32 research outputs found

    Proceedings of the Second International Workshop on HyperTransport Research and Applications (WHTRA2011)

    Get PDF
    Proceedings of the Second International Workshop on HyperTransport Research and Applications (WHTRA2011) which was held Feb. 9th 2011 in Mannheim, Germany. The Second International Workshop for Research on HyperTransport is an international high quality forum for scientists, researches and developers working in the area of HyperTransport. This includes not only developments and research in HyperTransport itself, but also work which is based on or enabled by HyperTransport. HyperTransport (HT) is an interconnection technology which is typically used as system interconnect in modern computer systems, connecting the CPUs among each other and with the I/O bridges. Primarily designed as interconnect between high performance CPUs it provides an extremely low latency, high bandwidth and excellent scalability. The definition of the HTX connector allows the use of HT even for add-in cards. In opposition to other peripheral interconnect technologies like PCI-Express no protocol conversion or intermediate bridging is necessary. HT is a direct connection between device and CPU with minimal latency. Another advantage is the possibility of cache coherent devices. Because of these properties HT is of high interest for high performance I/O like networking and storage, but also for co-processing and acceleration based on ASIC or FPGA technologies. In particular acceleration sees a resurgence of interest today. One reason is the possibility to reduce power consumption by the use of accelerators. In the area of parallel computing the low latency communication allows for fine grain communication schemes and is perfectly suited for scalable systems. Summing up, HT technology offers key advantages and great performance to any research aspect related to or based on interconnects. For more information please consult the workshop website (http://whtra.uni-hd.de)

    Accelerating Network Communication and I/O in Scientific High Performance Computing Environments

    Get PDF
    High performance computing has become one of the major drivers behind technology inventions and science discoveries. Originally driven through the increase of operating frequencies and technology scaling, a recent slowdown in this evolution has led to the development of multi-core architectures, which are supported by accelerator devices such as graphics processing units (GPUs). With the upcoming exascale era, the overall power consumption and the gap between compute capabilities and I/O bandwidth have become major challenges. Nowadays, the system performance is dominated by the time spent in communication and I/O, which highly depends on the capabilities of the network interface. In order to cope with the extreme concurrency and heterogeneity of future systems, the software ecosystem of the interconnect needs to be carefully tuned to excel in reliability, programmability, and usability. This work identifies and addresses three major gaps in today's interconnect software systems. The I/O gap describes the disparity in operating speeds between the computing capabilities and second storage tiers. The communication gap is introduced through the communication overhead needed to synchronize distributed large-scale applications and the mixed workload. The last gap is the so called concurrency gap, which is introduced through the extreme concurrency and the inflicted learning curve posed to scientific application developers to exploit the hardware capabilities. The first contribution is the introduction of the network-attached accelerator approach, which moves accelerators into a "stand-alone" cluster connected through the Extoll interconnect. The novel communication architecture enables the direct accelerators communication without any host interactions and an optimal application-to-compute-resources mapping. The effectiveness of this approach is evaluated for two classes of accelerators: Intel Xeon Phi coprocessors and NVIDIA GPUs. The next contribution comprises the design, implementation, and evaluation of the support of legacy codes and protocols over the Extoll interconnect technology. By providing TCP/IP protocol support over Extoll, it is shown that the performance benefits of the interconnect can be fully leveraged by a broader range of applications, including the seamless support of legacy codes. The third contribution is twofold. First, a comprehensive analysis of the Lustre networking protocol semantics and interfaces is presented. Afterwards, these insights are utilized to map the LNET protocol semantics onto the Extoll networking technology. The result is a fully functional Lustre network driver for Extoll. An initial performance evaluation demonstrates promising bandwidth and message rate results. The last contribution comprises the design, implementation, and evaluation of two easy-to-use load balancing frameworks, which transparently distribute the I/O workload across all available storage system components. The solutions maximize the parallelization and throughput of file I/O. The frameworks are evaluated on the Titan supercomputing systems for three I/O interfaces. For example for large-scale application runs, POSIX I/O and MPI-IO can be improved by up to 50% on a per job basis, while HDF5 shows performance improvements of up to 32%

    Proceedings of the 7th International Conference on PGAS Programming Models

    Get PDF

    Acceleration of the hardware-software interface of a communication device for parallel systems

    Full text link
    During the last decades the ever growing need for computational power fostered the development of parallel computer architectures. Applications need to be parallelized and optimized to be able to exploit modern system architectures. Today, scalability of applications is more and more limited both by development resources, as programming of complex parallel applications becomes increasingly demanding, and by the fundamental scalability issues introduced by the cost of communication in distributed memory systems. Lowering the latency of communication is mandatory to increase scalability and serves as an enabling technology for programming of distributed memory systems at a higher abstraction layer using higher degrees of compiler driven automation. At the same time it can increase performance of such systems in general. In this work, the software/hardware interface and the network interface controller functions of the EXTOLL network architecture, which is specifically designed to satisfy the needs of low-latency networking for high-performance computing, is presented. Several new architectural contributions are made in this thesis, namely a new efficient method for virtual-tophysical address-translation named ATU and a novel method to issue operations to a virtual device in an optimal way which has been termed Transactional I/O. This new method needs changes in the architecture of the host CPU the device is connected to. Two additional methods that emulate most of the characteristics of Transactional I/O are developed and employed in the development of the EXTOLL hardware to facilitate usage together with contemporary CPUs. These new methods heavily leverage properties of the HyperTransport interface used to connect the device to the CPU. Finally, this thesis also introduces an optimized remote-memory-access architecture for efficient split-phase transactions and atomic operations. The complete architecture has been prototyped using FPGA technology enabling a more precise analysis and verification than is possible using simulation alone. The resulting design utilizes 95 % of a 90 nm FPGA device and reaches speeds of 200 MHz and 156 MHz in the different clock domains of the design. The EXTOLL software stack is developed and a performance evaluation of the software using the EXTOLL hardware is performed. The performance evaluation shows an excellent start-up latency value of 1.3 μs, which competes with the most advanced networks available, in spite of the technological performance handicap encountered by FPGA technology. The resulting network is, to the best of the knowledge of the author, the fastest FPGA-based interconnection network for commodity processors ever built

    Extending HyperTransport Protocol for Improved Scalability

    Get PDF
    HyperTransport 3.10 is the best open standard communication technology for chip-to-chip interconnects. However, its extraordinary features are of little help when building mid- and large-scale systems because it is unable to natively scale beyond 8 computing nodes. Therefore, it must be complemented by other interconnect technologies. The HyperTransport Consortium has intensively stimulated discussions among its high-level members in order to overcome those shortcomings. The result is the High Node Count HyperTransport Specification, which defines protocol extensions to the HyperTransport I/O Link Specification Rev. 3.10 that enable HyperTransport to natively support high numbers of computing nodes, typical of large scale server clustering and High Performance Computing (HPC) applications. This extension has been carefully designed in such a way that it extends the maximum number of connected devices to a number large enough to support current and future scalability requirements, while preserving the excellent features that made HyperTransport successful and keeping full backward compatibility with it

    Implicit Actions and Non-blocking Failure Recovery with MPI

    Full text link
    Scientific applications have long embraced the MPI as the environment of choice to execute on large distributed systems. The User-Level Failure Mitigation (ULFM) specification extends the MPI standard to address resilience and enable MPI applications to restore their communication capability after a failure. This works builds upon the wide body of experience gained in the field to eliminate a gap between current practice and the ideal, more asynchronous, recovery model in which the fault tolerance activities of multiple components can be carried out simultaneously and overlap. This work proposes to: (1) provide the required consistency in fault reporting to applications (i.e., enable an application to assess the success of a computational phase without incurring an unacceptable performance hit); (2) bring forward the building blocks that permit the effective scoping of fault recovery in an application, so that independent components in an application can recover without interfering with each other, and separate groups of processes in the application can recover independently or in unison; and (3) overlap recovery activities necessary to restore the consistency of the system (e.g., eviction of faulty processes from the communication group) with application recovery activities (e.g., dataset restoration from checkpoints).Comment: Accepted in FTXS'22 https://sites.google.com/view/ftxs202

    Partial aggregation for collective communication in distributed memory machines

    Get PDF
    High Performance Computing (HPC) systems interconnect a large number of Processing Elements (PEs) in high-bandwidth networks to simulate complex scientific problems. The increasing scale of HPC systems poses great challenges on algorithm designers. As the average distance between PEs increases, data movement across hierarchical memory subsystems introduces high latency. Minimizing latency is particularly challenging in collective communications, where many PEs may interact in complex communication patterns. Although collective communications can be optimized for network-level parallelism, occasional synchronization delays due to dependencies in the communication pattern degrade application performance. To reduce the performance impact of communication and synchronization costs, parallel algorithms are designed with sophisticated latency hiding techniques. The principle is to interleave computation with asynchronous communication, which increases the overall occupancy of compute cores. However, collective communication primitives abstract parallelism which limits the integration of latency hiding techniques. Approaches to work around these limitations either modify the algorithmic structure of application codes, or replace collective primitives with verbose low-level communication calls. While these approaches give fine-grained control for latency hiding, implementing collective communication algorithms is challenging and requires expertise knowledge about HPC network topologies. A collective communication pattern is commonly described as a Directed Acyclic Graph (DAG) where a set of PEs, represented as vertices, resolve data dependencies through communication along the edges. Our approach improves latency hiding in collective communication through partial aggregation. Based on mathematical rules of binary operations and homomorphism, we expose data parallelism in a respective DAG to overlap computation with communication. The proposed concepts are implemented and evaluated with a subset of collective primitives in the Message Passing Interface (MPI), an established communication standard in scientific computing. An experimental analysis with communication-bound microbenchmarks shows considerable performance benefits for the evaluated collective primitives. A detailed case study with a large-scale distributed sort algorithm demonstrates, how partial aggregation significantly improves performance in data-intensive scenarios. Besides better latency hiding capabilities with collective communication primitives, our approach enables further optimizations of their implementations within MPI libraries. The vast amount of asynchronous programming models, which are actively studied in the HPC community, benefit from partial aggregation in collective communication patterns. Future work can utilize partial aggregation to improve the interaction of MPI collectives with acclerator architectures, and to design more efficient communication algorithms

    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009)

    Get PDF
    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009) which was held Feb. 12th 2009 in Mannheim, Germany. The 1st International Workshop for Research on HyperTransport is an international high quality forum for scientists, researches and developers working in the area of HyperTransport. This includes not only developments and research in HyperTransport itself, but also work which is based on or enabled by HyperTransport. HyperTransport (HT) is an interconnection technology which is typically used as system interconnect in modern computer systems, connecting the CPUs among each other and with the I/O bridges. Primarily designed as interconnect between high performance CPUs it provides an extremely low latency, high bandwidth and excellent scalability. The definition of the HTX connector allows the use of HT even for add-in cards. In opposition to other peripheral interconnect technologies like PCI-Express no protocol conversion or intermediate bridging is necessary. HT is a direct connection between device and CPU with minimal latency. Another advantage is the possibility of cache coherent devices. Because of these properties HT is of high interest for high performance I/O like networking and storage, but also for co-processing and acceleration based on ASIC or FPGA technologies. In particular acceleration sees a resurgence of interest today. One reason is the possibility to reduce power consumption by the use of accelerators. In the area of parallel computing the low latency communication allows for fine grain communication schemes and is perfectly suited for scalable systems. Summing up, HT technology offers key advantages and great performance to any research aspect related to or based on interconnects. For more information please consult the workshop website (http://whtra.uni-hd.de)

    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009)(revised 08/2009)

    Get PDF
    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009) which was held Feb. 12th 2009 in Mannheim, Germany. The 1st International Workshop for Research on HyperTransport is an international high quality forum for scientists, researches and developers working in the area of HyperTransport. This includes not only developments and research in HyperTransport itself, but also work which is based on or enabled by HyperTransport. HyperTransport (HT) is an interconnection technology which is typically used as system interconnect in modern computer systems, connecting the CPUs among each other and with the I/O bridges. Primarily designed as interconnect between high performance CPUs it provides an extremely low latency, high bandwidth and excellent scalability. The definition of the HTX connector allows the use of HT even for add-in cards. In opposition to other peripheral interconnect technologies like PCI-Express no protocol conversion or intermediate bridging is necessary. HT is a direct connection between device and CPU with minimal latency. Another advantage is the possibility of cache coherent devices. Because of these properties HT is of high interest for high performance I/O like networking and storage, but also for co-processing and acceleration based on ASIC or FPGA technologies. In particular acceleration sees a resurgence of interest today. One reason is the possibility to reduce power consumption by the use of accelerators. In the area of parallel computing the low latency communication allows for fine grain communication schemes and is perfectly suited for scalable systems. Summing up, HT technology offers key advantages and great performance to any research aspect related to or based on interconnects. For more information please consult the workshop website (http://whtra.uni-hd.de)

    Parallel Asynchronous Matrix Multiplication for a Distributed Pipelined Neural Network

    Get PDF
    Machine learning is an approach to devise algorithms that compute an output without a given rule set but based on a self-learning concept. This approach is of great importance for several fields of applications in science and industry where traditional programming methods are not sufficient. In neural networks, a popular subclass of machine learning algorithms, commonly previous experience is used to train the network and produce good outputs for newly introduced inputs. By increasing the size of the network more complex problems can be solved which again rely on a huge amount of training data. Increasing the complexity also leads to higher computational demand and storage requirements and to the need for parallelization. Several parallelization approaches of neural networks have already been considered. Most approaches use special purpose hardware whilst other work focuses on using standard hardware. Often these approaches target the problem by parallelizing the training data. In this work a new parallelization method named poadSGD is proposed for the parallelization of fully-connected, largescale feedforward networks on a compute cluster with standard hardware. poadSGD is based on the stochastic gradient descent algorithm. A block-wise distribution of the network's layers to groups of processes and a pipelining scheme for batches of the training samples are used. The network is updated asynchronously without interrupting ongoing computations of subsequent batches. For this task a one-sided communication scheme is used. A main algorithmic part of the batch-wise pipelined version consists of matrix multiplications which occur for a special distributed setup, where each matrix is held by a different process group. GASPI, a parallel programming model from the field of "Partitioned Global Address Spaces" (PGAS) models is introduced and compared to other models from this class. As it mainly relies on one-sided and asynchronous communication it is a perfect candidate for the asynchronous update task in the poadSGD algorithm. Therefore, the matrix multiplication is also implemented based GASPI. In order to efficiently handle upcoming synchronizations within the process groups and achieve a good workload distribution, a two-dimensional block-cyclic data distribution is applied for the matrices. Based on this distribution, the multiplication algorithm is computed by diagonally iterating over the sub blocks of the resulting matrix and computing the sub blocks in subgroups of the processes. The sub blocks are computed by sharing the workload between the process groups and communicating mostly in pairs or in subgroups. The communication in pairs is set up to be overlapped by other ongoing computations. The implementations provide a special challenge, since the asynchronous communication routines must be handled with care as to which processor is working at what point in time with which data in order to prevent an unintentional dual use of data. The theoretical analysis shows the matrix multiplication to be superior to a naive implementation when the dimension of the sub blocks of the matrices exceeds 382. The performance achieved in the test runs did not withstand the expectations the theoretical analysis predicted. The algorithm is executed on up to 512 cores and for matrices up to a size of 131,072 x 131,072. The implementation using the GASPI API was found not be straightforward but to provide a good potential for overlapping communication with computations whenever the data dependencies of an application allow for it. The matrix multiplication was successfully implemented and can be used within an implementation of the poadSGD method that is yet to come. The poadSGD method seems to be very promising, especially as nowadays, with the larger amount of data and the increased complexity of the applications, the approaches to parallelization of neural networks are increasingly of interest
    corecore