26,759 research outputs found

    Dynamic and Scalable Large Scale Image Reconstruction

    Get PDF
    Recent approaches to reconstructing city-sized areas from large image collections usually process them all at once and only produce disconnected descriptions of image subsets, which typically correspond to major landmarks. In contrast, we propose a framework that lets us take advantage of the available meta-data to build a single, consistent description from these potentially disconnected descriptions. Furthermore, this description can be incrementally updated and enriched as new images become avail- able. We demonstrate the power of our approach by building large-scale reconstructions using images of Lausanne and Prague

    Graphical user interface for the project "dynamic" and scalable large scale image reconstruction

    Get PDF
    En este proyecto se lleva a cabo la implementación de una interfaz gráfica que dé uso al proyecto inicial de escalado de imágenes. La idea principal es que el usuario pueda manejar la información dada en forma de nube de puntos para recrear edificios. En el proyecto se pretende crear una interfaz gráfica lo más fácil y manejable posible para el usuario, haciendo todos los cálculos matemáticos de forma transparente. Esos cálculos consistirán en aproximar de la mejor forma posible los edificios elegidos por el usuario en las imágenes al entorno tridimensional. Por último, también se permitie guardar toda la información y datos de los edificios recreados.Escuela Técnica Superior de Ingeniería de TelecomunicaciónUniversidad Politécnica de Cartagen

    Streaming an image through the eye: The retina seen as a dithered scalable image coder

    Get PDF
    We propose the design of an original scalable image coder/decoder that is inspired from the mammalians retina. Our coder accounts for the time-dependent and also nondeterministic behavior of the actual retina. The present work brings two main contributions: As a first step, (i) we design a deterministic image coder mimicking most of the retinal processing stages and then (ii) we introduce a retinal noise in the coding process, that we model here as a dither signal, to gain interesting perceptual features. Regarding our first contribution, our main source of inspiration will be the biologically plausible model of the retina called Virtual Retina. The main novelty of this coder is to show that the time-dependent behavior of the retina cells could ensure, in an implicit way, scalability and bit allocation. Regarding our second contribution, we reconsider the inner layers of the retina. We emit a possible interpretation for the non-determinism observed by neurophysiologists in their output. For this sake, we model the retinal noise that occurs in these layers by a dither signal. The dithering process that we propose adds several interesting features to our image coder. The dither noise whitens the reconstruction error and decorrelates it from the input stimuli. Furthermore, integrating the dither noise in our coder allows a faster recognition of the fine details of the image during the decoding process. Our present paper goal is twofold. First, we aim at mimicking as closely as possible the retina for the design of a novel image coder while keeping encouraging performances. Second, we bring a new insight concerning the non-deterministic behavior of the retina.Comment: arXiv admin note: substantial text overlap with arXiv:1104.155

    A randomised primal-dual algorithm for distributed radio-interferometric imaging

    Get PDF
    Next generation radio telescopes, like the Square Kilometre Array, will acquire an unprecedented amount of data for radio astronomy. The development of fast, parallelisable or distributed algorithms for handling such large-scale data sets is of prime importance. Motivated by this, we investigate herein a convex optimisation algorithmic structure, based on primal-dual forward-backward iterations, for solving the radio interferometric imaging problem. It can encompass any convex prior of interest. It allows for the distributed processing of the measured data and introduces further flexibility by employing a probabilistic approach for the selection of the data blocks used at a given iteration. We study the reconstruction performance with respect to the data distribution and we propose the use of nonuniform probabilities for the randomised updates. Our simulations show the feasibility of the randomisation given a limited computing infrastructure as well as important computational advantages when compared to state-of-the-art algorithmic structures.Comment: 5 pages, 3 figures, Proceedings of the European Signal Processing Conference (EUSIPCO) 2016, Related journal publication available at https://arxiv.org/abs/1601.0402

    Scalable Dense Monocular Surface Reconstruction

    Full text link
    This paper reports on a novel template-free monocular non-rigid surface reconstruction approach. Existing techniques using motion and deformation cues rely on multiple prior assumptions, are often computationally expensive and do not perform equally well across the variety of data sets. In contrast, the proposed Scalable Monocular Surface Reconstruction (SMSR) combines strengths of several algorithms, i.e., it is scalable with the number of points, can handle sparse and dense settings as well as different types of motions and deformations. We estimate camera pose by singular value thresholding and proximal gradient. Our formulation adopts alternating direction method of multipliers which converges in linear time for large point track matrices. In the proposed SMSR, trajectory space constraints are integrated by smoothing of the measurement matrix. In the extensive experiments, SMSR is demonstrated to consistently achieve state-of-the-art accuracy on a wide variety of data sets.Comment: International Conference on 3D Vision (3DV), Qingdao, China, October 201

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    A bio-inspired image coder with temporal scalability

    Full text link
    We present a novel bio-inspired and dynamic coding scheme for static images. Our coder aims at reproducing the main steps of the visual stimulus processing in the mammalian retina taking into account its time behavior. The main novelty of this work is to show how to exploit the time behavior of the retina cells to ensure, in a simple way, scalability and bit allocation. To do so, our main source of inspiration will be the biologically plausible retina model called Virtual Retina. Following a similar structure, our model has two stages. The first stage is an image transform which is performed by the outer layers in the retina. Here it is modelled by filtering the image with a bank of difference of Gaussians with time-delays. The second stage is a time-dependent analog-to-digital conversion which is performed by the inner layers in the retina. Thanks to its conception, our coder enables scalability and bit allocation across time. Also, our decoded images do not show annoying artefacts such as ringing and block effects. As a whole, this article shows how to capture the main properties of a biological system, here the retina, in order to design a new efficient coder.Comment: 12 pages; Advanced Concepts for Intelligent Vision Systems (ACIVS 2011
    • …
    corecore