the activation of RCqikjl and the feedback adjust-
ments are calculated by

ARCqikjl
(t) = ASTjlq

(t) + Pjlq −ASTikq
(t) = Tjlq(t) + Pjlq − Tikq(t) (18)

ASTikq
(t+ 1) = Tikq(t+ 1) = ASTikq

(t) +W7 ×ARCqikjl
(t) = Tikq(t) +W ×ARCqikjl

(t) (19)

ASTjlq
(t+ 1) = Tjlq(t+ 1) = ASTjlq

(t) +W8 ×ARCqikjl
(t) = Tjlq(t)−W ×ARCqikjl

(t) (20)

3.3 Architecture and running mechanisms of CSANN

The architecture of CSANN consists of two layers. The bottom layer consists of only ST-
units, corresponding to the starting times of all operations. The top layer contains SC-units and
RC-units, which represent sequence and resource constraints respectively and provide feedback
information to adjust ST-units in order to satisfy sequence and resource constraints through
SC-block and RC-block respectively.

For a n/m/J/Cmax problem, where ni = m for all i ∈ N and each job passes trough all
machines in a sequencing orders, there are mn ST-units representing mn number of operations,
n(m− 1) SC-units representing n(m− 1) sequence constraints described by Eq. (1), mn(n− 1)
RC-units representing mn(n − 1) resource constraints described by Eq. (2). There are a total
number of n(mn+m− 1) units of the whole network.

To specific job-shop scheduling problem, CSANN can be built up as follows: first calculate
the number of ST-units according to the specific problem, which equals

∑n
i=1 ni, then build up

the two sets of Pi and Rq according to the actual sequence and resource constraints, finally form
the SC-block and RC-block, resulting in the problem-specific neural network.

There are three mechanisms of running CSANN (see e. g., Yang and Wang [24]). The first
one is an asynchronous processing mode which calculates the activation of units in a fixed order.
The second one is an asynchronous processing mode which calculates the activation of units in
a random order. The third mechanism is a synchronous parallelprocessing mode. In this paper
the first mechanism is used, under which from one given initial solution CSANN has to converge
only once to a determined solution.

4 Description of heuristics and hybrid approach

This section first gives out the descriptions of two heuristics, which are used to improve
the performance of CSANN for job-shop scheduling problems. One is used to accelerate the
solving process of CSANN and guarantee feasible solutions, the other is used to obtain the local
optimal solution from feasible solution solved by CSANN with determined orders of operations.
Secondly the hybrid approach for job-shop scheduling problems is presented in this section.
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4.1 Heuristics

Heuristics 1: Exchange the orders of two adjacent operations. This heuristics has two
aspects of function: to accelerate the solving process and to guarantee feasible solution. The
former is for two adjacent operations coming from the same job, while the latter is for two
adjacent operations sharing the same machine.

On the one hand, assuming [Oikp, Oilq] ∈ Si. In order to accelerate the solving speed of
CSANN, at time t during its processing, if ASTikp

(t) ≥ ASTilq
(t) (i. e., Tikp(t) ≥ Tilq(t)),

exchange the orders of Oikp and Oilq by exchanging their starting times as follows:

ASTikp
(t+ 1) = Tikp(t+ 1) = Tilq(t) (21)

ASTilq
(t+ 1) = Tilq(t+ 1) = Tikp(t) (22)

In fact, Eqs. (21) and (22) are a more direct method of removing sequence violation than
that of the feedback adjustment of CSANN. Thus the adjustment time from removing sequence
violations may be shortened and the solving process of CSANN for feasible solution is accelerated.

On the other hand, during the processing of CSANN there may appear the phenomenon of
”dead lock” which can result in no feasible solution. In order to remove ”dead lock”, we use
the following heuristic: exchange the orders of two near operations sharing the same machine
by exchanging their starting times.

AssumingOikq and Oijq ∈ Rq, during the processing of CSANN, if Tqikjl(t) ≥ T , the following
equations begin to work:

ASTikq
(t+ 1) = Tikq(t+ 1) = Tjlq(t) (23)

ASTjlq
(t+ 1) = Tjlq(t+ 1) = Tikq(t) (24)

where the parameter T is a prescribed positive integer, variable Tqikjl(t) is the summed contin-
uous change times between the starting times of operation pairs Oikq and Ojlq (sharing machine
q) because of their resource violation. That is, at time t, the starting times of Oikq and Ojlq have
already continuously changed Tqikjl(t) times because of their resource violation on machine q,
and the changing effects are the same (e.g., always putting Tikq forwards and Tjlq backwards).
When Tqikjl(t) reaches T , Eqs. (23) and (24) begin to work.

The above heuristic can be used together with CSANN to guarantee the feasible solution. The
phenomenon of ”dead lock” results from the conflicts of feedback adjustments while removing
sequence and resource constraint violations. For example, assuming [Oikp, Oilq] ∈ Si and [Oilq,
Ojmq] ∈ Rq. During the processing of CSANN, the SC-unit SCikl may put forward the starting
time Tilq of operation Oilq along the positive direction of time axis through feedback adjustment
because of sequence violation, while the RC-unit RCqiljm may put back Tilq through feedback
adjustment because of resource violation. Thus there may exist conflicts resulting from this two
kinds of adjustments which result in ”dead lock”. ”Dead lock” results in the nonconvergence of
CSANN to its stable station, which corresponds to the feasible solution of the specific job-shop
scheduling problem. By using proposed heuristic, when the phenomenon of ”dead lock” happens
and Tilq has been continuously put back T times because of resource violation between Oilq and
Ojmq, that is, at time t Tqikjl(t) reaches T , the starting time Tilq of Oilq may be exchanged
with Tjmq of Ojmq. Thus ”dead lock” can be effectively avoided and the feasible solution is
guaranteed.

Heuristics 2: Obtain a non-delay schedule from the feasible solution solved by CSANN.
A schedule is non-delay if no machine lies idle when there is at least one job waiting to be
operated on that machine [9]. A non-delay schedule is a local optimal schedule with orders
of operations to be operated on each machine already determined. A schedule is active if no
operation can be started earlier without delaying another operation or violating the sequence
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constraints. It is evident that an optimal schedule is an active one. The set of non-delay
schedules is a proper subset of the active set. So when the obtained non-delay schedule falls
in the active schedule optimal subset, the optimal schedule is achieved, and this is the implicit
theory base of heuristics 2. CSANN can obtain feasible solutions quickly, but there may be
many idle times for each machine with operations available to be operated. Obviously these idle
times heavily degrade the quality of feasible schedule and should be compacted away in order
to shorten makespan or improve the quality of schedule. The detailed heuristics is as follow.

Assuming a feasible solution {Tikp, i ∈ N, k ∈ {1, . . . , ni}, p ∈ M} have been obtained by
CSANN. Sort them in non-decreasing order. Then from the minimal to the maximal, each Tikp

is adjusted as follows:

T
′

ikp =

{

Tljp + Pljp, Tljp + Pljp ≥ Ti(k−1)q + Pi(k−1)q

Ti(k−1)q + Pi(k−1)q, Tljp + Pljp < Ti(k−1)q + Pi(k−1)q
(25)

where T
′

ikp is the starting time of Oikp in the obtained non-delay schedule after the heuristics is
run. Oi(k−1)q is the precedence operation of Oikp from the same job i, and Oljp is the precedence
operation of Oikp sharing the same machine p. Eq. (25) means to shorten each starting time
Tikp to the completion time of Oi(k−1)q or the completion time of Oljp, depending on whichever
is smaller. The adjustments of all starting times are dynamic, i.e., the starting time of previous
operation that has been adjusted works while adjusting the latter operations. For example,
supposing that Tikp has been adjusted into T

′

ikp, when computing T
′

i(k+1)q of operation Oi(k+1)q

which is just next to Oikp of the same job i, T
′

ikp is used in Eq. (25) instead of Tikp. Thus each
operation needs once and only once adjustment to obtain a non-delay schedule.

4.2 Hybrid approach for job-shop scheduling

The hybrid approach for job-shop scheduling consists of CSANN and the two proposed
heuristics. The solving process of the hybrid approach is iterative. The main steps of the hybrid
approach are as follows:

Step 1: Build up CSANN model, set values for parameters T and W , prescribe the maximal
runtime restriction MT and the initial expected makespan;

Step 2: Randomly initialize the starting time Tikp(0) for each operation Oikp , and take it
as the initial net input ISTikp

of each ST-unit STikp;
Step 3: Run each SC-unit SCikl of SC-block, calculate its activation with Eq. (10).

ASCikl
(t) 6= 0 means the dissatisfaction of sequence constraint, then adjust activations of relative

ST-units with Eqs. (11) and (12) or with Eqs. (21) and (22) under the condition of heuristic 1;
Step 4: Run each RC-unit RCqikjl of RC-block, calculate its activation with Eq. (14) or

(18). ARCqikjl
(t) 6= 0 means the dissatisfaction of resource constraint corresponding to Eq. (2).

Then adjust ASTikq
(t + 1) and ASTjlq

(t + 1) with Eqs. (15) and (16) or Eqs. (19) and (20), or
with Eqs. (23) and (24) under the condition of heuristic 1;

Step 5: Repeat step 3 and step 4 until all units are in stable states without changes, which
means that all the sequence and resource constraints are satisfied and the feasible solution is
obtained;

Step 6: Use heuristics 2 to obtain a non-delay schedule solution from the feasible solution
obtained in Step 5;

Step 7: If the makespan of the obtained non-delay schedule is shortened, or continuously
keeps unchanged less than prescribed times (e.g., X times) and the run time is less than MT ,
take the makespan of newly obtained non-delay solution as the new expected makespan and
return to step 2; Otherwise, stop the program and output the best solution.

9



Table 1: Original data of Example 2

Job Operation No.
No. 1 2 3 4 5 6 7 8 9 10

1 3,1 1,3 2,5 4,8 6,3 5,7 7,5 8,8 9,8 10,4
2 2,8 3,5 5,10 6,9 7,10 8,4 1,5 4,3 10,5 9,7
3 3,5 4,4 7,8 8,9 2,1 5,8 6,3 10,7 9,10 1,3
4 7,5 8,5 2,5 1,4 3,8 4,10 10,7 9,4 5,7 6,10
5 3,8 7,4 8,5 2,4 5,1 10,1 9,7 6,7 1,8 4,7
6 2,3 4,3 7,8 9,10 10,4 6,1 8,7 1,9 5,7 3,5
7 5,7 6,7 3,7 10,5 9,1 4,10 7,10 8,4 2,3 1,9
8 4,5 9,7 10,10 6,4 3,4 5,8 1,5 2,10 8,4 7,5
9 5,3 10,8 9,4 6,7 4,7 1,5 2,9 3,5 7,10 8,10
10 6,8 2,1 1,5 5,7 8,9 3,3 4,7 7,5 10,9 9,4

In the solving process of hybrid approach, expected makespan is usually used as the common
due date for all jobs. The initial expected makespan is prescribed to be big enough for obtaining
feasible solution, maybe greater than the sum of processing times of all operations. The solving
process of hybrid approach is iterative, with the makespan of newly obtained non-delay solution
used as the new expected makespan of next iteration. During each iteration, CSANN is used to
obtain a feasible solution, which may has shorter makespan than that of the previous iteration.
Thus the obtained schedule is getting better and better. When the prescribed maximal runtime
is achieved, or the obtained makespan keeps continuously the same for X times, the iterating
process is stopped.

We take the aforementioned whole iteration process as a ”run”. In practical application, we
can execute a batch of runs and take the best of all obtained best solutions as the final schedule.

5 Simulation study

5.1 Simulation examples

Example 1. We take the benchmark 6/6/J/Cmax problem from literature [27] as the first
experimental problem. This example has the optimum (i.e., minimal makespan) of 55.

Example 2. Table 1 presents a 10/10/J/Cmax problem measured from the feasible schedule
given in literature [22], where (m, t) means that the relevant operation of some job will be
processed on machine m with its processing time being t. The sequence constraints of all jobs
are the same: in order from operation 1 to operation 10. The makespan of the feasible schedule
given in literature [22] is 98.

5.2 Simulation results

The simulations are finished on an Intel 586 PC running at 133MHz under Microsoft Visual
C++ 5.0 development environment.

For Example 1, the simulations are finished with the maximal runtime prescribed to be 15,
30 and 60 s, respectively. For each maximal runtime, 100 experiments or runs are carried out.
For all experiments, the parameters are valued as follows: T = 5, W = 0.5 and X = 5, and the
initial expected makespan is set to be 500, which is much greater than the sum of processing
times of all operations, being 197. And for each iteration of all experiments, the initial solution

10



Table 2: Simulation results of Example 1 by hybrid approach
Prescribed Runtime for best Iteration times Makespan Percentage of

maximal runtime solution (s) per run (E) obtaining
(s) (ave/min/max) (ave/min/max) (ave/min/max) optimal solution

15 8.4/3/14 6/3/12 55.40/55/57 66%
30 10.6/3/27 8/3/13 55.25/55/56 75%
60 20.5/3/55 9/3/15 55.01/55/56 99%

for CSANN is randomly determined with the initial starting times of all operations valued in
a randomly uniform distribution between [0,100]. And the expected makespan is used as the
common due date for all jobs and the release dates for all jobs are set to zero. Table 2 shows the
statistics of simulation results with respect to average, minimum and maximum of runtime for
obtaining the last feasible solution or best solution per run, iteration times per run, makespan
of obtained best solution, and the percentage of obtaining optimal solution for each prescribed
maximal runtime respectively.

From table 2 we can see: with different maximal runtime restriction, the hybrid approach
can always quickly obtain good near-optimal or optimal solutions within several iterations. For
the given Example 1, when the maximal runtime is prescribed to 15, 30 and 60 s, the hybrid
approach obtains good near-optimal or optimal solutions within 6, 8 and 9 iteration times on
average respectively. The percentages of obtaining optimal solutions are 66%, 75% and 99%
respectively, all being quite high. In fact, when the maximal runtime is prescribed to be 60
s, only one of the executed 100 experiments obtained a best solution with makespan being 56,
all the other 99 runs resulted in optimal solutions. The average makespans of obtained best
solutions are 55.40, 55.25 and 55.01 respectively, all being very near the optimal value 55. For
the three cases, the longest makespan of obtained best solutions is 57 when MT equals 15 s,
which is only a little longer than the optimal value. The solving speed of hybrid approach is
very high. The average runtimes of obtaining best solutions are 8.4, 10.6 and 20.5 s respectively.
For all the three cases, the shortest runtime of obtaining best solutions, also optimal solutions,
is only 3 s within the three iterations.

Fig. 5 presents the iteration process of a run with MT prescribed to be 60 s. During this
run CSANN is used 8 times to obtain the feasible solutions, of which the best solution is also
the optimal solution. With the initial expected makespan being 500, the first feasible solution
is obtained with makespan being 76. Then 76 is used as new expected makespan in the second
iteration of CSANN, resulting in the second feasible solution with makespan being 68. And
so on, the iteration process continues. During the 5th to 7th iteration, makespans of obtained
solutions keep the same of 57 for three times, less than X = 5 times. In the 8th iteration
when the runtime reaches 9 s, the feasible solution with makespan being 55 is obtained, which
is the optimal solution of the example problem. For the 9th iteration, 55 is used as expected
makespan and the program stopped when the runtime reaches 60 s before new feasible solution
can be obtained.

Fig. 6 shows the relative Gantt chart of the best solution obtained in the run shown in Fig.
5. In Fig. 6, a block means an operation with the length of the block equivalent to its processing
time, the number pairs (i, j), inside or above the block, means that the relative operation is the
jth operation of job i.

For Example 2, the simulation is finished with maximal runtime prescribed to be 100 s, with
the parameters valued as follows: T = 5, W = 0.5 and X = 5. The initial expected makespan
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Fig.5. The iteration process of a run of Example 1.

is set to be 1000, which is much greater than the sum of processing times of all operations. Fig.
7 shows a simulation result Gantt chart. From Fig. 7, we can see the makespan of the obtained
best solution is 97, which is better than the schedule result given in literature [22].

6 Conclusions

In this paper we proposed a new hybrid approach, combining CSANN and two heuristics, for
job-shop scheduling. CSANN is used to obtain feasible solutions during the iterations of hybrid
approach, while the two heuristics are used to improve CSANN’s property and obtain better
solutions. Simulations have shown that the proposed hybrid approach for job-shop scheduling
has excellent performance with respect to the quality of solutions and the speed of calculation.

While the proposed hybrid approach is used for practical job-shop scheduling problems, we
can take the following strategy. Execute the hybrid approach to solve practical job-shop schedule
problem from an appropriate small maximal runtime restriction. Then gradually enlarge the
value of maximal runtime by an appropriate increment (e.g., 10 s) and run the hybrid approach.
If the makespans of obtained best solutions are kept to be the same continuously for several
runs, usually they are the near-optimal or optimal solutions of the problem. Thus we can stop
the program and use them as practical schedules.
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