122 research outputs found

    IP Restoration vs. WDM Protection: Is There an Optimal choice?

    Get PDF

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated

    Design and implementation of a fault-tolerant multimedia network and a local map based (LMB) self-healing scheme for arbitrary topology networks.

    Get PDF
    by Arion Ko Kin Wa.Thesis (M.Phil.)--Chinese University of Hong Kong, 1997.Includes bibliographical references (leaves 101-[106]).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Overview --- p.1Chapter 1.2 --- Service Survivability Planning --- p.2Chapter 1.3 --- Categories of Outages --- p.3Chapter 1.4 --- Goals of Restoration --- p.4Chapter 1.5 --- Technology Impacts on Network Survivability --- p.5Chapter 1.6 --- Performance Models and Measures in Quantifying Network Sur- vivability --- p.6Chapter 1.7 --- Organization of Thesis --- p.6Chapter 2 --- Design and Implementation of A Survivable High-Speed Mul- timedia Network --- p.8Chapter 2.1 --- An Overview of CUM LAUDE NET --- p.8Chapter 2.2 --- The Network Architecture --- p.9Chapter 2.2.1 --- Architectural Overview --- p.9Chapter 2.2.2 --- Router-Node Design --- p.11Chapter 2.2.3 --- Buffer Allocation --- p.12Chapter 2.2.4 --- Buffer Transmission Priority --- p.14Chapter 2.2.5 --- Congestion Control --- p.15Chapter 2.3 --- Protocols --- p.16Chapter 2.3.1 --- Design Overview --- p.16Chapter 2.3.2 --- ACTA - The MAC Protocol --- p.17Chapter 2.3.3 --- Protocol Layering --- p.18Chapter 2.3.4 --- "Segment, Datagram and Packet Format" --- p.20Chapter 2.3.5 --- Fast Packet Routing --- p.22Chapter 2.3.6 --- Local Host NIU --- p.24Chapter 2.4 --- The Network Restoration Strategy --- p.25Chapter 2.4.1 --- The Dual-Ring Model and Assumptions --- p.26Chapter 2.4.2 --- Scenarios of Network Failure and Remedies --- p.26Chapter 2.4.3 --- Distributed Fault-Tolerant Algorithm --- p.26Chapter 2.4.4 --- Distributed Auto-Healing Algorithm --- p.28Chapter 2.4.5 --- The Network Management Signals --- p.31Chapter 2.5 --- Performance Evaluation --- p.32Chapter 2.5.1 --- Restoration Time --- p.32Chapter 2.5.2 --- Reliability Measures --- p.34Chapter 2.5.3 --- Network Availability During Restoration --- p.41Chapter 2.6 --- The Prototype --- p.42Chapter 2.7 --- Technical Problems Encountered --- p.45Chapter 2.8 --- Chapter Summary and Future Development --- p.46Chapter 3 --- A Simple Experimental Network Management Software - NET- MAN --- p.48Chapter 3.1 --- Introduction to NETMAN --- p.48Chapter 3.2 --- Network Management Basics --- p.49Chapter 3.2.1 --- The Level of Management Protocols --- p.49Chapter 3.2.2 --- Architecture Model --- p.51Chapter 3.2.3 --- TCP/IP Network Management Protocol Architecture --- p.53Chapter 3.2.4 --- A Standard Network Management Protocol On Internet - SNMP --- p.54Chapter 3.2.5 --- A Standard For Managed Information --- p.55Chapter 3.3 --- The CUM LAUDE Network Management Protocol Suite (CNMPS) --- p.56Chapter 3.3.1 --- The Architecture --- p.53Chapter 3.3.2 --- Goals of the CNMPS --- p.59Chapter 3.4 --- Highlights of NETMAN --- p.61Chapter 3.5 --- Functional Descriptions of NETMAN --- p.63Chapter 3.5.1 --- Topology Menu --- p.64Chapter 3.5.2 --- Fault Manager Menu --- p.65Chapter 3.5.3 --- Performance Meter Menu --- p.65Chapter 3.5.4 --- Gateway Utility Menu --- p.67Chapter 3.5.5 --- Tools Menu --- p.67Chapter 3.5.6 --- Help Menu --- p.68Chapter 3.6 --- Chapter Summary --- p.68Chapter 4 --- A Local Map Based (LMB) Self-Healing Scheme for Arbitrary Topology Networks --- p.70Chapter 4.1 --- Introduction --- p.79Chapter 4.2 --- An Overview of Existing DCS-Based Restoration Algorithms --- p.72Chapter 4.3 --- The Network Model and Assumptions --- p.74Chapter 4.4 --- Basics of the LMB Scheme --- p.75Chapter 4.4.1 --- Restoration Concepts --- p.75Chapter 4.4.2 --- Terminology --- p.76Chapter 4.4.3 --- Algorithm Parameters --- p.77Chapter 4.5 --- Performance Assessments --- p.78Chapter 4.6 --- The LMB Network Restoration Scheme --- p.80Chapter 4.6.1 --- Initialization - Local Map Building --- p.80Chapter 4.6.2 --- The LMB Restoration Messages Set --- p.81Chapter 4.6.3 --- Phase I - Local Map Update Phase --- p.81Chapter 4.6.4 --- Phase II - Update Acknowledgment Phase --- p.82Chapter 4.6.5 --- Phase III - Restoration and Confirmation Phase --- p.83Chapter 4.6.6 --- Phase IV - Cancellation Phase --- p.83Chapter 4.6.7 --- Re-Initialization --- p.84Chapter 4.6.8 --- Path Route Monitoring --- p.84Chapter 4.7 --- Performance Evaluation --- p.84Chapter 4.7.1 --- The Testbeds --- p.84Chapter 4.7.2 --- Simulation Results --- p.86Chapter 4.7.3 --- Storage Requirements --- p.89Chapter 4.8 --- The LMB Scheme on ATM and SONET environment --- p.92Chapter 4.9 --- Future Work --- p.94Chapter 4.10 --- Chapter Summary --- p.94Chapter 5 --- Conclusion and Future Work --- p.96Chapter 5.1 --- Conclusion --- p.95Chapter 5.2 --- Future Work --- p.99Bibliography --- p.101Chapter A --- Derivation of Communicative Probability --- p.107Chapter B --- List of Publications --- p.11

    Optimization methods for topological design of interconnected ring networks

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaves 177-179).by Valery Brodsky.M.S

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links

    Resilient network design: Challenges and future directions

    Get PDF
    This paper highlights the complexity and challenges of providing reliable services in the evolving communications infrastructure. The hurdles in providing end-to-end availability guarantees are discussed and research problems identified. Avenues for overcoming some of the challenges examined are presented. This includes the use of a highly available network spine embedded in a physical network together with efficient crosslayer mapping to offer survivability and differentiation of traffic into classes of resilience. © 2013 Springer Science+Business Media New York

    Design of survivable WDM network based on pre-configured protection cycle

    Get PDF
    Wavelength Division Multiplexing (WDM) is an important technique which allows the trans- port of large quantities of data over optical networks. All optical WDM-based networks have been used to improve overall communication capacity and provide an excellent choice for the design of backbone networks. However, due to the high traffic load that each link can carry in a WDM network, survivability against failures becomes very important. Survivability in this context is the ability of the network to maintain continuity of service against failures, since a failure can lead to huge data losses. In recent years, many survivability mechanisms have been studied and their performance assessed through capacity efficiency, restoration time and restorability. Survivability mechanisms for ring and mesh topologies have received particular attention
    • …
    corecore