51,671 research outputs found

    Structural dynamic interaction with solar tracking control for evolutionary Space Station concepts

    Get PDF
    The sun tracking control system design of the Solar Alpha Rotary Joint (SARJ) and the interaction of the control system with the flexible structure of Space Station Freedom (SSF) evolutionary concepts are addressed. The significant components of the space station pertaining to the SARJ control are described and the tracking control system design is presented. Finite element models representing two evolutionary concepts, enhanced operations capability (EOC) and extended operations capability (XOC), are employed to evaluate the influence of low frequency flexible structure on the control system design and performance. The design variables of the control system are synthesized using a constrained optimization technique to meet design requirements, to provide a given level of control system stability margin, and to achieve the most responsive tracking performance. The resulting SARJ control system design and performance of the EOC and XOC configurations are presented and compared to those of the SSF configuration. Performance limitations caused by the low frequency of the dominant flexible mode are discussed

    Optimisation of a high-efficiency solar-driven organic rankine cycle for applications in the built environment

    Get PDF
    Energy security, pollution and sustainability are major challenges presently facing the international community, in response to which increasing quantities of renewable energy are to be generated in the urban environment. Consequently, recent years have seen a strong increase in the uptake of solar technologies in the building sector. In this work, the potential of a solar combined heat and power (CHP) system based on an organic Rankine cycle (ORC) engine is investigated in a domestic setting. Unlike previous studies that focus on the optimisation of the ORC subsystem, this study performs a complete system optimisation considering both the design parameters of the solar collector array and the ORC engine simultaneously. Firstly, we present thermodynamic models of different collectors, including flat-plate and evacuated-tube designs, coupled to a non-recuperative sub-critical ORC architecture that delivers power and hot water by using thermal energy rejected from the engine. Optimisation of the complete system is first conducted, aimed at identifying operating conditions for which the power output is maximised. Then, hourly dynamic simulations of the optimised system configurations are performed to complete the system sizing. Results are presented of: (i) dynamic 3-D simulations of the solar collectors together with a thermal energy storage tank, and (ii) of an optimisation analysis to identify the most suitable working fluids for the ORC engine, in which the configuration and operational constraints of the collector array are considered. The best performing working fluids (R245fa and R1233zd) are then chosen for a whole-system annual simulation in a southern European climate. The system configuration combining an evacuated-tube collector array and an ORC engine is found to be best-suited for electricity prioritisation, delivering an electrical output of 3,605¿kWh/year from a 60¿m2 collector array. In addition, the system supplies 13,175¿kWh/year in the form of domestic hot water, which is equivalent to more than 6 times the average annual household demand. A brief cost analysis and comparison with photovoltaic (PV) systems is also performed, where despite the lower PV investment cost per kWel, the levelised energy costs of the different systems are found to be similar if the economic value of the thermal output is taken into account. Finally, a discussion of the modelled solar-CHP systems results shows how these could be used for real applications and extended to other locationsPeer ReviewedPostprint (updated version

    Monitoring and management of power transmission dynamics in an industrial smart grid

    Get PDF
    This article is a position paper whose purpose is to give the context for presentations in a special session at PowerTech 2013. The special session is being proposed by the EU FP7 Real-Smart Consortium, a Marie Curie Industry-Academic Pathways and Partnerships project. The paper gives an overview of topics on modeling, monitoring and management of power transmission dynamics with participation from large industrial loads. © 2013 IEEE

    Integrated controls and health monitoring for chemical transfer propulsion

    Get PDF
    NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed

    Dried chili seeds separator machine

    Get PDF
    Chili is a fruit of Capsicum plants [1]. The fruit is known as vegetable which is cultivated as food. Also, it is known as ‘Lada’ (in East Coast) or chili. It produces small flowers that turn into fruits in every branch of leaves. Chili is rich in vitamin C, vitamin A and minerals such as iron, calcium, phosphorus, sodium and potassium. Moreover, this vegetable is said to be worth in terms of relieving pain associated with obesity. Besides, it is good for blood circulation and to sore throat infections. Additionally, Cayenne pepper contains substance that prevents blood clotting, from a disease called thrombosis [2]

    A Wide Area Hierarchical Voltage Control for Systems with High Wind Penetration and an HVDC Overlay

    Get PDF
    The modern power grid is undergoing a dramatic revolution. On the generation side, renewable resources are replacing fossil fuel in powering the system. On the transmission side, an AC-DC hybrid network has become increasingly popular to help reduce the transportation cost of electricity. Wind power, as one of the environmental friendly renewable resources, has taken a larger and larger share of the generation market. Due to the remote locations of wind plants, an HVDC overlay turns out to be attractive for transporting wind energy due to its superiority in long distance transmission of electricity. While reducing environmental concern, the increasing utilization of wind energy forces the power system to operate under a tighter operating margin. The limited reactive capability of wind turbines is insufficient to provide adequate voltage support under stressed system conditions. Moreover, the volatility of wind further aggravates the problem as it brings uncertainty to the available reactive resources and can cause undesirable voltage behavior in the system. The power electronics of the HVDC overlay may also destabilize the gird under abnormal voltage conditions. Such limitations of wind generation have undermined system security and made the power grid more vulnerable to disturbances. This dissertation proposes a Hierarchical Voltage Control (HVC) methodology to optimize the reactive reserve of a power system with high levels of wind penetration. The proposed control architecture consists of three layers. A tertiary Optimal Power Flow computes references for pilot bus voltages. Secondary voltage scheduling adjusts primary control variables to achieve the desired set points. The three levels of the proposed HVC scheme coordinate to optimize the voltage profile of the system and enhance system security. The proposed HVC is tested on an equivalent Western Electricity Coordinated Council (WECC) system modified by a multi-terminal HVDC overlay. The effectiveness of the proposed HVC is validated under a wide range of operating conditions. The capability to manage a future AC/DC hybrid network is studied to allow even higher levels of wind

    Power system planning methods and experiences in the energy transition framework

    Get PDF
    In recent years, the unbundling of the electricity market together with the profound “energy landscape” transformation have made the transmission network development planning a very complex multi-objective problem. The climate and energy objectives defined at the European level aim for a deepening integration of the European power markets and the electricity sector is recognized as one of the main contributors to the energy transition from a thermal-based power system to a renewable-based one. In the deregulated framework, network planners have to satisfy multiple different objectives, including: facilitating competition between market participants, providing non-discriminatory access to all generation resources for all customers, including green resources, mitigating transmission congestions, efficiently allocating the network development actions, minimizing risks associated with investments, enhancing power system security and reliability and minimizing the transmission infrastructure environmental impact. Further complexities are related to the significant uncertainty about future energy scenarios and policy rules. In particular, the increasing distributed renewable energy source integration dictated by the European energy targets, raises several issues in terms of future power flow patterns, power system flexibility and inertia requirements, and cost-effective development strategies identification. The thesis aims to investigate various aspects concerning the transmission network planning, with particular reference to the Italian power system and the experience gained working in the “Grid Planning and Interconnections Department” of Terna, the Italian Transmission System Operator. One of the main topics of this work is the use of the series compensation to exploit operating limits of underused portions of the HV – EHV transmission network in parallel to critically loaded ones, in order to control and provide alternative paths for power flows. The purpose is to extend the allowable transmission capacity across internal market sections. To this aim, a specific application of series compensation (together with reconductoring) to exploit the transfer capacity of a 250 km long, 230 kV-50 Hz transmission backbone spanning the critical section Centre South – Centre North is illustrated. The results are validated by means of static assessment and similar applications could be hypothesized for grid portions in the South of Italy where the primary network is mainly unloaded whereas the sub-transmission network reaches high levels of loading because of the huge renewable generation capacity situated there. A further characteristic of modern power systems is the need to integrate high levels of renewable energies while fulfilling reliability and security requirements. The offshore wind farms perspectives in the Italian transmission system are evaluated, considering policies, environmental and technical aspects. Furthermore, the adoption of the HVDC technology in parallel to the AC traditional system topic is addressed: planning static and dynamic studies involving a real HVDC Italian project are proposed. In particular, the impact of the planned HVDC link on the loadability and the dynamic performance of the system is investigated in medium and in long-term future planning scenarios. The evaluation of the thermal performance of a specific grid portion in the South of Italy affected by significant increase of power generation by variable energy sources is proposed both in the current situation and in the future scenarios in order to highlight the benefits related to the presence of the planned network reinforcements. Finally, some issues of the prospective reduced inertia systems are illustrated and a possible methodology to evaluate the economic impact of inertia constraints in long-term market studies is proposed. In the light of the emerging concept of power system flexibility, traditional planning evolved to assess the ability of the system to employ its resources when dealing with the changes in load demand and variable generation. Flexibility analyses of the Italian power system, carried out in terms of some market studies-based metrics and grid infrastructure-based indexes, are provided. The flexibility requirements assessment in planning scenarios are of interest to evaluate the impact of network development actions and have been included in the yearly National Development Plan. The last research topic involves the cost-effective target capacity assessment methodology developed by Terna in compliance with the Regulator directives presented together with the results yielded by its application to each significant market section of the Italian power system. The methodology has been positively evaluated from academic independent expert reviewers, and its outputs are relevant for the policy makers, regulatory authority and market participant to assess and co-design the energy transition plan of a future European interconnected power system
    corecore