
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/32580992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Extending HyperTransport Protocol for Improved Scalability∗

J. Duato∗, F. Silla
Technical University of Valencia, ∗Simula Labs

B. Holden, P. Miranda, J. Underhill, M. Cavalli
HyperTransport Consortium

S. Yalamanchili
Georgia Institute of Technology

U. Brüning
University of Heidelberg

Abstract

HyperTransport 3.10 is the best open standard communi-
cation technology for chip-to-chip interconnects. However,
its extraordinary features are of little help when building
mid- and large-scale systems because it is unable to na-
tively scale beyond 8 computing nodes. Therefore, it must
be complemented by other interconnect technologies.
The HyperTransport Consortium has intensively stimu-

lated discussions among its high-level members in order to
overcome those shortcomings. The result is the High Node
Count HyperTransport Specification, which defines proto-
col extensions to the HyperTransport I/O Link Specification
Rev. 3.10 that enable HyperTransport to natively support
high numbers of computing nodes, typical of large scale
server clustering and High Performance Computing (HPC)
applications. This extension has been carefully designed
in such a way that it extends the maximum number of con-
nected devices to a number large enough to support current
and future scalability requirements, while preserving the ex-
cellent features that made HyperTransport successful and
keeping full backward compatibility with it.

1. Introduction

HyperTransport 3.10 [5] (hereafter referred to as HT3.10
or simply as HT) is currently the lowest latency, highest
bandwidth openly licensed standard communication tech-
nology for chip-to-chip and board-to-board interconnects.
This performance leadership was achieved by:

• Minimizing packet protocol overhead
• Adopting a clock-forwarding scheme that eliminates
clock recovery overhead

∗This work was supported by the Spanish program CONSOLIDER-
INGENIO 2010 under Grant CSD2006-00046, by the Spanish CICYT un-
der Grant TIN2006-15516-C04-01, and by program PROMETEO under
Grant PROMETEO/2008/060 from Generalitat Valenciana.

• Eliminating control and command signals required by
other communication standards

• Reducing crosstalk and electromagnetic interference
HyperTransport was devised as an efficient replacement

of the traditional system bus and it has become the intercon-
nect of choice for on-board communications. Furthermore,
HT Rev. 3.x specifications (HT3) significantly extended the
scope of HT Rev. 2.0 by providing support for chassis-to-
chassis – i.e. short-haul system-to-system interconnects for
rack-mounted server clusters – and backplane implementa-
tions. This is achieved through the AC mode and the link-
splitting features. The former supporting links up to 1m (3
feet) in length at full speed and the latter by increasing the
number of HyperTransport links in and out of a device with-
out having to increase the number of pins. Hot-plugging –
also introduced with HT3 – helps to enhance HyperTrans-
port’s dynamic expansion capabilities and to improve sys-
tem availability in HT-based servers and storage systems.
At link level, HT uses a lean packet protocol that car-

ries significantly less overhead than other interconnect tech-
nologies. PCI Express, for instance, requires 2 bytes for
framing and 20 percent 8b10b encoding overhead for the
physical layer, 8 additional bytes for the data link layer and
12 or 16 extra bytes for the transaction layer. By contrast,
HT requires no overhead for the physical layer and only 8
to 16 header bytes for the transaction/data link layer.
The characteristic that most uniquely distinguishes Hy-

perTransport from other interconnection technologies in the
market, however, is its being processor-native – i.e. inte-
grated in the processor chip, as in the case of various AMD
CPUs, as well as a number of specialty processors and SoCs
from Bay Microsystems, Broadcom, NetLogic Microsys-
tems, PMC-Sierra, Raza Microelectronics, and Tarari.
Traditionally, CPU-to-peripheral communication has

been accomplished by going through a north bridge con-
troller (competing with main memory accesses) and reach-
ing the destination peripheral device via one of various com-
munication standards, like PCI or PCI Express. The periph-
eral device would then communicate with the CPU by fol-
lowing the same path in reverse. By virtue of its processor-

Proceedings of the 
First International Workshop on HyperTransport Research and Applications (WHTRA2009) 
Feb. 12th, 2009, Mannheim, Germany

- 46 -



Figure 1. 4-way Opteron system. Processors
are natively interconnected by HT

Figure 2. 8-way Opteron system. All-to-all
connections are allowed by HT’s link-splitting

native support, HT processor-to-peripheral communication
is speeded up because it takes place on a daisy-chained, di-
rect point-to-point link in which intermediate control func-
tions such as north bridge controllers – with their intrinsic
overhead penalties – are eliminated. Additionally, no proto-
col translation is required. The result of such architectural
innovation is that HyperTransport collectively combines in-
terconnect integration with high bandwidth, low latency,
and low implementation cost.
HyperTransport’s processor-native feature has been

demonstrated to be so successful in reducing communica-
tion latency that other microprocessor manufacturers, like
Intel Corporation, have modified the way their processors
communicate by including this feature in their own proces-
sors. To do so, Intel developed a new proprietary intercon-
nect technology, called Quick Path Interconnect (QPI). The
first Intel processors featuring this new interconnect tech-
nology were recently introduced to market.
Thanks to its powerful features, HyperTransport has

the potential to weave off-the-shelf CPU subsystems and
servers into highly scalable system fabrics and clusters. Ex-
amples are the 4-way and 8-way CPU architectures pro-
posed by AMD and shown in Figures 1 and 2. Opteron
chips in Figure 1 are natively interconnected via 3 coher-
ent HT links per processor (chips may use an additional
HT link for connecting to I/O, if required). By consider-

ing that more sockets could be directly connected via HT3’s
link-splitting feature, and that they could be populated with
8-core Opteron processors per AMD’s product roadmap,
these systems may straightforwardly become 64-way sys-
tems with today’s HT specifications (Figure 2).
Looking into the future, the necessity for higher perfor-

mance and higher scalability solutions should make us –
high-tech purveyors – alert that future High Performance
Computing (HPC) platforms will have to support signifi-
cantly greater scalability. This is to say that, if systems with
tens of thousand of processing nodes continue to represent
the elite play – i.e. limited volume opportunity with not
necessarily limited profits – mid-scale systems with several
hundreds of processors should progressively become com-
mon place. A growing market sector that HyperTransport
Rev. 3.10 – by itself and with its present capabilities – will
be increasingly unable to compete for and capitalize on.
The HyperTransport Consortium, aware of these limi-

tations, has stimulated an extension to HT3.10 in order to
overcome those shortcomings. As a result, the High Node
Count HyperTransport Specification – born from the con-
tribution of HyperTransport Consortium’s high-level com-
mercial and academic members – was recently released by
the Consortium as an extension to the HyperTransport 3.10
Link specification and providing the means for HyperTrans-
port to support large systems. This paper presents such an
extension to HT. To do so, Section 2 presents the market
trends that motivated such an extension. Section 3 intro-
duces the context for the extension by defining the system
model to use. In Section 4 the need for a HT protocol ex-
tension is discussed. Next, Section 5 presents some consid-
erations taken into account inside the HyperTransport Con-
sortium during the development of the new specification.
Section 6 briefly presents the new High Node Count Hyper-
Transport Specification at the same time that it explains why
some of their features have been devised that way. Next,
Section 7 provides some insights on how to implement these
extensions in the current technology arena. Finally, Section
8 draws some conclusions.

2. HyperTransport limitations

As described above, HyperTransport offers some de-
gree of scalability latitude by virtue of its link-splitting,
AC-mode, and hot-plugging capability, which could enable
the implementation of efficient network topologies like 3D
meshes or tori. However, such network topologies, when
scaling to large sizes, require routing capabilities beyond
current HyperTransport ones. Specifically, HT lacks sup-
port for the following:

• Global device addressability beyond 32 HT devices,
required for medium and large size clusters of process-
ing nodes

- 47 -



Figure 3. Cray XT4 scalable architecture. Hy-
perTransport is used to connect Opteron
chips to the proprietary interconnects

• Efficient routing in scalable network topologies
• Scalable congestion management mechanisms
• Dynamic reconfiguration of routing information after
hot plug/swap/removal of components – i.e. no au-
tomatic finding of better routing paths after changing
system topology

As a direct result of HT’s scalability shortcomings, HPC
vendors have no choice but to complement HyperTransport
with other interconnect technologies. Examples are Sun
Microsystems, the extinct Newisys, and Cray.
In the first case, Opteron boxes are interconnected via

Gigabit Ethernet or InfiniBand, providing a non-shared
memory system composed of several independent comput-
ers that communicate via some kind of message-passing
protocols. Thus, the system cannot be viewed as a sin-
gle large-scale system, but as an aggregation of small
systems, between which communication takes place ex-
plicitly. This configuration is similar to the one tradi-
tionally used in clusters and PC farms based on Ethernet
intra-system interconnect backbones, which can be further
performance-accelerated by means of HT-enabled network
interface Cards (NICs). However, such kind of communica-
tion model is burdened by the latency penalty introduced by
the process of creating by software the messages that enable
inter-processor communications. This latency penalty usu-
ally includes one or more system calls at the source and des-
tination ends of the communication links, noticeably lower-
ing performance. Additionally, peripheral devices cannot
be easily shared among processors.
In the case of Cray’s XT4 and XT5 supercomputers [4],

HyperTransport provides a 6.4 GB/s direct connection be-
tween the Opteron processors and Cray’s SeaStar intercon-

nect backbone. The SeaStar interconnect is based on Cray’s
SeaStar2 chips and implements a proprietary protocol to di-
rectly connect up to 30,000 processing nodes in a 3D torus
topology. With this approach, the cost and complexity of
external switches is entirely removed and systems can be
easily scaled in field. Figure 3 shows the profile of Cray’s
interconnect, with the AMD Opteron processors connected
to the SeaStar chips via HT links (green pipes) and the
SeaStar chip linking each processing node to all others via
proprietary links and protocol (orange pipes). It is impor-
tant to note that in addition to being able to differentiate
from competitors, the main reason that compels companies
like Cray to use proprietary interconnects is not necessar-
ily to attain higher bandwidth – i.e. HT3.10’s 25.6 GB/s
(16-bit) bandwidth is much greater than the 9.6 GB/s re-
quired by Cray – but highly likely to compensate for Hy-
perTransport’s inability to scale up to such large system re-
quirements.

With its proprietary Horus chip [7], Newisys proposed a
different approach, which extends HT’s basic functionality
and enables Symmetric Multi-Processing topologies of up
to 32 AMD Opteron chips (32-way) with full cache coher-
ence support. Horus chips appeared to AMDCPUs as CPUs
themselves and provided special routing for data and com-
mand packets, as well as local cache and hidden directory
scheme to significantly enhance the performance of cache
coherence protocols. The resulting system was a single,
coherent shared-memory machine that supported implicit
communicationwithout the use of system calls, thereby sig-
nificantly accelerating communication among processors.
Unfortunately, scalability of Horus-based systems was lim-
ited to only 32 host nodes likely due to the unsolved inabil-
ity of cache coherent node clusters to scale efficiently and,
in addition, to the intrinsic inability of effective scaling of
AMD’s proprietary cache coherence protocol.

In summary, HyperTransport is an excellent intercon-
nection technology that provides the highest bandwidth and
lowest latency. However, HyperTransport’s benefits are pri-
marily confined to host-to-host and host-to-I/O subsystems
within the realm of a single motherboard. Even with the in-
troduction of the AC mode in HT3, the extraordinary fea-
tures of HyperTransport are of little help when building
large systems because HT is unable to natively scale as re-
quired by mid- and large-scale HPC applications and, there-
fore, must be complemented by other interconnect tech-
nologies. Note that this inability is not due to insufficient
bandwidth or connectivity. In fact, as Figure 2 shows,
Opteron processors may have up to 8 HyperTransport links
(by using the link splitting feature), and therefore, efficient
network topologies, like 3-D meshes or tori can be imple-
mented. However, these topologies would require extend-
ing current HyperTransport scalability characteristics. This
was even stated by AMD several years ago [1].

- 48 -



3. System model and definitions

Enhancing HT to natively support a large number of pro-
cessors brings the opportunity to define a new system ar-
chitecture that is scalable, flexible, and simplifies applica-
tion development, all of this with minimal additional cost.
As HyperTransport is a shared-memory oriented protocol,
its enhancement would naturally provide a shared-memory
system. However, it is well known that large-scale cache-
coherent shared-memory systems have never been feasible.
Large systems are message-passing flavored, instead.
Devising a message-passing HT for high node count sys-

tems would deliver little improvement over current large
installations, which are already message-passing oriented.
Moreover, message-passing application programmers inter-
faces (APIs), like MPI, may not be enough in the multi-
core era [3]. Additionally, other programming models, like
PGAS [8] are starting to play an important role. On one
hand, their performance can equal that of MPI codes and,
for most humans, they are much easier to learn [2]. Also,
PGAS is not less scalable than MPI and permits sharing,
whereas MPI rules it out [9]. On the other hand, PGAS
implements a one-sided communication model (faster than
two-sided), where caching is not required and the program-
mer makes local copies and manages their consistency. Be-
cause of this, no cache coherence protocol is needed, except
between the network interface and the processes in a node.
Additionally, a one-sided put/get message can be handled
directly by a network interface with RDMA support, avoid-
ing interrupting the CPU or storing data from it.
Because of all the benefits that a global address space

delivers, the Consortium decided to allow the enhanced Hy-
perTransport to naturally provide what it provided before:
a shared-memory system. Note that now this system model
may be efficiently supported because cache coherence is not
maintained by hardware, and is not enforced for everymem-
ory access. And it is more efficient than other PGAS imple-
mentations because HT interfaces are directly attached to
the processors.
Thus, the system model in mind was based on a large

number of HyperTransport devices that use the HT protocol
to perform memory transactions. This will be referred to as
High Node Count Network. We may think of this network as
a network of processors, each of themwith its local memory
and I/O, as depicted in Figure 4. The way such processors
are physically interconnected is not relevant at this point of
the discusion.
Moreover, in order to devise a general and architecturally

independent system model, we should define the concept
of Nest. A nest is defined as each of the components of
the High Node Count Network. A nest may be something
as simple as a single CPU or something much more com-
plex, as a motherboard containing four CPU devices, each
of them containing four processor cores. Basically, the term

Figure 4. System model assumed in the High
Node Count HyperTransport Specification

Nest refers to a network-addressable entity. In Figure 4,
each of the processors depicted would be a nest. Hereafter,
we will use the term Nest instead of CPU, processor, or
motherboard.
As one of the goals is providingHyperTransport with the

capability of addressing a large number of devices, in the
system model described above each nest will be assigned a
NestID that unambiguously identifies it in the High Node
Count Network. Note that a NestID is a network-style ad-
dress and not a memory-style address. Moreover, a protocol
that sets up the identifier of each nest during system initial-
ization is required. Such a protocol, or a variant of it, may
also be required after hot-plugging of components. The def-
inition of these protocols is outside the scope of this discu-
sion as far as a unique system-wide NestID is provided for
each nest in the system.
In the system model proposed in Figure 4 – a physically

distributed logically shared-memory system – each nest has
access to its local memory via conventional memory buses
and has access to memory belonging to other nests via HT
packet exchanges. In these exchanges, the nest that sources
the request must include its NestID in the packet as well
as the NestID of the destination of the request, i.e., re-
quests will carry a SrcNest and aDestNest. Once the request
reaches its destination, that nest will use the SrcNest as the
destination identifier for the response packet.

4. The need for a protocol extension

At first glance, it may seem that the considered dis-
tributed shared-memory model is completely compatible
with current HT3 specification, as current HT requests that
specify an address use 40-bit addresses with an optional
24-bit address extension and therefore, the upper part of
the 64-bit global memory addresses could be used as the

- 49 -



destination identifier. However, despite providing support
for 64-bit addresses, the HT3 protocol does not provide the
functionality required for a number of reasons:

1. Requests targeted to another nest may use the cur-
rent address extension to identify the destination nest.
However, the address extension can only be used for
commands that include an address. Therefore, re-
sponses back to the source nest – which would also re-
quire a destination identifier to be appropriately routed
inside the interconnect – cannot use an address exten-
sion as currently defined because current packet re-
sponses do not include an address field. Thus, re-
sponses could not be returned to the source nest. Simi-
larly, some HT commands, like Flush, may be directed
to remote nests. These commands do not include a
40-bit address in their packet and, therefore, they are
not eligible to be extended by an address extension ac-
cording to current HT specifications. However, when
targeting these commands to a remote nest, a DestNest
identifier is required in order to forward the packet to
the right destination. Therefore, the address extension,
as defined in the HT specification, does not provide the
required support.

2. Once the target nest has accessed its local memory as
the result of a remote request, it needs to know where
to return the corresponding response. To accomplish
this, it is necessary to include a SrcNest identifier in
the requests, so that target nests use it as the destination
identifier in the response. However, the source identi-
fier extension as currently defined in the HT specifi-
cations does not allow this feature because it only in-
cludes a 16-bit address in bus-device-function format.

For the reasons mentioned above, current address and
source identifier extensions, as defined in HT3, do not sup-
port the proposed system model.
On the other hand, HyperTransport’s scalability limita-

tions may not only be analyzed from the NestID point of
view, but also from the interconnect topology perspective.
As described in Section 4.1 of the HT3 specification, and
using HT3 terminology, HT I/O fabrics are implemented as
one or more daisy chains of HT devices, with a bridge to
the host system at one end. Multiple daisy chains can be
interconnected using bridge devices, forming a tree topol-
ogy. Additionally, the host can contain multiple bridges,
each supporting either a single HT I/O chain or a tree of HT
I/O chains.
These topologies were conceived to attach a set of pe-

ripheral devices or controllers to a single host. The only
exception are double-hosted chains, but even in this case,
either one host acts as a slave and routes all of its transac-
tions through the master host, or the chain appears logically
as two distinct daisy chains – each attached to only one host

bridge. Nevertheless, none of these topologies fit the re-
quirements of large scale systems.
As can be seen, the HT3 specification does not pro-

vide suitable support for interconnecting a large number
of hosts and for routing messages between them. Also, it
does not provide support for identifying nests in the sys-
tem, as discussed above. Consequently, either the entire
specs should be modified to provide the required support,
or a clever way to extend the specs while maintaining back-
ward compatibility should be found. Modifying the specs
should be ruled out as it would compromise the extensive
investments already made by Consortium members in cur-
rent and previous generations of HT technology. Thus, de-
vising backward compatible HT extensions should be the
recommended path to follow. After almost two years of dis-
cussions and deliberations among high-level members of
the Consortium, the HT extensions have been formalized
and released in the form of the High Node Count Hyper-
Transport Specification.

5. What to include in the extension

If HT was to natively support a large number of hosts
(or nests), some extensions to the protocol were required.
These extensions had to be implemented in such a way that
the resulting protocol was as efficient and fast as the current
HT3 version. Additionally, the following goals have been
considered when extending HT:

1. Analyze the ideal characteristics of extended HT while
monitoring HT backward compatibility, so that exist-
ing designs could be reused in extended devices as
much as possible.

2. Minimize the extensions’ overhead – i.e. use of extra
bandwidth, additional latency and cost. This should be
done without crippling the design.

3. Optimize the extensions by taking into account that the
majority of the system platforms will be rather small-
scale.

4. Allow for easy addition of new features that could be
deemed necessary in the future.

Moreover, the extensions of the HyperTransport proto-
col had to be done in such a way that support for future fea-
tures commonly found in large scale systems was straight-
forward.
As discussed above, interconnecting a large number of

hosts requires an interconnect that supports topologies other
than current chains and trees, which may not be efficient for
interconnecting many hosts. It also requires a global enu-
meration scheme across multiple hosts, so that each host
knows the unique identifier of every other host in the sys-
tem. Moreover, some efficient routing strategies are needed,

- 50 -



especially in those cases where multiple physical paths exist
among pairs of hosts. Therefore, in order to build a system
with a large number of hosts, the following areas were iden-
tified by the Consortium as the minimum extension set to be
considered:

• Addressing scheme: ability to address a much larger
number of devices. This mainly affects packet formats.

• Network topology: support for topologies with much
higher connectivity that will enable many more con-
current transmissions in large platforms, provide
shorter paths, and provide alternative paths in case of
failure.

• Routing mechanisms: a routing algorithm that sup-
ports routing messages in the above topologies. The
implementation of the routing logic should be efficient
both for small and large systems.

The three issues above are closely related to each other,
and design decisions for one of them may significantly im-
pact the others. Additionally, in order to develop an efficient
extension of the protocol, the packet format used in the ex-
tended HT should be optimized by taking into account – at
least – the addressing scheme.
At this point, the HyperTransport Consortium had to

make a decision about which features to include in the
future extension and how those features would look like.
Note that not all such characteristics required to be phased
into the new HT specification, as some of them may
be implementation-dependent. For example, conveniently
defining the packet format (which would necessarily im-
ply defining the addressing scheme) may allow leaving both
the network topology and the routingmechanism undefined.
These two topics would be addressed/defined by manufac-
turers when designing their products, or could be consid-
ered at a later time for inclusion in subsequent HT speci-
fications. Additionally, this would open up market oppor-
tunities for the companies member of the HyperTransport
Consortium at the same time that allow these characteristics
to mature before developing more advanced specifications.
For these reasons, the High Node Count HyperTransport
Specification recently released focused on defining the min-
imum set of extensions to the HT protocol that allow Hy-
perTransport to efficiently support large system sizes. Net-
work topologies and routing mechanisms were classified as
implementation-dependent. However, the use of distributed
routing is assumed in the interconnect. In this way, pack-
ets exchanged between nests will be kept small. Addition-
ally, the amount of routing information contained in them is
constant and therefore independent of the path between the
source and the destination nests. This simplifies decoding
the packets. Moreover, adaptive routing may be used in the
future. Finally, other issues, like the required protocols that
set up the identifier of each nest during system initialization
were also defined as implementation-dependent.

6. The high node count specification

This section describes and explains the extensions to
HT3 intended to allow HyperTransport to natively provide
support for high node count environments 1.
One of the topics addressed by the HyperTransport Con-

sortium while defining these extensions was the maximum
number of nests to be supported. The addressing scheme
and the new packet format depended on this. On one hand,
the maximum allowed number of nests should be large
enough to support current and future HPC needs. Actually,
it should be large enough so that the new specification under
development would not require to be modified in the near
term. This system size is probably larger than the market
may require (at least for quite a while), thus smaller systems
would be paying a performance penalty for HT being able to
scale up to those large sizes. On the other hand, defining rel-
atively small NestIDs, optimized for smaller, more popular
systems, would likely impose the need for further specifica-
tion extensions in just a few years to satisfy market-driven
scalability requirements.
Ultimately, the decision made by the Consortium was to

support multiple system sizes. This would keep complexity
low for small system configurations while enabling HT to
scale up as needed. Or course, it was taken into account the
space availability in the format of the extended packets as
well as cost and performance constraints.
With the NestID length defined, the format of the new

specification extensions was also defined. These extensions
are based on a new control doubleword: the NestID ex-
tension, which allows nests in the system to identify them-
selves and also to univocally address other nests, and there-
fore, it is one of the key elements of the specification exten-
sions.
The format of the new control doubleword allows an easy

decoding of the extensions, aligning the new specification
with the second goal in Section 5 that established that ex-
tensions should keep overhead as low as possible. Addition-
ally, the presence of NestID extensions in a request packet is
fully compatible with other extensions such as source iden-
tifier or address extensions – remember that the first goal
mentioned in Section 5 established the need for full back-
wards compatibility.
Response packets may also be extended by NestID ex-

tensions. In fact, when a request reaches a nest, it will prob-
ably have to generate a response packet intended for the
nest that initially created the request. Therefore, in order
to properly forward the response to the right source nest, a
NestID extension must be used. Obviously, the DestNest

1It should be noticed that the HT Consortium has decided not to make
the new extensions available to the general public, so that they will only be
usable by HT Consortium Promoter and Contributor members. Therefore,
because of confidentiality constraints, the description in this section will
not provide the complete details of the new extensions.

- 51 -



identifier used in a response packet is copied from the Src-
Nest identifier of the corresponding request packet.
The exact location of the NestID extension in a request

packet is not accidental, but designed so to improve sys-
tem performance because when a nest sends a request to
another nest, the DestNest identifier needs to be decoded in
order to forward that packet to the target nest. Therefore,
properly locating the required information in the request
packet reduces routing time. Additionally, the location of
the DestNest identifier in response packets has been care-
fully designed so that not only routing time is minimized
but also routing of both request and response packets in the
fabric is kept efficient.
Moreover, packet overhead is minimized for small sys-

tems. The NestID extension has been meticulously de-
signed for small-scale systems, where the new format is
heavily optimized. Actually, this was the third goal to keep
in mind mentioned in Section 5. In small systems, packet
length optimization translates in request packets being 20%
shorter than non-optimized packets. Additionally, they are
42% shorter if compared with packets for large systems.
Note that some extra configuration information is needed

in a nest so that it properly interprets the new extensions.
The required configuration information is located in the
High Node Count Capability Block, the other master piece
of the specification. Unfortunately, because of confidential-
ity constraints, the format and usage of this capability block
cannot be disclosed.

7. Protocol extension implementation

The High Node Count HyperTransport Specification can
be implemented in two different ways, each of them having
a different impact on cost, benefits, and market opportuni-
ties. The following discussion is independent of the maxi-
mum global memory size and thus it is equally valid for any
of the choices mentioned above.

7.1. Native implementation

The implementation option yielding the best system
performance would be modifying the HT logic within
the Opteron processors, in order to enable them to inter-
communicate directly using the proposed extension and to
avoid the use of any external logic, thereby minimizing la-
tency and maximizing bandwidth. Additionally, the embed-
ding of such HT extensions into Opteron processors inter-
connected by large inter-processor networks would require
embedding in the Opteron architecture some kind of routing
logic also, so that HT packets are forwarded from the given
source to the proper destination. This approach would be
similar to the Alpha 21364 processor [6], which integrated a
router function and allowed processors to be interconnected
by a 2D torus with a maximum of 128 processors. Figure 5

Figure 5. 16-way 2D-mesh system. Proces-
sors have embedded protocol extension and
routing logic

shows a similar scenario of a 2D mesh with 16 processors.
In this case, processors would require only four HT links for
complete interconnection. If more links are available – e.g.
by means of HT3 link-splitting capability – more efficient
topologies like 3D meshes or tori could be deployed. These
topologies require 6 links per processor. This implementa-
tion option is certainly the most effective long-term for best
performance and lowest implementation cost. However, it
is not the most ideal time-to-market wise and cost wise, as
modifying the processor’s logic would be quite time and re-
source laden.

7.2. Bridged implementation

Actually, embedding these new HT extensions does not
necessarily impose changes to the processor design. In fact,
an alternative, more flexible and time-to-market friendly
choice would be the implementation of the extended HT
functionality in external logic – i.e. in a bridge chip – whose
main purpose would be translating requests and responses
from one version of the protocol to the other – i.e. a chip
that implements standard HT3 on one side and extended HT
on the other. The logic inside this chip could be designed in
such a way that it detects a current HT chain on one side and
a large HT network on the other. The chip should also in-
corporate some routing capabilities in order to forwardmes-
sages to their intended destination. Figure 6 shows such a
system, composed of 16 processors that communicate with
each other through such bridge chips.
The technical and commercial advantages of such exter-

nal logic solution greatly outweigh its disadvantages com-
pared to the first option. The bridge implementation would
allow HT extensions’ functionality to mature before full

- 52 -



Figure 6. 16-way 2D-mesh system. Protocol
extension and routing logic integrated in the
bridge chip

integration into the CPU. It would also open up interest-
ing market opportunities for HyperTransport Consortium
member companies and the HT technology ecosystem. The
trade-off will be a slightly higher latency and higher system
cost (1 bridge chip per nest).
The implementation of the bridge chip requires includ-

ing a matching unit that associates returning responses to
previously sent requests. In the case for the bridge chip
at the source end, it must first extend the original request
by using the NestID extensions. Once the extended packet
arrives at the destination bridge chip, it must aggregate re-
quests from several sources by translating them into local
requests which are uniquely defined by the combination of
UnitID and SrcTag. Thus, the destination bridge must store
the value of the UnitID, SrcTag, and SrcNest fields in the
incoming packet along with the new local values for UnitID
and SrcTag, so that when the response comes from the lo-
cal chain, the bridge can associate it to the initially received
request and translate back those fields to the initial ones be-
fore sending back the response to the source end. Once the
response is received at the source end, the source bridge will
remove the NestID extensions to deliver a final response to
the initial source of the request.

8. Conclusions

Large computing systems are interesting because of their
aggregate computing power and overall memory capacity.
These large systems require high bandwidth, low latency in-
terconnect technologies for inter-processor communication.
HT3 has the capability and latitude required by these sys-
tems, except for its inability to scale appropriately. Fortu-
nately, it is feasible and cost-effective to infuse such needed

scalability into HyperTransport, as described by the High
Node Count HyperTransport Specification.
The bridged implementation of such specification may

be quick-to-market, not requiring changes to current pro-
cessor architectures, but will not provide the best latency
performance. On the contrary, the integration of the newHT
extensions in the processor architecture would allow future
Opteron chips to be powerful building blocks for systems of
any viable size and scale.
The proposed protocol extensions are fully compatible

with the HT3 specification. Packet ordering is preserved
by processing packets in compliance with current ordering
rules. On the other hand, flow control is also complied with
because extended packets will use current buffers and there-
fore no change is required in the NOP flow control packets.
Nevertheless, buffer size should be enlarged in order to store
the extended packets.
Regarding protocol overhead, the proposed extensions

add a few bytes to current HT packets, but only in the case
of packets targeted to remote processors. Instead, packets
traveling through the local HT chain and intended for local
I/O do not require to be extended and, therefore, no over-
head is added. Moreover, for those cases where overhead
is a primary concern, the new protocol extension has been
optimized for smaller system sizes.

References

[1] A. Ahmed, P. Conway, B. Hughes, and F. Weber. Hammer
Shared Memory Multi Processor Systems. HotCHips 14, Au-
gust 2002.

[2] W. Camp. Computer architecture: Opportunities and chal-
lenges for scalable applications. Sandia CSRI Workshop on
Next-generation scalable applications: When MPI-only is not
enough, June 2008.

[3] E. Chow. Non-MPI Apps: Why we don’t use MPI-only.
Sandia CSRI Workshop on Next-generation scalable applica-
tions: When MPI-only is not enough, June 2008.

[4] Cray Inc. Cray XT5 Specifications.
http://www.cray.com/Products/XT/Product/Specifications.aspx,
2008.

[5] HyperTransport Technology Consortium. HyperTrans-
port I/O Link Specification Revision 3.10. available at
http://www.hypertransport.org, 2008.

[6] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb.
The alpha 21364 network architecture. IEEE Micro, 22:26–
35, January 2002.

[7] R. Oehler and R. Kota. HORUS - Enabling large scale, 32-
way Opteron Enterprise Servers. HotCHips 16, August 2004.

[8] S. Yalamanchili, J. Young, J. Duato, and F. Silla. A dynamic,
partitioned global address space model for high performance
clusters. Available at http://www.cercs.gatech.edu/tech-
reports/tr2008/git-cercs-08-01.pdf, 2008.

[9] K. Yelick. Programming models: Opportunities and chal-
lenges for scalable applications. Sandia CSRI Workshop on
Next-generation scalable applications: When MPI-only is not
enough, June 2008.

- 53 -


	cover-03
	whtra09-paper16



