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Abstract 

The recent wide spread deployment of optical fiber transmission systems have 

aroused the concern on the survivability issues of networks. As any service 

disruption in these high-capacity fiber transmission systems could cause huge 

amount of data and revenue losses to users as well as to service providers. Such 

losses can be minimized by having better network survivability planning. Tra-

ditionally, this planning is divided into four phases, (1) failure prevention, (2) 

fault detection and alarming, (3) survivable network architecture and restora-

tion algorithm designs, and (4) manual restoration planning. In this thesis we 

mainly focus on the issues of the last three phases. 

We first provide the necessary background information on survivable network 

planning and restoration algorithm design. Then we describe our fault-tolerant 

multimedia, network prototype - CUM LAUDE NET. Various issues concerning 

the network architecture, hardware design, traffic control, medium access control 

protocol, network fault-tolerance as well as the services supported are addressed. 

Next, we propose two distributed fault-tolerant (FT) and auto-healing (AH) 

algorithms for dual-ring networks. These two algorithms are the generalized ver-

sion of the revertive fault-tolerant scheme used in the CUM LAUDE NET. They 
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are based on the inter-communications and hand-shaking processes among adja-

cent nodes to exchange network information in case of network failure. Some of 

their features are: (1) fast network restoration, (2) short restoration message(2-

bytes) to alleviated the network loading during restoration, (3) high network 

availability to users during restoration and (4) hot replacement of faulty net-

work components. The validity of the algorithms was tested on our high-speed 

multimedia network prototype described previously. Failure recovery time on 

the order of milli-second was achieved in our laboratory testing. Measures in-

cluding communicative probability, survivability and average reachability are 

used to quantify the network reliability under the algorithms. 

To facilitate real-time monitoring and control of the CUM LAUDE NET, 

a network management software called NETMAN is developed . It provides 

a centralized comprehensive network management solution for gateways and 

networks on a single platform with a colorful GUI (graphical user interface) 

based management capability. A variety of detailed views and window displays 

is designed for real-time monitoring of the network status. 

Then we extend our network protection scope from dual-rings to arbitrary 

topology networks. A Local Map Based (LMB) Self-Healing Scheme, which 

eliminates the topological constraint imposed on the distributed fault-tolerant 

algorithms is proposed. It allows fast and efficient network restoration by mak-

ing use of the information available on a small-scale local map. The most 

time-consuming alternate-path seeking process in other distributed restoration 

schemes are replaced by simple searching and sorting algorithm executed in the 

DCS (Digital Cross-connect Systems) nodes. This leads to fast network restora-

tion, high spare resource utilization and suppressed message volume. Also, the 
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performance of the algorithm is independent of the network size. Simulation 

has shown that the LMB self-healing scheme exhibits significant performance 

improvement over existing network restoration algorithms. 

Finally, we summarize our work and give an outlook in the field of network 

survivability planning and possible future research directions. 
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Chapter 1 

Introduction 

1.1 Overview 

The recent wide spread deployment of high-speed communication networks has 

significant impacts on the development of civilization, together with the use 

and integration of computers has brought us into the "information age" [13 . 

Nowadays, network communication has become a vital part of everybody's life. 

Service disruption is no longer tolerable by individuals, industry and business 

sectors due to the increased necessity of communications among bankers, pur-

chasing managers, stock brokers, students, researchers, and so forth. In the 

mean time, the consequences of service disruption caused by network failures 

are becoming more severe. This is primarily due to the high volume of traffic 

being carried by the fiber systems and the arising necessity of uninterrupted 

communication. For example, if the network is disabled for one hour, loss of 

revenue more than millions of US dollars can occur in the trading and invest-

ment banking industries [41]. This still does not include the intangible losses 
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Chapter 1 Introduction 

such as legal costs, adverse customer relations, loss of competitive advantage 

and credibility. Therefore, rapid restoration from failures is becoming a critical 

challenge for network operations and management. 

To ensure service continuity, network service providers have paid more efforts 

to alleviate the adverse effects caused by network failures. However, providing 

protection against fiber network failures could be very expensive due to the high 

costs associated with fiber transmission equipment. Therefore it is highly desir-

able to have a cost-effective network management strategy offering an accept-

able level of survivability. Different restoration technologies [40] [43], strategies 

35] and survivable architectures [22] [38] have been developed to overcome this 

challenge. The issues described above are often referred as network or service 

survivability planning. 

1.2 Service Survivability Planning 

In service survivability planning, both technological considerations and regula-

tory realities have to be taken into account. There are four common phases in 

survivability planning to ensure service continuity and minimize the level of im-

pact caused by service disruption. As shown in Figure 1.1, these phases are (1) 

prevention, (2) failure detection and alarming, (3) network self-healing through 

robust network design, and (4) manual restoration. The first phase focuses on 

the prevention of network failures caused by people and the environment (e.g., 

fire and earthquake). The second phase focuses on the techniques used in net-

work failure detection and alarming. It is often considered together with network 

administration and management. The third phase concerns about the problem 
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Figure 1.1: Network Service Survivability Planning. 

of maximizing the self-healing capability of networks during failures. The last 

phase emphasizes the efficient utilization of available work forces, facilities and 

equipment to restore the network when the failures cannot be fixed by the auto-

matic restoration plan. In this thesis, we will focus mainly on the issues related 

to the last three phases. 

1.3 Categories of Outages 

Communication networks are vulnerable to many threats: natural disasters [12], 

intentional sabotages, hardware or software failures. Depending on the failure 

scale, duration, the priority weighting of lost traffic and the level of restora-

tion, the following categories can be defined for both natural and human caused 

3 



Chapter 1 Introduction 

failures. 

• Catastrophic: This type of failure affects a large number of network users 

with a relative long duration(days to weeks). Usually, only a small part 

of service can be restored automatically and most of the service need to 

be restored manually. Some typical examples are multi-CO (Central Of-

fice) failure caused by earthquake, flood, hurricane, tornado, global hard-

ware /software defect, act of war, etc. 

• Major: The failure scale and duration of a major network failure are less 

than a catastrophic network failure. A large percentage of service may be 

restored automatically while the rest would be restored manually. Usually, 

it takes less than a couple of days for complete restoration of failures be-

long to this type. Some obvious examples are single-CO failures, software 

defects, fiber cuts, etc. 

• Minor: Service disruption caused by equipment or component failures, 

which afFects a relative small population of the network users are included 

in this category. It may be caused by a single fiber cut or a line equipment 

failure. In this type of failures, service restoration can be fully automatic 

and virtually transparent to the users. 

1.4 Goals of Restoration 

The ultimate network reliability goal is to make all failures imperceptible to 

users. An interim goal is to reduce the impact of a failure so that calls will 

not be dropped (in Telecom networks) and data sessions are not prematurely 
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terminated (in computer networks). Data transmission protocols can maintain 

sessions for seconds after an interruption in transmission. Declarations of the 

carrier group alarm that two seconds after a failure can cause a voice call to be 

disconnected by network switches [4]. Also, literatures [6] [20] [41] have pointed 

out that most existing services will not be adversely affected when the service 

outage lasts for less than 2 seconds. Accordingly it may be necessary to restore 

the circuits within the 2-second objective to achieve failure transparency to the 

customers. 

1.5 Technology Impacts on Network Survivabil-

ity 

Technological advances play a crucial role in implementing cost-effective sur-

vivable fiber networks. Among these technologies, Digital Cross-connect Sys-

tem(DCS) and active/passive optical technology have been shown to reduce the 

costs of survivable fiber networks. The former allows rapid reconfiguration of 

networks to adapt failures and efficient use of spare capacities. Many DCS-based 

restoration algorithms have been proposed [5] [7] [8] [16] [21] [42]. They all lead 

to drastic improvement in both restoration time and spare facility utilization 

compared to the conventional protection technique based on dual-homing and 

diverse routing. The latter includes optical switches, power splitters, wavelength 

division multiplexers, and optical amplifiers. Optical switching and optical am-

plifier technologies have been used to implement a cost-effective point-to-point 

system with 1:1 diverse protection against potential fiber cable cuts and a cost-

efFective SONET self-healing ring architecture [43]. Power splitters have been 
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suggested for use in a cost-effective, optical, dual-homing protection architecture 

that may prevent major office failures [37]. Wavelength division multiplexers 

and optical amplifiers have been used to implement optical add-drop multiplex-

ers for a self-healing ring application to accommodate network growth demands 

in metropolitan intraLATA networks [39]. 

1.6 Performance Models and Measures in Quan-

tifying Network Survivability 

There are two basic approaches to perform survivability analysis. The first 

approach employs a probabilistic view to define network survivability. It uses 

probability of network failures and, possibly, rates of repair/restoration to calcu-

late various network survivability measures such as availability or unservability 

(e.g., the expected amount of time during which a network is unavailable). The 

second one is a conditional or combinatorial approach. By studying the possible 

combinations of different failure scenarios, network measures are defined and 

analyzed by some deterministic methods assuming that the failure is occurred. 

Both approaches can be used to evaluate different restoration, repair or preven-

tive methods depending on which types of comparison characteristics are the 

most critical. 

1.7 Organization of Thesis 

The thesis is divided into five chapters, Chapter 2 covers various design and 

implementation issues addressed in building a survivable dual-ring multimedia 
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network prototype called CUM LAUDE NET [27]. They include the network 

architecture, the protocol layering, the network restoration scheme, etc. . Also 

included in this chapter is the performance evaluation of the restoration scheme 

and some prelimenary measurements on the prototype. 

Chapter 3 describes a follow-up work based on the achievements presented 

in chapter 2. A network management software called NETMAN is designed to 

demonstrate the fault-tolerant and auto-healing ability of the survivable network 

prototype described previously. Besides, it is also capable of performing a variety 

of network management tasks. 

In Chapter 4, we propose a local map based (LMB) self-healing scheme for 

DCS-based fiber networks with arbitrary topologies. The scheme is devised 

based on the distributed algorithm design experience achieved in chapter 2. It 

aims to provide fast and efficient restoration from different types offailures. Sim-

ulation based on different sets of parameters are performed to test the validity 

of the scheme. Finally, the thesis is concluded in chapter 5. 
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Chapter 2 

Design and Implementation of A 

Survivable High-Speed 

Multimedia Network 

2.1 An Overview of CUM LAUDE NET 

The CUM LAUDE NET is a large group effort at the Chinese University of 

Hong Kong, supervised by Prof. K.W.Cheung, to prototype a multi-gigabit/sec 

multimedia integrated network. It is designed to support high-speed, real-time 

multimedia services with maximum compatibility to IP-based networks. The 

motivation is that Internet is a worldwide network service, has a very broad 

user base, and yet, Internet does not support real-time multimedia service. Thus, 

the design could provide an easy upgrade for IP-based networks to the future 

multimedia networks. The whole project consists of two phases. The phase 

I objective is to demonstrate a practical, low-cost and fault-tolerant integrated 
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Chapter 2 Design and Implementation ofA Survivable High-Speed Multimedia Network 

network that can provide real-time video and voice conferencing. Phase II objec-

tive is to construct a Gb/s fault-tolerant dual-ring backbone for the provisioning 

of real-time multimedia services for a metropolitan area. Phase I construction 

of CUM LAUDE NET is completed in 1996. Supporting software included a 

fully operational video and voice conferencing utility, a gateway to the public 

switched telephone network, voice mail services as well as other Internet ser-

vices. Also, a network management software called NETMAN is designed for 

CUM LAUDE NET to facilitate real-time network monitoring. The next phase 

construction has started and is scheduled to be completed soon. 

In the CUM LAUDE NET project, I had played the roles of a network de-

veloper as well as a system integrator. As a developer, I designed, implemented 

and tested the Fault-tolerant and Auto-healing algorithms, as well as the algo-

rithms for buffer transmission priority assignment, congestion control and packet 

buffering. Besides, I had written the control software for the router-nodes and 

built the network manager - NETMAN for the CUM LAUDE NET. As a sys-

tem integrator, I integrated all the efforts contributed from former colleaques, 

and prototyped a fully operational 100 Mb/s survivable dual-ring multimedia 

network testbed. 

2.2 The Network Architecture 

2.2.1 Architectural Overview 

The prototype that is being constructed consists of two hierarchies as shown 

in Figure 2.1. The level-2 hierarchy is a Gb/s backbone connected in a fault-

tolerant dual-ring. Each router-node on the backbone will be able to route one 
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Figure 2.1: CUM LAUDE NET network architecture 

gigabit/sec bandwidth at each input and output port. Under uniform traffic, 

the final backbone dual-ring network will have an aggregate capacity of approx-

imately 8 gigabit/sec. 

Each level-1 hierarchy is a 100-Mb/s dual ring network, aims at providing the 

same services for a more local area environment. Different hierarchies are con-

nected by bridges/routers, whose function is to route packets from one hierarchy 

to another. 

Each node in the level-1 hierarchy is either a local host(user terminal) or a 

hub(which serves as a concentrator/distributor to a number of local hosts). Each 

local host is equipped with a network interface unit(NIU) to process packets 

addressed between the network and the host. Due to the uniform design of 

different hierarchies, the hardware and software design of the bridges/routers 

are much simplified. 
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Chapter 2 Design and Implementation ofA Survivable High-Speed Multimedia Network 

The CUM LAUDE NET prototype is designed around a fault-tolerant dual-

ring topology because the ring topology has several unique advantages over a 

centralized switching hub topology [25] [26]. The linear topology allows re-

served service guarantee and fair sharing of bandwidth among all nodes. The 

distributive, sequential arrangement of the nodes also facilitates real-time pro-

tocol implementation. Distributive packet routing simplifies packet processing 

and introduces little packet delay. Another advantage of the linear topology 

is that it reduces the problems due to network congestion and complexities in 

control and management. 

Even though many bus/ring network protocols have been proposed in the 

past [23] [32] [36], they are not suitable for high-speed multimedia integrated 

networking either because of the limited throughput, inability to guarantee real-

time services, confinement to local area service, or heavy overhead for supporting 

multimedia services. 

2.2.2 Router-Node Design 

The router-node (or simply called node) used in CUM LAUDE NET are specially 

designed to facilitate fault-tolerance. As shown in Figure 2.2, each router-node 

consists of three routers: Ring-A router, Ring-B router and Local router. Every 

router is equipped with a DSP (Digital Signal Processor) and 2 FPGA (Field 

Programmable Gate Array) ICs to control the on-board hardware, IP address 

resolution, I /O ports, buffers and the communications between different routers. 

The I /O FIFOs of the routers in a router-node are interconnected by data bus, 

thus packets can be easily routed among different routers. This design enables 

dynamic constructions of logical paths inside the router-node. The FIFOs also 
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Figure 2.2: Block Diagram of the CUM LAUDE NET Router Node 

act as buffers for the incoming packets and as a temporary storage for packets 

during restoration. Their size is being chosen to be 8K bytes each because this 

size is found to be suitable experimentally. 

The communications between the routers in a router-node are handled by 

serial communication ports installed between each pair of routers. The chipset 

used for the transceiver interface is the new high-speed TAXI Am7968/69-125DC 

2] from the Advanced Micro Devices (AMD). They have an maximum operation 

speed of 125 Mbaud on a serial link and use the robust 4B/5B coding scheme 

to detect transmission errors. 

2.2.3 Buffer Allocation 

There are four packet buffers installed in each router in a router-node, one is 

for receiving and the other three are for transmitting. These packet buffers 
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Figure 2.3: Buffer allocation in a CUM LAUDE router-node. 

are actually FIFOs with a size of 8 Kbytes. Figure 2.3 shows the allocation of 

these transmission buffers in a router-node used in CUM LAUDE NET. The 

receive buffer is used to store packets coming from the rings or the hubs. After 

examined the headers of these packets, the router will know where these packets 

should be routed. Suppose a packet coming from Ring-A is being stored in the 

receive buffer, it will be routed to different transmission buffers under different 

situations: Ring-A (normal case), Local (if the packet is destined to a local host 

connected to the router-node) or Ring-B (in case the outgoing link of Ring-A 

has failed). The situations are similar for Local and Ring-B routers. 
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Buffer Fvdlness Flag meaning  
FuU Flag(FF) 11 The capacity of FIFO is used u p ~ 

Hatf FuU Flag(HF) Half of the capcity of FIFO is used 
Empty Flag(EF) || The FIFO is empty 

Table 2.1: Fullness Flags of the transmission buffers. 

2.2.4 Buffer Transmission Priority 

As depicted in Figure 2.3, all three transmit buffers of a router share a common 

transmission link. Therefore some kind of medium access control mechanism 

is required to ensure no contention of resources. In CUM LAUDE NET, the 

transmission priorities of the transmit buffers are controlled under a priority 

transmission policy. The policy utilizes the fullness condition of each transmit 

buffer as an indicator to assign a suitable priority to it. The fullness condition 

of a transmit buffer is represented by three flags - Empty, Half-Full and FuU, as 

shown in Table 2.1. These flags are memory mapped to the controlling DSP's 

memory space. Thus they can be easily accessed and monitored. 

The highest transmission priority is assigned to a buffer with the FuU Flag 

on, followed by Half-Full and Non-tmpty. A buffer with its empty flag on will be 

ignored. For buffers having the same priority, transmission access will be granted 

in a round-robin fashion. By assigning a higher priority to buffers with more 

packets queued inside, the scheme successfully reduces the risk of packet loss 

due to buffer overflow. Moreover, it regulates the network traffic and prevents 

transmission resources contention. 
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2.2.5 Congestion Control 

Congestion control is provided at each router-hub interface of the CUM LAUDE 

NET to prevent overflow of transmit buffers (note that the dual-ring itself is 

congestion free under the ACTA protocol). The idea is schematically shown in 

Figure 2.4. As mentioned previously, there are three transmit and one receive 

buffers in Ring-A, Ring-B and Local router of a router-node. Each of these 

buffers is used to hold packets awaiting processing. Overflow will occur at the 

transmit buffers under any one of the following three situations. First, if packets 

are continuously coming out from the receive buffers at a rate faster than the 

maximum rate that the transmitter can transmit. Second, the packet quota 

(defined by the ACTA protocol) for a router-node is used up but the hub is 

not aware of this and keeps forwarding packets. Third, there is no empty slots 

available on the ring and thus the packets are piled up in the transmit buffers 

and can not be transmitted. 

In order to avoid these undesirable situations, we have used the fullness 

condition of the transmit buffers as a control to switch the packet flow from the 

hub 'on' and 'off,. When any one of the transmit buffers in Ring-A or Ring-B is 

found to be half-full, a STOP-POLL command is sent to the Local router. On 

receiving this command, the Local router will stop polling the host machines 

connected to the hub and hence new packets are blocked from entering the 

Local router. The transmit buffers in Ring-A and Ring-B routers are then able 

to empty their contents. Once the transmit buffers have emptied their contents, 

a START-POLL command is sent to the Local router to re-enable the polling 

process. Host machines connected to the hub will then be able to send packets 

again. 
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Figure 2.4: A schematic diagram of the congestion control algorithm used in 
CUM LAUDE NET. In the figure, only one transmit buffer of each router in a 
router-node is shown for the sake of simplicity, as the other two are performing 
exactly the same functions. 

2.3 Protocols 

2.3.1 Design Overview 

CUM LAUDE NET is designed to support high-speed, real-time multimedia 

services with maximum compatibility to IP-based networks and to provide an 

easy upgrade for these networks to support multimedia traffic. In order to 

achieve these goals, we have decided to use Fast Packet Routing (FPR) and 

integrated networking technology that employs: 

• fixed size IP datagrams/FPR packets (576/582 octets) 

• fast packet routing (FPR) in the MAC and network layer 

16 



Chapter 2 Design and Implementation ofA Survivable High-Speed Multimedia Network 

• direct IP addressing in the transport and routing of IP datagrams 

• connectionless delivery of packets 

In the Fast Packet Routing (FPR) Layer, which combined the MAC layer 

and some of the network layer functions, the IP datagrams are encapsulated 

by a fixed-size header and trailer and all routing information is available in the 

header. This allows each router to perform fast packet routing efficiently and 

simplifies the gateway design between CUM LAUDE NET and Internet. 

A novel network protocol ACTA (Adaptive Cycle Tunable Access) [25] is 

implemented in each Level-2 and Level-1 dual-ring hierarchy. Fair access is 

achieved by limiting the number of empty slots occupied by each router on each 

cycle. The cycle length is adjusted to reduce the packet latency and to increase 

the throughput. 

2.3.2 ACTA - The MAC Protocol 

The ACTA protocol is a simple bus/ring network protocol suitable for multi-

channel operations. It adopts a slotted cycle format to transmit packets, with 

adaptive variation of cycle lengths according to network loading to achieve opti-

mal performance. The adaptation of the cycle length is governed by the equation 

below: 

C . 二 ^ (2.1) 
Lc 

where Cn is the new cycle length calculated through the above algorithm. C � i s 

the length of current cycle that the end node observed. Uc is the cycle utilization 

which is the number of slots used in the cycle divided by the cycle length, and the 
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controlled load Lc is a parameter specifying the desired throughput under heavily 

overloaded condition. When the cycle utilization Uc is larger than the controlled 

load Lc, the new cycle length Cn will be increased. On the contrary, when the 

cycle utilization is smaller than the controlled load, the new cycle length will 

be decreased. From a statistical point of view, the maximum utilization is 

determined by the controlled load L � 

In ACTA, only two control bits per-slot are required in the media access, 

thus it can be made slot compatible to ATM. The major advantages of ACTA 

protocol are its simple media access, reduced processing and its throughput per-

formance, which could be > 0.9(normalized) per channel with good fairness even 

under heavily overloaded conditions. Further details about the ACTA protocol 

can be found in [44]. The structure of the network with ACTA protocol being 

implemented is shown in Figure 2.5(a), each node consists of two pairs of receiv-

ing and transmitting modules, one for each ring. Empty slots are continuously 

generating from the Headnode in both rings, the cycle length of slots is varied 

according to the traffic conditions. In Figure 2.5(b), the structure of an ACTA 

slot is illustrated. It is a 512-byte packet with 1-byte control header. 

2.3.3 Protocol Layering 

The CUM LAUDE NET protocol layering is shown in Figure 2.6. The protocol 

is basically an extension of the Internet Protocol suite, and is designed to have 

maximum compatibility with IP. Since TCP is not suitable for real-time multi-

media application, a new Video and Voice Transport Protocol, VVTP, which is 

more suitable for carrying real-time video and voice is designed. VVTP is simi-

lar to UDP, but it has a fixed size, and does not perform acknowledgment, error 
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Figure 2.5: A dual-ring network with ACTA protocol. 

detection/correction or error retransmission. The design decisions are based on 

the needs for fast packet routing and the fact that many TCP functions like 

acknowledgment and error detection/correction are too slow or unnecessary for 

real-time video and voice applications. The VVTP fragment size is chosen to 

be 552 bytes. The corresponding IP datagram encapsulation have a size of 576 

bytes, which is the recommended size that can be handled by Internet networks 

and gateways without fragmentation. 

The operating system for CUM LAUDE NET is a public domain system 

called Linux. The kernel of the operating system has been modified to sup-

port VVTP as well as TCP/UDP. VVTP has been given a higher priority than 

TCP/UDP to prevent non-real-time packets from blocking up the transmission 

queue. 
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Figure 2.6: Protocol Layering of CUM LAUDE NET. 

2.3.4 Segment, Datagram and Packet Format 

Fixed size segments (Transport Layer - 552 octets), datagrams (Network Layer -

576 octets), and packets (FPR Layer - 582 octets) are used in the CUM LAUDE 

NET. In the FPR layer, a CUM LAUDE packet is consisted offour fields (Figure 

2.7): 

• header (1 octet) 

• destination address/VCI (4 octets) 

• fixed size IP datagram (576 octets) 

• trailer (1 octet) 

The packet format is chosen to facilitate the hardware and software design 

of the FPR Layer. The control information required for fast packet routing is 

carried by the first 5 octets (header - destination address/VCI) of the CUM 

LAUDE packets. The header and trailer octets are used for frame synchroniza-

tion as well as to provide information for routing. Since the CUM LAUDE NET 

employs the ACTA protocol in the fast packet routing layer, control information 
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Figure 2.7: Packet encapsulation of CUM LAUDE NET. 

S P / E P CS SO I P / V C I RD NM NM NM 

SP:Start of Packet 
EP:End of Packet 
CS:Cycle Start 
SO:Slot Occupied 
IP:Internet Protocol Packet 
VCI:Virtual Circuit Identifier Packet 
NM:Network Management Packet 

(a) 

R H / R C 1 CO A3 A 2 A 1 AO 

R:Reserved for Future Use 
H/R:Control Byte from Hub or Router 
Cl,CO:Hub Command 
A0-A4:Hub Polling Address 

( b ) 

Figure 2.8: The header structure used by (a) Router and (b) Hub. 

for the implementation of the ACTA protocol like "cycle start" and "slot occu-

pied" must be provided in the header. The details are given in Figure 2.8(a). 

The bits marked with 'NM' are used for network management, i.e., to support 

the fault-tolerant and auto-healing functions. 
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2.3.5 Fast Packet Routing 

As it has been mentioned above, the network protocols used in the CUM LAUDE 

NET are designed to provide efficient implementation of fast packet routing. 

The media access and routing algorithms use only the first 5 header octets of 

a FPR packet shown above. For Level-2 or Level-1 dual-ring hierarchies, the 

media access/routing control is based on the ACTA protocol. For the hubs, 

media access is based on a modified Binary Exponential Backoff Polling (BEBP) 

algorithm mentioned in [31 . 

Level-l/Level-2 Bridge/Router 

Fast packet routing algorithms based on ACTA are implemented on all Level-

l/Level-2 Bridges/Routers of the dual-ring networks. The data rates for Level-2 

and Level-1 nodes are set to be 1 Gb/s and 100 Mb/s on each ring respectively. 

For incoming packets, the router examines the FPR packet header to de-

termine whether the destination of the packet belongs to a host that is served 

by the router. If the destination does not match, the original packet will be 

forwarded onwards as shown in Figure 2.9(a). The packets will be erased only 

at the erasure node according to the ACTA protocol. Thus, it is not necessary 

for the router to search for information inside the IP datagrams. 

The details of address comparison are as follows. The destination in the 

FPR packet header can either be a direct IP address or an indirect address 

called virtual connection identifier (VCI) which is suitable for multicasting. The 

two cases are indicated by a single bit in the header. If the destination is an IP 

address, a direct comparison is made to the address field. If it is a VCI address, 

the first three bytes in the address field will be used to compare with all VCI 
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Figure 2.9: A schematic diagram showing how will a router respond to (a) an 
occupied packet on ring not addressed to router, (b) an occupied packet on ring 
addressed to router, (c) an empty packet on ring, under the Fast Packet Routing 
algorithm. 
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addresses in a VCI table dynamically stored in the router. Whenever a match 

is found, the router will copy the packet to the local buffer for forwarding to the 

next hierarchy or the local host and the original packet will also be forwarded 

onwards (Figure 2.9(b)). When the packet reaches the local host, the header, 

address and trailer fields of the FPR packet will be discarded, thus retrieving 

the original IP datagram. 

For outgoing packets, the router first determines whether there is any incom-

ing empty slot. When there is an empty slot available, the router can fill up the 

empty slot with a packet in the queue according to the ACTA protocol (Figure 

2.9(c)). 

Level-1 Hub 

Each hub connected to a router-node is used to serve as a concentrator/distributor 

to a number of local hosts. Any packets received by the hub will be broadcasted 

to all local hosts connected. The hubs also poll individual local hosts period-

ically to collect packets that are to be sent into the network. A BEBP based 

polling algorithm is used in order to provide orderly packet transmission from 

local hosts sharing a common broadcast link. The header format of the polling 

packet is shown in Figure 2.8(b). 

2.3.6 Local Host NIU 

The local host network interface unit (NIU) is directly connected to the host 

whose function is to process packets going between the network and the host. 

The NIU interrupts the operating system periodically to make sure that real-

time packets can be served timely. 
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Figure 2.10: (a) The generalized dual-ring network model, (b) The network 
access scheme. 

2.4 The Network Restoration Strategy 

To facilitate fast and efficient network restoration in dual-ring networks (includes 

the CUM LAUDE NET), a distributed revertive restoration scheme designed on 

a generalized dual-ring model has been implemented. It restores the network 

by exchanging network information and control signals through the adjacent 

router-nodes. The scheme is distributive in nature and works on every router-

node in parallel. This high level of parallelism allows faster response to failures 

and hence results faster restoration in general. 
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2.4.1 The Dual-Ring Model and Assumptions 

2.4.2 Scenarios of Network Failure and Remedies 

According to the model described above, two basic types of failures can occur 

in the network, i.e., link and node failures. Different combinations of link and 

node failures will lead to different failure scenarios. Some typical ones and their 

remedies are illustrated in Figure 2.11. As depicted in Figure 2.11 (a) and (b), 

single link and node failure can be recovered by wrapping up the links around 

the fault. In the case that the Headnode is failed, a new one can be regenerated 

among the operative nodes to keep the network operative, as depicted in Fig-

ure 2.11 (c). For multiple failures as shown in Figure 2.11 (d), isolated subnets 

will be formed, the local communications within the subnets can be maintained 

by regenerate a Headnode in each subnet. 

2.4.3 Distributed Fault-Tolerant Algorithm 

Phase I - Fault Detection Phase 

In real practice, node failures can be interpreted as a subset of link failures. 

Therefore, our FT algorithm focuses only on the adaptation of link failures. Cur-

rently, two means are being used proposed to perform link failure detection. One 

is the out-of-synchronization detection in links. In this approach, the transmis-

sion quality of the link is constantly monitored and a violation signal is returned 

if the link is failed. This approach is generally applicable in all dual-ring net-

works, irrespective of the medium access protocols(random, slot, token, etc.,) 

used. However, it may require extra hardware to perform link synchronization 

detection. 
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Figure 2.11: Typical failure scenarios in dual ring networks 

Another means is the packet non-arrival detection. When a node receives 

no valid packet in a prescribed period, a Test_Link message will be sent to its 

neighbors to check whether the links in between of them are failed. Normally, a 

Link-OK message will be echoed back to indicate the links are healthy. However, 

If an instance of failure has occurred in between, no response will be received 

and the neighbor is assumed to be failed. For the case that no packet arrives a 

node in both rings, the network must be segmented by failures and hence the 

Claim_Head() process is invoked. This approach is particular suitable for net-

works using slot-access protocols and requires no extra hardware to detect link 

status. 
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Phase II - Fault Recovery Phase 

Once the faults are located by the detection algorithm, the recovery process 

is initiated. It simply wraps the afFected traffic in a ring to another. For the 

case of multiple failures as mentioned before, the network will be segmented 

into several subnets. Within each subnet, a new headnode will be generated 

according to the Claim_Head() process to maintain local communication. In the 

process, each node within the subnet will broadcast its registration number (a 

unique integer identifying a node, which is created during network initialization). 

Any node receives a registration number smaller than its own will generate 

an Objection message to the originating node. Finally, the node receives no 

objection after a pre-defined period of time becomes the Headnode. The FT 

algorithm is summarized in the 4-module pseudo code in Figure 2.12. 

2.4.4 Distributed Auto-Healing Algorithm 

Phase I - Sensing phase 

Whenever any fault occurs in the system, the state of the faulty component 

will be continuously monitored by its healthy neighboring nodes. The neighbors 

of the faulty node will keep sending status-report requests {Status-Request) to 

the faulty node and wait for a response. If no response is received, the faulty 

node is considered as failed. The checking process is repeatedly performed until 

all components return to their normal states. 

Phase II - Healing phase 

After the faulty components have been repaired or replaced, the new healthy 
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Fault-Tolerant Algorithm 
/ * Begin */ 
main() 
{ 

Network Initialization 
Wait for registration packet to register 
£>o 

if (timer expired) then Read_Status() 
if (out-of-sync detected) then Read_Status() 
Other network routines ... 

while (node is working) 
} 
Read_Status() { 

^H'//c/r(Status) 
/ * Out-of-sync detection, suitable for all M A C protocols */ 
case 'any of the receiving links is out-of-sync' 

if (Ring-A Receiving link is failed) then 
status(Ring-A receiving link) = 'failed* 

else 
status(Ring-B receiving link) = 'failed' 

Restoration() 
case 'both of the receiving links are out-of-sync' 

Claim_Head() 
/ * Packet-non-arrival detection, suitable for slot-access protocols */ 
case 'no valid packet arrives in period T1 ’ 

Repeat 
Send Test_Link command to neighboring node 
status = 'failed’ 
Wait for response until timeout 
^(response = 'yes') then (status = 'ok') 
counter = counter - 1 

Until ((counter = 0) or (status = 'ok')) 
if (status = *failed') then Restoration() 

case 'no valid packet arrives from both rings in period T1 ’ 
Claim—Head() 

case ’Test—Link command is received’ 
Send Link—Ok command to neighboring node 

case *Claim_Head command is received' 
if (Registration No. in command > Local Registration No.) then 

Send Objection to the node issuing the command 
} 

Restoration() { 
if status(Ring-A Receive L-ink)='failed* then 

Wrap traffic to be sent on ring-A to ring-B instead 
*y"status(Ring-B Receive Link)='failed' then 

Wrap traffic to be sent on Ring-B to Ring-A instead 
) 
Claim_Head() { 

Broadcast the Claim_Head command to the network 
Wait for objection until timeout 
^ ( n o objection from other nodes) then 

Reconfigure as Headnode and re-initailize 
else 

Wait for empty slots 
) ‘ 

/ * End */ 

Figure 2.12: The Fault-Tolerant Algorithm 

29 



Chapter 2 Design and Implementation ofA Survivable High-Speed Multimedia Network 

Autp-Healinq Algorithm 
/* Begin */ 
sensing() 
{ 

Send Status_Re<3uest to neighboring nodes 
Monitor if any response has been sent back 
if (response is from in the same node) tzJiaa 

awi tcii ( response ) 
ca,se ‘ R3c_Link_Up ‘: 

Send Rx_Link_Up message to neighboring node 
crase ‘ Restart ‘: 

heal() 
eJfite /* response is from neighboring node */ 

Bvr± t:ch ( response ) 
csiso ‘ Status_Request ‘: 

Send Rx_L,ink_Up message to neighboring node 
ca.se ‘ R3c_Link_Up ‘： 

Send Restart command to neighboring node 
heal() 

} 

healing() 
{ 

Suspend operation of the node 
Store up incoming packets to transmission FIFO queues 
Reconstruct logical paths and reset state variables 
Resume normal operation 

} 
/* End */ 

Figure 2.13: The Auto-Healing Algorithm. 

node will immediately respond to the Status_Request command sent out by its 

neighbors. Hence its neighbors will be aware of that the fault has been removed 

and the healing process can be started. In the healing process, normal operations 

of the newly repaired node and its neighbors are temporarily suspended. All 

incoming packets during the restoration will temporarily be buffered until the 

healing process is completed. Logical paths are then reconstructed and the 

state variables are reset. After the reconfiguration of the network at the failure 

location is completed, the nodes are started up again and the buffered packets are 

released. The distributed auto-healing algorithm is summarized in Figure 2.13. 

It consists of the sensing() and healing() modules, which corresponds to the two 

phases described above. 

A state diagram illustrating the state transitions and communication signal 

involved in a node transceiver pair is shown in Figure 2.14. As described in our 
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dual-ring network model, the transmitter (Tx) of a node in Ring-A/Ring-B and 

its receiver (Rx) in Ring-B/Ring-A will form a transceiver pair(Figure 2.14a). 

When a fault occurs, the transceiver pair will switch to one of the three possible 

failure states, i.e., (1) both transmitter and receiver are failed, (2) transmitter 

is failed but receiver is still operative or (3) transmitter is operative but receiver 

is failed. The healthy neighboring node will send the Status_Request command 

continuously to the faulty node and wait for a response. If both the receive and 

the transmit links between the faulty node and its healthy neighbor are repaired 

and become operative again, an Rx.Link^Up message will be echoed back from 

the faulty node. On receiving this message, the healthy neighbor will start to 

re-initialize itself and send a Restart command to re-initialize the repaired node 

as well. As the whole restoration process is completed within a milli-second, it 

is virtually transparent to most network users. 

2.4.5 The Network Management Signals 

As described in the above subsections, a few control signals are sufficient to 

perform the network fault-tolerant and auto-healing functions. Table 2.2 has 

summarized all the control signals involved in the proposed algorithms and the 

corresponding number of bits needed to represent them. It is found that a 2-

byte restoration message overhead will be sufficient to carry all these signals. 

In failure recovery, a short restoration message is crucial as it can alleviate the 

additional network loading imposed by the control messages and can prevent 

the network from further congestion. 
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Figure 2.14: (a) A transceiver pair of a router-node, (b) The state diagram 
showing the state transitions and communication signals involved of a transceiver 
pair in the AH process. 

2.5 Performance Evaluation 

2.5.1 Restoration Time 

The fault-tolerant and auto-healing time for node and link failures against dif-

ferent parameters are simulated. Various factors such as fault detection time, 

protocol handling time, signaling message transmission delay and FIFO delay 

are taken into account. In the simulation model, all router-nodes are connected 

in a fiber dual-ring. Control messages going in or out of a router-node are 

buffered by FIFOs at the transmitters and receivers. The amount and length 

of control messages generated in different types of failures are defined in the 

algorithms. The parameters used in the simulation are based on the measured 
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Control Signals No. of bits needed 
TestXink 1 
Link-Ok 1 

StatusJlequest 1 
Rx_Link-Up 1 

Restart 1 
ClaimJiead 1 
Objection 1 

Node Registration No. 8 

Table 2.2: A summary of the control signals used in the proposed fault-tolerant 
and auto-healing algorithms and the number of bits required to represent them. 

Parameters Value 
packet non-arrival detection time 110.00 " s 

out-sync detection time 55.00 |xs 
Message forwarding time of node 12 " s 

FIFO delay — 0.12 J T s ~ 
Ring wrap time 3.00 /is 

Node initiaUzation time 6.10 " s 
Router communication time 1.95 " s 

Link capacity 100 Mb/s 
Message traveUng speed in links 1.99e8 m/s 

Transmitter latency 0.74 |j,s 
Receiver latency 1.22 fj,s 

Table 2.3: The parameters used in the fault-tolerant and healing time model. 
They are obtained from the measured value in the network prototype and hard-
ware specifications given by the network component manufacturers. 

values in the network prototype we built earlier and component specifications 

provided by the component manufacturers. Their values are shown in Table 2.3. 

The relation of fault-tolerant and auto-healing time for different node sepa-

ration are shown in Figure 2.15. It is observed that, in general, more recovery 

time is needed when the node separation is increased. This reflects the fact that 

controlling messages will take longer to travel between neighboring nodes for 

larger node separation. The only exception occurs in the node failure recovery, 

this is because no communication is possible between the faulty node and its 
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� Restoration Type of Networks  
Techniques FDDI SONET CUM LAUDE 

~~Dedicated~~ Te 11 Dual Homing Diverse Prot.(APS) -
Facility " ^ ^ DCS l:N APS -

Restoration Ti second - minute around 50ms -
Te Protective Switching SeU" Healing Rings -
Eq Nodal Bypass Switch ADM -
^ less than a second around 50ms -

Dynamic Te Ring-Wrapping Reconfig. Mesh Ring-Wrapping 
Facility Eg DCS DCS Reconfig. Router 

Restoration Ti second - minute sec - min less than a ms 

Table 2.4: A comparison of restoration techniques for some common ring tech-
nologies based on the techniques used(Te), the equipment required(Eq) and the 
recovery time(Ti). 

neighbor. Hence it is virtually independent of the node separation. 

Among the existing fault-tolerant ring networks, FDDI and SONET are the 

most well known ones. Thus a simple comparison with the CUM LAUDE NET 

on the recovery techniques and times required is done. The result is tabulated in 

Table 2.4. It is found that dedicated facility generally provides faster restoration 

than dynamic facility and their restoration times can vary from milli-second to 

second order. In the above network technologies compared, the CUM LAUDE 

NET provides fastest restoration. 

2.5.2 Reliability Measures 

In order to characterize the reliability performance of a dual-ring network under 

our algorithms, several measures [3] [34] have been used. They included: 

• Communicative Probability after failure, P[C] - It is defined as the prob-

ability of all operative nodes that are still communicative after failure. It 

quantifies the ability of a network to isolate failures. A higher value of 

this measure means communications between nodes are less affected by 
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failures. 

• Survivability, 5 - It is defined as the fraction of a certain selected network 

feature remained after an instance of failure. Here we will use the fraction 

of nodes remains connected to the Headnode after failure as a measure of 

the network survivability. Usually, a survivability function is used instead 

of a single value survivability. 

• Average Reachability, AR - it represents the average fraction of nodes 

that a node in the network can communicate after an instance of failure. 

A larger value of AR implies less impact brought by the failures will be 

experienced by the users as they can still communicate with most of the 

network nodes. 

. Each measure described above quantifies the reliability of a network only in 

a certain aspect. Therefore an integrated study of them is necessary for a better 

description of network reliability. 

Communicative Probability after Failure 

Generally, solving P[C] for networks is an NP-hard problem and computer-

aided analysis is necessary. However, the simple topological properties of dual 

ring networks allow closed form solutions. We have formulated the expression 

of P[C] for dual-ring networks under our FT algorithm. The derivations have 

been put in the appendix and the results are summarized below: 
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Figure 2.15: A plot of the fault-tolerant and auto-healing time for single node 
and link failures against the node separation. 

Denotes: 
N = Number of nodes in the network 

1 = Number of links failed 

n = Number of nodes failed 

P[C|n, /] 二 Probability of all operative nodes are still communicative 

given that n nodes and 1 links are failed 
P[C] of a dual-ring network with fault-tolerant algorithm 

‘ g X 、 N - + : f r C i 、 , ^ o , / < 2 n + 2 

0 n ̂  0 , / > 2 n + 2 
P[C|n,/] = (2.2) 

^ n = 0,2 < / < N 
2N^l ‘ 一 一 

1 n — 0,1 = 1 
、 

Figure 2.16 shows the variation of P[C] of a network with the FT algorithm 

implemented against different failure scales (i.e., fraction of nodes failed). In 
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Figure 2.16: (a) P[C] against the scale of failure for different network sizes, (b) 
P[C] against the scale of failure for different numbers of link failures. 

Figure 2.16(a), it is observed that the value of P[C] decreases as the network 

size or failure scale grows larger. The reason behind is quite intuitive: As the 

network size or failure scale increase, there is a higher probability that isolated 

subnets are formed after the failure. Hence, a communicative network is less 

likely to be found, in other words, a lower value of P[C] will be obtained. In 

Figure 2.16(b), different values of 1 are used to investigate the relation again, it 

is found that P[C] decreases as number of link failures, 1 increases. Note that 

there is a peak on each P[C] curve as the failure scale approaching unity. This 

simply reflects the fact that when most of the nodes are failed, the probability 

that only a single subnet remained is, on the contrary, becoming larger. 

Network Survivability 

In considering the survivability function of a dual-ring, only the cable cuts 

closest to the Headnode is important, other cuts will not affect the resulting 
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survivability. There can be 1-4 cuts closest to the Headnode, but a single cut or 

a double cut on one side will not segment the network and hence does not con-

tribute to the survivability function. Therefore only the cases involving 2(except 

double cut), 3 and 4 cuts are needed to be considered. 

The number of possible network configurations, denoted hyNo. of Config[], 

with 2, 3 and 4 closest cuts to Headnode that leads to the same survivability s 

(the fraction of nodes still connected with Headnode) is given by: 

Case 1: 2 closest cuts 

No. of Config[2 cuts] = ANs X2N{1-s)-2 C'/-2 

No. of Config[double cut] = 2Ns xN{i-s)-i C/-2 

Case 2: 3 closest cuts 

No. of Config[3 cuts] = 47V<s X2N{1-s)-2 C'/-3 

Case 3: 4 closest cuts 

No. of Config[4: cuts] = ANs X2N{1-s)-2 C/-4 

The probability of obtaining a certain survivability s given that 1 links failed can 

be found by dividing the number of configurations that lead to s by the total 

number of configurations with 1 link failures(2ArC/): 

P(5|/) 二 {4iV<s X2iv(1-5)-2 C1-2 - 2Ns XA^(i_^)_i C1-2 + 

4Ns X2N{l-s)-2 C1-3 + ^Ns X2N{l-s)-2 C/_4>/2ivC/ (2.3) 

If we also taking the special cases (e.g. 1=0 or 1) into account, the final expression 

for survivability function of dual-ring networks with fault-tolerant algorithm 
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Figure 2.17: (a) Survivability functions of Dual-Ring networks with FT algo-
rithms for different number of link failures, (b) Average Reachability of networks 
with/without FT algorithm 
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Figure 2.17(a) shows the survivability function of a 50-node dual-ring net-

work with the FT algorithm implemented against different number of link fail-

ures. It is found that, as the number of link failures grows, the survivability 

function of the network shifts towards the left and becomes sharpened. It means 

that the probability of less components survived is higher. The peaks on the 

curves correspond to the most probable fraction of components survived from 

the failure. 
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Average Reachability 

Practically, finding out the average reachability of a network subject to fail-

ures is equivalent to determining its average subnet size after failures. The 

average reachability of networks with or without the FT algorithm are formu-

lated as follows: 

Without Fault-tolerant Algorithm 

When a network without FT algorithm is segmented into subnets by faults, 

only the subnet containing the headnode can maintain communications between 

survived nodes. Hence its average reachability, subjected to n node failures, is 

given by: 

^^ Average size of subnet containing headnode J]J_o 5P(5|n) 
Total number of subnets created n 

Together with the special cases of n=0 and 1，its average reachability be-

comes: 

1 if n=0 

AR=l i ^ i f n = l (2.5) 

二 州 “ ) i f n > 2 
n — 

With Fault-tolerant Algorithm 

For a network with FT algorithm, each subnet is able to maintain local com-

munications. Therefore, its average reachability will be the sum of the average 

sizes of all subnets divided by the number of subnets generated: 

从 — S u m of average sizes of all subnets 二 Eaiisubnets E L o M + ) 

Total number of subnets created n 
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Figure 2.18: Average Reachability of networks with different topologies. 

Taking the special cases n=0 and 1 into account, it becomes: 

‘ 1 if n=0 

AR=^ ^ i f n = l (2.6) 

Y^nllnibnf:tf' S..=p ŝ (s|n) .̂  ^ � � 
‘ n — 

A graph comparing the average reachability of a dual ring network with 

and without the FT algorithm is shown in Figure 2.17b. Networks with FT 

algorithm show a graceful degradation of average reachability against failures 

while the degradation in networks without the algorithm is much more abrupt. 

2.5.3 Network Availability During Restoration 

Beside survivability, maintaining high availability ofnetworks during restoration 

is also crucial. This not only protects important data from being lost, but also 

causes less disturbance to the network users. According to the FT and AH 
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algorithms, buffering memories are used to provide temporary storage for data 

during restoration. Together with the milli-second ordered failure restoration 

time, basically no data will be lost because of buffering memories overflow. As 

a result, the impact brought by the failures will almost be transparent to most 

network users and thus the network seems to be 'available' even failures have 

occurred. Figure 2.19 shows how incoming traffic is buffered in case of a link 

failure has occurred. In the figure, we assume a link failure has occurred in 

the outgoing link of the Ring-A router. This fault will quickly be detected 

and triggers the restoration process. Before the whole restoration process is 

completed, the forwarding action of receive buffers of a router-node will be 

temporarily be suspended. Within this period, the incoming packets from Ring-

A are stored in the receive buffer of Ring-A router. It is estimated the buffer 

will be full in about 15 packet's time (buffer size divided by packet size), which 

is sufficient for the whole restoration process to complete. When the restoration 

is done, the buffered packets are sent along the switched path. 

55 //s, whether valid packets have arrived in this period. If no valid packet 

arrives in this period, a fault-detection routine will be invoked since some kind 

of failures may occur in the network. 

2.6 The Prototype 

A schematic diagram of the three-node dual-ring network prototype which had 

been deployed in the Chinese University of Hong Kong is shown in Figure 2.20. 

Each node is connected to a hub which acts as a concentrator/distributor of the 

traffic flowing between the network and the host machines. Network Interface 
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Figure 2.19: This figure shows how incoming traffic is buffered during restora-
tion. 

Cards (NIC) on 16-bit AT bus are used to interface the PCs to the network. 

Other than the NIC unit, every station is equipped with a video digitizer card 

and a full duplex sound card to support multimedia applications such as video-

conferencing. The sound card, network interface card and all device drivers are 

designed and prototyped by our research group at the Chinese University of 

Hong Kong. In the field testing, the performance of the network is found to be 

satisfactory and the service outage time is less than a few percents of the total 

running time. 

Also, CUM LAUDE NET has been connected to Internet, and all standard 

Internet services like electronic mail (SMTP), remote access (TELNET), and file 

transfer (FTP) are supported. The user interface is the industry-standard X-

windows. The network has also been connected to the public telephone network 
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Figure 2.20: Configuration of network prototype under deployment in the Chi-
nese University of Hong Kong. 

through a T-1 gateway, thus allowing CUM LAUDE NET users to call up any 

telephone users and to send/receive voice mails or other customized services over 

a computer network. 

The stability of the revertive restoration scheme, i.e., the FT and AH algo-

rithms are tested by making artificial failures (e.g. disconnect the links or turn 

down the power of the node) on the network. It is found that various types of 

traffic, including video, audio and data being transmitted across the network is 

not much affected. When the failures are removed, the network heals itself and 

returns to normal working state. 
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2.7 Technical Problems Encountered 

In the development of the fault-tolerant and auto-healing algorithms for the 

CUM LAUDE NET, a number of technical problems have been encountered. 

Some are solved and some are still under investigation. For example, an an-

noying problem is encountered in link failure detection: when a cable cut has 

occurred in a fiber link, stray lights will go into the fiber and cause random 

signals to be received by the receiver. These random signals have a finite proba-

bility of getting a bit pattern matched with one of the control signal we used in 

the fault management and restoration protocols. Errors thus may occur. Two 

remedies have been devised to solve the problem. One uses the method of rep-

etition to distinguish a real control signal from a random signal, i.e., the signal 

is considered valid if it is received consecutively for a certain number of times 

(we use this approach instead of using a longer bit pattern in the packet header 

because the hardware being built limits the header length). However, this ap-

proach significantly increases the delay in protocol handling and slows down the 

restoration time. Another means to cope with the problem is: de-activate the 

receiver for a certain period of time when unrecognized signal is continuously 

received. This approach may be a bit better than the previous one, but it may 

cause significant delay for the detection of the control signal indicating that the 

link has been recovered. This in turn slows down the auto-healing time. 

Another challenging problem we have encountered is the node synchroniza-

tion problem. As mentioned previously, the last step of the auto-healing algo-

rithm is to re-initialize the afFected nodes simultaneously. Both early or late 

initialization of a certain node will cause false-triggering of failures by the other 
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nodes. But this is virtually impossible since there exist non-zero time delay in 

the node signalling process. Hence, the algorithm has to provide some tem-

poral tolerance in the 'simultaneous' re-initialization. Under-estimation of this 

time-tolerance will lead to asynchronized re-initialization and over-estimation of 

the time-tolerance will lead to slow recovery time. It has to be very careful in 

choosing an optimal value for this parameter. Moreover, the optimal value of 

time-tolerance depends on the component response time, fiber link transmission 

delay, buffering delay at node and many other parameters. Thus it takes us 

quite a lot of time to tune this parameter to an optimal value 

2.8 Chapter Summary and Future Development 

We have described the design and prototyping effort of the CUM LAUDE NET. 

Since we are still in the learning phase, many design decisions may still be 

changed or revised. In fact, the current network architecture, MAC protocols, 

restoration scheme, and network interface design have been revised many times. 

After the completion of first phase work, we are now moving to the second 

phase construction of the CUM LAUDE NET. Researches on the topics related 

to the high-speed network interface, multimedia operating system design, inte-

grated network management, high-speed transceiver and network protocols have 

been carried out already. We hope that a prototype for Level-2 Gb/s backbone 

will be available soon. 

Also included in this chapter is the distributed fault-tolerant and auto-

healing algorithms. The former allows fast recovery from failures while the 

latter permits hot replacement of faulty components. They together provide a 
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revertible restoration scheme for dual-ring networks. The performance of the al-

gorithms are studied by both simulation and some prelimenary measurements. 

It is found that dual-ring networks under the algorithms exhibit satisfactory 

performance against different reliability measures(communicative probability, 

survivability and average reachability). Also, it is measured in the prototype 

that the algorithms can be completed in milli-seconds, which is transparent to 

most existing network applications. In Chapter 4, a restoration algorithm built 

from the experience we learnt here will be introduced. It extends the range of 

application from dual-ring networks to arbitrary topology networks. 
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Chapter 3 

A Simple Experimental Network 

Management Software -

NETMAN 

3.1 Introduction to NETMAN 

NETMAN is an experimental network management software written for the 

purpose of monitoring and controlling our high-speed multimedia network pro-

totype - C U M LAUDE NET. A Motif-like graphics-based management interface 

is provided for easier manipulation. In addition, a variety of detailed views and 

window displays are available for real-time visibility of network status. The 

graphical user interface (GUI) of the software is written primarily in a powerful 

scripting language called Tcl, together with its supporting X-Window System 

Toolkit (TK). The main body of the management software is written in both 

C and Tcl/Tk for better run-time efficiency. A snap shot of NETMAN's menu 

48 



Chapter 3 A Simple Experimental Network Management Software - NETMAN 

page is being shown in Figure 3.1. 

In order to extend the functions of NETMAN to all TCP/IP-based networks 

and to support the Simple Network Management Protocol (SNMP), another 

Tcl-based network management language called Scotty is used. A number of 

features and functions such as auto-topology (a function that enables a node 

to scan and build a detail map of an IP network) is written in this language. 

These functions largely extend the range of application of NETMAN and enable 

centralized monitoring of TCP/IP networks from a single network management 

station. 

In designing the NETMAN, we focus mainly on its commercial value rather 

than anything else. It is because we want to package the NETMAN and CUM 

LAUDE NET into a single product that can provide a complete network solution 

for both LAN and WAN environment. In order to achieve the goal, we have 

put our main efforts in optimizing their compatability and interoperability, the 

coverage of the NETMAN's function and its user interface design. 

3.2 Network Management Basics 

3.2.1 The Level of Management Protocols 

Originally, many WANs included management protocols as a part of their link 

level protocols. If a packet switch began misbehaving, the network manager 

could instruct a neighboring packet switch to send it a special control packet. 

This control packet caused the switch to suspend normal operation and respond 

to commands from the manager. The manager could interrogate the packet 
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Figure 3.1: A snap shot of the NETMAN main menu page 

switch to identify problems, examine or change routes, test one of the commu-

nication interfaces, or reboot the switch. Once managers repaired the problem, 

they could instruct the switch to resume normal operations. Because manage-

ment tools were part of the lowest level protocol, managers were often able to 

control switches even if higher level protocols failed. 

Unlike a homogeneous wide area network, a TCP/IP internet does not have 

a single link level protocol. Instead, the internet consists of multiple physical 

networks interconnected by IP routers. As a result, Internet management differs 

from traditional network management. First, a single manager can control het-

erogeneous routers. Second, the controlled entities may not share a common link 

level protocol. Third, the set of machines a manager controls may lie at arbitrary 

points in an internet. In particular, a manager may need to control one or more 

machines that do not attach to the same physical network as the manager's 

computer. Thus, it may not be possible for a manager to communicate with 
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machines being controlled unless the management software uses protocols that 

provide end-to-end connectivity across an Internet. As a consequence, protocols 

for internet management operate at the application level and communicate us-

ing TCP/IP transport-level protocols. Designing internet management software 

to operate at the application level can mask out hardware differences between 

different networks. It also allows a single set of management protocol to run on 

all network elements, which means a uniform protocol can be used. Of course, 

building management software at the application level also has disadvantages. 

Unless the operating system, IP Software, and transport protocol software work 

correctly, the manager may not be able to contact the network elements(e.g., 

routers, hosts). 

3.2.2 Architecture Model 

Despite the potential disadvantages, having TCP/IP management software op-

erate at the application level has worked well in practice. The most significant 

advantage of placing network management protocols at a high level becomes 

apparent when one considers a large internet, where a manager's computer does 

not need to attach directly all physical networks that contain managed entities. 

Figure 3.2 shows an example of the architecture. 

As the figure shows, each participating host or router runs a server pro-

gram. Technically, the server is called a management agent. A manager invokes 

client software on the local host computer and specifies an agent with which it 

communicates. After the client contacts the agent, it sends queries to obtain 

information or it sends commands to change conditions in the router. Of course, 

not all routers in a large internet fall under a single manager. Most managers 
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Figure 3.2: An example of a common network management model. A network 
manager invokes a network management client (MC) software that contacts 
management server (MS) software on routers or other hosts throughout the 
network. 

only control a few routers at their local sites. 

Internet management software uses an authentication mechanism to ensure 

only authorized managers can access or control a particular router. Some man-

agement protocols support multiple levels of authorization, allowing a manager 

specific privileges on each router. For example, a specific router could be con-

figured to allow several managers to obtain information while only allowing a 

selected subset of them to change information or control the router. 
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3.2.3 TCP/IP Network Management Protocol Architec-

ture 

TCP/IP network ^ management protocols divide the management problem into 

two parts and specify separate standards for each part. The first part concerns 

communication of information. A protocol specifies how client software running 

on a manager's host communicates with an agent. The protocol defines the 

format and meaning of messages that the clients and servers exchange as well 

as the form of names and addresses. The second part concerns the data being 

managed. A protocol specifies which data items a router must keep as well as 

the name of each data item and the syntax used to express the name. 

As such, the current network management framework for TCP/IP-based in-

ternets consists of: Structure and Identification of Management Information for 

TCP/IP-based internets, RFC 1155 [30], which describes how managed objects 

contained in the MIB are defined; Management Information Base for Network 

Management of TCP/IP-based internets: MIB-II, which describes the managed 

objects contained in the MIB (and supersedes RFC 1165); and, the Simple Net-

work Management Protocol, RFC 1098 [17], which defines the protocol used to 

manage these objects. 

^Technically, there is a distinction between internet management protocols and network 
management protocols. Historically, however, T C P / I P internet management protocols are 
known as network management protocols; we will follow the accepted terminology. 
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3.2.4 A Standard Network Management Protocol On In-

ternet - S N M P 

The current standard TCP/IP network management protocol is the Simple Net-

work Management Protocol (SNMP). A second version known has SNMPv2 has 

been approved by the Internet Architecture Board (IAB). This new version adds 

ncw capabilities, including stronger security. 

As reported in RFC 1052, IAB ^ Recommendations for the Development of 

Internet Network Management Standards [19], a two-prong strategy for network 

management of TCP/IP-based internets was undertaken. In the short-term, the 

SNMP was to be used to manage nodes in the Internet community. In the long-

term, the use of OSI network management framework was to be examined. This 

strategy was quite successful in the short-term: Internet-based network manage-

ment technology was fielded, by both the research and commercial communities, 

within a few months. As a result of this, portions of the Internet community 

became network manageable in a timely fashion. 

As reported in RFC 1052, IAB Recommendations for the Development of 

Internet Network Management Standards [19], the Internet Activities Board has 

directed the Internet Engineering Task Force (IETF) to create two new working 

groups in the area of network management. One group was charged with the 

further specification and definition of elements to be included in the Management 

Information Base (MIB). The other was charged with defining the modifications 

to the Simple Network Management Protocol (SNMP) to accommodate the 

^IAB stands for Internet Architecture Board. It provides the focus and coordination for 
much of the research and development and development underlying the T C P / I P protocols, 
and guides the evolution of the Internet. 
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short-term needs of the network vendor and operations communities, and to 

align with the output of the MIB working group. The output of the SNMP 

Extensions working group is RFCll57, which incorporates changes to the initial 

SNMP definition [18] required to attain alignment with the output of the MIB 

working group. 

3.2.5 A Standard For Managed Information 

A network element being managed must keep control and status information that 

the manager can access. For example, a router keeps statistics on the status 

of its network interfaces, incoming and outgoing traffic, dropped datagrams, 

and error messages generated. Although it allows a manager to access these 

statistics, SNMP does not specify exactly which data can be accessed. Instead, 

a separate standard specifies the details. Known as a Management Information 

Base (MIB), the standard specifies the data items a host or router must keep 

and the operations allowed on each. For example, the MIB specifies that IP 

software must keep a count of all octets that arrive over each network interface, 

and it specifies that network management software can only read those values. 

The MIB for TCP/IP divides management information into eight categories as 

Table 3.1 shows. The choice of categories is important because identifiers used 

to specify items include a code for the category. 

The definition of MIB is always kept independent of the network management 

protocol. This provides advantages for both vendors and users. A vendor can 

include SNMP agent software in a product such as a router, with the guarantee 

that the software will continue to adhere to the standard after new MIB items 

are defined. A customer can use the same network management client software 
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MIB Category Licludes Information About  
system The host or router operating system 

interfaces LidividuaJ network interfaces  
addr. trans. Address Translation (e.g., ARP mappings) 

|p Litemet Protocol software  
icmp kiternet Control Message Protocol software 
tcp Transmission Control Protocol software 
udp User Datagram Protocol software  
egp Exterior Gateway Protocol software  

Table 3.1: Categories of information in the MIB. The category is encoded in the 
identifier used to specify an object. 

to manage multiple routers that have different versions of a MIB. Of course, a 

router that does not have new MIB items cannot provide the information in those 

items. However, because all routers use the same language for communications, 

they can all parse a query and either provide the requested information or send 

an error message explaining that they do not have the requested item. 

3.3 The CUM LAUDE Network Management 

Protocol Suite (CNMPS) 

Early network management protocols use a large number of commands to per-

form management functions. For example, they may use commands to: reboot 

the system, add or delete routes, disable or enable a particular network interface. 

The main disadvantages of building management protocols around commands 

arise from the resulting complexity and synchronization problem(e.g., to reboot 

several machines at the same time). The set of network management protocol 

proposed for the CUM LAUDE NET are called CUM LAUDE Network Manage-

ment Protocol Suite (CNMPS). It is a trimmed down version of SNMP specially 
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customized to adapt the CUM LAUDE NET architecture. Instead of defining a 

large set of commands, CNMPS casts all operations in a fetch-store paradigm. 

Conceptually, the CNMPS contains only two commands that allow a manager to 

fetch a value from a data item or store a value into a data item. All other oper-

ations are defined as side-effects of these two operations. For example, although 

CNMPS does not have an explicit reboot operation, an equivalent operation can 

be defined by declaring a data item that gives the time until the next reboot and 

allowing the manager to assign the item a value (including zero). This approach 

brings in a number of advantages such as stability, simplicity and flexibility. CN-

MPS is stable because its definition remains fixed, even though new data items 

are added to the MIB and new operations are defined as side-effects of storing 

into those items. CNMPS is simple to implement, understand, and debug be-

cause it avoids the complexity of having special cases for each command. Finally, 

CNMPS is especially flexible because it can accommodate arbitrary commands 

in an elegant framework. 

As Table 3.2 shows, CNMPS offers a total of four operations. These op-

erations are designed based on the fetch-store paradigm we described above. 

Operations fetch, store and reply provide the basic fetch and store operations 

(as well as replies to those operations). The trap operation allows managers 

to program servers to send information when an event occurs, for example, an 

CNMPS server (or equivalently, a router-node) can be programmed to send a 

manager a trap message whenever one of the attached networks becomes unus-

able (i.e., an interface or link goes down). At the time of this writeup, a number 

of data items have been defined in our MIB and are tabulated in Table 3.3. 

They provide the most basic information and control of routers and hosts in the 
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Command Meaning 
fetch Fetch a value from a specific variable 
reply Reply to a fetch operation  
store Store a value in a specific variable 
trap [j Reply triggered by an event  

Table 3.2: The set of possible CNMPS operations. 

CUM LAUDE MIB Variable Category Meaning | 
sysUpTime 11 system Time since last reboot • 

ifNumber interfaces Number of network interfaces 
™ t u interfaces MTU for a particular interfaces 一 

sysRebootTime system Time remaining before next reboot 
nodeId Router The ID of the node assigned during 

— initialization  
ringaRx Router — Status of the receiver in Ring-A 一 

ringaTx Router Status of the transmitter in Ring-A 
rjngbRx Router — Status of the receiver in Ring-B ~ 
ringbTx Router — Status of the receiver in Ring-B — 

routerResetTime Time remaining before next router reset 

Table 3.3: The set of MIB variables currently defined for the CNMPS. 

CUM LAUDE NET. Implementation and testing of these network management 

functions are still in progress and modifications are very likely to be made for 

better and more complete control of network elements. 

3.3.1 The Architecture 

Implicit in the CNMPS architectural model is a collection of network manage-

ment stations and network elements. A Network management station is defined 

as the station where the CNMPS client software resides. It executes management 

applications which monitor and control network elements. Network elements 

are devices such as hosts, gateways, hubs, router-nodes and the like, which have 

management agents (CNMPS servers) responsible for performing the network 

management functions requested by the network management stations. Figure 
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Figure 3.3: The architectural model used in the network management protocol 
for CUM LAUDE NET. 

3.3 shows the architectural model described above. The CNMPS is used to com-

municate management information between the network management stations 

and the agents in the network elements. 

3.3.2 Goals ofthe CNMPS 

The primary goal of CNMPS is to explicitly minimizes the number and com-

plexity of management functions realized by the management agent itself. This 

goal is attractive in at least three respects: 

• The development cost for management agent software necessary to support 

the protocol is accordingly reduced. 

• The degree of management function that is remotely supported is accord-

ingly increased, thereby admitting fullest use of network resources in the 
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management task and imposing the fewest possible restrictions on the form 

and sophistication of management tools. 

• Simplified sets of management functions are easily understood and used 

by developers of network management tools. 

A second goal of the protocol is that the functional paradigm for monitor-

ing and control 'be sufficiently extensible to accommodate additional, possibly 

unanticipated aspects of network operation and management. 
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Figure 3.4: A segment of IP network with address ranging from 137.189.97.20 
to 137.189.97.80 being explored by the Autotopology function of NETMAN. 

A third goal is that the protocol suite should be, as much as possible, in-

dependent of the architecture and mechanisms of particular hosts or particular 

routers. 
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3.4 Highlights of NETMAN 

Some enhancements have been made on NETMAN to increase its network man-

agement power. These new features include: 

• Autotopology - This feature automatically "discovers" the logical and 

topological relations of all major network devices such as routers, gateways, 

end stations and displays them in a real-time map of the routed network. 

Arbitrary-sized segments of TCP/IP network can be explored easily by 

this function. A snap shot of a certain IP network being explored is shown 

in Figure 3.4. In the figure, A segment of IP network with address ranging 

from 137.189.97.20 to 137.189.97.80 has been explored. The result is be-

ing displayed graphically in a compact window. The topological relations 

between hosts, routers and subnets are also shown. 

• Real-time Traffic Analysis - This feature offers a dynamic, real-time 

analysis of the network traffic. The total traffic exists in the network are 

broken down according to the type (e.g., IP, UDP, TCP or ICMP) or pro-

tocols (e.g., IEEE 802.3, Novell, DEC, IEEE 802.5). Their contributions 

to tlie network utilization are plotted in charts. A snap shot showing the 

traffic breakdown of a departmental local area network is shown in Figure 

3.5. 

• Fault Alarming and Configuration Management - Basic fault and 

configuration monitoring functions are implemented in NETMAN by the 

use of a Tcl network management extension known as Scotty and its toolk-

its. From this network vantage point, we can perform the following basic 

fault monitoring and configuration functions. 
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Figure 3.5: The traffic breakdown of a departmental local area network (A 
Ethernet). 

一 Report faults within the network under surveillance. 

一 Group a number of host machines or other network components to 

form a subnet and monitors it as a single entity. 

-Reconfiguration of network by the Autotopology function described 

earlier to reflect latest change. 

• Complete On-line Help - A complete set of on-line help menu is de-

signed to address majority of users' questions. Explanations to all com-

mands, functions and trouble-shooting techniques are well-documented in 

this menu. A snap shot of the help screen is shown in Figure 3.6. 
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Menu Item Functional Descriptions  
‘ Topology Network topology map displaying 

Fault Manager Favdt alarming and management 
Performance Meter Performance metering  

Gateway Utility Gateway monitoring and utilities 
Tools Common network tools  
Help On-jLine help  

Table 3.4: A brief description of the functions of the items in the main menu. 

3.5 Functional Descriptions of NETMAN 

The functions and features provided by NETMAN are divided, according to 

their uses and purposes, into six categories. Each category of functions is repre-

sented by a menu item in the main menu bar (Figure 3.1). A complete list of all 

available menu items and their functional descriptions are summarized in Table 

3.4. As described in the table, functions grouped in the menu item 'Topology， 

are used to provide network topology information such as network connectivity 

and status of components (for example, routers, gateways and host machines) to 

the system administrators. Functions grouped in the menu item 'Fault manager' 

provides fault alarming and real-time network surveillance. 'Performance meter， 

contains tools to collect network statistics such as network capacity utilization 

and to provide network traffic breakdown and analysis. 'Gateway Utility' pro-

vides utilities to retrieve data from our gateway software and conducts real-time 

gateway traffic and performance analysis. 'Tools' collected some handy network 

tools which provides convenient functions such as host reachability test, screen 

capture/printout and host information gathering. 'Help' provides on-line help 

and explanations to different items and options in the menu bar. 

63 



Chapter 3 A Simple Experimental Network Management Software - NETMAN 

Iopotogy faurtManager gerforrewcfeMeter jiatewnyUtit I<wlt fld|> 
邏 劐 _ _ _ _ 麗 _ 圓 ， 

B H M M H M M H M H M H n K 1 2 1 l 
一 — L ^ g j j ^ ^ ^ g g g g | ^ M ^ ^ f 

；'CoTnteni: ..,..„ ''''"''"Pr| 
‘ 華 麵 , "[ 

: �S T " _ p B H i ! ! H ! l ! ^ 
；Network View '_̂  

:;::::::::::¾:.::::¾:: ‘••...-..... .. ...... .. •?• .• ：•'• ：•• .... "：：• •:. •：： .... ••.. . ‘^ .:.x.:-:.x.x 
J Metwrk Vxev is • n«w featore iî lsMBted in 
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Figure 3.6: The NETMAN help screen. 

3.5.1 Topology Menu 

• Network View graphically displays the network topology map. It pro-

vides a simple and visual way for network administrators to monitor the 

network. Faults can easily be located as the faulty components will be 

displayed in red and blink. 

• Nodal View provides information that may be useful for network admin-

istrators who need to know on a node-by-node basis what is happening 

on a certain segment of the overall network. This information can also 

be obtained by double-clicking the desired object in the network view. A 

snap shot is being shown in Figure 3.7. 

• Tkined Network Editor invokes an interactive editor, as shown in Fig-

ure 3.8, for creating and maintaining network maps. A number our network 

monitoring functions are run under this environment. 
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Figure 3.7: The NETMAN nodal view 

3.5.2 Fault Manager Menu 

• Network Interface Status gives the latest report of the interface status 

of the network. A list of all the network interfaces detected will be shown. 

• Diagnostics provides a failure report of the network under investigation. 

A list of failed components and the possible causes will be shown in the 

diagnostics screen. 

3.5.3 Performance Meter Menu 

• Network Activity offers a dynamic, real-time analysis of the network 

traffic under the surveillance of NETMAN. The total traffic exists in the 

network are broken down according to the type (e.g., IP, UDP, TCP or 

ICMP) or protocols (e.g., IEEE 802.3, Novell, DEC, IEEE 802.5). Their 

contributions to the network utilization are plotted in charts. A snap 
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Figure 3.8: The interactive network editor invoked from NETMAN. 

shot showing the traffic breakdown of a departmental local area network 

is shown in Figure 3.5. 

• Node Activity displays the cumulative packet and frame statistics for 

the network. Measures such as the number of errors detected, number of 

packets dropped and the number of collisions will be shown. It also shows 

the number of multicast packets and broadcast packets that have been 

received on the network. 

• Recorder displays a graph that represents the number of successful and 

unsuccessful bytes that have been received on the network since you se-

lected the Recorder menu selection. A number of statistic measures based 

on them will also be displayed. 
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r ie3un23.ie,ci 一 o:;i;fen^filSBGaililiiHliinMKMiI 
/ iesumale.cL '二 K S w ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

.p<^-F"- : 2 S . c : �S l S ^ ^ S 5 3 ? ’ 
. , I ‘ ‘ / esuniakc Name： UghtOlie.cuhkJKk 
物 I r - ^ T - - — A<Wrertri37.m9r.41 , 、 

-• Okay 齲 50Ar grwnUacuhkJik � � ’ 
B H _ _ _ = L _ m D(vtftneforWghtOI.ie,cuhkjtk 

： ‘ M M ^ S mAim^^iiu^^ 
m — M a ^ ^ ^ ^ a » N<stomk for l̂ htOtJfeCoWfcbk 

’ [1374S9̂ .4l]:355.25«52.0 
�::�::��:::::::��:�:�:::::^^^ 

- |f^l ‘ � � 
Quil LHJ 

Figure 3.9: A number of convenient tools is provided in NETMAN, some sample 
results are being shown in this figure. 

3.5.4 Gateway Utility Menu 

• Traffic Monitor gives real-time information on the statistics gathered 

from the gateway. One can monitor the gateway performance by a graph-

ical means. 

3.5.5 Tools Menu 

The tools menu, as displayed in Figure 3.9, allows you to use some small and 

convenient tools to manage the network or to do other network administrative 

works. 

• Host Info summarizes the information such as daytime, SOA, netmask 

for a certain host and displays them in a window. 
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• Echo Test tests a network component to ascertain if it can be reached on 

the network. When selected, a box appears with a field to input the IP 

address or the name of the network element. Various parameters used in 

the echo test such as time-out and retries can be adjusted by horizontal 

scales. The profile of the box is being shown in Figure 3.10. A successful 

echo causes a result screen appears, with the message 'host responded' and 

other accounting statistics. 

• Reset node allows the network administrator to reset a certain mal-

functioning router. 

• Telnet, Ftp and Rlogin are familiar functions. However, they are still 

included in NETMAN as they provide convenient means for the users to 

access other hosts. 

• Print screen captures the screen currently displayed and allows the users 

to print it on a destined printer or save it in a file. 

3.5.6 Help Menu 

The help menu, as Figure 3.6 shows, provides on-line help for the users. Detail 

descriptions for the commands and functions, as well as the trouble-shooting 

techniques for problems are included. 

3.6 Chapter Summary 

This chapter presented an experimental network management software called 

NETMAN for the monitoring and control of the CUM LAUDE NET. Network 
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Figure 3.10: The CUM LAUDE echo test tool. 

management basics including protocol architecture, SNMP and MIB concepts 

have been discussed. After that, the proposed network management protocol 

suite to be used in NETMAN, which is designed based on the Internet net-

work management model, is introduced. Finally, detail descriptions of functions 

provided in NETMAN are documented. 
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Chapter 4 

A Local Map Based (LMB) 

Self-Healing Scheme for 

Arbitrary Topology Networks 

4-1 Introduction 

With the extensive deployment of fiber optic transmission systems, there is an 

increasingly urgent need for strategies that can protect the data from various 

kinds of network failures. A number of interesting techniques and strategies have 

been adopted to provide better restoration time and ratio. These techniques 

can be roughly divided into three main categories, namely, dedicated facility 

restoration, dynamic facility restoration and integrated restoration. Generally, 

dedicated facility restoration such as Automatic Protection Switching (APS) 

offers the fastest restoration, but it requires the largest dedicated capacity. Dy-

namic facility restoration provides slower, but more flexible and spare-capacity 
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efficient restoration than the former one. It may depend on different control 

schemes (centralized [11], distributed [7] [28] [42] or hybrid [5]), routing plans 

(pre-planned [5] [21] or dynamic [7] [42]) or restoration levels (path [15] or line 

7] [8] [42]), and may further be divided into different categories. Other than 

these two main restoration approaches, there is an integrated approach which 

combines both dedicated and dynamic facility restoration. It protects high pri-

ority traffic by dedicated switching facility and low priority traffic by Digital 

Cross-connect Systems (DCS) based alternative routing. 

The advent of high-speed DCS has had a radical impact on the design of self-

healing algorithms. It allows rapid network reconfiguration to adapt failures. 

Many algorithms utilizing this flexibility offered by DCS have been proposed [5] 

8] [16] [21] [28] [42]. They all led to drastic improvement in both restoration time 

and ratio compared to the conventional protection technique based on diversity 

routing. Restorations in sub-second range were reported in [5] [7]. 

In this chapter, a Local Map Based (LMB) Self-Healing Scheme utilizing 

the DCS is proposed. It is a path-level distributed restoration scheme that can 

provide fast and efficient network restoration. The scheme, as its name implies, 

facilitates restoration based on the information available on a local map in each 

individual DCS node. The local map is a small-sized table containing vital 

network information such as node connectivity and working/spare capacity of 

links of the region surrounding the node. It is built during network initialization, 

and is updated after each occurrence of failure. The size or scope of a local map 

is measured by the number of hops it spans, or the term 'level，which we will 

use in the rest of the chapter. With the local map stored in each DCS node, 

a simple searching and sorting on the information available in the local map 
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is sufficient to provide a set of locally optimized paths for restoration. These 

processes can be easily handled by a DCS controller and thus allow the algorithm 

to be executed at the hardware level. 

In real practice, it is intuitive for restoration algorithms to utilize spare 

resources around the failure for restoration. This leads to faster recovery and 

better utilization of spare resources. Besides, unnecessary traffic loading due 

to poor alternate path is reduced. Therefore, in most cases, a local map of 

reasonable size is sufficient to provide sub-optimal restoration for failures. From 

a study of some existing Telecom networks, we found that a local map of level 

2-3 is sufficient to provide restoration for link failures and a local map of level 3-4 

is sufficient to provide restoration for node failures. Simulations also reveal that 

the LMB scheme has a restoration efficiency approaching centralized methods 

while restoration time is even faster than fully distributed methods. 
1 I 

！ 

4.2 An Overview of Existing DCS-Based Restora-

tion Algorithms 

As stated in previous section, DCS-based restoration algorithms can roughly 

be classified into 3 categories, namely, centralized, distributed and hybrid al-

gorithm, In centralized restoration, only one central controller is responsible 

for the whole network to decide how re-routing should be done. It can provide 

optimal solution for recovery but restoration time is rather slow as the signal-

ing delays between the central controller and other nodes are large. There is 

also the danger of catastrophic failure should the central controller fail. On con-

trary, distributed restoration allows each node to decide how re-rerouting should 
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be done according to the failure situations. The earliest distributed algorithm 

is Grover,s self-healing algorithm - SHN [42], which first introduced the sender-

chooser restoration concepts. Later, a number of different distributed restoration 

algorithm has been proposed for DCS-based network. They included FITNESS 

:8], Komine's algorithm [15], Two Prong [7], Double Search-Self-Healing [16], 

RREACT [9], and MRS[33]. SHN, FITNESS and RREACT all use an sender-

chooser approach similar to Grover's, i.e., sender broadcasts help messages to 

the whole network. When these messages reach chooser, a technique known as 

reverse-linking is used to establish the restoration path. Komine's algorithm 

employed a path-level sender-chooser approach with multi-destination flooding 

and is capable of handling all single/multiple link and node failures. 

The Two-Prong and Double Search Self-Healing algorithm differ from the i 
I 

above in the sense that they have used bi-directional searching technique in 

establishing new restoration path. MRS is an integrated restoration algorithm. 

It consists of two parallel processes for both pre-planned and real time restoration 

and is capable of handling multiple-link and node failures. 

NETSPAR [5] from Bellcore is the first hybrid restoration algorithm pro-

posed. It restores the network by a distributive protocol to determine the failure 

type and uses a pre-computed plan for restoration. If the network configuration 

after failure cannot be handled by the pre-computed plans, a centralized restora-

tion algorithm is invoked. NRNN [10] is another example of hybrid algorithm 

which uses the concept of neural network to adapt failures. 
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4.3 The Network Model and Assumptions 

Figure4.1 shows the network model being used by the LMB Self-Healing Scheme. 

In the model, a network consists of nodes and links only. A node is uniquely 

identified by an ID assigned during network initialization and has a Digital 

Cross-Connect System (DCS) that is capable of switching traffic between differ-

ent channels connected to it. A link is identified by its originating and destined 

nodes and has two numbers associated with it, i.e., the number of working 

channels (or bandwidth used if the bandwidth/channel is non-uniform) and the 
t 

number of spare channels assigned for restoration. The bandwidth contained in ! 
I 

each channel can be DS3 or STS-1, which depends on the type of network in use ‘ 

(Asynchronous or Synchronous). It is assumed that each node can detect the 

failure of links connected directly to it and has all necessary information (i.e., 

working capacity, spare capacity, originating node and destined node) about its 

adjacent links. 

If a link failure occurs, all the channels contained in the failed link are lost. 

When a node failure occurs, all node directly connected to the failure node will 

detect a link failure at the same time. The scheme also assumes some failure 

detection scheme such as APS is already in use. Therefore it will be activated 

after the failure detection is completed. 
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Figure 4.1: A generalized network model for the LMB network restoration 
scheme. 

4.4 Basics of the LMB Scheme 

4.4.1 Restoration Concepts 

The idea behind the LMB scheme is based on two common characteristics ob-

served from existing restoration algorithms. First, all algorithms tend to use 

spare resources nearest to the location of failure to achieve restoration because 

this would lead to faster restoration and shorter restoration paths. Second, 

alternate path finding process can usually be completed in a localized region 

given that sufficient spare resources is provided, or the size of the region is suffi-

ciently large. These two observations directly lead to the conclusion that a good 

restoration should be, or can be made localized. Therefore, if one possesses cor-

rect network information within the affected localized region, restoration with 

efficiency approaching centralized method is obtainable. It should also be noted 

that the restoration time can be very fast as the time-consuming alternate path 

seeking process (as in most distributed restoration algorithms) is replaced by a 
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simple path searching algorithm over the network information available for the 

region. 

4.4.2 Terminology 

As mentioned in the introductory section, a local map is a small-sized table stored 

in a node which contains vital network information such as node connectivity 

and working/spare capacity of links of the surrounding region. The size or scope 

of a local map is measured by the number of hops it spans, called level Figure 

4.2 shows a local map with a maximum level of three, i.e., a level-3 local map. 

In the figure, each node in the local map is marked with the level it belongs to. 

This number actually represents the minimum number of hops a node needed 

to reach the reference node i inside the region. Those nodes farthest apart from 

the reference node i in the local map are denoted as boundary nodes. The basic 

construction unit of a local map is an entity known as node-map. It is a small 

block of data containing all information associated with a node. This includes 

the node ID, the working/spare capacity and the source/destination associated 

with each link terminating at that node. One can also interpret a node-map as 

a level-1 local map. A collection of node-maps in a restricted region of network 

forms a local map. 

In the LMB restoration scheme, nodes detecting failures are called activated 

nodes and the one finally initiates a LMB restoration process is called the Master. 

The arbitration rules to determine which one among the activated nodes will 

become the Master are as follows: For link failures, the node with a smaller node 

ID in the two affected nodes is regarded as the Master and will be responsible 

for the restoration. For node failures, the node with the smallest node ID in the 
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Figure 4.2: An example illustrating the leveling concept of the LMB scheme. In 
the figure, a level-3 local map of a certain network node i is being shown. The 
number marked inside each node represents the level it belongs to. 

affected group of nodes will serve as the Master. For all possible combinations 

of link/node failures that will happen in the network, only two types of scenario 

will occur, namely, non-overlapping and overlapping LMB restoration. Figure 

4.3(a) shows a network under two single link failures which leads to two non-

overlapping LMB restorations. In this case, each Master restores the failure 

according to its own local map and suffers no contention of spare resources. 

Figure 4.3(b) shows a network under a single link and node failure which leads 

to two overlapping LMB restoration. This leads to contention of spare resources 

between two Master nodes, which in turn reduces the restoration ratio if the 

spare resources are insufficient. 

4.4.3 Algorithm Parameters 

There are two important parameters in the LMB restoration scheme, namely, 

the local map level and search depth within the local map. The former represents 

the scope or the size of the local map. The latter represents the maximum hop 
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Figure 4.3: (a) Two single link failures occurred apart in the network and cause 
no overlapping of local maps between Master nodes, (b) A link and node failure 
occurred in network and cause overlapping of local maps between Master nodes, 
which in turn lead to contention of spare resources. 

of alternate paths to be explored inside the local map. A more detail analysis 

of their effects and meaning in the restoration will be presented later. 

4.5 Performance Assessments 

In order to characterize the performance of the LMB scheme and facilitate com-

parison with other restoration algorithms, some measures have been defined. 

They include: 

• Average Restoration time (ART): The time required by a restoration al-

gorithm to achieve maximum level of restoration, averages over a sample 

or all possible combinations of a certain failure type. Theoretically, the 

further the ART below the 2-second restoration objective [20], the lower 
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the probability a call or connection will be dropped. 

• Average Restoration Ratio (ARR): The proportion of restored channels 

or virtual circuits relative to the number of failed ones, averages over a 

sample or all possible combinations of a failure type. The ideal value of 

ARR is 1, which corresponds to the situation of all lost channels or virtual 

circuits are restored. ARR, together with ART, are the most important 

performance metric in characterizing a restoration algorithm. 

• Cumulative Restoration Ratio (CRR): It is defined as the ratio of cumu-

lative number of channels (or bandwidth) restored to the total number 

of channels lost as a function of time. The accumulation is done for all 

possible failures belong to the failure type interested. The gradient of the 

CRR curve for a restoration algorithm reflects its rate of restoration. 

• Average Message Volume (AMV): It refers to the number of restoration 

messages generated in the restoration process, averages over a sample or 

all possible combinations of a failure type. It is desirable that AMV be as 

small as possible. This can alleviate the queuing delay experienced in the 

nodes and lead to faster restoration. 

• Average Message Complexity (AMC): It is the average length of the restora-

tion messages, averages over a sample or all possible combinations of a 

failure type. Algorithms having larger AMC suffer longer transmission 

queuing and node processing delays. 

• Spare Resource Utilization (SRU): It is the ratio of spare channels re-

served to spare channels used for restoration. Higher value of this metric 
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means better utilization of spare resource, which in turn reduces the spare 

resource required in networks. 

• Range of Application (RA): It refers to the types of failures a certain 

restoration algorithm can manage. A number of proposed algorithms 

concentrate only on single link failures while some can handle multiple 

link/node failures as well. Definitely, algorithms provide a wider range of 

protection is more attractive. 

Among the metrics described above, some provide performance evaluation 

on a discrete basis and some on a continuous basis. Discrete estimators have 

the merit of easy interpretation while continuous estimator may provide more 

information. It is difficult for an algorithm to outperform another in each aspect 

described above. Rather, an algorithm may trade in some of its ability in a 

certain aspect in exchange of better performance in another. 

4.6 The LMB Network Restoration Scheme 

4.6.1 Initialization - Local Map Building 

In the construction of a level-n local map, each node in the network will selective 

broadcast an initialization message containing information of its node-map to 

the network. The hop limit of this message will be set to the maximum local 

map level n. To effectively suppress the number of messages generated in the 

broadcast, the following selective re-broadcast mechanism is used: Each initial-

ization message contains a field holding the IDs of the nodes that have received 
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the broadcast message in the last two broadcasts. Any node receiving an ini-

tialization message will re-broadcast it to the surrounding nodes that have not 

received the message in the last two broadcasts. When an initialization message 

is found to be duplicated, it will be discarded instead of re-broadcasted. The 

above message re-broadcasting mechanism reduces the message volume from 

[C^) to approximately (nC), where C is the average connectivity of the network 

and n is the maximum level of the local map. When a node receives a new 

initialization message, it will update its local map. 

4.6.2 The LMB Restoration Messages Set 

There are totally four phases in the LMB scheme, namely, the local map update 

phase, update acknowledgment phase, restoration/confirmation phase and can-

cellation phase. One unique type of messages will be used in each phase. The 

information contained in the different types of messages and their correspond-

ing storage capacity required are shown in Table 4.1. Some fields mentioned in 

the table are not commonly seen and may need further explanations. The field 

boundary-nodes holds the IDs of the boundary nodes of an activated node's local 

map. The broadcasted nodes are used to distinguish which of the neighboring 

nodes should be broadcasted. 

4.6.3 Phase I - Local Map Update Phase 

In this phase, the nodes which detect failures (the activated nodes) will 

broadcast a local map update message to other nodes within its local map. 

81 



Chapter 4 A Local Map Based (LMB) Self-Healing Scheme for Arbitrary Topology Networks 

Fields Length/(byte) Use By (Message T y p e ) ‘ 
Message Type || 1 1 2 3 4 

Source Node ID A “ 1 2 3 4 
Destination Node ID A - 2 - -

Failed Link ID 2 x A “ 1 2 3 4 
Hop Count 1 — 1 2 3 4 

Boundary Node IDs A x M 1  
Broadcasted Node IDs A x N 1  
Requested Bandwidth 1 - - 3 -

Time Lxformation 2 1  
Route A X R - - 3 -

Released Bandwidth 1 4 

Table 4.1: A table showing the information contained in different types of mes-
sages used by the LMB scheme. Type 1 for Map Update Message, Type 2 for 
Map Update Acknowledgment, Type 3 for Confirmation Message, Type 4 for 
Cancellation Message. The variables A, M, N and R stand for the address size 
to represent a node, number of boundary nodes, number of nodes broadcasted 
and number of nodes in a restoration path respectively. In most literature, A is 
assumed to be 1 or 2. However, if the mapping of network address and node ID 
is also taken into considerations, this value will be quite different. For example, 
A will be assigned to 4 in the Internet Protocol. 

When a node receives a new local map update message, the message is re-

broadcasted to all neighboring nodes that have not yet receive it (those nodes 

not specified in the field broadcasted nodes). A local map update message will 

be discarded when it reaches one of the boundary nodes or when its hop count 

reaches zero. In this way, the local maps of the activated nodes are updated. 

4.6.4 Phase II - Update Acknowledgment Phase 

When a new map update message reaches one of the boundary nodes as spec-

ified in the message, its content will be recorded in a table and a map update 

acknowledgment will be sent back to the message's source (the activated node 

sending out the message). After all boundary nodes have responded or the wait-

ing time has exceeded a predetermined time-out, the activated node will decide, 
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according to the arbitration rules mentioned previously, whether to initiate the 

restoration phase by itself (becomes the Master). 

4.6.5 Phase III - Restoration and Confirmation Phase 

After the local map update and update acknowledgment phases, the Master 

will obtain an updated local map which correctly reflects the real situation 

of the network. It will then start searching for the best alternate paths to 

restore the lost channels in its updated local map. The paths found are then 

sorted, in descending order of priority, according to two criteria: (1) Number 

of hops and (2) Spare bandwidth available. A list of possible alternate paths is 

hence constructed. Confirmation messages based on this set of possible paths 

are sent until all lost channels are restored. This phase actually consists of 

two separate phases. However, as no message generation is involved in the 

restoration process (alternate-path seeking), the restoration phase is combined 

with the confirmation phase. 

4.6.6 Phase IV - Cancellation Phase 

In the case of multiple failures, the Masters' local maps may overlap with each 

other. This may lead to contention of spare capacity in links and hence some 

requested bandwidth in the confirmation messages cannot be accommodated. 

Under this situation, a cancellation message specifying that the bandwidth can-

not be accommodated is sent back to the corresponding Master node. Cross-

connection is made along the back-track to release the reserved bandwidth for 

later trials. When a Master receives this message, it will pick an untried path(s) 
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with bandwidth equal or larger than the failed bandwidth in the alternate path 

list and send a new confirmation message. 

4.6.7 Re-Initialization 

After the whole restoration process is completed, the information of local map 

stored in the nodes within the affected areas may be outdated. Therefore a 

re-initialization process (similar to the initialization, but only nodes within the 

activated nodes' local maps will be involved) is invoked to update them. 

4.6.8 Path Route Monitoring 

In order to facilitate path level restoration, each node must have route informa-

tion on the paths passing through it. Here we use a similar approach as proposed 

by Komine[15]. Some space is reserved in the path overhead of packets to hold 

the route information, which is a record of node IDs of last two (or more, which 

depends on the scale of failure to be protected) nodes in their paths. Every 

packet passing through a node will have its oldest entry of path record being re-

placed by the new node ID. Thus, every node receives continuous and real-time 

route information which is crucial in node failure restoration. 

4.7 Performance Evaluation 

4.7.1 The Testbeds 

We have built a network simulation system to verify the validity of the LMB 

scheme and observe its performance. It is written in an event driven simulation 
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language - SIMSCRIPT II.5. In the system, each node has an common message 

buffer for incoming links and a transmission buffer for each outgoing link. The 

scheme has been tested on two mesh network models, as shown in Figure 4.4. 

Figure 4.4(a) shows the first testbed - Testbed-A we used (often it is referred to 

as the New Jersey LATA network [7] [8] [42]). It is a sample network based on a 

real LATA Network in the United States and is being used as a testbed in Yang's 

FITNESS algorithm in 1988. A number of restoration algorithms published 

later also use it as a testbed. Testbed-A consists of 11 nodes and 23 links. 

The parameters and assumptions used in this network are as follows: (1) node 

processing time for each incoming message is 10 ms, (2) message transmission 

time for each outgoing message is 10 ms, (3) link propagation delay is 0.5 ms 

and, (4) all message received by a node are queued at a FIFO before being 

processed. 

Testbed-B, as shown in Figure 4.4(b), is a testbed used in [14]. It consists 

of 15 nodes and 28 links and is designed to guarantee 100% restoration for any 

single link failure. The number of working and spare STS-ls on each link are 

represented by the figures associated with the link. A different set of parameters 

and assumptions has been used in this network model. They are: (1) a dedicated 

64 kb/s signalling channel is used for communication between the nodes, (2) 

node processing time for each incoming message is 3 ms, (3) transmission delay 

between interface port and the DCS controller is 1 ms, (4) there is no cross-

connection delay and propagation delay is well below 1 ms. 

Different parameters and assumptions are used in the above testbeds because 
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Statistics II Testbed-A T e s t b e d ^ 
Number of Nodes || 11 15 

“ Number of Links — 23 28 
Average Connectivity 4.18 3.73 
Spare/Working R a t i ~ 0.50 0.57 

Table 4.2: A table showing the statistics collected from the testbeds. 

we want to evaluate the performance of the LMB restoration shceme under dif-

ferent physical constraints, and to simulate realistic situations for it. For ex-

ample, the dedicated 64 kb/s channel assumed in Testbed-B has simulated the 

situation in SONET, which usually uses fixed-rate dedicated channels to convey 

network management signals. The absence of this constraint in Testbed-A re-

flects the relaxed bandwidth limitation for transmitting 0 A M signals in ATM 

networks. Also, the parameters used in the two testbeds have their own unique 

significance. For instance, different node processing times mean different com-

putaional powers of the DCSs and different propagation delays mean different 

geometric dimensions of the networks. 

Some topological statistics of these two testbeds are tabulated in Table 

4.2. Testbed-A provides higher average connectivity while Testbed-B has larger 

spare/working capacity ratio. These statistics is important when the perfor-

mance of restoration is compared across different networks. 

4.7.2 Simulation Results 

The efFects of changing algorithm parameters including local map level and 

search depth have been studied based on the testbeds described in the last 

subsection. Figure 4.5(a) k (b) show plots of the Cumulative Restoration Ratio 
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Figure 4.4: (a) Testbed-A, also known as New Jersey LATA Network, consists 
of 11 nodes and 23 links, (b) Testbed-B consists of 15 nodes and 28 links. 

(CRR) for different levels of local map. It is observed that the final restoration 

ratio increases as the level of local map increases, while the rate of restoration 

is approximately the same. The result is intuitive because a local map of higher 

level allows the algorithm to explore more feasible paths and hence improve the 

ultimate restoration ratio. In general, a local-map with lower level (or equiva-

lently, smaller size) results in earlier restoration as less update time is required. 

The only exception happens when the local map level equals one. This is because 

the node on the other side of the failed link is always unable to receive the map 

update message delivered by the Master and thus no update acknowledgment 

will be sent back. Consequently, the Master has to wait until timeout before it 

can start executing the LMB scheme as not all boundary nodes will acknowledge 

its map update message. This explains the late initiation of the LMB scheme 

for level-1 local maps. 
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Figure 4.6(a) h (b) illustrated the effects of changing search depth in the 

LMB scheme. Similar to an increase in the local map level, an increase in search 

depth results in better restoration ratio. This is because a larger search depth 

allows the algorithm to seek out more possible paths for restoration. Although 

the effect of increasing local map level and search depth is similar, there are still 

some conceptual differences between them. The former represents an increase 

in scope for path searching while the latter resembles a more thorough search 

in a constrained scope. Also, an increase in search depth does not require extra 

memory to store the local maps. 

In order to justify the previous performance claims of the LMB scheme, a 

comparison with Two Prong, FITNESS and SHN based on various measures has 

been made. The comparison is done on the Testbed-A and the result is shown in 

Table 4.3. For all measures including average restoration time (ART), average 

restoration ratio (ARR), spare resource utilization (SRU) and average message 

volume (AMV), the LMB scheme exhibits significant improvements. Another 

comparison of the LMB scheme with some common restoration algorithms is 

presented in Figure 4.7. In the figure, the performance of the algorithms in the 

Testbed-B is investigated by plotting their CRRs as a function of time. SHN, 

Komine's algorithm and the Level-4 LMB scheme fully restored lost channels for 

all single link failures. NETSPAR, NETRATS and Level-3 LMB scheme can re-

store 98%, 98% and 97% of all lost channels in the 28 possible single link failures 

respectively. Among the algorithms compared, LMB scheme and NETSPAR 

provide the fastest rate of restoration (lost channel restored/unit time), followed 

by SHN, NETRATS and Komine's. The completion times of Level-2, Level-3, 

Level-4 LMB scheme, NETSPAR, SHN, NETRATS and Komine's are 160, 220, 
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Figure 4.5: The EfFect of changing the level of local map on (a) New Jersey 
LATA Network, (b) The testbed Network. 

Restoration Algorithms Performance Metrics  
II ART/ms ARR SFUJ AMV “ 

FINESS II 963 100% 33.8% 107 
RREACT 435 ~ 0 0 % 27.7% 93 “ 

Two Prong 267 100% “ 28.5% —116 
LMB(lvl-2) 221 98% “ 8.7% — 38 
LMB(lvl-3) II 231 100% 8.8% 40 

Table 4.3: A performance comparison for FITNESS, RREACT, Two Prong and 
LMB Self-Healing Scheme on the New Jersey Network 

230, 370, 850, 900 and 1300 ms respectively, but the scale in the figure shows 

up to 500 ms only. 

4.7.3 Storage Requirements 

The amount of space required for the storage of local map in a node is esti-

mated by the following model. First we assumed each node is represented by 

a node ID, which takes only one byte(suitable for network with no more than 

255 nodes). Each link is uniquely specified by its source and destination node 
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Figure 4.6: Effect of changing search depth on restoration time and ratio, (a) 
Testbed-A with local map level equals 3. (b) Testbed-B with local map level 
equals 4. 

1 � •� -;:,:,,,j-^ Level^ ,  
X!;̂ !lX̂  Level-3 / 

�.9........丨.......广.........：.........：.....¥......：.................. 
0.8- /^Level� . : ；....Z..:  

�.7…\ 声:...；...丨多丨 j .j.： . .i …： 
0 . 6 - . . . . \ 1 … . 彳 ;....NETSf^R/ ^ i \....f^ 

...J ‘： / .NETRAT|̂ j___________>̂ ;̂̂ :;:;7̂ ^̂  
5 。 . 5 - - . . ! . • . : ； . . . . . . . � ::f"^^""^f^-y^. 

fl Scheme ： ^^^ : ___- ^ SHNj__̂ ^̂ Ĵ̂ ^ 
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Figure 4.7: CRR, as a function of time, illustrating the restoration performance 
for different algorithms under single-link failure in Testbed-B. 
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Level of local map Maximum memory required / bytes 
1 II 85 — 
2 289 — 
3 ‘ 901 — 
4 _ 2.74K 
5 II 10.95K 

Table 4.4: A performance comparison for FITNESS, RREACT, Two Prong and 
LMB Self-Healing Scheme on Testbed-A 

ID, thus it takes 2-byte to represent a link. It is further assume that the spare 

and working capacity of link is measured in unit of STS-1, therefore a 1-byte 

integer is sufficient to represent a capacity of up to 13 Gb/s. The estimation 

of memory required by a level-n local map, Mn, can be easily obtained by mul-

tiplying the number of node-maps inside with the memory required to store a 

single node-map {Mnode-mav)- Mathematically, it is given by: 

‘ 

( 1 + C ) X Mnode-map ^^^ = l , � 

Mn = (4.1) 
‘ C X Mn-i n > 1 

where n is the local map level and C is the average connectivity of network. 

For example, by assuming the average connectivity is 4, the amount of memory 

required at each DCS node to hold the local map for different levels is given in 

Table 4.4. It is found that only 11 Kbytes of memory is needed for a local map 

with size as large as 5. It is small compared with NETSPAR, which may need a 

few hundred kilobytes to several meagbytes of memory to provide similar level 

of failure protection. 
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4.8 The LMB Scheme on ATM and SONET 

environment 

ATM/SONET has been well recognized as the most promising technology for 

backbone and switching network. Thus considerations have been made since 

the designing phase of the LMB scheme to efficiently adapt to the environment. 

Referring to Figure 4.8, a LMB restoration message is passed to the ATM adap-

tation layer and gets segmented into ATM cells. These cells are then mapped 

onto the SONET payload. In most cases, a restoration message can be trans-

mitted in one or two frame times. The transmission delay is expected to be 

less than one millisecond. This allows effective transmission of the restoration 

message over the ATM/SONET environment. 

The LMB restoration message transfer can also be done in SONET/SDH 

environment. The approach uses the overheads provided in SONET for path, 

section and line embedded operation channels (EOC) to provide a means for the 

communication between nodes. Data Communications Channel (DCC) of band-

width 192 kb/s, 576 kb/s and 64kb/s is available for section (Dl-D3), line (D4-

Di2) and path (F2) level equipment to exchange network management message 

and maintenance information [1]. The transfer mechanism is shown in Figure 

4.9, in which some specific bytes are used to carry the LMB restoration message. 

This approach suffers from a larger message transfer delay as the transmission 

rate of these dedicated channels is relatively slow. However, it is not required 

to handle the ATM Adaptation Layer (AAL) protocol in this case. In order to 

accelerate the message transfer process, the SONET overhead bytes (Z-bytes) 

reserved can also be used. 
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Figure 4.8: The mapping of restoration message to ATM cells on SONET STS-
3c. 
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Figure 4.9: LMB restoration message transfer on SONET/SDH environment. 
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4.9 Future Work 

The LMB restoration scheme, when implemented in SONET environment, can 

protect hard failures caused by cable cut or soft failures caused by signal degra-

dation (BER exceeding predefined threshold). However, faults originating from 

software failure or malfunctioning hardware cannot be protected. The limitation 

arose because there is no reliable method to detect these errors. Thus, our next 

step is to find a reliable way to identify these failures and combines this with 

the LMB scheme to provide general protection for both software and hardware 

failures in networks. 

Another important issue in restoration algorithm design is the algorithm ro-

bustness. Intermittent failures that last for a short time interval and consecutive 

failures inside a localized region are failures that cannot be covered by the LMB 

algorithm. Two revertive restoration and failure locking techniques that can be 

used to manage these failures are under investigation. 

4.10 Chapter Summary 

This chapter described a Local Map Based (LMB) Self-Healing Scheme for fast 

and efficient restoration of networks with arbitrary topology. It has the ad-

vantages of fast recovery time, high spare resource utilization ratio, suppressed 

restoration message volume and localized restoration. These claims are justified 

by comparing the performance of the LMB scheme with most existing DCS-

based restoration algorithms. The LMB scheme also provides a wide range of 

failure coverage including link/node and multiple failures and is able to work on 

SONET and ATM environment. Besides, the scheme is flexible as it can control 
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the level of restoration and restoration time to meet practical needs by adjusting 

the algorithm parameters (local map level and search depth). 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

Network fault-tolerance is one of the most important issues in high-speed fiber 

network design. In this thesis, various topics in this area have been addressed. 

In Chapter 1, we overview the recent development and the related issues in 

survivable network planning. We point out that the survivability planning of a 

network can be separated into fault prevention, fault detection and fault adap-

tation phases. Different concerns are raised in different phases. Customer needs 

and rapid technologically advances are the main driving forces of the develop-

ment of survivable networks. 

In Chapter 2, we have presented the design and implementation of a scal-

able fault-tolerant multimedia network - CUMALAUDE NET. It is a hierarchi-

cal dual-ring network designed to serve both LANs and WANs. Level-1 CUM 

LAUDE NET has been implemented and is able to transmit multimedia data 

at a rate of 100 Mbps. The packet format currently being used is compatible 
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with TCP/IP. It has been connected to public telephone network through a T-1 

gateway and can support voice and video data. To minimize the probability 

of packet loss in bursty traffic and provide efficient medium access, a priority 

transmission control scheme has been implemented. Besides, congestion control 

is used to avoid traffic from the hub overflowing the receive and transmit buffers 

in the router-nodes. The network protocol used in CUM LAUDE is called ACTA 

(Adaptive Cycle Tunable Access). Fair access is achieved by limiting the number 

of empty slots occupied in each cycle. The cycle length is adjusted to reduce the 

packet latency and to increase the overall throughput. To increase the efficiency 

of the protocol implementation, the ACTA prOtocol has been slightly modified. 

Instead of generating a continuous stream of empty slots, a single access control 

packet containing the number of empty slots for different priority levels is used. 

This arrangement saves significant packet processing time in the router-nodes. 

Finally, a revertive restoration scheme allowing fast recovery from major types 

of hardware failures has been devised and implemented. Restoration time on 

the order of milli-second is achieved. Also, the availability of network during 

restoration is maximized by the method of packet buffering. The performance 

has been tested with different network loading and the result is found to be very 

satisfactory. 

In Chapter 3，a generalization of the revertive restoration scheme used in 

CUM LAUDE NET has been proposed. The scheme consists of two distributed 

fault-tolerant and auto-healing algorithms. They are based on the inter-communications 

and hand-shaking processes of adjacent nodes to exchange network status in-

formation in case of network failure. The fault-tolerant algorithm allows fast 

recovery from failures while the auto-healing algorithm permits hot replacement 
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of faulty components. It also explained why high network availability can be 

provided to users by the algorithm during restoration. Besides, different relia-

bility measures including communicative probability, survivability and average 

reachability have been defined to describe the performance of the algorithms. A 

three-node network prototype has been built to verify the above claims. Simula-

tions have shown that the recovery and auto-healing processes can be completed 

in milli-seconds. 

In Chapter 4, an experimental network management software (NETMAN) 

prototyped to control and monitor the CUM LAUDE NET is demonstrated. 

In NETMAN, a Motif-like graphics-based management interface is provided for 

easier manipulation. Moreover, a variety of detailed views and window displays 

are available for real-time visibility of network status. In order to extend the 

functions of NETMAN to all TCP/IP-based networks and to support the Sim-

ple Network Management Protocol (SNMP), a Tcl-based network management 

language called Scotty is used. New features and functions that largely extend 

the range of application of NETMAN have been built. 

In Chapter 5, a Local Map Based (LMB) Self-Healing Scheme for fast and 

efficient restoration of arbitrary topology networks is proposed. It is based on 

the use of information available in small-sized data tables known as local maps 

stored in each node to restore disrupted traffic. The scheme provides a wide 

range of failure coverage including link/node and multiple failures and is well-

adapted to SONET and ATM environment. The size of local map is scalable 

according to the type of failure to be protected. A study of existing Telecom 

networks reveals that local maps span 2 to 3 hops of network offer good link-

failure coverage while local maps span 3 to 4 hops are needed for node failures. 
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Since the most time-consuming alternate-path seeking process in distributed 

restoration can be replaced by simple searching and sorting algorithms executed 

in individual DCS node. Couples of advantages such as fast failure recovery, high 

spare resource utilization, suppressed restoration message volume and localized 

restoration are achieved. Simulations with different sets of parameters have 

shown that the restoration time is well below the 2-second service restoration 

objective. 

5.2 Future Work 

As indicated in the thesis, the importance of fault-tolerance and survivability 

planning in high-speed network design is well recognized. Network vendors and 

engineers have put in large efforts to design highly survivable networks. This 

atmosphere gives room for researchers to develop better solutions to the prob-

lem. In general, the following research topics on network fault-tolerance and 

survivability planning requires further investigations. 

• So far most research on network fault-tolerance is in the direction of hard-

ware failure protection. It is desirable to devise an algorithm that can 

provide complete coverage for both hardware and software failures. How-

ever, software failure detection is not as easy as its hardware counterpart. 

It requires a more complex failure detection and identification algorithm 

and hence it is unlikely to be implemented in the physical or data link 

layers. In view of this, it is desirable to develop a path-level restoration 

scheme at the network layer to cover both hardware and software failures. 

One of the most challenging problems is to design a failure detection and 

99 



Chapter 5 Conclusion and Future Work 

identification algorithm to detect and distinguish various types of fault 

caused by software failures. 

• Another issue that worth paying attention is the porting of the network 

restoration schemes from networks based on Digital Cross-connect Sys-

tems (DCSs) to Optical Cross-connect (OXC) Systems. For network with 

0 X C switches, packets are processed optically. This largely increases the 

node throughput as the electrical processing bottleneck no longer exists. 
二. ‘ ^ ^ 

Therefore, it is reasonable to predict, in the foreseeable future, the role 

now played by the DCSs will soon be taken over by the OXCs. As a 

result, there is a large potential market for the OXC-based restoration al-

gorithms. One of the implementation problems is to port the DCS-based 

restoration algorithms to OXC-based networks and to decide which net-

work control scheme should be used. Currently, there are two approaches 

available: First, a dedicated channel is used to carry the network manage-

ment information is used. Second, the 0 A M information is embedded in 

packets. The first approach has the advantage of simple implementation 

but the bandwidth that can be used to carry the 0AM information is lim-

ited. The second approach basically imposes no limit on the bandwidth 

available for the 0AM information, but it requires fast add/drop of the 

0 A M information from the high-speed data stream. Todate, key tech-

nologies such as wavelength routing [24] [29] required for implementing a 

OXC-based survivable network are mature, therefore we believe that it is 

an appropriate time to drill into this research area. 
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Appendix A 

Derivation of Communicative 

Probability 

This appendix derives the communicative probability of a dual-ring network 

with the FT algorithm. Consider a N-node dual-ring network with n node 

and 1 links failed, as shown in Figure A.1. The operative nodes remained can 

communicate if and only if they satisfy the following conditions: (1) All operative 

nodes(including the headnode) remained are consecutive. (2) There is no link 

failure in between. We may consider these two conditions separately to simplify 

the matter. The number of ways to put n failed nodes in a N-node dual-ring 

network is NCn- The number of ways to arrange the {N — n) operative nodes 

as a consecutive segment containing the headnode is (7V — n), which can be 

obtained by shifting the headnode from the start of the segment, to the end of 

the segment. Hence, the probability that the network remained communicative . 

even if n nodes failed is: 
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Figure A.1: A N-node dual-ring network with n nodes and 1 links failed. Figure 
(a) and (b) illustrate two typical scenarios that N — n nodes remain operative 
after n nodes have failed. 

聊 ] = ¥ (A.1) 
N^n 

To satisfy the second condition that no link failure in between of the operative 

node segment, we just need to ensure that all the /-link failures are occurred 

within the failed-node segment. For a certain configuration of the failed nodes, 

there are 2n+2C1 ways to put the 1 failed links within the n failed nodes. If we 

shift the whole set of failed nodes by one node, in either clockwise or counter-

clockwise direction of the dual-ring, a new configuration is obtained. In this 

new configuration, there are still 2n+2C1 ways to put the 1 failed links. However, 

2nCi ways are repeated in these two adjacent configurations. Therefore the net 

number of ways to put the 1 failed links is {2n+2Ci-2nCi). Multiplying this factor 

with the total possible configurations for the failed network segment (7V — n), 

the probability that the network remains communicative for an /-link failure 

becomes: 



pr^l；] 二 ( 斤 - n ) { 2 n + 2 C 1 - 2 n Ci) (A.2) 
mCi 

where the denominator 2nC1 is the number of ways to have 1 link failures 

on the 2N links in the dual-ring. There are three special cases which cannot 

be described by the equations above, i.e., (n, / ) = (0,1), (0,2 < 1 < N), (n + 

0,/ > 2n + 2). Their communicative probabilities are 1，2(ivC/)/(2ivC'/), and 0 

respectively. 

Summarizing the results above, the communicative probability of a dual-ring, 

with the fault-tolerant algorithm implemented, subjected to a n-node and /-link 

failure is: 

Dual-ring networks with fault-tolerant algorithm 

‘ ( " - " ) X (^-")(2n+2C/-2nCQ 几 > Q / < 2 n + 2 

NCn 2N^l ‘ — 

0 n ^ 0 , / > 2 n + 2 
P[C{n,l] = (A.3) 

^ n 二 0,2 < 1 < N 
2N^l 
1 n = 0,/ = 1 

、 
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