43 research outputs found

    Framework for privacy-aware content distribution in peer-to- peer networks with copyright protection

    Get PDF
    The use of peer-to-peer (P2P) networks for multimedia distribution has spread out globally in recent years. This mass popularity is primarily driven by the efficient distribution of content, also giving rise to piracy and copyright infringement as well as privacy concerns. An end user (buyer) of a P2P content distribution system does not want to reveal his/her identity during a transaction with a content owner (merchant), whereas the merchant does not want the buyer to further redistribute the content illegally. Therefore, there is a strong need for content distribution mechanisms over P2P networks that do not pose security and privacy threats to copyright holders and end users, respectively. However, the current systems being developed to provide copyright and privacy protection to merchants and end users employ cryptographic mechanisms, which incur high computational and communication costs, making these systems impractical for the distribution of big files, such as music albums or movies.El uso de soluciones de igual a igual (peer-to-peer, P2P) para la distribución multimedia se ha extendido mundialmente en los últimos años. La amplia popularidad de este paradigma se debe, principalmente, a la distribución eficiente de los contenidos, pero también da lugar a la piratería, a la violación del copyright y a problemas de privacidad. Un usuario final (comprador) de un sistema de distribución de contenidos P2P no quiere revelar su identidad durante una transacción con un propietario de contenidos (comerciante), mientras que el comerciante no quiere que el comprador pueda redistribuir ilegalmente el contenido más adelante. Por lo tanto, existe una fuerte necesidad de mecanismos de distribución de contenidos por medio de redes P2P que no supongan un riesgo de seguridad y privacidad a los titulares de derechos y los usuarios finales, respectivamente. Sin embargo, los sistemas actuales que se desarrollan con el propósito de proteger el copyright y la privacidad de los comerciantes y los usuarios finales emplean mecanismos de cifrado que implican unas cargas computacionales y de comunicaciones muy elevadas que convierten a estos sistemas en poco prácticos para distribuir archivos de gran tamaño, tales como álbumes de música o películas.L'ús de solucions d'igual a igual (peer-to-peer, P2P) per a la distribució multimèdia s'ha estès mundialment els darrers anys. L'àmplia popularitat d'aquest paradigma es deu, principalment, a la distribució eficient dels continguts, però també dóna lloc a la pirateria, a la violació del copyright i a problemes de privadesa. Un usuari final (comprador) d'un sistema de distribució de continguts P2P no vol revelar la seva identitat durant una transacció amb un propietari de continguts (comerciant), mentre que el comerciant no vol que el comprador pugui redistribuir il·legalment el contingut més endavant. Per tant, hi ha una gran necessitat de mecanismes de distribució de continguts per mitjà de xarxes P2P que no comportin un risc de seguretat i privadesa als titulars de drets i els usuaris finals, respectivament. Tanmateix, els sistemes actuals que es desenvolupen amb el propòsit de protegir el copyright i la privadesa dels comerciants i els usuaris finals fan servir mecanismes d'encriptació que impliquen unes càrregues computacionals i de comunicacions molt elevades que fan aquests sistemes poc pràctics per a distribuir arxius de grans dimensions, com ara àlbums de música o pel·lícules

    A Security Analysis of Some Physical Content Distribution Systems

    Get PDF
    Content distribution systems are essentially content protection systems that protect premium multimedia content from being illegally distributed. Physical content distribution systems form a subset of content distribution systems with which the content is distributed via physical media such as CDs, Blu-ray discs, etc. This thesis studies physical content distribution systems. Specifically, we concentrate our study on the design and analysis of three key components of the system: broadcast encryption for stateless receivers, mutual authentication with key agreement, and traitor tracing. The context in which we study these components is the Advanced Access Content System (AACS). We identify weaknesses present in AACS, and we also propose improvements to make the original system more secure, flexible and efficient

    A New Cryptosystem Based On Hidden Order Groups

    Get PDF
    Let G1G_1 be a cyclic multiplicative group of order nn. It is known that the Diffie-Hellman problem is random self-reducible in G1G_1 with respect to a fixed generator gg if ϕ(n)\phi(n) is known. That is, given g,gxG1g, g^x\in G_1 and having oracle access to a `Diffie-Hellman Problem' solver with fixed generator gg, it is possible to compute g1/xG1g^{1/x} \in G_1 in polynomial time (see theorem 3.2). On the other hand, it is not known if such a reduction exists when ϕ(n)\phi(n) is unknown (see conjuncture 3.1). We exploit this ``gap'' to construct a cryptosystem based on hidden order groups and present a practical implementation of a novel cryptographic primitive called an \emph{Oracle Strong Associative One-Way Function} (O-SAOWF). O-SAOWFs have applications in multiparty protocols. We demonstrate this by presenting a key agreement protocol for dynamic ad-hoc groups.Comment: removed examples for multiparty key agreement and join protocols, since they are redundan

    A Survey on Consortium Blockchain Consensus Mechanisms

    Full text link
    Blockchain is a distributed ledger that is decentralized, immutable, and transparent, which maintains a continuously growing list of transaction records ordered into blocks. As the core of blockchain, the consensus algorithm is an agreement to validate the correctness of blockchain transactions. For example, Bitcoin is a public blockchain where each node in Bitcoin uses the Proof of Work (PoW) algorithm to reach a consensus by competing to solve a puzzle. Unlike a public blockchain, a consortium blockchain is an enterprise-level blockchain that does not contend with the issues of creating a resource-saving global consensus protocol. This paper highilights several state-of-the art solutions in consensus algorithms for enterprise blockchain. For example, the HyperLedger by Linux Foundation includes implementing Practical Byzantine Fault Tolerance (PBFT) as the consensus algorithm. PBFT can tolerate a range of malicious nodes and reach consensus with quadratic complexity. Another consensus algorithm, HotStuff, implemented by Facebook Libra project, has achieved linear complexity of the authenticator. This paper presents the operational mechanisms of these and other consensus protocols, and analyzes and compares their advantages and drawbacks.Comment: under submissio

    Evaluating Byzantine-Based Blockchain Consensus Algorithms for Sarawak’s Digitalized Pepper Value Chain

    Get PDF
    A chosen network structure of Practical Byzantine Fault Tolerance (PBFT), a Byzantine-based consensus algorithm, is proposed to minimize some of the identified pain points faced by the pepper stakeholders. Byzantine-based consensus algorithms are used to achieve the same agreement on a single data value, including transactions and block state, and to maintain system continuity even when several nodes have failed to respond or transmit inconsistent messages in the blockchain network

    Security, privacy and trust in wireless mesh networks

    Get PDF
    With the advent of public key cryptography, digital signature schemes have been extensively studied in order to minimize the signature sizes and to accelerate their execution while providing necessary security properties. Due to the privacy concerns pertaining to the usage of digital signatures in authentication schemes, privacy-preserving signature schemes, which provide anonymity of the signer, have attracted substantial interest in research community. Group signature algorithms, where a group member is able to sign on behalf of the group anonymously, play an important role in many privacy-preserving authentication/ identification schemes. On the other hand, a safeguard is needed to hold users accountable for malicious behavior. To this end, a designated opening/revocation manager is introduced to open a given anonymous signature to reveal the identity of the user. If the identified user is indeed responsible for malicious activities, then s/he can also be revoked by the same entity. A related scheme named direct anonymous attestation is proposed for attesting the legitimacy of a trusted computing platform while maintaining its privacy. This dissertation studies the group signature and direct anonymous attestation schemes and their application to wireless mesh networks comprising resource-constrained embedded devices that are required to communicate securely and be authenticated anonymously, while malicious behavior needs to be traced to its origin. Privacy-aware devices that anonymously connect to wireless mesh networks also need to secure their communication via efficient symmetric key cryptography, as well. In this dissertation, we propose an efficient, anonymous and accountable mutual authentication and key agreement protocol applicable to wireless mesh networks. The proposed scheme can easily be adapted to other wireless networks. The proposed scheme is implemented and simulated using cryptographic libraries and simulators that are widely deployed in academic circles. The implementation and simulation results demonstrate that the proposed scheme is effective, efficient and feasible in the context of hybrid wireless mesh networks, where users can also act as relaying agents. The primary contribution of this thesis is a novel privacy-preserving anonymous authentication scheme consisting of a set of protocols designed to reconcile user privacy and accountability in an efficient and scalable manner in the same framework. The three-party join protocol, where a user can connect anonymously to the wireless mesh network with the help of two semi-trusted parties (comprising the network operator and a third party), is efficient and easily applicable in wireless networks settings. Furthermore, two other protocols, namely two-party identification and revocation protocols enable the network operator, with the help of the semi-trusted third party, to trace suspected malicious behavior back to its origins and revoke users when necessary. The last two protocols can only be executed when the two semi-trusted parties cooperate to provide accountability. Therefore, the scheme is protected against an omni-present authority (e.g. network operator) violating the privacy of network users at will. We also provide arguments and discussions for security and privacy of the proposed scheme

    Zone Encryption with Anonymous Authentication for V2V Communication

    Get PDF
    Vehicle-to-vehicle (V2V) communication systems are currently being prepared for real-world deployment, but they face strong opposition over privacy concerns. Position beacon messages are the main culprit, being broadcast in cleartext and pseudonymously signed up to 10 times per second. So far, no practical solutions have been proposed to en- crypt or anonymously authenticate V2V messages. We propose two cryptographic innovations that enhance the privacy of V2V communication. As a core contribution, we introduce zone-encryption schemes, where vehicles generate and authentically distribute encryption keys associated to static geographic zones close to their location. Zone encryption provides security against eavesdropping, and, combined with a suitable anonymous authentication scheme, ensures that messages can only be sent by genuine vehicles, while adding only 224 Bytes of cryptographic overhead to each message. Our second contribution is an authentication mechanism fine-tuned to the needs of V2V which allows vehicles to authentically distribute keys, and is called dynamic group signatures with attributes. Our instantiation features unlimited locally generated pseudonyms, negligible credential download-and-storage costs, identity recovery by a trusted authority, and compact signatures of 216 Bytes at a 128-bit security level

    Research Philosophy of Modern Cryptography

    Get PDF
    Proposing novel cryptography schemes (e.g., encryption, signatures, and protocols) is one of the main research goals in modern cryptography. In this paper, based on more than 800 research papers since 1976 that we have surveyed, we introduce the research philosophy of cryptography behind these papers. We use ``benefits and ``novelty as the keywords to introduce the research philosophy of proposing new schemes, assuming that there is already one scheme proposed for a cryptography notion. Next, we introduce how benefits were explored in the literature and we have categorized the methodology into 3 ways for benefits, 6 types of benefits, and 17 benefit areas. As examples, we introduce 40 research strategies within these benefit areas that were invented in the literature. The introduced research strategies have covered most cryptography schemes published in top-tier cryptography conferences
    corecore