12,855 research outputs found

    Hierarchical Radio Resource Optimization for Heterogeneous Networks with Enhanced Inter-cell Interference Coordination (eICIC)

    Full text link
    Interference is a major performance bottleneck in Heterogeneous Network (HetNet) due to its multi-tier topological structure. We propose almost blank resource block (ABRB) for interference control in HetNet. When an ABRB is scheduled in a macro BS, a resource block (RB) with blank payload is transmitted and this eliminates the interference from this macro BS to the pico BSs. We study a two timescale hierarchical radio resource management (RRM) scheme for HetNet with dynamic ABRB control. The long term controls, such as dynamic ABRB, are adaptive to the large scale fading at a RRM server for co-Tier and cross-Tier interference control. The short term control (user scheduling) is adaptive to the local channel state information within each BS to exploit the multi-user diversity. The two timescale optimization problem is challenging due to the exponentially large solution space. We exploit the sparsity in the interference graph of the HetNet topology and derive structural properties for the optimal ABRB control. Based on that, we propose a two timescale alternative optimization solution for the user scheduling and ABRB control. The solution has low complexity and is asymptotically optimal at high SNR. Simulations show that the proposed solution has significant gain over various baselines.Comment: 14 pages, 8 figure

    マクロセルにオーバーレイするスモールセルのための層間干渉低減に関する研究

    Get PDF
    The huge number of mobile terminals in use and the radio frequency scarceness are the relevant issues for future wireless communications. Frequency sharing has been considered to solve the problem. Addressing the issues has led to a wide adoption of small cell networks particularly femtocells overlaid onto macrocell or small cells implemented with the support of distributed antenna systems (DASs). Small cell networks improve link quality and frequency reuse. Spectrum sharing improves the usage efficiency of the licensed spectrum. A macrocell underlaid with femtocells constitutes a typical two-tier network for improving spectral efficiency and indoor coverage in a spectrum sharing environment. Considering the end-user access control over the small cell base station (SBS), with shared usage of the macrocell’s spectrum, this dissertation contribution is an investigation of mitigation techniques of crosstier interference. Such cross-tier interference mitigation leads to possible implementation of multi-tier and heterogeneous networks. The above arguments underpin our work which is presented in the hereby dissertation. The contributions in this thesis are three-fold. Our first contribution is an interference cancellation scheme based on the transmitter symbols fed back to the femtocell base station (FBS) undergoing harmful cross-tier interference. We propose a cross-tier interference management between the FBS and the macrocell base station (MBS) in uplink communications. Our proposal uses the network infrastructure for interference cancellation at the FBS. Besides, we profit from terminal discovery to derive the interference level from the femtocell to the macrocell. Thus, additionally, we propose an interference avoidance method based on power control without cooperation from the MBS. In our second contribution, we dismiss the use of the MBS for symbol feedback due to delay issues. In a multi-tier cellular communication system, the interference from one tier to another, denoted as cross-tier interference, is a limiting factor for the system performance. In spectrum-sharing usage, we consider the uplink cross-tier interference management of heterogeneous networks using femtocells overlaid onto the macrocell. We propose a variation of the cellular architecture and introduce a novel femtocell clustering based on interference cancellation to enhance the sum rate capacity. Our proposal is to use a DAS as an interface to mitigate the cross-tier interference between the macrocell and femtocell tiers. In addition, the DAS can forward the recovered data to the macrocell base station (MBS); thus, the macrocell user can reduce its transmit power to reach a remote antenna unit (RAU) located closer than the MBS. By distributing the RAUs within the macrocell coverage, the proposed scheme can mitigate the cross-tier interference at different locations for several femtocell clusters. Finally, we address the issue of cross-tier interference mitigation in heterogeneous cognitive small cell networks comparing equal and unequal signal-to-noise ratio (SNR) branches in multi-input multi-output (MIMO) Alamouti scheme. Small cell networks enhance spectrum efficiency by handling the indoor traffic of mobile networks on a frequency-reuse operation. Because most of the current mobile traffic happens indoor, we introduce a prioritization shift by imposing a threshold on the outage generated by the outdoor mobile system to the indoor small cells. New closed-form expressions are derived to validate the proposed bit error rate (BER) function used in our optimization algorithm. We propose a joint transmit antenna selection and power allocation which minimizes the proposed BER function of the outdoor mobile terminal. The optimization is constrained by the outage at the small cell located near the cooperating transmit relays. Such constraint improves the initialization of the iterative algorithm compared to randomly choosing initial points. The proposed optimization yields a dynamic selection of the relays with power control pertaining to the outdoor mobile terminal performance.電気通信大学201

    Improving Macrocell - Small Cell Coexistence through Adaptive Interference Draining

    Full text link
    The deployment of underlay small base stations (SBSs) is expected to significantly boost the spectrum efficiency and the coverage of next-generation cellular networks. However, the coexistence of SBSs underlaid to an existing macro-cellular network faces important challenges, notably in terms of spectrum sharing and interference management. In this paper, we propose a novel game-theoretic model that enables the SBSs to optimize their transmission rates by making decisions on the resource occupation jointly in the frequency and spatial domains. This procedure, known as interference draining, is performed among cooperative SBSs and allows to drastically reduce the interference experienced by both macro- and small cell users. At the macrocell side, we consider a modified water-filling policy for the power allocation that allows each macrocell user (MUE) to focus the transmissions on the degrees of freedom over which the MUE experiences the best channel and interference conditions. This approach not only represents an effective way to decrease the received interference at the MUEs but also grants the SBSs tier additional transmission opportunities and allows for a more agile interference management. Simulation results show that the proposed approach yields significant gains at both macrocell and small cell tiers, in terms of average achievable rate per user, reaching up to 37%, relative to the non-cooperative case, for a network with 150 MUEs and 200 SBSs

    Green Networking in Cellular HetNets: A Unified Radio Resource Management Framework with Base Station ON/OFF Switching

    Full text link
    In this paper, the problem of energy efficiency in cellular heterogeneous networks (HetNets) is investigated using radio resource and power management combined with the base station (BS) ON/OFF switching. The objective is to minimize the total power consumption of the network while satisfying the quality of service (QoS) requirements of each connected user. We consider the case of co-existing macrocell BS, small cell BSs, and private femtocell access points (FAPs). Three different network scenarios are investigated, depending on the status of the FAPs, i.e., HetNets without FAPs, HetNets with closed FAPs, and HetNets with semi-closed FAPs. A unified framework is proposed to simultaneously allocate spectrum resources to users in an energy efficient manner and switch off redundant small cell BSs. The high complexity dual decomposition technique is employed to achieve optimal solutions for the problem. A low complexity iterative algorithm is also proposed and its performances are compared to those of the optimal technique. The particularly interesting case of semi-closed FAPs, in which the FAPs accept to serve external users, achieves the highest energy efficiency due to increased degrees of freedom. In this paper, a cooperation scheme between FAPs and mobile operator is also investigated. The incentives for FAPs, e.g., renewable energy sharing and roaming prices, enabling cooperation are discussed to be considered as a useful guideline for inter-operator agreements.Comment: 15 pages, 9 Figures, IEEE Transactions on Vehicular Technology 201

    A Game Theoretic Analysis for Energy Efficient Heterogeneous Networks

    Get PDF
    Smooth and green future extension/scalability (e.g., from sparse to dense, from small-area dense to large-area dense, or from normal-dense to super-dense) is an important issue in heterogeneous networks. In this paper, we study energy efficiency of heterogeneous networks for both sparse and dense two-tier small cell deployments. We formulate the problem as a hierarchical (Stackelberg) game in which the macro cell is the leader whereas the small cell is the follower. Both players want to strategically decide on their power allocation policies in order to maximize the energy efficiency of their registered users. A backward induction method has been used to obtain a closed-form expression of the Stackelberg equilibrium. It is shown that the energy efficiency is maximized when only one sub-band is exploited for the players of the game depending on their fading channel gains. Simulation results are presented to show the effectiveness of the proposed scheme.Comment: 7 pages, 3 figures, in Wiopt 201
    corecore