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Abstract

Recent approaches to reconstructing city-sized areas
from large image collections usually process them all at
once and only produce disconnected descriptions of image
subsets, which typically correspond to major landmarks.

In contrast, we propose a framework that lets us take
advantage of the available meta-data to build a single, con-
sistent description from these potentially disconnected de-
scriptions. Furthermore, this description can be incremen-
tally updated and enriched as new images become avail-
able. We demonstrate the power of our approach by build-
ing large-scale reconstructions using images of Lausanne
and Prague.

1. Introduction
As digital cameras and camera-equipped mobile devices

become ever more prevalent, users naturally produce ever
larger image databases [6]. Furthermore, since these de-
vices tend to possess additional sensors such as GPS, in-
clinometers and compasses, additional meta-data is often
created and stored as well.

State-of-the-art methods [18, 2] can now handle these
large image collections to build any city in a single day,
to paraphrase a recent paper [2]. However, because the
spatial locations of the images often form compact clus-
ters [5] that correspond to popular touristic sites, what is
typically reconstructed is not the whole city but individual,
unconnected 3D models corresponding to landmarks such
as the Coliseum, the Trevi Fountain, or St. Peter’s Basil-
ica [18]. This follows from the fact that most camera cal-
ibration pipelines [20, 13, 10, 17, 2] tend to break typical
image datasets, which include few if any pictures of the lo-
cations between landmarks, into separate clusters. Not only
can images of geographically distant locations end up sep-
arated, but even those of the same 3D scene can end up in
different clusters if they have been acquired under so differ-
ent lighting conditions that point correspondences are hard
to establish.

In this paper, we take advantage of the available meta-
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Figure 1. Aligning calibration clusters. (a) Rough alignment based
solely on geo-tagged images. (b) Refined alignment. The points
belonging to different clusters are shown in different colors over-
laid on green building outlines obtained from a map. The points
match the outlines far more accurately after refinement. This fig-
ure and most others in this paper are best viewed in color.

data, such as GPS, geo-tags, and models that are freely
available in Geographic Information Systems (GIS), to
overcome this fragmentation problem. Our framework is
designed to withstand the fact that such data can be wildly
inaccurate—GPS is not precise in urban environments, peo-
ple make mistakes when tagging their photos and the in-
formation in a GIS database is outdated or imprecise—
and could degrade the reconstructions instead of improving
them, if such inaccuracies where not taken into account. To
this end, we introduce an incremental approach in which
image clusters are preserved but linked to each other in a
flexible manner. Their relative positions can be updated as
additional images and information become available.

In other words, we introduce a framework that lets us
produce increasingly refined representations as the size and
richness of the image databases increases, without having
to redo all the computations from scratch. We also propose
an innovative integration scheme that can be invoked at any
time to produce an integrated city model that brings together
images, geo-tags, and GIS data into a consistent description,
given the current state of the database.

This approach to integration has two key advantages.
First, it is fast because it only requires estimating rigid trans-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147959016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


formations to bring calibrated image clusters into the same
coordinate system, as shown in Fig. 1. Second, the merger
can be carried out even if the visual evidence for merging is
weak or even absent.

This is in contrast to existing approaches that compute
a single representation, or several unconnected represen-
tations, once and for all by using only image correspon-
dences. As a result, the final bundle adjustment can take
several hours and does not scale to models at city scale. Fur-
thermore, there is no obvious way to refine it incrementally
without redoing the whole computation when new images
become available.

In the remainder of the paper, we first present the issues
that must be addressed for effective reconstruction of large
scale city models and discuss related work. We then intro-
duce our approach to representing large image collections
and the associated meta-data and to deriving an integrated
model from this representation. Finally, we present our re-
sults using images of Prague and Lausanne.

2. Issues in Large Scale Reconstruction

Reconstructing a large scale area such as a city is often
thought of as a batch process: One first acquires many im-
ages and then processes them all at once to produce a 3D
reconstruction. This is something that 3D reconstruction
pipelines [20, 13, 17, 18, 2] have become very good at by
exploiting point correspondences between millions of im-
ages. However, they make no provision for updating the
reconstruction as new images become available. In effect,
one has to gather all images before creating a reconstruction
instead of being able to incrementally refine an initial model
using whatever new data becomes available. This raises two
major issues that we discuss below.

2.1. Fragmentation of the Representation

Pipelines that rely solely on image correspondences of-
ten fail to produce a unified 3D reconstruction of the whole
area. Instead, they tend to group the images into several
disjunct clusters that correspond to different geographic lo-
cations or sometimes even to different parts of the same lo-
cation. This usually happens because there are many more
images of places of interest, which are taken from similar
viewpoints and therefore easy to match, than images of lo-
cations between these places. Because the latter images are
far sparser and taken from potentially very different view-
points, they are much harder to match and only few, if any,
correspondences can be found. If images of the same scene
are acquired under very different conditions, by night or by
day, in winter or in summer, appearances can be different
enough so that matches cannot be established either, which
is also likely to result in different clusters for the same lo-
cation.

This problem can be overcome by acquiring the images
very methodically and systematically as is done by car-
mounted vision systems mounted on cars, such as those
described in [1, 3] among many others. Such industrial-
strength systems often couple differential GPS and sophis-
ticated Inertial Measurement Units (IMU) to the cameras.
This is effective and yields reliable and accurate camera po-
sitions over large areas but is hardly applicable to the im-
ages and associated meta-data produced by standard mobile
devices such as those tourists usually carry. To exploit it ef-
fectively, one has to explicitly account for the fact that it is
potentially not only inaccurate but also completely wrong.
To the best of our knowledge, this is not a problem that has
been addressed in the context of large scale reconstruction.
The same applies to using GIS databases to improve recon-
structions since they are rarely up-to-date. The only recent
approach we are aware of aligns a single image-based re-
construction to an aerial image or a structural model [11]
but makes no attempt at updating the one using the other.

2.2. Scalability

The computational requirements of bundle adjustment
represent a major bottleneck in the production of large scale
city models. This is especially true when one attempts
to use all image correspondences to optimize globally the
structure and all the camera parameters. Because this does
not scale in terms of memory and speed, it has been pro-
posed to use a skeleton graph model [18], from which
redundant images have been removed. Nevertheless, for
large, spatially extended scenes, redundancy is low and bun-
dle adjustment quickly becomes infeasible.

Furthermore, a single large scale representation of all
images also increases the risk of introducing drift, which
is difficult both to detect and to correct. Once introduced,
drift can prevent loop closing, even when new images that
could possibly provide loop closing information become
available. It is therefore advantageous to work with small,
possibly overlapping representations, for which bundle ad-
justment is still feasible and within which drift is unlikely.
The final reconstruction can then be efficiently obtained by
keeping the representations fixed and optimizing only over
their relative positions and orientations, once sufficient ad-
ditional information has been obtained.

3. Cluster growing

The input to our system is a collection of calibrated sets
of images, or calibration clusters that could be obtained by
using anyone of the existing calibration pipelines [20, 13,
17, 16, 2]. We use our own, which initializes the internals
from EXIF-data [16]. Like the others, it produces clusters
that can be either large or consisting of as few as three im-
ages. Initially, these clusters do not overlap and are uncon-



nected.
At no point do we attempts to merge these clusters. In-

stead, as new images become available, whenever possible,
we grow the clusters by adding the new images to them.
When enough new images from a new and not yet discov-
ered place are found, the reconstruction pipeline is restarted
to build a new cluster.

To gather the images shown in this paper, we imple-
mented a simple search for geo-tagged flickr images and
location-tagged google images. These were continuously
added to our database. Under those conditions, well cali-
brated clusters have a tendency to grow fast. By contrast,
small ill-calibrated clusters have a much lower chance of
doing so. In this way, which is easy to parallelize, clusters
compete with each other so that high quality ones eventually
become dominant.

To add a new image to the database we use a bag-of-
words model. Each 3D point corresponds to a feature track
in the images, where it is observed. The feature vectors of
all tracks build the dictionary, which we use to assign each
new image to the most similar clusters and then, within the
clusters, to the most similar ones, as in [15].

The bag-of-words model is used to compute the term fre-
quency - inverse document frequency (tf-idf) vector for all
clusters and for all images. The tf-idf vector of an image
is then matched to the clusters and - for the best clusters
- to the images within those by using the normalized scalar
product [15]. A detailed feature matching is then performed
only on the best matching images. Depending on whether
the internals are known, we use a robust version of the PnP
algorithm [12, 4] which finds the external camera parame-
ters, or reject the image when not enough correspondences
can be established.

4. Aligning calibrated image clusters
In this section we describe the process of aligning cal-

ibration clusters w.r.t. each other and moving them into
a common coordinate system. Sources of information in-
clude GPS, geo-tags, digital elevation models (DEM), 2D
building models, up-vector estimates, as well as image cor-
respondences between clusters. They all provide different
constraints, which we discuss in detail later.

Formally, we wish to estimate, for each of the K cali-
bration cluster Ck, k = 1. . .K, a similarity transformation
Tk which minimizes alignment error. To perform this task,
we are given measurements which, depending on the type
of constraint, have different, unknown accuracy and which
could even be wrong. We model this problem by formu-
lating a generative model of inliers and outliers, similar in
spirit to Fransens et.al., e.g. [8, 7, 19].

We will now explain this model for one type of constraint
for which we are given measurements yi. These could be
the difference of the GPS information with the position of

camera as estimated by the cluster calibration (see 4.1.4).
Later on, we combine all constraints, each of which fol-
lows the same inlier/outlier model. The inlier measure-
ments are assumed to be generated by a normal distribu-
tion N (yi; 0,Σ) with zero mean and unknown covariance
Σ. All outliers are assumed to be generated from a uniform
distribution g. The hidden variable xi assigns each mea-
surement yi to the inlier xi = 1 or outlier model xi = 0.
We denote by θ= {Tk | k= 1 . . .K,Σ} the set of transfor-
mation parameters Tk and the parameter of the inlier model
Σ. Each similarity transformation Tk has seven parameters,
which are the components for rotation, a vector in R3 for
translation and a scalar value for scale.

The probability of a given measurement, conditioned on
θ and on the value of the hidden variable xi, is taken to be:

p(yi|θ) =
{
N (yi(θ); 0,Σ) if xi = 1
g if xi = 0 (1)

The alignment error is defined as the log likelihood given
by this model. Our solution is then the MAP estimate of
this generative model.

The strength of this model lies in the robust treatment of
outliers and in the appropriate relative contribution of the
different cues to the final solution. For instance, the impor-
tance of GPS measurements varies quite substantially from
place to place. Clusters in narrow streets are expected to be
noisier than clusters in open space. Also, it is not known a
priori how good the building outline model will be. These
variations are automatically taken into account here, which
is substantially different from a formulation that uses a fixed
robust estimator, i.e. one for which the parameters (e.g.Σ, g)
are not adjusted [8].

4.1. Alignment cues

4.1.1 Up-vector constraint

The “up-vector“ constraint refers to the fact that buildings
are mostly parallel to the Earth’s gravity vector. We esti-
mate the up-vector from each cluster to constrain the orien-
tation of that cluster. Knowing the up-vector is - as we will
see later on - also necessary for the building model con-
straint, which is purely defined in the 2-dimensional map
space.

We estimate up-vectors based on the 3D structure of the
cluster. More particulary, we assume that most image fea-
tures are detected on vertical facade structures, which is a
reasonable assumption for many urban scenes. First, for
each 3D point we estimate its normal. They correspond
to the smallest eigenvector of the covariance matrix build
from the n = 64 nearest 3D point neighbors. We take the
up-vector as being the one which is orthogonal to most 3D
point normals.



Expectation Maximization (EM) is used to find the up-
vector and to estimate the probability of each 3D point nor-
mal to be orthogonal to this up-vector. This yields the up-
vector and a segmentation of the 3D points into upright and
non-upright structures, which we will use to align clusters
to a map as will be discussed in sec. 4.1.5).

For EM initialization, we use the smallest eigenvector
computed from the covariance of all camera positions. This
vector is already upright when all images are taken from the
horizontal ground plane. We found that this approach leads
to an efficient and precise up-vector estimation in an over-
whelming majority of scenes. The direction of the up-vector
(up or down) is then computed from images that constain
this information in the EXIF-data.

The up-vector is then used to constrain the transfor-
mations Tk. Let Rk be the rotation operator of Tk and
yk = [Rkuk]3 be the z-component of the transformed up-
vector uk. Note that yk is a scalar and yk = 1 if the up-
vector is parallel with the Earth’s gravity vector. We write:

pu(yk | θ, xk =1) ∝ exp(−(yk − 1)T Σ−1
u (yk − 1)) . (2)

The up-vector constraint only has influence on the rotational
components of T . We don’t expect any outlier and set gu =
10−10. Each cluster provides one up-vector constraint, i.e.
k=1 . . .K.

4.1.2 Camera constraint

During the growing process it is not only possible but also
desirable that two clusters overlap and share one or more
images. The position of these overlapping images should
coincide after alignment. Let k and l be the index of two
clusters, and cm and cn the 3D position of shared cameras
in k and l, respectively. The probability of a measurement
yi =Tk(cm)− Tl(cn) ∈ R3 is proportional to

pc(yi | θ, xi =1) ∝ exp(−yT
i Σ−1

c yi) . (3)

Since having an outlier camera in any of the given clusters
is almost impossible to appear, we set the uniform outlier
probability to pc(yi | θ, xi = 0) = gc = 10−10. The number
of measurements yi equals the number of identical images
in all pairs of clusters.

4.1.3 Point constraint

As it was the case for the camera constraint, we can find 3D
points that are shared between overlapping clusters. The
transformation of pm and pn, being the same 3D points in
clusters k and l, to the common coordinate system yi =
Tk(pm)− Tl(pn) ∈ R3, leading to

pp(yi | θ, xi =1) ∝ exp(−yT
i Σ−1

p yi) . (4)

The camera and point constraints are based on image cor-
respondences, which are a very accurate source of informa-
tion. Outliers on 3D points exist but are rare, since we only
use 3D points that are visible in at least three cameras. An
outlier is a point which accidentally matches correctly in all
three images and we use gp = 10−4. The number of mea-
surements yi equals the number of identical 3D points in all
pairs of clusters.

4.1.4 GPS and/or geo-tags

GPS, attached to a mobile image capture device, provides
geodetic coordinates, but the calibration clusters are in
Cartesian coordinate systems. Therefore, the GPS measure-
ments are first transformed into the Earth Centered, Earth
Fixed (ECEF) coordinate system, which is a Cartesian sys-
tem capable of representing reconstructions at global scale.
GPS measures latitude and longitude as well as the altitude
of the captured image. Geo-tags are manually supplied indi-
cations of the image position on a map and provide only lati-
tude and longitude. We fill this gap using the DEM, which is
freely available on [9]. GPS data, DEM and geo-tags are the
most unreliable information sources. Outliers are expected
to appear, mostly because of users who geo-tag wrongly.
GPS has a possibly noisy signal but does not generate real
ourliers.

Let pg
i be the position of a camera i in the ECEF coor-

dinate system as given by GPS or geo-tags+DEM, pc
i the

position of the camera i given by the image based calibra-
tion of cluster k and yi =Tk(pc

i )−pg
i ∈ R3 the difference of

its transformation into the common coordinate system with
the GPS position, than we can write the inlier distribution
as:

pg(yi |θ, xi =1) ∝ exp
(
−(yi)T Σ−1

g (yi)
)
. (5)

The number of GPS constraints equals the number of im-
ages where GPS/geo-tags are available.

4.1.5 Structure alignment with GIS building model

For many cities, the footprint model of all buildings is avail-
able, for instance see [14] for a free database. Real 3D
building models are less common and usually only include
important buildings and tourist attractions. For this reason,
we will make the analysis based on 2D building models.
We will assume here that the footprint of a building coin-
cides with its facade. To align it with the footprint model,
we first need to segment all 3D points in a calibrated cluster
that lie on the facade. Our segmentation is based on the 3D
point normals of sec.4.1.1. Points with their normal close
to perpendicular w.r.t the gravity are assumed to be facade
points.

Let pi be a 3D point which is perpendicular to the up-
vector. pi is transformed by Tk to the common coordinate



Figure 2. Error distributions extracted from the Lausanne and Prague dataset in meters. The error of mobile GPS devices attached to the
camera (left: latitude/longitude, middle: altitude error). The right figure shows the error distribution for images from Flickr, where users
have marked the image position manually. The last bin (50m) collects all larger errors.

system and, to relate it with the building model, further pro-
jected by P in the 2D map coordinate system. To measure
alignment, we create a distance image D in the 2D map
space which is zero on all facades and increases from there
in all directions. The quality of a particular transformation
is then measured by the value of this distance function

yi = D (PTk(pi)) , (6)
pb(yi |θ, xi =1) ∝ exp (−λmyi) .

Note that, unlike for the other constraints that are normally
distributed, we use here an exponentially distributed inlier
model, which follows the error distribution, given by the
values of the distance function D ∈ [0 . . .].

For the building model we can assume high accuracy but
many outliers, since the building map often contains only
big buildings. Small upright structures which are present in
our image based reconstructions, but not in the map, have to
be assigned to the outlier model so as to not disturb the op-
timal solution. Another source of errors involves outdated
building models. To account for this, we use in all experi-
ments gb =0.2 for the outlier model.

We use bi-linear interpolation on the distance image to
calculate its value and derivative for PT (pi). These build-
ing models constrain the orientation component of T and
two components of the translation, but it provides no in-
formation on the absolute height of the aligned clusters.
GPS, also provides only very noisy measurements on the
height. To constrain this remaining degree of freedom we
use a DEM model, which is defined next.

4.1.6 Altitude constraint

Consider the subset of all 3D points where normals are
orthogonal to the up-vector. An even further subset is
the collection of points that have minimal height w.r.t the
up-direction. These points pi are likely to represent the
ground level, and their z-component should, after apply-
ing the transformation Tk(pi), be similar to the altitude

A(PTi(pi)) provided by [9]. Thus:

yi = A (PTk(pi))− [T (pi)]3 (7)
pa(yi |θ, xi =1) ∝ exp

(
−yT

i Σ−1yi

)
.

Many outliers are expected here and we use ga =0.2.

4.2. Optimization

In the previous section we described all the cues that we
can use. We combine them by a non-linear optimization of
the global objective function. First, the availability of the
different cues is checked for each cluster and image. We
select only those clusters for which at least 30 images are
equipped with GPS or geo-tags. Than we use these to find
the initial transformation Ti by a RANSAC procedure.

We alternate further between optimizing (i) over the pa-
rameters of all rigid transformations Tk and (ii) over the pa-
rameters of all inlier distributions Σ and the expected values
of the hidden variables E[xi], which weight each individ-
ual constraint according to its inlier probability. The rigid
transformations are optimized by Levenberg-Marquardt, for
which the Jacobians can be computed analytically for all the
log-likelihood terms in eq. 1. The inlier distributions and
the expected values of xi can be computed in closed form
from the same log-likelihood [19, 7]. The process converges
fast and after five iterations the parameters stabilize for all
practical purposes.

5. Experiments
We present results obtained using 10735 images of Lau-

sanne, which is a true three-dimensional city whose center
is built on steep hills, and 17043 of Prague, which has a
well photographed city center with many interesting sights,
in addition to major landmarks.

In the remainder of this section, we first show that, once
the full model is built, camera locations are known with
much better accuracy than what the GPS and geo-tags ini-
tially provided. We then demonstrate that we can obtain



Figure 3. Three dimensional visualization of the Lausanne reconstruction of fig. 1 b.

more consistent representations than direct bundle adjust-
ment over the whole dataset. Finally, we give integration
examples of clusters which are far apart and which cannot
be connected by image correspondences.

5.1. GPS and Geo-Tagging Accuracy

After alignment, the calibration clusters can be super-
posed on a preexisting map of the buildings, which has rel-
atively high accuracy, as shown in Fig. 1. Fig. 3 shows the
corresponding 3D rendering of this current reconstruction
state for Lausanne.

Particularly amidst high buildings in narrow streets, GPS
is notoriously inaccurate and it is fair to assume that the
camera locations we obtain after alignment are of far greater
accuracy than the GPS measurements.

It then becomes possible to actually estimate the accu-
racy of both the GPS data and the user-supplied annotations.
By combining the results we obtained on the Lausanne and
Prague data, we obtain the error distributions depicted by
Fig. 2.

5.2. Algorithmic Behavior

It is well known that bundle adjustment of long “strings”
of images suffers from accumulation of error. Not only that,
but information propagation is limited by the availability
of matches between images and so convergence in long se-
quences with only matches between neighboring images is
often slow.

Therefore, by not attempting to bundle adjust all the im-
ages for which correspondences exist, but instead running
our cluster alignment procedure, we can achieve better re-
sults in much less time. Fig. 4 illustrates the differences for
four clusters from Prague which partially overlap. Our ap-
proach also makes it straightforward to use any number of
additional constraints.

Furthermore, our method makes it possible to align clus-

ters, even when they share absolutely no image matches.
This is illustrated in Fig. 5. The cathedral tower has been
photographed from different sides, but there are no im-
age matches connecting the sides. GPS alignment alone
does not result in visually pleasing result, but the proposed
method successfully reconstructs the entire tower.

6. Conclusions
We have proposed an approach to handling image data

sets that scales to city-sized models and can be dynamically
updated as new images become available, without having to
redo the whole computation from scratch. Furthermore, it
results in higher accuracy when meta-data is available.

In practice, the ability to exploit meta-data is important
because preexisting city maps can easily be found for most
cities and it is by now a rare image database that does not
include geo-tagged images.

The alignment of consistent smaller clusters, for which
bundle adjustment is still feasible, has advantages over a
global bundle adjustment for many practical settings and if
additional information is taken into account. Such a formu-
lation scales to more images, by orders of magnitude, and
can solve reconstruction problems for which a global bundle
adjustment does not fit to speed and memory requirements.
In addition, problems of drift and weakly connected images
are less pronounced.

In future work, we will develop more semantic descrip-
tions of the 3D models and detect changes with a view to
developing automated methods for updating these models.
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