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Analysis of Inter-Chip Communication Patterns
on Multi-Core Distributed Shared-Memory Computers

Manfred Mücke, Wilfried N. Gansterer
University of Vienna

Research Lab Computational Technologies and Applications

Abstract

Multi-core multi-socket distributed shared-memory com-
puters (DSM computers, for short) have become an impor-
tant node architecture in scientific computing as they provide
substantial computational capacity with relatively low space
and power requirements. Compared to conventional computer
networks, inter-chip networks used in DSM computers feature
higher bandwidth, lower latency and tighter integration with
the CPU.

The inter-chip network is a shared resource among the user
application and many other services, which can lead to consid-
erable variation of execution times of identical communication
tasks.

In this work, we explore traffic patterns resulting from MPI
collective communication primitives and investigate the ques-
tion whether inter-chip link load is a reliable indicator and
predictor for the execution time of collective communication
primitives on a DSM computer. Our experiments on a Sun
Fire X4600 M2 DSM computer with 32 cores (eight quad-core
CPUs) indicate that specific single link loads are positively
correlated with the execution time of MPI ALLREDUCE. Ob-
serving patterns over multiple links allows refinement of the
single-link observation.

1. Motivation

Multi-core multi-socket distributed shared-memory
(DSM) computers are a viable option to consolidate
cluster infrastructure and to improve communication
performance by reducing inter-node communication.
One can think of a DSM computer as a small cluster
with very high bandwith and low latency point-to-point
interconnect.

In a cluster environment (many interconnected inde-
pendent nodes), the overall performance is usually lim-
ited by the inter-node communication which is typically
slow compared to local computation. Yet, recent work
has shown that an unexpectedly high percentage of com-
munication time is spent within multi-core nodes [3]. As

a result, the node-internal communication performance
– although faster than inter-node communication – is be-
coming more important for distributed applications’ per-
formance in a conventional cluster setting.

With current DSM computers integrating up to 48
cores in a single chassis, there is an increasing set of
distributed applications which can run efficiently on a
single DSM computer, thereby removing the need for
a conventional cluster environment. To improve such
an application’s performance usually requires optimis-
ing the intra-node communication performance.

The situation for distributed applications executed on
a single DSM computer changes considerably compared
to a cluster environment as dedicated communication
times among CPUs and memory access times become
potentially identical. Additionally – and also in con-
trast to clusters – both computation (via memory ac-
cess and/or cache coherency) and communication access
the inter-chip communication network, which makes it a
shared resource. Consequently, execution times of com-
munication and computation can no longer be consid-
ered independent of each other but potentially heavily
influence each other.

MPI collective communication functions [5] are pow-
erful communication primitives whose optimisation is
key to maximising performance of many parallel scien-
tific computing applications. Collective communication
can be seen as a parametriseable collection of point-to-
point communications with only a few defined synchro-
nisation points and the specific schedule being left to
the implementation. We believe that a static schedule
(or a set of several static schedules) is inadequate to ef-
ficiently exploit the available bandwidth in a contem-
porary multi-core DSM computer. Dynamic schedules
might guarantee a more consistent performance over a
wide range of network traffic scenarios. Dynamic sched-
ules require, however, a cheap, yet reliable performance
predictor, which is the motivation of our work.

MPI blocking communication provides function calls
which return only when communication has finished
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(i.e., communication and computation is mutually ex-
clusive for a single MPI process). There is an on-
going discussion on integrating non-blocking collec-
tive communication primitives into future versions of
MPI. Non-blocking communication allows for over-
lapping communication and computation. However,
when communication and computation overlap on DSM
computers, usage patterns of shared resources become
highly dynamic. In the worst case, this could lead to
lower performance compared to blocking communica-
tion. Non-blocking collective communication imple-
mentations can, however, devise an efficient dynamic
communication strategy, subject to available perfor-
mance indicators. Therefore delivering the performance
promises of non-blocking collective communication on
DSM computers requires reliable communication per-
formance predictors.

While DSM computers have existed for a long time,
only recent developments have made them an almost
ubiquitous computing platform. First, AMD integrated
high-bandwidth low-latency inter-chip network inter-
faces (HyperTransport) into its mainstream server CPU
family (Opteron), thereby removing the need for ded-
icated inter-chip communication circuits and simplify-
ing the design of multi-socket computers considerably.
Second, the integration of memory interfaces into CPUs
enabled low-latency access to memory via inter-chip
network thereby allowing very-low-latency non-uniform
memory access (NUMA) computers. Third, multi-core
CPUs have mitigated the scaling limitations of inte-
grated inter-chip networks (for example AMD Opterons
only support up to eight-socket configurations) by pro-
viding more cores per socket. Currently, systems with
48 cores (eight quad-core CPUs) are available. Finally,
the evolution of communication technology has led to
inter-chip point-to-point interface specifications match-
ing typical internal bandwidths of CPUs (HyperTrans-
port 3.1: 16 bit@3.2 GHz, max. 16 bit bi-directional
bandwidth of 25.6 GB/s), leading to a communication
performance which is at par with computation perfor-
mance.

2. Problem Formulation

Inter-chip networks of contemporary DSM comput-
ers are typically used by multiple system services, they
are a shared resource. Most prominently, remote mem-
ory access, the cache coherency protocol and system I/O
usually use the same inter-chip network as dedicated
communication between CPUs. Consequently, identi-
cal user-triggered communication can meet very differ-
ent resource usage scenarios leading to variations in ex-
ecution times.

Dynamic communication schedules can mitigate this
effect. To choose the most efficient schedule for a com-
munication operation at any given time, a performance
model is required, taking the load on all relevant shared
resources into account. The fastest schedule is then de-
rived from the model by extrapolating current usage on
all relevant shared resources.

Our aim in this paper is to identify the relevant ob-
servables necessary to implement dynamic schedules
for MPI collective communication functions on DSM
computers at the lowest possible cost (i.e., observation
should be feasible on standard hardware and should
cause only little overhead).

We hypothesise that on DSM computers the respec-
tive bandwidth available on each link of the inter-chip
network is the single most relevant parameter influenc-
ing the execution time of a collective communication
function. If this hypothesis can be verified, observing
the inter-chip network bandwidth would provide suffi-
cient information for optimizing dynamic communica-
tion schedules. Contemporary CPUs feature hardware
performance counters which provide detailed informa-
tion on the link traffic with high accuracy and at low
cost, therefore on existing CPU architectures, monitor-
ing inter-chip network bandwidth is possible for user ap-
plications at basically no extra cost.

3. Related Work

Scogland et al. [12] describe in a more general setting
than our MPI-centric one that although multi-core hard-
ware is mostly symmetric (i.e. cores have equivalent raw
performance and bandwidth available), resulting work-
load per core is highly asymmetric due to the interaction
of communication and computation.

Kayi et al. [7] report performance figures for large-
scale simulations on a hybrid cluster consisting of nodes
with 2 sockets (4 cores) and 8 sockets (16 cores), re-
spectively. They found that application performance was
poorer on the more powerful nodes. Only when appli-
cations employed some kind of node-internal load bal-
ancing, improvements could be observed. Core binding
was found to improve the situation, too.

Porterfield et al. [11] conducted a detailed perfor-
mance study of a variety of AMD quad-core multi-
socket systems over a set of memory benchmarks. They
found that performance models characterising memory
by maximum bandwidth and average latency parameters
are not sufficient to model the deep memory hierarchies
found in modern ccNUMA architectures. Specifically,
they found performance variability for memory-bound
benchmarks to be a serious obstacle to load balancing
and performance tuning [10]. Binding threads and data
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to specific sockets and carefully selecting the sockets
they are bound to both reduced variability and improved
overall performance of the benchmarks.

Underwood [17] discussed the mismatch between
frequently used MPI microbenchmarks and the setting
which MPI functions encounter in real-world applica-
tions, reporting an execution time difference up to a fac-
tor of four in extreme cases.

Mamidala et al. [9] investigated performance of
MPI collectives on contemporary multi-core architec-
tures. They concentrate on exploiting features of mod-
ern multi-core architectures (e.g. shared caches) for
improving average performance of selected collectives.
Their work does not consider execution time deviations
of identical function calls. Mamidala et al. show more
efficient ways to implement collectives while our work
demonstrates the behaviour of a given implementation
in the dynamic setting inherent to multi-core distributed
shared-memory computers. Our work is complemen-
tary, as Mamidala et al. try to understand and reduce
average execution time while we try to understand and
improve execution time variability.

Hoefler and Lumsdaine investigated the performance
of non-blocking MPI collectives on Infiniband and sug-
gested measures for improving overlap of communica-
tion and computation [6]. They showed that perfor-
mance can be improved considerably. They do, how-
ever, not consider inter-chip networks but only inter-
node networks (Infiniband).

AMD provides a technical report ”Performance
Guidelines for AMD Athlon and AMD Opteron cc-
NUMA Multiprocessor Systems” [2] which summarises
detailed measurements performed on a system with four
dual-core AMD Opteron CPUs. A synthetic benchmark
is used which comprises two tasks reading/writing data
from/to independent memory locations. Execution times
for all possible combinations of task and data place-
ment are measured. Additional tasks read data from
local memory to simulate background activity. The
benchmark chosen explores how (remote) memory ac-
cess translates into HyperTransport activity under vary-
ing task and data placement scenarios. In contrast to the
data presented by AMD, we consider collective commu-
nication instead of point-to-point communication. Fur-
thermore, while AMD creates a synthetic background
activity, our goal is to infer unknown background activ-
ity patterns and its impact on execution time on a known
collective communication.

In summary, existing work concentrates on clus-
ter settings when evaluating overall application perfor-
mance. In contrast, we argue that the performance of
existing DSM computers is sufficient to run distributed
applications entirely on a single DSM computer. De-

tailed performance analysis of DSM computers exist in
literature but mostly focuses on the relative placement
of tasks and data. Where communication functions are
investigated, the aim is at reducing the average perfor-
mance. To the best of our knowledge, our work is the
first one investigating the execution time variance of col-
lective communication due to background activity on a
DSM computer’s HyperTransport inter-chip network.

4. Experimental Setup

Our aim is to better understand execution times of
MPI collective communication primitives on DSM com-
puter inter-chip networks. To make insights attractive
to as many distributed applications as possible, we have
chosen a DSM computer with many cores and a complex
inter-chip network.

The Sun Fire X4600 M2 server [15] fulfils these re-
quirements by supporting up to eight quad-core CPUs,
which results in an inter-chip network of the maximum
size currently supported by the AMD Opteron architec-
ture (8 sockets) and a maximum worst-case traffic pres-
sure per link (up to four cores sharing a single link). The
X4600’s inter-chip network fully relies on functionality
(cache coherency protocol, . . . ) and interfaces (Hyper-
Transport) integrated in the AMD Opteron architecture.
However, Opteron-internal tables specifying routing and
hardware buffer sizes can be set at system start-up po-
tentially leading to physically identical DSM systems
executing identical applications yet exhibiting varying
appliation performance.

The general findings of our experiments will there-
fore apply to a wide range of servers with similar archi-
tecture while the exact results of our measurement are
obviously specific to the system used.

4.1 Hardware

Our prototypical DSM computer is a Sun Fire X4600
M2 server [15] by Sun Microsystems, which we will
refer to as ”X4600” in the following. The X4600 is
designed to accept up to eight CPU/memory modules
and can therefore exploit the maximum number of CPUs
currently supported by AMD’s Opteron 8000 CPU fam-
ily [1]. The motherboard itself provides no memory
or computing facilities but only module interconnect,
power and I/O.

Each CPU/memory module carries local memory.
The total of all local memory present on all modules is
mapped by the operating system into a uniform address
space (8 × 4 GB = 32 GB for our system).

Every CPU/memory module features a single CPU
socket, which can be fitted with a single-core, dual-
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Figure 1. HyperTransport socket interconnect topol-
ogy of a Sun Fire X4600 M2 server equipped with eight
CPU modules.

core or quad-core AMD Opteron. The CPU used in
our X4600 configuration is an AMD quad-core Opteron
8356. Each 8356 core features 2 MB private L2 cache
while a 2 MB L3 cache is shared among all four cores.
The cache-coherency protocol guarantees that all exist-
ing cache copies of data in memory are refreshed when
data is modified anywhere in the system.

The AMD Opteron architecture integrates all mem-
ory controller functionality and three HyperTransport
interfaces on-die [4]. The latter makes it possible to
build servers with a very dense inter-socket communica-
tion network [8]. The AMD Opteron 8356 HyperTrans-
port interfaces comply to HyperTransport 1.0, specify-
ing 16 bit wide links with a clock frequency of 1 GHz.
The links work in double-data-rate mode which results
in a total bandwidth of 4 GB/s per direction.

Our system is equipped with eight CPU/memory
modules. Sockets 0 and 7 dedicate one of their three
links to connect the inter-socket network to system I/O.
Figure 1 shows the X4600’s inter-socket network topol-
ogy (”twisted ladder”). Our X4600’s inter-chip network
therefore consists of 22 unidirectional HyperTransport
links, while the two remaining links connect the network
to system I/O facilities (hard disk drive, network, ..).

4.2 Operating System, Middleware

The used operating system is OpenSolaris 10 5/09.
OpenSolaris features memory placement optimisation
(MPO) which attempts to allocate memory as near to a
process as possible [13, 14]. While the Solaris scheduler
is able to move threads between all available cores (and
therefore also between sockets), data remains by default
on the CPU/memory module where it was first allocated.

The MPI distribution used is OpenMPI 1.3. Open-
MPI provides support for core binding, i.e. manually

assigning an MPI process to a core. We always bind
all processes to distinct cores with the root process be-
ing assigned to core 4 (i.e. the first core on the second
socket, thereby avoiding socket 0 through which I/O ac-
cess is routed).

The AMD Opteron architecture provides hardware
event counters to measure link load [1]. We have used
the Solaris lcpc(3CPC) library for setting up and
reading out hardware event counter values.

5 Experiments

We have chosen the MPI Allreduce function as a
prototypical MPI collective communication function. In
this operation, all processes send arrays of identical size
and type to the root process. There, entries of the same
index are reduced using a specified arithmetic function.

In terms of communication performance, it
would suffice to consider MPI Allgather, as
MPI Allreduce can be assembled from an all-
gather operation followed by some local computation.
MPI Allreduce, however, natively integrates this
computation following communication and therefore
provides better workload characteristics in terms of
possible interference between communication and
computation.

Each process is bound to a specific core. No specific
measures are taken to guarantee placement of data in lo-
cal memory.

There is no explicit waiting between consecutive calls
of MPI Allreduce. While this might be unrealistic
in most application settings, it maximises stress on the
inter-chip network and therefore allows observation of
effects which might only be visible sporadically other-
wise.

Using hardware counters accessible via libcpc, we
measure the link load (i.e. sent/received data words on
the observed link in the given time interval) in both di-
rections on all links during execution of a given com-
munication function (48 measurements). Specifically,
we monitor the Opteron’s ”Link Event” registers (0F6h,
0F7h, 0F8h, 1F9h, ”HyperTransport Link x Transmit
Bandwidth”, see [1] for full details).

5.1 MPI Allreduce with 8x4 processes

We measure the execution time of an
MPI Allreduce function call (using hrtimer())
collecting and processing messages of 16kB each
from 32 MPI processes. Additionally, we monitor the
traffic on all HyperTransport links during execution of
MPI Allreduce. The measurements are repeated for
consecutive 2000 calls of MPI Allreduce.
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Figure 2. Execution times of 2000 consecutive
MPI Allreduce calls.
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MPI Allreduce calls executed in less than 500µs .

Figure 2 shows the execution time of each
MPI Allreduce call over wallclock time (i.e. the x-
axis corresponds to time progress during experiment).
Most calls take less than 1000 µs (the median of all mea-
surements is 363 µs). However, some execution times
deviate considerably with maximum execution times up
to 600 ms!

More than 95% of all measurements result in an ex-
ecution time smaller than 500 µs. Figure 3 shows the
distribution of these measurements.

While the majority of calls is very fast, the remain-
ing calls consume an disproportional amount of time.
The accumulated execution time of the 100 slowest calls
(5%) consumes 93% of the overall sum of all execution
times.

We hypothesise that the longer execution times can
be explained by activity on the inter-chip network re-
sulting in reduced available bandwidth on some Hyper-
Transport links. In the following, we focus on relating
MPI Allreduce execution time with HyperTransport
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Figure 5. Execution time of MPI Allreduce ver-
sus traffic on HyperTransport link 12.

link load.
A first naive approach could be to relate execution

time to the overall traffic on the inter-chip network dur-
ing execution of each call as shown in Figure 4. No
obvious correlation can be identified.

We use GGobi [16] to interactively explore the 23-
dimensional space spanned by our measurements (22x
HyperTransport outgoing link traffic, 1x MPI Allreduce
execution time) and find that some link traffic data is
positively correlated with the MPI Allreduce execu-
tion time. Figure 5 shows the traffic on link 12 over the
execution time of MPI Allreduce. The positive cor-
relation is obvious. Similar correlation exists for data
from several links.

The correlation observed is sufficient to distinguish
short, medium and long execution times by single link
load observations.

The observed link load stems from at least one collec-
tive communication (initiated by our foreground task)
and multiple additional (point-to-point and maybe col-
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Figure 6. Min/max/median HyperTransport link load
for calls of MPI Allreduce with an execution time
smaller than 500µs.

lective) communication triggered by background tasks
(scheduler, cache coherency protocol, I/O activity, ...).
According to Figure 1, messages exchanged between
cores on different sockets can lead to routing of the
message through up to three HyperTransport links. We
therefore try to identify traffic patterns rather than sim-
ple link load to explain execution times.

Figure 6 shows the observed minimum, maximum
and median HyperTransport link load for all links when
inspecting data for all calls of MPI Allreduce which
result in an execution time smaller than 500µs. The
links are ordered by their median load.

To identify distinct traffic patterns being related with
specific execution time levels, we use GGobi’s auto-
matic brushing tool which allows colouring of data in all
plots according to an additional given parameter (execu-
tion time in our case). Inspection reveals that increased
activity on Links 1, 3, 13 and 15 corresponds to an ex-
ecution time of about 80ms (the third cluster from left
in Figure 5) . Figure 7 shows the activity on each of
the links for some measurements resulting in high (red),
low (blue) and moderate (about 80ms, orange) execu-
tion times respectively. The large star pattern is formed
by measurements resulting in execution times of around
80ms exclusively.

5.2 Discussion of measurements

Our measurements of 2000 consecutive
MPI Allreduce calls reveal that while most calls
(95%) finish within a very short time (less than 500 µs,
median is 362 µs), the remaining 5% consume 93% of
the experiment’s run time.

It is possible to identify HyperTransport links whose
load is positively correlated with MPI Allreduce ex-
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Figure 7. HyperTransport link load for selected calls
of MPI Allreduce on Links 1, 3, 13, 15, 25, 27, 37
and 39.

ecution time. While not a very accurate indicator, single
link load data of selected links seems sufficient to sepa-
rate typical execution times from pathological cases.

The distribution of execution times is not continu-
ous but shows strong clustering. Mining the measure-
ments for correlations between clusters of similar exe-
cution time has revealed that increased traffic on a set of
links directly corresponds to execution times within the
cluster. This insight can be used to improve accuracy of
the above indicator.

6 Conclusions and Outlook

We have shown that MPI Allreduce execution
time is correlated with HyperTransport link load. This
is an important observation as a multitude of root causes
might originally be involved, leading ultimately to the
varying execution times observed. Relying on the cor-
relation identified, we can focus on a much smaller set
of observables. Current CPU architectures provide on-
chip hardware performance counters for monitoring of
inter-chip network traffic which allows link loads to be
observed easily from a user application at run-time.

Which links need to be observed is a function of the
full set of communication triggered by both foreground
and background tasks. Our method of identifying rele-
vant links relies on visual inspection of data which im-
plies a big overhead in case substantial changes to the set
of tasks are made. It would therefore be most desirable
to partially automate the process of identifying relevant
links.

Different implementations of MPI Allreduce lead
to different communication patterns. Therefore our
findings only apply to the specific implementation
ofMPI Allreduce in the used OpenMPI version.
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We have considered a single foreground traffic pat-
tern (MPI Allreduce). Further work will investigate
other MPI collective communication functions and the
effects they will encounter when being executed on an
inter-chip network with varying load.

We have not actively triggered any background com-
munication activity. The varying execution times ob-
served show that symmetric multi-core architectures in
use today sporadically exhibit extremely asymmetric
performance behaviour. This is due to the asymmetry
of the communication infrastructure (see Figure 1) as
well as conflicting resource usage by competing user
and system tasks and communication stack deficiencies
(see [12]).

There are two ways how our findings could be ap-
plied: First, it could be used to construct a predictor
for execution times of selected communication functions
under dynamic load situations. Second, it could also be
used as a bottom-up analysis tool for system activity af-
fecting the execution time of communication.

We plan to extend our work by identifying relevant
background tasks and reducing their activity if possible.
We will as well equip our benchmark with the cheap pre-
dictor proposed in this work. A simple measure to show
the viability of our predictor in a conventional MPI set-
ting would be to postpone execution of communication
calls if the predictor suggests very long execution times.

During preparation of this work, the maximum num-
ber of cores available on an AMD Opteron CPU has in-
creased from four to twelve. As a consequence, larger
distributed applications can be run on a single server,
increasing the complexity of traffic patterns on the inter-
chip network while relying heavily on its performance.
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Abstract

Future data center configurations are driven by total
cost of ownership (TCO) for specific performance ca-
pabilities. Low-latency interconnects are central to per-
formance, while the use of commodity interconnects
is central to cost. This paper reports on an effort to
combine a very high-performance, commodity intercon-
nect (HyperTransport) with a high-volume interconnect
(Ethernet). Previous approaches to extending Hyper-
Transport (HT) over a cluster used custom FPGA cards
[5] and proprietary extensions to coherence schemes
[22], but these solutions mainly have been adopted for
use in research-oriented clusters. The new HyperShare
strategy from the HyperTransport Consortium proposes
several new ways to create low-cost, commodity clus-
ters that can support scalable high performance com-
puting in either clusters or in the data center.

HyperTransport over Ethernet (HToE) is the
newest specification in the HyperShare strategy that
aims to combine favorable market trends with a high-
bandwidth and low-latency hardware solution for non-
coherent sharing of resources in a cluster. This paper
illustrates the motivation behind using 10, 40, or 100
Gigabit Ethernet as an encapsulation layer for Hyper-
Transport, the requirements for the HToE specification,
and engineering solutions for implementing key por-
tions of the specification.

∗This research was supported in part by NSF grant CCF-0874991,
and Jeffrey Young was supported by a NSF Graduate Research Fel-
lowship

1. Introduction

HyperTransport interconnect technology has been
in use for several years as a low-latency interconnect for
processors and peripherals [9] [7] and more recently as
an off-chip interconnect using the HTX card [5]. How-
ever, HyperTransport adoption for scalable cluster solu-
tions has typically been limited by the number of avail-
able coherent connections between AMD processors (8
sockets) and by the need for custom HyperTransport
connectors between nodes.

The HyperTransport Consortium’s new Hyper-
Share market strategy has presented three new options
for building scalable, low-cost cluster solutions using
HyperTransport technology: 1) HyperTransport-native
torus-based network fabric using PCI Express-enabled
network interface cards implementing the HyperTrans-
port High Node Count specification [14], 2) Hyper-
Transport encapsulated into InfiniBand physical layer
packets, and 3) HyperTransport encapsulated into Eth-
ernet physical layer packets. These three approaches
provide different levels of advantages and trade-offs
across the spectrum of cost and performance. This
paper describes the encapsulation of HyperTransport
packets into Ethernet, thereby leveraging the cost and
performance advantages of Ethernet to enable sharing
of resources and (noncoherent) memory across future
data centers. More specifically, this paper describes key
aspects of the HyperTransport over Ethernet (HToE)
specification that is part of the HyperShare strategy.

In the following sections, we describe 1) the moti-
vation for using HToE in both the HPC and data cen-
ter arenas, 2) challenges facing the encapsulation of
HT packets over Ethernet, 3) an overview of the major
components of this specification, and 4) use cases that
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demonstrate how this new specification can be utilized
for resource sharing in high node count environments.

2. The Motivation for HToE: Trends in In-
terconnects

The past ten years in the high-performance com-
puting world have seen dramatic decreases in off-chip
latency along with increases in available off-chip band-
width, due largely to the introduction of commodity
networking technologies like InfiniBand and 10 Giga-
bit Ethernet (10GE) from companies such as Myrinet
and Quadrics. Arguably, InfiniBand has made the most
inroads in the high-performance computing space, with
InfiniBand composing 42.6% of the fabrics for clusters
on the current Top 500 Supercomputing list [18].

At the same time, Ethernet has evolved as a lower-
cost and “software-friendly” alternative that enjoys
higher volumes. The ability to integrate HT over Ether-
net would enjoy significant infrastructure and operating
cost advantages in data center applications and certain
segments of the high-performance marketplace.

2.1. Performance

The ratification of the 10 Gigabit Ethernet standard
in 2002 [1] has led to its adoption in data centers and the
high-performance community. Woven Systems (now
Fortinet) in 2007 demonstrated that 10 Gigabit Ethernet
with TCP offloading can compete in terms of perfor-
mance with SDR InfiniBand, with both fabrics demon-
strating latencies in the low microseconds during a San-
dia test [28]. In addition, switch manufacturers have
built 10 Gigabit Ethernet devices with latencies in the
low hundreds of nanoseconds [11] [31]. Recent tests
with iWARP-enabled 10GE adapters have shown laten-
cies that are on the order of 8-10 microseconds, as com-
pared to similar InfiniBand adapters with latencies of 4-
6 microseconds [12]. More recent tests have confirmed
that 10 Gigabit Ethernet latency for MPI with iWARP
is in the range of 8 microseconds [20].

These latencies already are low enough to support
the needs of many high-throughput applications, such
as retail forecasting and many forms of financial analy-
sis which typically require end-to-end packet latencies
in the range of a few microseconds. The new IEEE
802.3ba standard for 40 and 100 Gbps Ethernet also
aims to make Ethernet more competitive with Infini-
Band. Although full-scale adoption is likely to take sev-
eral years, there are already some early products that
support 100 Gigabit Ethernet [25].

The challenge with using these lower-latency fab-
rics is in making these lower hardware latencies ac-

cessible to the application software layers without hav-
ing to engage higher overhead legacy software protocol
stacks that can add microseconds of latency [4] [23].
The HToE specification described here is a step towards
that goal, since it focuses on using Layer 2 (L2) pack-
ets and a global address space memory model to reduce
dependencies on software and OS-level techniques in
performing remote memory accesses.

2.2. Cost and Market Share

While 10 Gigabit Ethernet has had a relatively slow
adoption rate in the past few years, it should be noted
that 1 Gigabit and 10 Gigabit Ethernet still have a 45.6%
share of the Top 500 Supercomputing list [18], with a
majority of these installations still using 1 Gigabit Eth-
ernet. This indicates that cost plays an important role
in the construction of computational clusters on this
list (for example, for market analysis and geological
data analysis in the mineral and natural resource indus-
tries). Additionally, networks composed of 1 and 10
Gigabit Ethernet also have a dominant position in high-
performance web server farms. Part of this widespread
market share is due to the low cost of Gigabit Ether-
net and falling cost of 10 Gigabit Ethernet as well as
the management and operational simplicity of Ethernet
networks.

However, it should also be noted that InfiniBand
still enjoys a price and power advantage over 10 and 40
Gbps Ethernet due to being first to market. A 40 Gbps,
36 port InfiniBand switch now costs around $6,500 and
has a typical power dissipation of 226 Watts [8], while a
10 Gbps, 48 port Ethernet switch costs around $20,900
and has a power dissipation of 360 Watts.

One of the strongest factors for using Ethernet is
the trend toward converged networks, driven in large
part by the need to lower the total cost of ownership
(TCO). For example, Fibre Channel (FC) has been the
de facto high-performance standard for SANs for the
past 15 years. The technical committee behind FC has
been a major proponent of convergence in the data cen-
ter with their introduction of the Fibre Channel over
Ethernet (FCoE) standard [15]. This standard relies on
several new IEEE Ethernet standards that are collec-
tively referred to as either Data Center Bridging (DCB)
or Converged Enhanced Ethernet (CEE) and are de-
scribed in more detail in Section 3.3. The approval of
this standard and subsequent adoption by hardware ven-
dors bodes well for the continued usage of Ethernet in
data centers and smaller high-performance clusters.

Possibly one of the best indicators of the future
market share for Ethernet as a high-performance data
center and cluster fabric is the willingness of competi-
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tors to embrace and extend Ethernet technologies. Two
examples are the creation of high-performance Ethernet
switches [24] and the development of RDMA over Con-
verged Ethernet (RoCE) [3], which has been referred to
by some as “InfiniBand over Ethernet” since it utilizes
the InfiniBand verbs and transport layer with a DCB
Ethernet link layer and physical network.

2.3. Scalability

As the most prevalent commodity interconnect
technology in previous generation data centers, there
has been considerable effort devoted to constructing
scalable Ethernet fabrics for data centers. For instance,
consider the use of highly scalable fat tree networks for
data centers using 10 Gigabit Ethernet [27], while net-
work vendors have already embraced the in-progress
standards for Data Center Bridging as a way to cre-
ate converged SANs and a high performance cluster
fabric [21]. Other recent studies have demonstrated
techniques for active congestion management to enable
further scaling of topologies constructed around Ether-
net [28]. We can expect to see continued efforts toward
expanding the use of Ethernet in an effort to leverage
legacy software, existing expertise in the networking-
related workforce, and volume cost-related advantages.

2.4. The Case for HToE

As the previous sections have shown, Ethernet has
significant benefits in the areas of cost, market share,
and competitive performance. HyperTransport over
Ethernet shares these benefits while adding the advan-
tage of a transparent on-package to off-package encap-
sulation using 10, 40, and 100 Gbps Ethernet. The IEEE
802.3ba standard also includes support for short-reach
(7 meter) copper cable physical layers for 40 and 100
Gigabit Ethernet, which should allow for more cost-
effective implementations of 40 and 100 Gigabit Ether-
net. As the penetration of these new flavors of Ethernet
grows, the potential for HyperTransport over Ethernet
also grows as a high-performance hardware communi-
cation and sharing mechanism. In fact, this capability
for improved resource sharing is one of the best motiva-
tors for using HToE and is discussed in more detail in
Section 5.

HyperTransport over Ethernet also addresses a dif-
ferent market space than that served by the HyperTrans-
port High Node Count specification and HyperTrans-
port over InfiniBand. Specifically, HToE is well suited
for creating scalable, low cost clusters that rely on a
converged Ethernet fabric to share resources in a non-
coherent fashion. Ethernet’s market share ensures that

Figure 1. HyperTransport Over Ethernet Layers

the barrier to entry in using HyperTransport over Ether-
net is low in most cases, and using converged Ethernet
negates the need for a custom sharing fabric like NU-
MAlink [16] or additional cabling for an InfiniBand or
other custom network.

3. HToE Specification Requirements

Due to the differences between the point-to-point
communication of HyperTransport and the switched,
many-to-many communication of Ethernet, the Hyper-
Transport over Ethernet specification needs to address
several key requirements to ensure correct functional-
ity. To manage the traversal of packets between these
fabrics, we focus on a bridged implementation using
encapsulation of HT packets (typically up to 64 Bytes
of data) in larger Ethernet packets (up to 1500 Bytes
or larger in some cases). If we are to remain faith-
ful to end-to-end HT transparency at the software level,
the requirements of the HT protocol now translate into
requirements for Ethernet transport that are realized in
Layer 2 switches.

Furthermore, to productively harness the capabili-
ties of HToE, it must be implemented in the context of a
global system model that defines how the system-wide
memory address space is deployed and utilized. Toward
this end, we advocate the use of global address space
models and specifically the Partitioned Global Address
Space (PGAS) model [30]. In particular, we are con-
cerned about the portability of the model and applica-
tion/system software across future generations of pro-
cessors with increasing physical address ranges.

To illustrate the differences between HyperTrans-
port and HToE and to help illustrate how HToE sup-
ports global address models, we have divided the core
functionality of HToE into three “layers”: the “map-
ping” layer, the “ordering and flow control” layer, and
the “encapsulation” layer, as shown in Figure 1.
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3.1. On-package and Off-package Addressing

HyperTransport address mapping allows for I/O
devices and local DRAM to be mapped to physical ad-
dresses that are interpreted by the processor for read and
write operations. This physical address mapping is hid-
den from applications using standard virtual addressing
techniques in the operating system.

HToE supports a global, system-wide, noncoher-
ent address space. Addresses must be transparently rec-
ognized as either local or remote, and the latter must
be mapped to memory or device addresses on a remote
node. Implicitly, this mapping must translate between
address spaces and Ethernet MAC addresses and vice
versa. Consequently, this mapping between local HT
addresses and the global HToE address space is nec-
essary to encapsulate and transmit HT packets from a
local node to a remote node’s memory. Additionally,
the remote node must not require modification to its lo-
cal HyperTransport links in order to route packets that
have been sent from a remote node – that is, any remote
requests must appear to the local HT link as an access
by a local device to a local address. For more details
on the specific mapping used by HToE, see Sections 4.2
and 4.3.

3.2. Scaling HyperTransport Ordering and
Flow Control for Cluster Environments

HyperTransport is a point-to-point protocol that
uses three virtual channels to send and receive com-
mand and data packets. The HT protocol has been de-
signed to ensure that packet ordering on these channels
is preserved on local links via the HT Section 6 Order-
ing algorithm [7]. This algorithm ensures not only that
packets arrive in a logical order but also that deadlock
freedom is ensured. In a switched Ethernet environment
with the possibility of packet loss, preservation of or-
dering becomes a much more difficult problem. Thus,
our HToE solution must ensure that packets remain or-
dered correctly within their virtual channels. For more
information on maintaining order, see Section 4.4.

In addition to packet ordering, the HT 3.1 speci-
fication also defines a multi-channel, credit-based flow
control algorithm. Credits typically flow between two
point-to-point links based on the receipt and processing
of packets within each virtual channel. In a scalable,
switched Ethernet environment, packets could conceiv-
ably flow from multiple sources to one destination.
Furthermore, since HyperTransport packets are much
smaller than Ethernet packets, another requirement is
that multiple HyperTransport packets can be encapsu-
lated in one Ethernet packet to reduce the overhead of

encapsulation. Both of these requirements indicate the
need for a careful rethinking of how to send Hyper-
Transport credits and packets when using HToE. The
requirement is that the sender must possess credits for
all HyperTransport packets that it encapsulates. Hy-
perTransport packets that are encapsulated in a single
Ethernet packet must be of the same virtual circuit and
headed for the same destination.

3.3. The Benefit of a Congestion-Managed Eth-
ernet Network for Flow Control

One recent development that was investigated
for this specification was the introduction of several
IEEE specifications, collectively known as Data Cen-
ter Bridged (DCB) Ethernet or sometimes Converged
Enhanced Ethernet (CEE), depending on the company
promoting it.

Data Center Bridged Ethernet aims to provide a
congestion-managed Ethernet environment to support
converged fabrics in the data center and was motivated
by the convergence of the Fibre Channel standard onto
Ethernet fabric, aka FCoE [29]. These fabrics aim to
prevent packet loss due to congestion but do not pre-
vent packet loss due to bit errors or other sources such
as equipment failure or fail-over. Data Center Bridged
Ethernet incorporates several specifications including
per-priority flow control (IEEE 802.1Qbb), conges-
tion notification (IEEE 802.1Qau), and Data Center
Bridging Capabilities Exchange Protocol and Enhanced
Transmission Selection (IEEE 802.1Qaz) [17]. These
congestion-management algorithms are especially help-
ful in high-performance computing because of the in-
tensely self-similar nature of HPC traffic.

3.4. Recovery from Failures

HyperTransport 3.1 has several methods for recov-
ering from errors. A special “poison” bit can be set
in HT response packets to indicate to the source pro-
cessor or device that an operation failed (e.g., a read
failed to complete). This error notification typically is
passed upstream to the initial requesting device without
any notion of the initial request’s address. In addition,
HyperTransport can use the HT 3.1 retry mechanism to
resend packets between source and destination HT de-
vices based on a Go-Back-N algorithm that relies on
sequence numbers included in packets. If this mecha-
nism should fail to recover from errors, the host pro-
cessor has the option to issue a reset using a warm or
cold reset that is communicated to devices via separate
physical signals.

In the HToE environment, these requirements for
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Figure 2. HyperTransport Ethernet Adapter with
Opteron Memory Subsystem

recovery from errors become more complex due to the
nature of HyperTransport transactions and due to the
fact that Ethernet does not support the HyperTransport
physical signals. Thus the HyperTransport over Eth-
ernet specification must ensure that 1) errors can be
appropriately reported to the requesting remote node,
2) resets can be accurately communicated to remote
nodes when otherwise unrecoverable failures occur, and
3) resets for traffic between one source and destination
HTEA does not affect traffic from other HTEAs.

3.5. Requirements for Retry in HToE

The HT specification defines a retry mechanism
that resends packets when errors are discovered using
a Go-Back-N algorithm and sequence numbers for Hy-
perTransport packets. This mechanism must be ex-
tended to function over Ethernet and thereby becomes
part of the HToE specification. We did not want to rely
on TCP’s retry algorithm, but Ethernet does not define
a Layer 2 error retry protocol. Therefore, we created
a variant of HyperTransport 3.1’s retry algorithm that
would function across an Ethernet fabric in the presence
of packet loss due to congestion or due to bit errors.

4. The HyperTransport Over Ethernet
Specification

The HyperTransport over Ethernet specification
outlines the basic functionality of the HToE bridge de-
vice, or HyperTransport Ethernet Adapter (HTEA), that
is used to encapsulate HyperTransport 3.1 packets into
Ethernet packets. The location of this device in rela-
tion to a typical Opteron system is shown in Figure 2.
Note that a normal Ethernet MAC can be shared for
both HToE traffic and TCP/IP traffic, although the im-
plementer should decide on how to prioritize each traffic
type.

To assist with the implementation of each of the
specification’s requirements, functionality in the HTEA

Figure 3. HyperTransport Ethernet Adapter Vir-
tual Link

is divided into separate “layers” that are implemented in
the hardware of the HTEA and that communicate with
other layers when processing incoming or outgoing HT
packets. Here we describe some of the more interest-
ing aspects of the “mapping” layer, the “ordering” layer,
and the “encapsulation” layer. Full details are available
in the HToE specification [32].

4.1. HToE’s Relationship with DCB

HyperTransport over Ethernet is intended to be
used with switches that have been designed for Data
Center Bridging environments, such as those explic-
itly created to support Fibre Channel over Ethernet.
However, some of the DCB specifications would inter-
fere with the normal ordering and priority requirements
specified by the HT Section 6 Ordering Requirements.
For this reason, many of the solutions specified for or-
dering and flow control do not explicitly require fea-
tures like per-flow flow control. This means that HToE
could likely be supported on normal 10 GE hardware,
but it could also be enhanced by allowing for the usage
of the DCBX protocol, per-flow priorities (for packet
flows between different sources and destinations), and
with Enhanced Transmission Selection for usage with
other types of network traffic.

4.2. Mapping HT Addresses into the Global
Address Space

HyperTransport over Ethernet assumes that the
range of memory addresses on each node form a sub-
set of a global, 64 bit physical address space. In or-
der to map the local HyperTransport address to a global
memory address, such as those used with some PGAS
models [30], and to a destination Ethernet address for
remote nodes, a few of the upper bits from the physical
address are used to select among potential remote nodes

Proceedings of the Second International Workshop on  
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

12



in the mapping layer of the HTEA as shown in Figure
2. This mapping allows for a processor on a local node
to make a remote noncoherent “put” or “get” operation
to the memory of a remote node.

While the creation of a mapping table is left up
to implementers of the HTEA, the selection of global
addresses for a particular HTEA and node can be de-
fined using OS-level communication and subsequent
PCI-style Programmed I/O commands to write to the
HTEA or by using the new capabilities of the Data Cen-
ter Bridging Capabilities Exchange Protocol (DCBX)
[17] to communicate mapping parameters at the link
layer level between DCB-enabled switches.

This mapping of local HT packets to remote nodes
also requires the creation of a logical organization
scheme to keep track of distinct source and destination
pairs, known as a Virtual Link in the specification. As
shown in Figure 3, a Virtual Link couples information
such as available credits and buffers for the three vir-
tual channels on the local link as well as information
like the destination MAC address. Once the mapping
layer of the HTEA decides which destination MAC ad-
dress a particular HT request address maps to, the Hy-
perTransport packet is queued according to available
credits and associated buffer space at the remote HTEA.
These credits are discussed more in Section 4.4.

4.3. Tag Remapping for Higher Performance

In addition to mapping local HT requests into the
global address space supported by HToE, the HToE
specification also supports mapping optimizations for
the HTEA that allow for increased scalability while still
preserving the local link’s ability to transparently han-
dle remote HT packets without needing knowledge of
their source.

One of the limits to scalability in an HToE imple-
mentation is related to the number of outstanding Non-
Posted requests that can be issued by a HyperTransport
device at one time. Since the HTEA interface with the
HyperTransport link follows all the normal protocols of
a HyperTransport device, it is limited to sending a rel-
atively small number of Non-Posted requests (that re-
quire a response packet) to the local link using unique
Source Tag (SrcTag) bits. Furthermore, packets that are
received at a HTEA may have their own Source Tag bits
that conflict with requests from other source HTEAs.
For this reason, the HToE standard implements a tech-
nique called tag remapping [30] to maximize the num-
ber of Non-Posted requests that can be sent to the lo-
cal HT link. Figure 4 shows how tag remapping works
with two conflicting incoming requests. The original
SrcTag, Unit ID, and source MAC address are stored in

a pending request table on receipt. If a newly arrived
request conflicts with a pending request, its SrcTag and
Unit ID bits are remapped and the mapping is main-
tained in the pending request table. On completion of
the servicing of a request, the corresponding responses
are matched up against this table to restore the SrcTag
and Unit ID fields as well as to determine the correct
destination HTEA for a response.

The HyperTransport specification also specifies an
optional technique called Unit ID Clumping that can
be used with tag remapping to give the HTEA addi-
tional Source Tags for use with the local HyperTrans-
port link. Unit ID Clumping is not a requirement for
HToE implementations, but it provides an example of
how HToE can be scaled to handle additional sending
HTEAs while conforming to the requirements of the
original HyperTransport specification.

4.4. HToE Ordering and Flow Control for Mul-
tiple Senders, Single Receivers

HToE ordering relies on the HT 3.1 ordering re-
quirements, also known as HyperTransport Section 6
Ordering Requirements. Although there are no require-
ments for packets going to different destinations (from
different VLs), ordering of packets within a VL are pre-
served by the HToE retry algorithm and by sending all
Ethernet packets for a specific source/destination pair
on the same Ethernet priority level.

In contrast to point-to-point communication, a
HTEA must receive packets from multiple source
HTEAs. To handle this many-to-many communica-
tion pattern, the HToE specification uses a very sim-
ple credit-based principle for end-to-end buffer man-
agement – any HyperTransport packets that are sent to
a remote node must have a standard HyperTransport
credit for the Virtual Link before they can be encap-
sulated into an Ethernet packet. Additionally, each HT
credit is equal to one buffer in the receiving HTEA.

Unlike HT links where HT credit-carrying NOP
packets continuously flow on the physical link, cred-
its are passed in the HToE environment only when the
receiving HTEA has available buffers for incoming HT
packets. A certain number of buffers must be reserved
to allow sending HTEAs to initiate new connections,
but additional buffers and credits are allocated by the
receiving HTEA as its flow control and credit allocation
schemes specify.

As buffers are filled in a receiving HTEA, the
lack of available credits introduces backpressure on the
sending HTEAs. Figure 5 shows how this backpressure
causes buffers in the sending HTEA at Node 1 to be-
come full, pausing transactions until more credits are
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Figure 4. Tag Remapping in the HTEA

available. Note that since each Virtual Link has its own
set of credits, lack of credits for one source-destination
pair should not affect the traffic for another VL.

The HToE specification defines the minimum re-
quired flow control mechanism. However, it mentions
and leaves open many opportunities to optimize the al-
location of credits and buffers to multiple senders.

4.5. Encapsulation and Support for Recovery
and Resets

In addition to specifying how HyperTransport
packets are packed into Ethernet packets, the encapsu-
lation layer also interacts with recovery and reset mech-
anisms that have been adapted from HT 3.1 to handle
HToE packets. Each HToE packet contains a special se-
quence number that is used by the HToE retry algorithm
to determine if HToE packets are received in order. This
sequence number and retry algorithm are very similar to
the 3.1 Go-Back-N algorithm, but each sequence num-
ber refers to an entire HToE packet, not just one HT
packet. Further error checking is provided by CRCs on
both the HToE Payload and the use of the normal Eth-
ernet CRC.

In the case of an unrecoverable error that leads to
reset, the encapsulation layer specifies a method for per-
forming link-level resets of one or more Virtual Links
that is similar to HyperTransport’s concept of cold and
warm resets. Since HyperTransport over Ethernet does
not include the additional physical sideband signals that
HyperTransport devices normally include (such as the
power and reset signals), resets must be passed using
packets or using OS-level communication. A special
encapsulation packet header defines fields for these se-
lective resets, limits their scope, and keeps the entire
HTEA from having to reset due to an error between one
source and one destination.

While some errors lead to reset, many errors just
require a response to notify the original requesting pro-

cessor that a request packet has not received a valid
response. Similar to how HT 3.1 specifies a method
for sending responses with error bits to notify of errors,
HToE allows for remote transactions to be terminated
and handles error notification. To do this the HTEA
must keep track of sent HyperTransport packets that re-
quire a response (Non-Posted packets), and if it receives
a notification that the response has been lost or the re-
mote node has been reset, it can then reply with a nor-
mal HT 3.1 packet with the “poison” or error bit set.
This additional state for remote requests allows for eas-
ier error detection and detection of request timeouts.

4.6. Security in HToE-enabled Data Centers

Since HyperTransport over Ethernet enables easy,
transparent (OS interaction is not necessarily needed)
hardware sharing of noncoherent memory between
nodes, more care must be taken to make sure that ma-
licious HyperTransport packets are not inserted into an
Ethernet packet and sent to a remote node. While cer-
tain HPC-oriented clusters that are not used to handle
web-related data may not have as high security require-
ments, networks exposed to the Internet may require
additional security measures. Fortunately, HToE de-
fines the use of IEEE 802.1ae MACsec to provide for
encrypted 10 Gigabit Ethernet traffic between nodes.

5. Resource Sharing with HToE - Use
Cases

The creation of a high-performance, scalable, com-
modity network using HyperTransport over Ethernet
opens up the possibility of many application models that
are based on low-latency noncoherent communication.
Here we present two potential usages of this commod-
ity standard to promote resource sharing within a data
center or HPC environment. Both are predicated on the
assumption that future clusters will be limited not nec-
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Figure 5. HToE Backpressure-based Flow Control

essarily by processing power but rather by factors like
TCO and power usage.

5.1. PGAS Support for Virtualizing DIMMs
and DRAM Power Efficiency

Previous research has examined the use of Hyper-
Transport over Ethernet as the hardware support for
a PGAS implementation that can be used to reduce
DRAM overprovisioning in servers in data centers [33].
DRAM in data centers is typically overprovisioned to
handle infrequent peaks in workloads, but low-latency
memory transfers can help reduce the need for overpro-
visioning while also providing much lower latency than
swapping data out to disk.

These low-latency remote memory accesses pro-
vide an alternative to existing RDMA models and also
allow for the “virtualizing” of DIMMs on remote nodes.
This means that a node could request the use of part of
a remote DIMM for noncoherent accesses to grow its
own available memory temporarily. At the same time,
applications running on the local node are unaware of
the DIMM’s actual location due to the transparent ad-
dress mapping of a local HT request address into the
global address space, the transmission of a low-latency
HToE packet, and traditional CPU techniques that are
used to hide normal memory access latency.

DIMM virtualization can provide opportunities for
reducing the amount of installed DRAM in a data cen-
ter, based on average memory requirements rather than
peak requirements. For instance, a 10,000 core data
center might currently consist of 625 individual blades,
each with 4 sockets and quad-core CPUs. Based on pre-
vious estimates of memory requirements for data cen-
ter workloads [6], each blade would require anywhere
from 32 to 64 GB of DRAM in an overprovisioned sce-
nario. The current retail price of a registered 8 giga-
byte DDR3-1333 DIMM is around $300 [10], so reduc-

ing the amount of memory by 50% (from 64 GB to 32
GB) would save $750,000 over the entire data center. A
75% reduction would save $1,125,000 in memory costs
alone, not to mention TCO related to cooling and power.
Using HP’s online power calculator, we can also esti-
mate that this reduction in memory would save either
8,500 Watts (50% reduction) or 12,750 Watts (75%) due
to related reductions in idle memory power [19].

5.2. Pooled Accelerators to Reduce Cluster
TCO and Power Usage

In addition to virtualizing DRAM, there are also
several researchers interested in virtualizing and shar-
ing accelerators, such as GPUs. Provisioning an entire
cluster with GPU cards can prove to be cost- and power-
inefficient, especially in situations where only a few ap-
plications can take advantage of the benefits of better
performance on these accelerators. In the same vein as
other approaches that utilize MPI or sockets to access
remote accelerators [13], HToE can be used as an en-
abling technology to allow for pooling accelerators (i.e.,
sharing a few accelerators between a larger number of
general purpose nodes) and reducing cost and power in-
efficiency in the cluster.

While current approaches to use remote accelera-
tor access would likely rely on using HToE packets to
perform remote reads and writes to shared CPU-GPU
memory pages, it is foreseeable that GPUs could be ac-
cessed directly using HyperTransport packets either na-
tively or after being translated over the PCI Express bus.
The availability of direct access to GPUs using Hyper-
Transport packets would allow remote nodes to be able
to directly read or write GPU DRAM and would provide
a much higher performing model for sharing remote ac-
celerators between nodes in a cluster.

Using our example cluster from Section 5.1 with
mid-range GPUs, we can give a simplistic approxima-
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tion of how pooled accelerators could be used to re-
duce overall cost and power usage. We assume that
a blade could potentially house two PCIe-based GPU
cards and that these GPUs are not typically fully uti-
lized. The Fermi-branded, NVIDIA GeForce GTX 570
GPU currently retails for around $350 and has a max-
imum power dissipation of 220 Watts [26] and an idle
power dissipation of around 30 Watts [2]. In our pooled
accelerator scenario, one GPU could be shared between
two adjacent blades, providing a 75% reduction in cost
($328,125 for the entire data center). More importantly,
the power consumption due to idle GPUs would be re-
duced by at least 28,125 Watts (assuming each GPU
uses 30 Watts when inactive).

These savings are highly dependent on the ex-
pected workload, but the existence of pooled acceler-
ators would allow for much greater flexibility in the ini-
tial provisioning and upgrading of clusters to meet com-
putational, power, and TCO requirements.

6. Conclusions

As part of the new HyperShare strategy, Hyper-
Transport over Ethernet (HToE) provides a low-cost,
commodity standard that can be used to enable new
higher performance models of resource sharing in clus-
ters and data centers. This specification proposes sev-
eral engineering solutions for encapsulating Hyper-
Transport packets over a highly scalable, many-to-many
interconnect, and it provides cost- and performance-
related motivation for using HToE in environments
where 10 Gigabit Ethernet is already deployed and
where 40 or 100 Gigabit Ethernet is likely to gain fu-
ture market share.

Additionally, we have proposed several usage cases
to demonstrate how HToE can be utilized to dramat-
ically improve resource sharing for overprovisioned
hardware such as DRAM and expensive accelerators
such as GPUs. The HToE standard can enable these
sharing techniques in data centers while taking advan-
tage of the cost, scalability, and management benefits
associated with Ethernet interconnect technology.

References

[1] IEEE 802.3ae 10Gb/s Ethernet Task Force. 10 gigabit
ethernet 802.3ae standard. 2002. http://grouper.
ieee.org/groups/802/3/ae/index.html.

[2] Nvidia’s geforce gtx 570: Filling in the
gaps - power, temperature, and noise. 2011.
http://www.anandtech.com/show/4051/
nvidias-geforce-gtx-570-filling-in-
the-gaps/15.

[3] InfiniBand Trade Association. Rdma over con-
verged ethernet specification. 2010. http://www.
infinibandta.org.

[4] Pavan Balaji, Wu-chun Feng, and Dhabaleswar K.
Panda. Bridging the ethernet-ethernot performance gap.
IEEE Micro, 26:24–40, May 2006.

[5] Ulrich Bruening. The htx board: The universal htx
test platform. http://www.hypertransport.
org/members/u_of_man/htx_board_data_
sheet_UoH.pdf.

[6] S. Chalal and T. Glasgow. Memory sizing for server vir-
tualization. 2007. http://communities.intel.
com/docs/.

[7] HyperTransport Consortium. Hypertransport specifica-
tion, 3.10. 2008. http://www.hypertransport.
org.

[8] HyperTransport Consortium. Clustering 360 market
analysis. 2010. http://www.hypertransport.
org/default.cfm?page=Clustering360.

[9] Pat Conway and Bill Hughes. The amd opteron north-
bridge architecture. IEEE Micro, 27(2):10–21, 2007.

[10] Crucial memory 8 gb, ddr3 pc3-10600 memory mod-
ule pricing. 2011. http://www.crucial.com/
server/index.aspx.

[11] Uri Cummings. Focalpoint: A low-latency, high-
bandwidth ethernet switch chip. In Hot Chips 18,
2006. http://www.hotchips.org/archives/
hc18/3_Tues/HC18.S8/HC18.S8T1.pdf.

[12] D. Dalessandro, P. Wyckoff, and G. Montry. Initial per-
formance evaluation of the neteffect 10 gigabit iwarp
adapter. In Cluster Computing, 2006 IEEE International
Conference on, pages 1–7, 2006.

[13] J. Duato, A.J. Pea, F. Silla, R. Mayo, and E.S. Quintana-
Orti. rcuda: Reducing the number of gpu-based acceler-
ators in high performance clusters. In High Performance
Computing and Simulation (HPCS), 2010 International
Conference on, pages 224 –231, July 2010.

[14] J. Duato, F. Silla, S. Yalamanchili, B. Holden, P. Mi-
randa, J. Underhill, M. Cavalli, and U. Bruning.
Extending hypertransport protocol for improved
scalability. In First International Workshop on
HyperTransport Research and Applications, 2009.
http://ra.ziti.uni-heidelberg.de/
coeht/pages/events/20090212/whtra09-
paper16.pdf.

[15] Fibre channel over ethernet fc-bb-5 standard. 2010.
http://www.t11.org/fcoe.

[16] Silicon Graphics. Sgi numalink: Industry leading in-
terconnect technology (white paper). 2005. http:
//www.sgi.com.

[17] IEEE 802.1 Working Group. Ieee 802.1qaz standards
page (in progress). http://www.ieee802.org/
1/pages/802.1az.html.

[18] Interconnect share of top 500 for november 2010 - hpc
top 500. 2010. http://www.top500.org.

[19] Hp power advisor. 2011. http://h18000.
www1.hp.com/products/solutions/power/
advisor-online/HPPowerAdvisor.html.

Proceedings of the Second International Workshop on  
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

16

http://grouper.ieee.org/groups/802/3/ae/index.html
http://grouper.ieee.org/groups/802/3/ae/index.html
http://www.anandtech.com/show/4051/nvidias-geforce-gtx-570-filling-in-the-gaps/15
http://www.anandtech.com/show/4051/nvidias-geforce-gtx-570-filling-in-the-gaps/15
http://www.anandtech.com/show/4051/nvidias-geforce-gtx-570-filling-in-the-gaps/15
http://www.infinibandta.org
http://www.infinibandta.org
http://www.hypertransport.org/members/u_of_man/htx_board_data_sheet_UoH.pdf
http://www.hypertransport.org/members/u_of_man/htx_board_data_sheet_UoH.pdf
http://www.hypertransport.org/members/u_of_man/htx_board_data_sheet_UoH.pdf
http://communities.intel.com/docs/
http://communities.intel.com/docs/
http://www.hypertransport.org
http://www.hypertransport.org
http://www.hypertransport.org/default.cfm?page=Clustering360
http://www.hypertransport.org/default.cfm?page=Clustering360
http://www.crucial.com/server/index.aspx
http://www.crucial.com/server/index.aspx
http://www.hotchips.org/archives/hc18/3_Tues/HC18.S8/HC18.S8T1.pdf
http://www.hotchips.org/archives/hc18/3_Tues/HC18.S8/HC18.S8T1.pdf
http://ra.ziti.uni-heidelberg.de/coeht/pages/events/20090212/whtra09-paper16.pdf
http://ra.ziti.uni-heidelberg.de/coeht/pages/events/20090212/whtra09-paper16.pdf
http://ra.ziti.uni-heidelberg.de/coeht/pages/events/20090212/whtra09-paper16.pdf
http://www.t11.org/fcoe
http://www.sgi.com
http://www.sgi.com
http://www.ieee802.org/1/pages/802.1az.html
http://www.ieee802.org/1/pages/802.1az.html
http://www.top500.org
http://h18000.www1.hp.com/products/solutions/power/advisor-online/HPPowerAdvisor.html
http://h18000.www1.hp.com/products/solutions/power/advisor-online/HPPowerAdvisor.html
http://h18000.www1.hp.com/products/solutions/power/advisor-online/HPPowerAdvisor.html


[20] Swamy N. Kandadai and Xinghong He. Performance
of hpc applications over infiniband, 10 gb and 1 gb
ethernet. 2010. http://www.chelsio.com/
assetlibrary/whitepapers/HPC-APPS-
PERF-IBM.pdf.

[21] M. Ko, D. Eisenhauer, and R. Recio. A case for con-
vergence enhanced ethernet: Requirements and applica-
tions. In Communications, 2008. ICC ’08. IEEE Inter-
national Conference on, pages 5702 –5707, May 2008.

[22] Rajesh Kota and Rich Oehler. Horus: Large-scale sym-
metric multiprocessing for opteron systems. IEEE Mi-
cro, 25(2):30–40, 2005.

[23] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete
Wyckoff, and Dhabaleswar K. Panda. High performance
rdma-based mpi implementation over infiniband. In Pro-
ceedings of the 17th annual international conference on
Supercomputing, ICS ’03, pages 295–304, New York,
NY, USA, 2003. ACM.

[24] Myricom’s myri-10g 10-gigabit ethernet solu-
tions. 2010. http://www.myri.com/Myri-
10G/10gbe_solutions.html.

[25] Juniper Networks. Press release for juniper
network’s t1600 100 ge core router. 2009.
http://www.juniper.net/us/en/company/
press-center/press-releases/2009/pr_
2009_06_08-09_00.html.

[26] Nvidia geforce gtx 570 specification. 2011.
http://www.nvidia.com/object/product-
geforce-gtx-570-us.html.

[27] M. Schlansker, J. Tourrilhes, Y. Turner, and J.R. San-
tos. Killer fabrics for scalable datacenters. In Communi-
cations (ICC), 2010 IEEE International Conference on,
pages 1 –6, May 2010.

[28] Woven Systems. 10 ge fabric delivers con-
sistent high performance for computing clus-
ters at sandia national labs. 2007. http:
//www.chelsio.com/assetlibrary/pdf/
Sandia_Benchmark_Tech_Note.pdf.

[29] Jon Tate. An introduction to fibre channel over ether-
net, and fibre channel over convergence enhanced eth-
ernet. 2009. http://www.redbooks.ibm.com/
redpapers/pdfs/redp4493.pdf.

[30] Sudhakar Yalamanchili, Jose Duato, Jeffrey
Young, and Federico Silla. A dynamic, par-
titioned global address space model for high
performance clusters. Technical report, 2008.
http://www.cercs.gatech.edu/tech-
reports/tr2008/git-cercs-08-01.pdf.

[31] Yasushi Umezawa Yoichi Koyanagi, Tadafusa Niinomi.
10 gigabit ethernet switch blade for large-scale blade
servers. Fujitsu Scientific and Technical Journal,
46(1):56–62, 2010.

[32] Jeff Young and Brian Holden. Hypertransport over
ethernet specification, 1.0. 2010. http://www.
hypertransport.org.

[33] Jeffrey Young and Sudhakar Yalamanchili. Dynamic
partitioned global address spaces for power efficient
dram virtualization. In Works in Progress in Green Com-

puting, 2010 International Green Computing Confer-
ence, 2010.

Proceedings of the Second International Workshop on  
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

17

http://www.chelsio.com/assetlibrary/whitepapers/HPC-APPS-PERF-IBM.pdf
http://www.chelsio.com/assetlibrary/whitepapers/HPC-APPS-PERF-IBM.pdf
http://www.chelsio.com/assetlibrary/whitepapers/HPC-APPS-PERF-IBM.pdf
http://www.myri.com/Myri-10G/10gbe_solutions.html
http://www.myri.com/Myri-10G/10gbe_solutions.html
http://www.juniper.net/us/en/company/press-center/press-releases/2009/pr_2009_06_08-09_00.html
http://www.juniper.net/us/en/company/press-center/press-releases/2009/pr_2009_06_08-09_00.html
http://www.juniper.net/us/en/company/press-center/press-releases/2009/pr_2009_06_08-09_00.html
http://www.nvidia.com/object/product-geforce-gtx-570-us.html
http://www.nvidia.com/object/product-geforce-gtx-570-us.html
http://www.chelsio.com/assetlibrary/pdf/Sandia_Benchmark_Tech_Note.pdf
http://www.chelsio.com/assetlibrary/pdf/Sandia_Benchmark_Tech_Note.pdf
http://www.chelsio.com/assetlibrary/pdf/Sandia_Benchmark_Tech_Note.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4493.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4493.pdf
http://www.cercs.gatech.edu/tech-reports/tr2008/git-cercs-08-01.pdf
http://www.cercs.gatech.edu/tech-reports/tr2008/git-cercs-08-01.pdf
http://www.hypertransport.org
http://www.hypertransport.org


System-level Prototyping with HyperTransport 

Myles Watson and Kelly Flanagan 

Computer Science Department 

Brigham Young University 

Provo, Utah, USA 

myles@byu.edu kelly@cs.byu.edu 

 
Abstract— The complexity of computer systems continues to 

increase. Emulation of proposed subsystems is one way to 

manage this growing complexity when evaluating the 

performance of proposed architectures. HyperTransport 

allows researchers to connect directly to microprocessors with 

FPGAs. This enables the emulation of novel memory 

hierarchies, non-volatile memory designs, coprocessors, and 

other architectural changes, combined with an existing system. 
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I.  INTRODUCTION 

In accordance with Moore’s Law, the number of 

transistors available to chip designers has continued to 

double every 18 months. For many years, this transistor 

scaling also enabled increasing central processing unit 

(CPU) frequencies. Although CPU frequencies and 

performance increased rapidly, memory and I/O 

performance increased much more slowly. This disparity 

increased the importance of I/O and memory performance in 

computer systems design [1]. 

In the last few years, power consumption and cooling 
have caused CPU manufacturers to shift the focus from 

frequency scaling to scaling the number of processor cores 

per die [2]. This has exacerbated the pressure on, and the 

importance of, the memory and I/O subsystems [3]. 

The increase in importance of memory and I/O 

subsystems increases the need for understanding system-

level design changes, and their impact on performance. 

Unfortunately, system-level simulation is error prone and 

costly. One alternative is to emulate part of the system to be 

studied using field-programmable gate arrays (FPGAs). 

Connecting the FPGAs to commercial CPUs enables the 

study of a portion of the I/O subsystem or memory 
hierarchy, while eliminating the need to faithfully model the 

CPUs and their internal components. 

Designing and implementing an emulation system from 

scratch would be a costly endeavor, however in-socket 

accelerators are commercially available at a much lower 

cost [4]. In-socket accelerators are FPGA boards designed to 

fit into a CPU socket, and are marketed as flexible 

application accelerators. They provide low-latency and low-

power computational resources for applications such as 

bioinformatics, data-mining, real-time financial analysis, 

and oil and gas exploration. 
This work describes how an XtremeData XD1000 

FPGA board in an AMD Opteron socket can serve as part of 

a flexible emulation platform. Since the XD1000 tightly 

couples an Altera Stratix II FPGA with the CPU and other 

system resources, such as the DRAM sockets on the 
motherboard, this platform is useful for exploring the design 

of I/O subsystems and memory hierarchies. Two emulation 

platforms incorporating the XD1000 are described, each of 

which is useful for emulating different system designs. Both 

of these platforms have been implemented, and preliminary 

performance results in terms of latency and bandwidth for 

reads and writes are presented for one of the systems. 

The remainder of the paper is divided into sections. 

Section II presents the design of two emulation platforms 

using the XD1000, along with some of the implementation 

concerns. Section III describes three target application areas. 
Section IV presents preliminary performance measurements 

and discusses the importance of relative performance as an 

analysis tool. Section V discusses related work. Section VI 

is the conclusion. 

II. SYSTEM DESIGN 

An important characteristic of an emulation system is 

the connection point to the system, which determines the 

latency and bandwidth of accesses to the emulated device. 

Two possible locations are a peripheral bus (e.g., PCIe) and 

the system bus (e.g., HyperTransport or QuickPath 

Interconnect).  
Connecting the emulation platform to a peripheral bus 

is a flexible and relatively low-cost way to emulate I/O 

devices and interfaces. Often, an application-specific 

integrated circuit (ASIC) can be used to connect to the bus, 

allowing the designer to use the FPGA entirely for the 

emulated device. 

Using an FPGA to connect directly to the processor via 

the system bus allows lower-latency access to the device. In 

general, each bus or device through which memory accesses 

must pass increases the access latency. The option of using 

coherent (cache-coherent) memory is another benefit of 

connecting to the system bus. 
Coherent memory provides more flexibility in the 

memory organizations that can be studied, since it can be 

cached and paged by the microprocessor. From the 

perspective of the operating system (OS) and applications, 

this makes it indistinguishable from DRAM connected to a 

remote processor. Coherent memory allows the study of 

caching and buffering schemes. 
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Figure 1.  XD1000 in a cave configuration. 

 

 
 

Figure 2.   XD1000 in an I/O host configuration. 

A. Coherent HyperTransport 

The coherent HyperTransport (cHT) specification is a 

superset of the HyperTransport (HT) specification. The HT 
specification is open, but the cHT specification is only 

available under NDA with AMD [5,6]. The University of 

Heidelberg’s Center Of Excellence for HyperTransport 

(CoEHT) has developed HT and cHT cores which can be 

deployed in FPGAs to connect to AMD Opteron processors 

through processor-socket interposers (e.g, the XtremeData 

XD1000) or HyperTransport Extension (HTX) boards (e.g., 

the CoEHT HTX board [7]). 

B. Architectural Variations 

Opterons and XD1000 modules have three HT links, 

allowing some flexibility in the configuration of a system. 

The cHT core adds another option to each configuration. 

Figures 1 and 2 show two of the configurations available 

using one or two links. In each case, the link between the 

Opteron and the XD1000 can be HT or cHT, yielding two 

additional configurations. 

In this work, the XD1000 module is deployed in two 
Tyan motherboards, the Thunder K8WE (S2895) and 

Thunder K8SE (S2892). These motherboards were chosen 

because they are very similar and are supported by coreboot 

(open-source firmware) [8]. Using coreboot with BIOS 

emulation routines allows unmodified OSs to be booted, 

which eases application and driver development [9]. The 

S2895 has two chipsets, which allows the XD1000 to 

function as a coherent I/O host. Both configurations have 

four 1GB DDR DIMMs directly attached to the XD1000. 

If main memory is part of the emulated system, cHT is 

chosen as the connection between the XD1000 and the 

Opteron. The DRAM connected to the Opteron can then be 
removed from the system, requiring all memory accesses to 

be serviced by the XD1000 and the DRAM connected to it. 

If more than 4 GB of emulated storage is required, the I/O 

host can connect to I/O devices (PCIe) on the motherboard 

through a second HT link. 

In the configurations shown in Figure 2, where there are 

multiple HT links, care must be taken to avoid deadlock. HT 

specifies that no transactions should depend on the 

completion of other transactions, and transactions should 

not create new transactions. These guarantees are easily 

broken by a system which changes the integration level of 
components, so any new packets must be isolated from the 

rest of the system. The method of choice is to separate the 

traffic controlling the I/O devices from the read and write 

requests from the Opteron. The HT specification requires all 

packets from devices to traverse the complete chain to the 

host. This allows the packets to be routed based on their 

address by the I/O host. In this work, packets are filtered 

based on their source and destination to make sure that 

traffic that is part of the emulated system does not reach the 

CPU.  

The XD1000 HT links can run at 200 or 400 MHz 

using the serializer/deserializer (SERDES) hardware in the 
FPGA, or at 200 MHz when implemented with DDR 

registers. When the XD1000 is used as an I/O host on the 

S2895, at least one of the links is limited to 200 MHz. This 

is due to a combination of the HT link connecting the 

XD1000 to the chipset, and limited FPGA resources. Since 

the links are 16 bits wide and HT is DDR, this provides 800 

MB/s of theoretical peak bandwidth in each direction.  

C.  Firmware Modifications 

In order to use the XD1000 to emulate multiple system 

configurations, the firmware which initializes the system 

must be modified. The modifications can be grouped into 

three types: XD1000 initialization, address space allocation, 

and resource reporting. The modifications are more 

extensive for the I/O host than for the cave. 
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When used as a cave, the XD1000 initialization is 

minimal. It consists of an extra hard reset if the HT link is 

not active. This is necessary to allow the clock generation 

circuitry of the FPGA sufficient time to stabilize. The 

resource allocation process must be circumvented for the 4 

GB of DRAM, which is allocated above main memory. The 
Advanced Configuration and Power Interface (ACPI) tables 

must then be modified so that the XD1000’s bus  is visible 

to the OS. 

When the XD1000 is an I/O host, it appears to software 

to be an Opteron processor. It must be programmed with the 

correct routing values and included in the routing table so 

that memory accesses reach it correctly. Since the DRAM 

controller is implemented in the FPGA fabric, the DRAM 

initialization code needs to be skipped as well. The size of 

the address space occupied by the emulated storage must be 

specified, and some ACPI tables must be modified in order 

for the memory to appear to be attached to node 0. Since 
there are no processor cores, the code which initializes the 

Opteron processor cores must be skipped so that the cores 

appear to be disabled. As a final step, the devices connected 

to the HT link of the I/O controller, which will be part of the 

emulated system, must be initialized and hidden from the 

OS. 

D. Bandwidth and Write Buffering 

The basic unit of transfer in the HyperTransport 

protocol is the thirty-two bit (four-byte) word. The most 

efficient transfers (with the lowest overhead) are transfers of 

64 bytes. Transfer sizes depend on the Opteron’s memory 

type and page attributes. When the address space is write-

back, reads transfer 64 bytes at a time, but writes are 

performed according to the data size of the store instruction. 

When the address space is write-combining, the opposite is 

true. 

In order to maximize bandwidth in both directions, the 
XD1000 example application makes use of DMA engines in 

the FPGA to transfer data to and from the host memory. 

This works well when the emulated device is accessed only 

through a driver, which can set up the transfers. When any 

size of transfer may be used, this asymmetric performance 

must be taken into account.  

Even with 64-byte transfers, write buffering must be 

used, since the DRAM controller has a width of 128 bytes. 

This means that 128 bytes must be read from DRAM before 

64 bytes can be written. Much of the complexity involved in 

creating an application with HyperTransport is a product of 
the different widths. The 32-bit HT bus protocol is 

converted by the core to 64-bit data for processing on the 

FPGA, since FPGAs make better use of wide widths than 

high clock rates. These data words must be assembled for 

the DRAM controller. In order to manage this complexity, 

all writes to RAM are handled by the write buffer, as are 

any reads that are smaller than 64-bytes. 

III. APPLICATIONS 

Many areas of system design can be explored using 
emulation. Three of the areas that seem most promising are: 

adding non-volatile memory (NVRAM), adding an 

application-specific coprocessor (or changing the way one is 

integrated with the system), and changing the memory 

hierarchy. 

A. Non-volatile Memories 

Nonvolatile memory technology is advancing. Flash 

memory is being used as a disk replacement in performance-

critical applications. Other technologies, such as phase-

change memory (PCM) and spin-torque transfer memory 

(STTM), are also being developed. Their densities are 

increasing, and they may be included in future computing 

systems. 

These technologies differ from the DRAM in several 

important ways, which will influence their integration into 

computer systems. The two most obvious differences are 

asymmetric access times for writes and reads, and the need 

for wear leveling. Both of these factors will influence the 
design of memory controllers and the resulting performance 

of applications. 

Building prototype systems is prohibitively expensive 

for exploring the design space, and cannot be done before 

devices are produced. In order to explore the design space, 

tools must be developed that will allow accurate 

performance comparisons for different organizations, block 

sizes, and wear-leveling and buffering algorithms. 

The emulation system of Figure 1 can be used to 

explore design choices and the interactions of applications 

with up to 4 GB of NVRAM connected to the system. 
Programmable delays can be added to the DRAM controller 

[10] and/or the write buffer in order to more accurately 

model the access latencies of each technology.  

B. Coprocessors 

One way to increase the time and power efficiency of 

computation is to use application-specific processors. Many 
applications have abundant available parallelism. This 

parallelism can be efficiently exploited by architectures 

combining many simple, low-power processing elements. 

General-purpose computing on graphics processing units 

(GPGPU) is an example of this. The connections between 

the GPU, the CPU, and memory affect the performance of 

the application. This could affect how the work is divided 

among processing units. 

The same architectural questions can be explored for 

general graphics processing. AMD’s Fusion architecture 

more tightly couples the GPU and the CPU in order to 
achieve higher performance, lower power consumption, or 

both. An emulated system can be used to explore the design 

space and performance benefits of such a system before it is 

built. 
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C. Memory Hierarchies 

The increasing gap between main memory and CPU 

speed has increased the importance of the memory hierarchy 

in system performance.  Much of the area on recent CPU 

dies is dedicated to caches. There is a large design space to 

be explored, and its complexity is increasing with the 

number of processor cores. Structures such as coherence 

directories are good candidates for emulation, since they can 

be implemented with the RAM resources of the FPGA. 

One extension to the memory hierarchy which can be 

explored using emulation is a hardware single-level store, 

which moves control of swapping pages of memory from 
the OS into hardware. Swapping is a feature of virtual 

memory when the virtual memory space is larger than 

physical RAM. Memory pages are swapped when pages of 

data are transferred to and from the secondary store to 

maintain the illusion of large memory space. If a page is 

chosen for replacement that will be used again soon, its next 

access will cause another swap. Since secondary storage is 

much slower than RAM, minimizing swapping is essential 

to performance. Some related features, such as file caching, 

can also be controlled by the same hardware, since the files 

reside in the secondary store and get moved to RAM for 
faster access. 

Hardware paging support is interesting because there is 

limited information available to the OS about page usage. 

Usage bits are only updated during page table walks, which 

occur on TLB misses. In order for an OS to collect more 

usage information, it must invalidate TLB entries to cause 

misses, which is expensive. With more information, paging 

algorithms make better replacement decisions, increasing 

performance [11]. A hardware paging implementation 

would be aware of all memory accesses that miss the last 

level of cache, and therefore have more information on 

which to base page replacement decisions. 
Moving paging support out of the OS is not a new idea. 

The IBM AS/400 and its predecessor, the IBM System/38, 

implement paging in virtual machines. This simplifies 

software development, since from the perspective of the OS 

and applications, memory is flat and uniform [12]. A virtual 

machine implementation of paging suffers the same 

performance penalties as other software implementations, 

due to limited usage information,.  

IV. PERFORMANCE 

Performance measurements and comparisons are two of 

the most compelling reasons to emulate modifications to 
computer systems. Although the most straightforward way 

to measure system performance is by measuring wall clock 

time, it is not the most helpful metric for comparing 

emulated systems. Although the FPGAs used for emulation 

continue to improve in speed, they are not as fast as a final 

implementation. 

A. Preliminary Performance Measurements 

In  order to understand the performance characteristics 

of a system, simple latency and bandwidth measurements 

are taken. The system shown in Figure 1 is booted into 

Linux, and a modified device driver based on the example 

XD1000 driver is loaded. A simple application is then run, 

which calls mmap to obtain a pointer to the 4GB of memory 

on the XD1000. Once the program has a pointer, it is 

straightforward to write timing loops which measure the 

average latency and bandwidth of memory accesses. The 

measured latencies can be verified using Altera SignalTap 
to view the HT requests. 

The latency for each read or write targeting the DRAM 

is around 850 ns, with the write buffer implemented, but no 

workload-specific optimizations. This yields varying 

bandwidths depending on the transaction types and sizes, as 

shown in Table 1. Because the write buffer is organized as a 

cache, each write to a new line causes a line fill from the 

DRAM, and possibly a write back for dirty data. An obvious 

performance optimization is to bypass the write buffer when 

multiple consecutive writes are received, and write a full 

128 bytes directly to DRAM. Avoiding the write buffer in 
this way would substantially increase the write bandwidth. 

Note that read bandwidth is significantly lower than write 

bandwidth because each read must complete before software 

can issue another read; writes have no such restriction. 

Running two threads nearly doubles the read bandwidth 

because the two processor cores can issue reads in parallel, 

but it has no effect on write bandwidth. 

B. Relative Performance Comparisons 

Using absolute performance numbers with emulated 

architectures can be misleading. The solution is to use 

relative performance comparisons. Some of the factors that 

make relative performance comparisons more appropriate 

than using absolute performance include: the lower 

frequency of an FPGA implementation of HyperTransport, 

the fact that the emulated prototype may not be fully 

optimized, and even restrictions with the NDA in publishing 

performance numbers for the coherent core. 

In order to compare the performance of multiple non-
volatile memory technologies and their controllers, the path 

TABLE II.  READ AND WRITE BANDWIDTH MEASUREMENTS. 

Transaction Type Bandwidth 

32-bit writes 60 MB/s 

64-bit writes 90 MB/s 

64-byte writes (write-combining) 120 MB/s 

32-bit reads 5.5 MB/s 

32-bit reads (two threads) 11 MB/s 

64-byte reads (cacheable 32-bit) 50 MB/s 

64-byte reads (two threads) 92 MB/s 

 

TABLE I.  READ AND WRITE BANDWIDTH MEASUREMENTS. 

Transaction Type Bandwidth (MB/s) 

32-bit writes  60 

64-bit writes  90 

64-byte writes (write-combining)  120 

32-bit reads  5.5 

32-bit reads (two threads)   11 

64-byte reads (cacheable 32-bit)  50 

64-byte reads (two threads)  92 
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for each access should be equivalent. This means that a 

comparison between the delayed RAM on the XD1000 and 

the RAM attached to the host Opteron would be much less 

informative than a comparison between two delay settings 

on the XD1000. 

For the case of an emulated single-level store, the only 
DRAM in the system is attached to the XD1000, and all 

requests must traverse the same path. The difference being 

measured can then be attributed to the difference in the 

paging algorithm, and the information available to it. The 

latency of a memory access in this scenario is the sum of the 

latencies due to: the HT link, the write buffer access, the 

DRAM access, and in the case of a miss, a page transfer 

from the backing store to DRAM.  

When making the baseline measurements, the Opteron 

is initialized to access 4 GB of RAM with the XD1000 as 

the only memory controller. Memory needs beyond 4 GB 

must be supplied by OS-controlled paging to the secondary 
storage. The baseline is then compared to the same 

configuration, but hardware paging is enabled and the 

XD1000 is initialized as a memory controller with up to 1 

TB of storage addressable as RAM. The 1 TB limit is a hard 

limit dictated by the 40 physical address bits available to the 

processors. Newer Opterons have 48 physical address bits, 

expanding their addressing capabilities to 256 TB. 

V. RELATED WORK 

There are many system-level simulators, but there are 

relatively few systems which add emulation to an existing 

system using FPGAs. In this section, a case is presented for 
using emulation in place of full-system simulation. This 

analysis is followed by a discussion of three related 

emulation systems, and two FPGA prototype systems that 

use HT to enable low-latency cluster interconnects.  

A. Emulation vs. Simulation 

Several factors make system-level simulation time 
consuming, expensive, and error-prone. These include the 

asynchronous interactions among multiple devices, the 

closed nature of many CPUs, the complexity of these CPUs 

and their interconnects, and the increasing sizes of caching 

structures and translation look-aside buffers (TLBs). 

Since modern computer systems incorporate many 

diverse components, modeling their interactions faithfully 

can be difficult. Computer systems include devices ranging 

from PCI Express (PCIe) graphics cards to hard drives to 

serial ports, with widely varying performance characteristics 

and latencies. Modeling the system at a sufficient level of 
detail to accurately reflect system performance is a 

challenge. 

Modern CPUs have complex performance 

characteristics, which can be difficult to model [13]. 

Although some high-level details of CPU architectures are 

available, many of the details needed for accurately 

simulating their performance are not. Even if all the design 

parameters are available, the complexity of faithful 

modeling slows simulations significantly, and it is difficult 

to assure the correctness of the final model. This also 

applies to the interconnections among CPU cores and the 

connections to other subsystems. Multi-core architectures 

exacerbate this problem. 

As storage structures such as caches and TLBs increase 
in size, the amount of simulated run time needed in order to 

characterize their performance increases. Measuring the 

benefit of another level of cache, for example, will require 

the benchmark to generate many misses in the previous 

levels. 

Emulation is a promising way to reduce the complexity 

involved in understanding the effects on performance of 

modifications to an existing system. FPGAs combine 

programmable logic and I/O interfaces, and some contain 

implementations of simple microprocessors. This makes 

them suited to implement a wide variety of functions for 

experimentation. Their performance is limited in terms of 
maximum clock frequency, but many times that can be 

mitigated by the high degree of fine-grained parallelism 

available in them. 

Emulated subsystems implemented in an FPGA run fast 

enough to allow multiple benchmark runs. These multiple 

runs add statistical significance to performance 

measurements of the emulated systems and minimize the 

effect of performance variability of the other system 

components. 

B. Emulation Systems 

Three related FPGA emulation systems are Flexible 

Architecture Research Machine (FARM) [14], Research 

Accelerator for Multiple Processors (RAMP) [13, 15], and 

High-performance Advanced Storage Technology Emulator 

(HASTE) [10].  

FARM is similar to this work, in that it modifies and 

repurposes an existing FPGA and Opteron system in order 
to explore system architecture. FARM differs from using an 

in-socket accelerator because the original system is much 

more expensive, and the FPGAs are not directly connected 

to the DDR or chipset on the motherboard.  

RAMP is a collaborative effort by a number of 

researchers to enable comparable architectural research and 

bring down the costs associated with FPGA emulation, 

specifically for many simple cores and their interconnects. 

In order to achieve this goal, RAMP specifies FPGA boards, 

and encourages the sharing and reuse of design components 

for the FPGA designs. RAMP focuses on the challenges of 
multi-core architectures and the software which runs on 

them. 

HASTE is a system constructed by UCSD to evaluate 

NVRAM technologies in supercomputing applications. 

HASTE connects DRAM with an FPGA controller on a 

PCIe card, and is compared with the system DRAM and 

solid-state disks to explore the performance of storage 

devices built from emerging NVRAM technologies.  
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C. Low-Latency Cluster Interconnects 

Two systems which use FPGAs with HT to prototype 

low-latency cluster interconnects are the Virtualized Engine 

for Low Overhead (VELO) [16], and the Hyper Parallel 

Processing (HPP) architecture [17]. 

VELO is an implementation of a network engine using 

an HTX card. The resulting network exhibits latencies of 

just over 1 μs, including routing. 

 HPP connects multiple motherboards with an HT 

backplane and a switch implemented with an FPGA. The 

HPP prototype demonstrates low-latency, high-bandwidth 

connections between motherboards in a prototype high- 
performance, low-cost cluster.  

Both VELO and HPP are specifically designed to 

prototype connections between systems, whereas systems 

using in-socket emulators are better suited for emulating and 

prototyping modifications to parts of a single system. 

VI. CONCLUSION 

This work demonstrated how HT and FPGAs can be 

used in commodity systems to emulate and evaluate the 

performance of proposed system modifications. The ability 

of the XD1000 to connect directly to the motherboard HT 

links was shown to allow the exploration of many system 
configurations. Two of these configurations were presented, 

along with preliminary performance results from one of 

them. These emulation systems were presented as a viable 

way to evaluate new technologies such as NVRAM, and the 

many ways that they can be incorporated into computer 

systems. 
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Abstract — FPGAs as reconfigurable devices play an important 
role in both rapid prototyping and high performance 
reconfigurable computing. Usually, FPGA vendors help the 
users with pre-designed cores, for instance for various 
communication protocols. However, this is only true for widely 
used protocols. In the use case described here, the target 
application may benefit from a tight integration of the FPGA 
in a computing system. Typical commodity protocols like PCI 
Express may not fulfill these demands. HyperTransport (HT), 
on the other hand, allows connecting directly and without 
intermediate bridges or protocol conversion to a processor 
interface. As a result, communication costs between the FPGA 
unit and both processor and main memory are minimal. In this 
paper we present an HT3 interface for Stratix IV based 
FPGAs, which allows for minimal latencies and high 
bandwidths between processor and device and main memory 
and device. Designs targeting a HT connection can now be 
prototyped in real world systems. Furthermore, this design can 
be leveraged for acceleration tasks, with the minimal 
communication costs allowing fine-grain work deployment and 
the use of cost-efficient main memory instead of size-limited 
and costly on-device memory.   

Hyper Transport, FPGA, High Performance Reconfigurable 
Computing 

I. INTRODUCTION 
In the area of accelerated computing the vast amount of 

research and development focuses on using GPUs [1] [2] [3]. 
Compared to this, FPGAs are very sparely used. The main 
reasons for this are certainly the cost advantage of GPUs 
(with a mass market behind), and the easier way of 
programming. FPGAs are for most users difficult to 
program, and due to their small volume they have 
approximately one order of magnitude higher costs. 

However, GPUs are very limited in their usage. Only if 
the application to be ported to the accelerator has 
characteristics similar to graphical processing, it can be 
successfully accelerated [4]. Additionally, a recent report by 
Intel [5] shows that the speedup between CPUs and GPUs is 
only about 2.5 in average. Also, the limited amount of 
graphics memory is preventing a broad use, because the 

stream processors of a GPU can only operate on this 
memory. 

FPGAs, on the other hand, are much more flexible due to 
their completely reconfigurable architecture. In particular for 
applications which are not suitable for GPUs they play an 
important role [6] [7] [8]. It is also possible to attach a large 
amount of memory to the FPGA, making it suitable for data-
intensive applications. 

GPUs with their stream based processing do not rely on a 
close coupling between accelerator and host system, thus 
they cannot offer applications the possibility of fine grain 
accesses to and from the host system. However, many 
applications rely on such a tight integration. Again, this 
demand can be fulfilled by FPGAs, in particular if a system 
interface like HT is used and not a peripheral interface like 
PCIe. If the interface to the host system is lean enough, the 
costs for accessing main memory are not higher than 
accessing memory attached to the FPGA. Then, it is possible 
for the FPGA to operate directly on main memory, making 
arbitrary amounts of memory possible. 

Last, as more and more performance computing systems 
are facing the power wall, the GFLOPs achieved per Watt 
are of paramount importance. FPGAs are certainly one of the 
best architectures for high GFLOPs/Watt. By equipping 
installations with FPGA based accelerators, the power 
consumption can be significantly reduced while maintaining 
the computing performance. 

As hardware platform enabling above described features 
a Stratix IV HTX3 Board was used. Based on an existing 
first version prototype it was enhanced by placing additional 
components onto the board and some refinements resulting 
in the version presented here providing all required basic 
functionalities. For using it as fully capable HT3 device in a 
system the HT3 core [9] had to be ported onto the Altera 
FPGA.  

Also to ensure the usability and reliability of 
communication between the device and the processors in 
HT3 systems HW simulations had to be performed. 
Additionally a physical interface (PHY) had to be created to 
deliver an interface for the HT3 core to be compatible with 
the provided hardware environment. This work will enable 
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the Stratix IV HTX3 Board being used as a unique single 
FPGA HT3 solution which supports all the required features 
for HT3 and therefore representing an efficient platform for 
Rapid Prototyping and High Performance Reconfigurable 
Computing. 

The next section presents the HyperTransport protocol as 
base technology for low latency communication. The 
architecture of the Stratix IV HTX3 Board serving as rapid 
prototype platform is specified in section 3 followed by the 
description of the HT3 implementation enabling high 
performance reconfigurable computing on top of it in section 
4. The fifth section presents measurement results. Finally a 
conclusion and an outlook are given in section 6. 

 

II. HYPERTRANSPORT 
HT is a unique possibility to easily connect a device 

directly to a processor. As it is the only public specification 
[10] available to do so, it is the perfect vehicle for a low 
latency communication as there are no unnecessary protocol 
conversions or bridges involved. With the HTX3 connector 
which is defined by the HyperTransport-Consortium (HTC) 
[11] and the availability of Opteron mainboards a system can 
be easily set up [12].  

HT allows a broad variation of link widths and 
frequencies from a 2 bit link at 200 MHz DDR (HT200) up 
to a 32 bit link at 3.2 GHz DDR (HT3200). Current Opteron 
architectures support link widths and frequencies from 8 bit 
at 200 MHz DDR up to 16 bit at 3.2 GHz DDR. This results 
in a theoretically maximum unidirectional bandwidth of 12.8 
GB/s. The signal lines carry the control-, data- and info-
packets and are called CAD. Depending on the link width 
those signals are grouped into independent byte lanes. Every 
byte lane is accompanied by a single signal lane of additional 
control information called CTL and a clock signal. As HT is 
doubleword (32 bit) aligned every doubleword of CAD 
comes along with 4 bit of CTL which contains additional 
information about what kind of data is transported.  

Three types of the specification exists HT1, HT2 and 
HT3. HT1 and HT2 only differ in the maximum link 
frequency. The functionality of the first two versions is 
described in [13].  HT3, which is realized in state of the art 
Opteron processors, begins at a link speed of HT1200 and 
requires features to be implemented such as link training, 
link deskew, a retry protocol and stomping which were in 
earlier versions optional or not defined. 

To realize link training, each bit lane has to support a 
mechanism to align its logic with the help of a special 
training pattern sequence. After link initialization the single 
bit lanes are deskewed to ensure proper data alignment. 
Therefore the receiving fifos must be able to handle an 
amount of 8 bit-times of misalignment from one lane to 
another. Compared to HT1 and HT2, the higher frequencies 
of HT3 result in an increased possibility of bit errors on the 
physical level. A retry mechanism is introduced to handle 
those errors. The error detection is enhanced due to changing 
the periodic CRC from HT1/HT2 every 512 bit times to a per 
packet CRC. Thereby latency and the needed buffer space 
for retransmission are reduced and a better performance can 
be achieved. Each packet which CRC is checked correctly 
increments an acknowledgement counter. If a NOP packet is 
sent it contains the counter value of the last correctly 
checked packet. The retry buffers on the receiver side of the 
NOP packet can then be released. If an error occurred during 
a transmission the retry handshake is initiated and the data 
from the last correctly received packet is retransmitted. 
Stomping is an additional feature to reduce latency. It is used 
to speculatively forward a packet without CRC being 
checked. If later the CRC shows an error the CRC is inverted 
to show the final endpoint that the packet has to be 
invalidated. A block diagram of the HT3 implementation is 
shown in figure 1.   

HT3 leverages the possibility of higher link speeds by 
introducing fault detection and recovery mechanism to the 
HyperTransport protocol. But it requires changes on the 
physical layer as well which will be described in section 4.  

 
 

 

Figure 1.  HT3 Blockdiagram 
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III. BOARD ARCHITECTURE 
The board design is based on a PCI normal sized card 

using a HTX3 connector slot for a low latency HT link 
connection to the system. The main board component is a 
Stratix IV GX device family FPGA [14]. The selected 
FPGA uses a F1517 footprint enabling EP4SGX 180, 230, 
290, 360 and 530 variants. The used device provides an 
adequate number of LVDS and I/O pins to enable 
numerous prototyping features and 36 transceivers giving 
the capability to use HT3 and two CX4 links with up to 
6.375 Gbps per lane for network connections. The CX4 
links do support implementations for Infiniband DDR. 
There are also standard interfaces and components 
available to use the board in different environments. 

For prototyping purposes using extension cards or user 
defined connectors extension adapters have been placed 
onto the board. The primary used adapter is a SEAF 
connector from Samtec with 500 pins supporting single-
ended signaling up to 9.5 GHz and differential pair 
signaling up to 10.5 GHz. Thus speed restriction is 
primarily defined by the FPGA. The pins used within the 
connector are shielded considering the suggestions of 
Samtec. This resulted in 114 single-ended and 55 
differential pair connects together with the FPGA. 

 
Figure 2.  Stratix IV HTX3 Board 

Further three QTH series Samtec connectors with 120 
pins each organized in two banks with integrated metal 
plane used as ground are assembled. These connectors 
provide at least 9GHz single-ended and 8 GHz differential 
pair capability. The connections to the FPGA are designed 
to provide up to 108 differential pairs plus sideband 
signals. 

The board was enhanced and upgraded in several 
design steps. Figure 2 shows the latest revision. All 
components are tested. It can be used as a prototyping 
platform or directly for high performance reconfigurable 
computing needs. 

 
 

IV. HT3 IMPLEMENTATION 
Before porting the HT3 core onto the Altera device an 

implementation of a PHY had to be realized. Therefore the 
high frequency traces had to be simulated ensuring that all 
parameters were within the specification. 

A. Simulation 
During simulation of the HT link all HT tracks 

between the Opteron processor and the Stratix IV GX 
were analyzed. All simulations were performed using IBIS 
and HSpice models. For the FPGA high speed serial 
transceiver an HSpice model and for the Opteron 
processor IBIS models were available. For the HTX 
connector, which is identical to the PCIe connector, the 
Samtec Spice model has been used. The required S-
Parameter files among others for the vias are generated by 
the Cadence Allegro PCB design suite. HT3 starts with a 
minimum of HT1200 with a frequency of 1200MHz and a 
data rate of 2.4Gbps. This was also the simulation target 
for the first simulations. Figure 3 shows a representation of 
the simulated tracks at HT1200 for a HTX3 CADOUT 
signal. There are three different measure points available, 
the signal after the Stratix IV GX package, on the receiver 
pin, and after equalization through the Stratix IV GX 
Clock Data Recovery (CDR) unit. Depending on the 
measure point the eye height is in the range from 531 mV 
to 998mV and the eye width is around 374ps. According 
to the HT physical specification [11] the eye height must 
be over 140mV and the minimal eye width must be 0.55 
unit intervals (UI), the UI for 2.4Gbps is 416ps. All 
simulated tracks at HT1200 were clearly within the 
specification.  
 

 
Figure 3.  HTX Track Simulated at HT1200 

Also simulations using the maximum frequency of the 
high speed Stratix IV GX transceivers at 6.4Gbps were 
performed. The HT specification for this frequency 
requires a minimum eye width of 0.65 UI, which results in 
100ps and a minimum eye height of 170mv. One of the 
most critical extracted tracks is depicted in figure 4. Its eye 
width is 107ps and the height is 224mV. All simulations 
show, that the hardware is capable of HTX3 usage. 
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Figure 4.  Eye Diagram at 6.4Gbps Link Speed. 

B. HT3 PHY 
A PHY for HyperTransport 3 must also support HT1 

operation because the HyperTransport protocol is 
backwards compatible. However, this means that the PHY 
must support two inherently different operation modes. 
HT1 is working in a source synchronous mode and 
transmits a link clock in addition to the data lanes which is 
used to sample the incoming data. Since HT3 operation 
starts at a link frequency of 1.2 GHz and can go up to 3.2 
GHz a different technique must be used. Because the skew 
requirements between clock and data would be in the 
range of picoseconds if the same source synchronous 
mode was used for HT3 frequencies the clock is now 
recovered at the receiver side by using CDR. In order to 
ensure enough transitions for a reliable clock 
reconstruction scrambling is mandatory for HT3 operation. 
The HyperTransport protocol specification defines several 
line rates for HT3 operation in the range of 2.4 Gbps to 6.4 
Gbps. Because these line rates exceed the maximum 
supported data rate of LVDS transmitter / receivers by far, 
high speed serializers must be used to work in HT3 mode. 
In order to implement proprietary protocols the Stratix IV 
GX transceivers support an operating range from 600 to 
3750 Mbps in single width mode using an 1:16 
serialization factor and from 1000 to 6500 Mbps in double 
width mode with an 1:32 ratio for the -2 speed grade we 
used for our board. In Stratix IV devices transceivers are 
grouped in blocks consisting of 6 transceivers as shown in 
figure 5. Four of those channels support both physical 
coding sublayer (PCS) and physical medium attachment 
(PMA), the other two channels are clock multiplier unit 
(CMU) channels that can be configured either as a normal 
data channel without PCS support or as a clocking block 
that provides both the serial and the parallel clock to the 
other channels.  

 
Transceiver Channel 0 

Figure 5.  Stratix IV Transceiver Block Architecture [14] 

For each sublink, 9 lanes (8 CAD + 1 CTL) are 
connected to the fully featured serializers and both the 
incoming and outgoing link clock are connected to 
separate CMU channels. In order to provide a 
deterministic latency across all channels the transceivers 
are configured in PMA direct mode. All required PCS 
functionality is provided inside the FPGA, the existing 
transmitter and receiver PCS blocks in the hardware are 
completely bypassed. Since all HyperTransport clocks are 
derived from the 200 MHz HT reference clock this clock 
is also connected to a global clock pin of the Stratix IV 
FPGA after it was jitter cleaned to improve the transceiver 
performance. 

Although the HyperTransport 3 specification specifies 
an AC coupled operation mode as well as a DC coupled 
mode, AC coupled operation is not supported by AMD’s 
Opteron processor and therefore irrelevant for all practical 
purposes. Since the HyperTransport specification and the 
Stratix IV datasheets define different common modes 
electrical compatibility between the Opteron and Altera’s 
transceivers had to be verified by HSPICE simulations as 
described in the previous paragraph and also confirmed by 
Altera engineers. 

All HyperTransport systems start in Gen1 mode 
running with a 200 MHz link clock (HT200). The resulting 
data rate of 400 Mbps is below the minimum supported 
rate of the Stratix IV transceivers. In order to overcome 
this limitation, the PHY runs five times faster than actually 
required by the data rate and uses a 5 time oversampling 
mode for incoming data. In the same way, for the outgoing 
direction each bit is just replicated 5 times to emulate a 
link running at HT200. 

Since HT1 employs neither scrambling nor 8b/10b 
encoding clock recovery from the data stream cannot be 
used, therefore the transceivers are configured in lock-to-
reference (LTR) mode and use the HT reference clock to 
create the sampling points. The link clock on the receiving 
side is not used to sample the incoming data. In order to 
create the transmit clock that must be shifted by 90 
degrees in relation to the data stream as defined in the HT 
specification the clock data pattern is padded accordingly 
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so that the clock is driven one half of a bit-time after a data 
transition. As described above all PCS handling is done in 
the FPGA fabric. This means that the PHY only handles 
the basic serialization and deserialization, data word 
boundaries are not detected at all by the PHY. All 
alignment is done later inside the HT3 core. 

In order to switch to HT3 mode, starting at 1.2 GHz, 
several things must happen inside the PHY. The 
oversampling path that was used for HT200 must be 
bypassed; the data is now processed directly as the link 
data rate is now natively supported by the transceiver. The 
transceivers also switch from LTR to CDR and the clock 
recovery circuitry must lock to the data stream. This 
means that each lane has its own recovered clock that is 
used to sample the data. Although each of these lanes will 
run at the same frequency there will be a phase difference 
between the different lanes. Elastic buffers are used in 
order to transfer all the lanes in a single clock domain to 
process the data stream in parallel. Unlike in HT1 mode 
this can also lead to inter-lane skew which will also be 
removed in the HT3 core. The link clock in HT3 is not 
used at all and requires no special handling since there is 
no relation between clock and data and each lane has its 
own embedded clock. 

The PHY also supports the LDTSTOP signal defined 
by HyperTransport specification that is used to disconnect 
the links. During this time no data is transmitted over the 
link and the link is idle. Because the CDR circuitry does 
not recover reliably from this condition after the link 
restarts the PHY switches back to LTR mode during 
LDTSTOP and goes back to CDR after the link resumes 
normal operation and scrambled data patterns are 
transmitted again. 

The PHY does not include any error detection 
mechanisms. All signal integrity issues are caught by the 
HT3 core using the reliability features defined in the HT3 
protocol. 

 

V. MEASUREMENTS 
The measured latency of our HT3 core together with 

the HT3 PHY at a HyperTransport link frequency of 1600 
MHz running in 8 bit mode in a Tyan 2912-E motherboard 
with two Opteron processors running at 2800 MHz was 
655ns round trip for a single PIO access to the device. This 
is much higher than the latency measured for our HT1 core 
[15] in an older system with a slower processor. There are 
several reasons for this large difference. The higher 
complexity of the HT3 protocol forced us to implement 
more pipeline stages to decode the incoming packets. The 
most prominent factor, however, is the usage of serializer 
technology inside the FPGA instead of normal LVDS IO 
cells and the crossing of several clock domains inside the 
PHY.  

The first bandwidth measurements showed rather 
disappointing results that were not even in the range of 
half the available bandwidth offered by the link. This was 
caused by credit starvation [9] because the default BIOS 
configuration of the link did not allocate enough credits for 

the posted VC inside the processor. After redistributing the 
credits to achieve a better link utilization bandwidth 
measurements using data packets with the maximum 
allowed payload of 64 bytes showed a write performance 
of about 2000 MB/s for a DMA Write operation and an 
average bandwidth of about 1600 MB/s for a DMA Read 
operation. These numbers, albeit being a huge 
improvement, show that full utilization of a HT link can 
only be reached by a device with a fast internal clock 
speed that can release credits almost instantaneously as 
soon as new packet is received. The performance that can 
be reached by an FPGA suffers mainly from the credit 
starvation that occurs during operation that is caused by 
the latency added by the serializers and the many pipeline 
stages in the core.  

The consumption of resources within the FPGA shows 
that there is enough space left to add user logic for 
prototyping and high performance computing. The 
synthesis results for the Stratix IV GX 230 device depict 
resource usage of combinational ALUTs 42,534 / 182,400 
(23 %), memory ALUTs 49 / 91,200 (< 1 %), dedicated 
logic registers 40,009 / 182,400 (22 %), a logic utilization 
of 34 %, and a total block memory bits 739,154 / 
14,625,792 ( 5 % ). 

 

VI. CONCLUSION AND OUTLOOK 
Both the HT3 PHY in conjunction with the HT3 core 

and the developed Altera FPGA based card work reliably 
in our Tyan test system. Sporadic bit errors that were 
encountered during operation were easily caught and 
recovered by the reliability features defined in the HT3 
protocol and had no impact on the functionality.  

Both HT1200 and HT1600 implementations are stable 
and work as expected. Unfortunately, the core speed 
directly scales in relation to the HT link speed as there is 
no flow control between the PHY and the HT3 core. Thus, 
reaching higher HT link speeds is currently limited by the 
HT3 protocol that leads to a complex hardware 
architecture for the HT3 core and makes internal core 
frequencies larger than 200 MHz rather difficult to 
achieve.  

The HT3 platform for rapid prototyping and high 
performance reconfigurable computing was a successful 
development. It represents the first single FPGA HT3 
implementation in comparison to the 3 FPGA solution 
developed in [16]. Due to the provided low latency high 
bandwidth connection directly to the processor this 
platform delivers an ideal environment for developments 
and research in the areas of coprocessors or FPGA 
accelerators. Also its numerous extension connectors 
enable the usage of extender cards such as a card with a 
Content-Addressable Memory (CAM) and a reasonable 
amount of RAM to realize a network search engine (NSE). 
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