

 i

Proceedings of the Second International Workshop on HyperTransport Research
and Applications (WHTRA2011), held Feb. 9th, 2011, Mannheim, Germany

EDITORS
Holger Fröning — Universität Heidelberg, Germany
Mondrian Nüssle — Universität Heidelberg, Germany
Pedro Javier García García — Universidad de Castilla-La Mancha, Spain

KEYNOTE SPEAKER
Prof. Olav Lysne — Director of Basic Research at Simula Group, Norway
Dr. Rainer Buchty — Eberhard-Karls-Universität Tübingen, Germany

PROGRAM COMMITTEE
Francisco J. Alfaro — Universidad de Castilla-La Mancha, Spain
Ulrich Brüning — Universität Heidelberg, Germany
Hans Eberle — Sun Microsystems, USA
Holger Fröning — Universität Heidelberg, Germany
Pedro Javier García García — Universidad de Castilla-La Mancha, Spain
Mark Hummel — AMD, USA
Chuck Moore — AMD, USA
Mondrian Nüssle — Universität Heidelberg, Germany
Sven-Arne Reinemo — Simula Research Lab, Norway
Federico Silla — Universidad Politècnica de Valencia, Spain
Tor Skeie — Simula Labs, Norway
Sudhakar Yalamanchili — Georgia Tech, USA

 ii

INFORMATION ON PUBLICATION
To ensure a high level of academic content, a peer review process has been used. Each
submission has been reviewed by a minimum of two separate reviewers on the Program
Committee list.

The proceedings are available electronically at the website of the HyperTransport Center
of Excellence as well as on HeiDOK, the Open Access document server of the University
of Heidelberg (see links below). This publication platform offers free access to full-text
documents and adheres to the principles of OpenAccess as well as the goals of the
Budapest Open Access Initiative (BOAI). The papers are accessible through a special
sub-portal and are fully citable.

The Open Access Document Server of the University library of Heidelberg also offers the
possibility to order hardcopies of the proceedings.

Open Access Document Server:

http://archiv.ub.uni-heidelberg.de/volltextserver/portal/whtra11

Workshop Website:
http://ra.ziti.uni-heidelberg.de/coeht/index.php?page=events&id=20110209

HyperTransport Center of Excellence:

http://htce.uni-hd.de

 iii

WELCOME MESSAGE FROM THE EDITORS
As organizers of the Second International Workshop on HyperTransport Research and
Applications (WHTRA), we would like to especially thank Prof. Olav Lysne and Dr.
Rainer Buchty for accepting to deliver the two keynotes of the workshop.

We also thank all the members of the Program Committee for the time and effort devoted
to this second edition of WHTRA. All submissions were reviewed by at least two
members of the committee to ensure an ongoing high quality of the workshop
contributions.

For this year’s workshop we have, again, to thank the University of Heidelberg and the
HyperTransport Center of Excellence for hosting this event, and the University Library of
Heidelberg for publishing the proceedings.

Finally we would like to thank all the attendees and especially the authors for their
interest and effort.

We hope WHTRA2011 will again be a stimulating and interesting meeting for us all!

Holger Fröning*, Mondrian Nüssle* and Pedro Javier García García†

* Universität Heidelberg, Germany
† Universidad de Castilla-La Mancha, Spain

 iv

 v

CONTENTS

Analysis of Inter-Chip Communication Patterns
on Multi-Core Distributed Shared-Memory Computers

Manfred Mücke, Wilfried N. Gansterer ..1

HyperTransport Over Ethernet - A Scalable, Commodity
Standard for Resource Sharing in the Data Center

Jeffrey Young, Sudhakar Yalamanchili, Brian Holden, Mario Cavalli8

System-level Prototyping with HyperTransport

Myles Watson, Kelly Flanagan...18

A HT3 Platform for Rapid Prototyping and High Performance
Reconfigurable Computing

Frank Lemke, Sven Kapferer, Alexander Giese, Holger Fröning, Ulrich
Brüning ...24

 vi

 vii

Analysis of Inter-Chip Communication Patterns
on Multi-Core Distributed Shared-Memory Computers

Manfred Mücke, Wilfried N. Gansterer
University of Vienna

Research Lab Computational Technologies and Applications

Abstract

Multi-core multi-socket distributed shared-memory com-
puters (DSM computers, for short) have become an impor-
tant node architecture in scientific computing as they provide
substantial computational capacity with relatively low space
and power requirements. Compared to conventional computer
networks, inter-chip networks used in DSM computers feature
higher bandwidth, lower latency and tighter integration with
the CPU.

The inter-chip network is a shared resource among the user
application and many other services, which can lead to consid-
erable variation of execution times of identical communication
tasks.

In this work, we explore traffic patterns resulting from MPI
collective communication primitives and investigate the ques-
tion whether inter-chip link load is a reliable indicator and
predictor for the execution time of collective communication
primitives on a DSM computer. Our experiments on a Sun
Fire X4600 M2 DSM computer with 32 cores (eight quad-core
CPUs) indicate that specific single link loads are positively
correlated with the execution time of MPI ALLREDUCE. Ob-
serving patterns over multiple links allows refinement of the
single-link observation.

1. Motivation

Multi-core multi-socket distributed shared-memory
(DSM) computers are a viable option to consolidate
cluster infrastructure and to improve communication
performance by reducing inter-node communication.
One can think of a DSM computer as a small cluster
with very high bandwith and low latency point-to-point
interconnect.

In a cluster environment (many interconnected inde-
pendent nodes), the overall performance is usually lim-
ited by the inter-node communication which is typically
slow compared to local computation. Yet, recent work
has shown that an unexpectedly high percentage of com-
munication time is spent within multi-core nodes [3]. As

a result, the node-internal communication performance
– although faster than inter-node communication – is be-
coming more important for distributed applications’ per-
formance in a conventional cluster setting.

With current DSM computers integrating up to 48
cores in a single chassis, there is an increasing set of
distributed applications which can run efficiently on a
single DSM computer, thereby removing the need for
a conventional cluster environment. To improve such
an application’s performance usually requires optimis-
ing the intra-node communication performance.

The situation for distributed applications executed on
a single DSM computer changes considerably compared
to a cluster environment as dedicated communication
times among CPUs and memory access times become
potentially identical. Additionally – and also in con-
trast to clusters – both computation (via memory ac-
cess and/or cache coherency) and communication access
the inter-chip communication network, which makes it a
shared resource. Consequently, execution times of com-
munication and computation can no longer be consid-
ered independent of each other but potentially heavily
influence each other.

MPI collective communication functions [5] are pow-
erful communication primitives whose optimisation is
key to maximising performance of many parallel scien-
tific computing applications. Collective communication
can be seen as a parametriseable collection of point-to-
point communications with only a few defined synchro-
nisation points and the specific schedule being left to
the implementation. We believe that a static schedule
(or a set of several static schedules) is inadequate to ef-
ficiently exploit the available bandwidth in a contem-
porary multi-core DSM computer. Dynamic schedules
might guarantee a more consistent performance over a
wide range of network traffic scenarios. Dynamic sched-
ules require, however, a cheap, yet reliable performance
predictor, which is the motivation of our work.

MPI blocking communication provides function calls
which return only when communication has finished

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

1

(i.e., communication and computation is mutually ex-
clusive for a single MPI process). There is an on-
going discussion on integrating non-blocking collec-
tive communication primitives into future versions of
MPI. Non-blocking communication allows for over-
lapping communication and computation. However,
when communication and computation overlap on DSM
computers, usage patterns of shared resources become
highly dynamic. In the worst case, this could lead to
lower performance compared to blocking communica-
tion. Non-blocking collective communication imple-
mentations can, however, devise an efficient dynamic
communication strategy, subject to available perfor-
mance indicators. Therefore delivering the performance
promises of non-blocking collective communication on
DSM computers requires reliable communication per-
formance predictors.

While DSM computers have existed for a long time,
only recent developments have made them an almost
ubiquitous computing platform. First, AMD integrated
high-bandwidth low-latency inter-chip network inter-
faces (HyperTransport) into its mainstream server CPU
family (Opteron), thereby removing the need for ded-
icated inter-chip communication circuits and simplify-
ing the design of multi-socket computers considerably.
Second, the integration of memory interfaces into CPUs
enabled low-latency access to memory via inter-chip
network thereby allowing very-low-latency non-uniform
memory access (NUMA) computers. Third, multi-core
CPUs have mitigated the scaling limitations of inte-
grated inter-chip networks (for example AMD Opterons
only support up to eight-socket configurations) by pro-
viding more cores per socket. Currently, systems with
48 cores (eight quad-core CPUs) are available. Finally,
the evolution of communication technology has led to
inter-chip point-to-point interface specifications match-
ing typical internal bandwidths of CPUs (HyperTrans-
port 3.1: 16 bit@3.2 GHz, max. 16 bit bi-directional
bandwidth of 25.6 GB/s), leading to a communication
performance which is at par with computation perfor-
mance.

2. Problem Formulation

Inter-chip networks of contemporary DSM comput-
ers are typically used by multiple system services, they
are a shared resource. Most prominently, remote mem-
ory access, the cache coherency protocol and system I/O
usually use the same inter-chip network as dedicated
communication between CPUs. Consequently, identi-
cal user-triggered communication can meet very differ-
ent resource usage scenarios leading to variations in ex-
ecution times.

Dynamic communication schedules can mitigate this
effect. To choose the most efficient schedule for a com-
munication operation at any given time, a performance
model is required, taking the load on all relevant shared
resources into account. The fastest schedule is then de-
rived from the model by extrapolating current usage on
all relevant shared resources.

Our aim in this paper is to identify the relevant ob-
servables necessary to implement dynamic schedules
for MPI collective communication functions on DSM
computers at the lowest possible cost (i.e., observation
should be feasible on standard hardware and should
cause only little overhead).

We hypothesise that on DSM computers the respec-
tive bandwidth available on each link of the inter-chip
network is the single most relevant parameter influenc-
ing the execution time of a collective communication
function. If this hypothesis can be verified, observing
the inter-chip network bandwidth would provide suffi-
cient information for optimizing dynamic communica-
tion schedules. Contemporary CPUs feature hardware
performance counters which provide detailed informa-
tion on the link traffic with high accuracy and at low
cost, therefore on existing CPU architectures, monitor-
ing inter-chip network bandwidth is possible for user ap-
plications at basically no extra cost.

3. Related Work

Scogland et al. [12] describe in a more general setting
than our MPI-centric one that although multi-core hard-
ware is mostly symmetric (i.e. cores have equivalent raw
performance and bandwidth available), resulting work-
load per core is highly asymmetric due to the interaction
of communication and computation.

Kayi et al. [7] report performance figures for large-
scale simulations on a hybrid cluster consisting of nodes
with 2 sockets (4 cores) and 8 sockets (16 cores), re-
spectively. They found that application performance was
poorer on the more powerful nodes. Only when appli-
cations employed some kind of node-internal load bal-
ancing, improvements could be observed. Core binding
was found to improve the situation, too.

Porterfield et al. [11] conducted a detailed perfor-
mance study of a variety of AMD quad-core multi-
socket systems over a set of memory benchmarks. They
found that performance models characterising memory
by maximum bandwidth and average latency parameters
are not sufficient to model the deep memory hierarchies
found in modern ccNUMA architectures. Specifically,
they found performance variability for memory-bound
benchmarks to be a serious obstacle to load balancing
and performance tuning [10]. Binding threads and data

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

2

to specific sockets and carefully selecting the sockets
they are bound to both reduced variability and improved
overall performance of the benchmarks.

Underwood [17] discussed the mismatch between
frequently used MPI microbenchmarks and the setting
which MPI functions encounter in real-world applica-
tions, reporting an execution time difference up to a fac-
tor of four in extreme cases.

Mamidala et al. [9] investigated performance of
MPI collectives on contemporary multi-core architec-
tures. They concentrate on exploiting features of mod-
ern multi-core architectures (e.g. shared caches) for
improving average performance of selected collectives.
Their work does not consider execution time deviations
of identical function calls. Mamidala et al. show more
efficient ways to implement collectives while our work
demonstrates the behaviour of a given implementation
in the dynamic setting inherent to multi-core distributed
shared-memory computers. Our work is complemen-
tary, as Mamidala et al. try to understand and reduce
average execution time while we try to understand and
improve execution time variability.

Hoefler and Lumsdaine investigated the performance
of non-blocking MPI collectives on Infiniband and sug-
gested measures for improving overlap of communica-
tion and computation [6]. They showed that perfor-
mance can be improved considerably. They do, how-
ever, not consider inter-chip networks but only inter-
node networks (Infiniband).

AMD provides a technical report ”Performance
Guidelines for AMD Athlon and AMD Opteron cc-
NUMA Multiprocessor Systems” [2] which summarises
detailed measurements performed on a system with four
dual-core AMD Opteron CPUs. A synthetic benchmark
is used which comprises two tasks reading/writing data
from/to independent memory locations. Execution times
for all possible combinations of task and data place-
ment are measured. Additional tasks read data from
local memory to simulate background activity. The
benchmark chosen explores how (remote) memory ac-
cess translates into HyperTransport activity under vary-
ing task and data placement scenarios. In contrast to the
data presented by AMD, we consider collective commu-
nication instead of point-to-point communication. Fur-
thermore, while AMD creates a synthetic background
activity, our goal is to infer unknown background activ-
ity patterns and its impact on execution time on a known
collective communication.

In summary, existing work concentrates on clus-
ter settings when evaluating overall application perfor-
mance. In contrast, we argue that the performance of
existing DSM computers is sufficient to run distributed
applications entirely on a single DSM computer. De-

tailed performance analysis of DSM computers exist in
literature but mostly focuses on the relative placement
of tasks and data. Where communication functions are
investigated, the aim is at reducing the average perfor-
mance. To the best of our knowledge, our work is the
first one investigating the execution time variance of col-
lective communication due to background activity on a
DSM computer’s HyperTransport inter-chip network.

4. Experimental Setup

Our aim is to better understand execution times of
MPI collective communication primitives on DSM com-
puter inter-chip networks. To make insights attractive
to as many distributed applications as possible, we have
chosen a DSM computer with many cores and a complex
inter-chip network.

The Sun Fire X4600 M2 server [15] fulfils these re-
quirements by supporting up to eight quad-core CPUs,
which results in an inter-chip network of the maximum
size currently supported by the AMD Opteron architec-
ture (8 sockets) and a maximum worst-case traffic pres-
sure per link (up to four cores sharing a single link). The
X4600’s inter-chip network fully relies on functionality
(cache coherency protocol, . . .) and interfaces (Hyper-
Transport) integrated in the AMD Opteron architecture.
However, Opteron-internal tables specifying routing and
hardware buffer sizes can be set at system start-up po-
tentially leading to physically identical DSM systems
executing identical applications yet exhibiting varying
appliation performance.

The general findings of our experiments will there-
fore apply to a wide range of servers with similar archi-
tecture while the exact results of our measurement are
obviously specific to the system used.

4.1 Hardware

Our prototypical DSM computer is a Sun Fire X4600
M2 server [15] by Sun Microsystems, which we will
refer to as ”X4600” in the following. The X4600 is
designed to accept up to eight CPU/memory modules
and can therefore exploit the maximum number of CPUs
currently supported by AMD’s Opteron 8000 CPU fam-
ily [1]. The motherboard itself provides no memory
or computing facilities but only module interconnect,
power and I/O.

Each CPU/memory module carries local memory.
The total of all local memory present on all modules is
mapped by the operating system into a uniform address
space (8 × 4 GB = 32 GB for our system).

Every CPU/memory module features a single CPU
socket, which can be fitted with a single-core, dual-

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

3

Figure 1. HyperTransport socket interconnect topol-
ogy of a Sun Fire X4600 M2 server equipped with eight
CPU modules.

core or quad-core AMD Opteron. The CPU used in
our X4600 configuration is an AMD quad-core Opteron
8356. Each 8356 core features 2 MB private L2 cache
while a 2 MB L3 cache is shared among all four cores.
The cache-coherency protocol guarantees that all exist-
ing cache copies of data in memory are refreshed when
data is modified anywhere in the system.

The AMD Opteron architecture integrates all mem-
ory controller functionality and three HyperTransport
interfaces on-die [4]. The latter makes it possible to
build servers with a very dense inter-socket communica-
tion network [8]. The AMD Opteron 8356 HyperTrans-
port interfaces comply to HyperTransport 1.0, specify-
ing 16 bit wide links with a clock frequency of 1 GHz.
The links work in double-data-rate mode which results
in a total bandwidth of 4 GB/s per direction.

Our system is equipped with eight CPU/memory
modules. Sockets 0 and 7 dedicate one of their three
links to connect the inter-socket network to system I/O.
Figure 1 shows the X4600’s inter-socket network topol-
ogy (”twisted ladder”). Our X4600’s inter-chip network
therefore consists of 22 unidirectional HyperTransport
links, while the two remaining links connect the network
to system I/O facilities (hard disk drive, network, ..).

4.2 Operating System, Middleware

The used operating system is OpenSolaris 10 5/09.
OpenSolaris features memory placement optimisation
(MPO) which attempts to allocate memory as near to a
process as possible [13, 14]. While the Solaris scheduler
is able to move threads between all available cores (and
therefore also between sockets), data remains by default
on the CPU/memory module where it was first allocated.

The MPI distribution used is OpenMPI 1.3. Open-
MPI provides support for core binding, i.e. manually

assigning an MPI process to a core. We always bind
all processes to distinct cores with the root process be-
ing assigned to core 4 (i.e. the first core on the second
socket, thereby avoiding socket 0 through which I/O ac-
cess is routed).

The AMD Opteron architecture provides hardware
event counters to measure link load [1]. We have used
the Solaris lcpc(3CPC) library for setting up and
reading out hardware event counter values.

5 Experiments

We have chosen the MPI Allreduce function as a
prototypical MPI collective communication function. In
this operation, all processes send arrays of identical size
and type to the root process. There, entries of the same
index are reduced using a specified arithmetic function.

In terms of communication performance, it
would suffice to consider MPI Allgather, as
MPI Allreduce can be assembled from an all-
gather operation followed by some local computation.
MPI Allreduce, however, natively integrates this
computation following communication and therefore
provides better workload characteristics in terms of
possible interference between communication and
computation.

Each process is bound to a specific core. No specific
measures are taken to guarantee placement of data in lo-
cal memory.

There is no explicit waiting between consecutive calls
of MPI Allreduce. While this might be unrealistic
in most application settings, it maximises stress on the
inter-chip network and therefore allows observation of
effects which might only be visible sporadically other-
wise.

Using hardware counters accessible via libcpc, we
measure the link load (i.e. sent/received data words on
the observed link in the given time interval) in both di-
rections on all links during execution of a given com-
munication function (48 measurements). Specifically,
we monitor the Opteron’s ”Link Event” registers (0F6h,
0F7h, 0F8h, 1F9h, ”HyperTransport Link x Transmit
Bandwidth”, see [1] for full details).

5.1 MPI Allreduce with 8x4 processes

We measure the execution time of an
MPI Allreduce function call (using hrtimer())
collecting and processing messages of 16kB each
from 32 MPI processes. Additionally, we monitor the
traffic on all HyperTransport links during execution of
MPI Allreduce. The measurements are repeated for
consecutive 2000 calls of MPI Allreduce.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

4

0 50 100 150 200 250

Wallclock Time [s]

10
2

10
3

10
4

10
5

10
6

M
P
I_

A
ll
re

d
u
c
e
 E

x
e
c
u
ti

o
n
 T

im
e
 [

u
s
]

MPI_Allreduce Execution Time
(16kB, 32 Processes, Core binding (Root = Core 4), 2000 Measurements)

Figure 2. Execution times of 2000 consecutive
MPI Allreduce calls.

3
2
2

3
3
7

3
5
2

3
6
7

3
8
2

3
9
7

4
1
2

4
2
7

4
4
2

4
5
7

MPI_Allreduce Execution Time [us]

0

50

100

150

200

250

C
o
u
n
ts

MPI_Allreduce Execution Time Distribution
(16kB, 32 Processes, Core Binding (Root = Core 4), 2000 Measurements, t_exec < 500us)

Figure 3. Execution time distribution of
MPI Allreduce calls executed in less than 500µs .

Figure 2 shows the execution time of each
MPI Allreduce call over wallclock time (i.e. the x-
axis corresponds to time progress during experiment).
Most calls take less than 1000 µs (the median of all mea-
surements is 363 µs). However, some execution times
deviate considerably with maximum execution times up
to 600 ms!

More than 95% of all measurements result in an ex-
ecution time smaller than 500 µs. Figure 3 shows the
distribution of these measurements.

While the majority of calls is very fast, the remain-
ing calls consume an disproportional amount of time.
The accumulated execution time of the 100 slowest calls
(5%) consumes 93% of the overall sum of all execution
times.

We hypothesise that the longer execution times can
be explained by activity on the inter-chip network re-
sulting in reduced available bandwidth on some Hyper-
Transport links. In the following, we focus on relating
MPI Allreduce execution time with HyperTransport

10
2

10
3

10
4

10
5

10
6

MPI_Allreduce Execution Time [us]

10
6

10
7

10
8

T
o
ta

l
In

te
r-

C
h
ip

 N
e
tw

o
rk

 T
ra

ff
ic

 [
D

W
s
]

MPI_Allreduce Execution Time vs. Total Traffic
(16kB, 32 Processes, Core Binding (Root = Core 4), 2000 Measurements)

Figure 4. Execution time of MPI Allreduce ver-
sus total inter-chip network traffic.

0 100000 200000 300000 400000 500000 600000

MPI_Allreduce Execution Time [us]

100000

120000

140000

160000

180000

200000

220000

H
y
p
e
rT

ra
n
s
p
o
rt

 L
in

k
 L

o
a
d
 [

D
W

s
]

y = 0.184738x + 96493.2

MPI_Allreduce Execution Time vs. Link Load (Link 12)
(16kB, 32 Processes, Core Binding (Root = Core 4), 2000 Measurements)

Figure 5. Execution time of MPI Allreduce ver-
sus traffic on HyperTransport link 12.

link load.
A first naive approach could be to relate execution

time to the overall traffic on the inter-chip network dur-
ing execution of each call as shown in Figure 4. No
obvious correlation can be identified.

We use GGobi [16] to interactively explore the 23-
dimensional space spanned by our measurements (22x
HyperTransport outgoing link traffic, 1x MPI Allreduce
execution time) and find that some link traffic data is
positively correlated with the MPI Allreduce execu-
tion time. Figure 5 shows the traffic on link 12 over the
execution time of MPI Allreduce. The positive cor-
relation is obvious. Similar correlation exists for data
from several links.

The correlation observed is sufficient to distinguish
short, medium and long execution times by single link
load observations.

The observed link load stems from at least one collec-
tive communication (initiated by our foreground task)
and multiple additional (point-to-point and maybe col-

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

5

H
T
4
0

H
T
1
6

H
T
2
8

H
T
4

H
T
3
7

H
T
1
3

H
T
2
5

H
T
1

H
T
2
1

H
T
4
5

H
T
9

H
T
3
3

H
T
4
3

H
T
1
9

H
T
3
1

H
T
7

H
T
3
8

H
T
2
6

H
T
2

H
T
1
4

H
T
4
1

H
T
1
7

H
T
2
9

H
T
5

H
T
4
2

H
T
1
8

H
T
3
0

H
T
6

H
T
2
2

H
T
4
6

H
T
1
0

H
T
3
4

H
T
3
6

H
T
1
2

H
T
2
4

H
T
0

H
T
3
9

H
T
1
5

H
T
2
7

H
T
3

H
T
4
4

H
T
3
2

H
T
2
0

HyperTransport Link (sorted by median value)

0

20000

40000

60000

80000

100000

120000

140000

160000

H
y
p
e
rT

ra
n
s
p
o
rt

 L
in

k
 L

o
a
d
 [

D
W

s
]

Max
Median
Min

MPI_Allreduce Basic Inter-Chip Traffic Pattern
(16kB, 32 Processes, Core Binding (Root = Core 4), 2000 Measurements, t_exec < 500us)

Figure 6. Min/max/median HyperTransport link load
for calls of MPI Allreduce with an execution time
smaller than 500µs.

lective) communication triggered by background tasks
(scheduler, cache coherency protocol, I/O activity, ...).
According to Figure 1, messages exchanged between
cores on different sockets can lead to routing of the
message through up to three HyperTransport links. We
therefore try to identify traffic patterns rather than sim-
ple link load to explain execution times.

Figure 6 shows the observed minimum, maximum
and median HyperTransport link load for all links when
inspecting data for all calls of MPI Allreduce which
result in an execution time smaller than 500µs. The
links are ordered by their median load.

To identify distinct traffic patterns being related with
specific execution time levels, we use GGobi’s auto-
matic brushing tool which allows colouring of data in all
plots according to an additional given parameter (execu-
tion time in our case). Inspection reveals that increased
activity on Links 1, 3, 13 and 15 corresponds to an ex-
ecution time of about 80ms (the third cluster from left
in Figure 5) . Figure 7 shows the activity on each of
the links for some measurements resulting in high (red),
low (blue) and moderate (about 80ms, orange) execu-
tion times respectively. The large star pattern is formed
by measurements resulting in execution times of around
80ms exclusively.

5.2 Discussion of measurements

Our measurements of 2000 consecutive
MPI Allreduce calls reveal that while most calls
(95%) finish within a very short time (less than 500 µs,
median is 362 µs), the remaining 5% consume 93% of
the experiment’s run time.

It is possible to identify HyperTransport links whose
load is positively correlated with MPI Allreduce ex-

HT1

HT3

HT13

HT15

HT25

HT27

HT37

HT39

100000 DW

200000 DW

300000 DW

400000 DW

500000 DW

600000 DW

700000 DW

800000 DW

334009

334558

337964

338995

339065

339403

80324222

80332474

80333659

80333850

80339132

600418252

600403798

HyperTransport Traffic on Selected Links
(16kB, 32 Processes, Core Binding (Root = Core 4))

Figure 7. HyperTransport link load for selected calls
of MPI Allreduce on Links 1, 3, 13, 15, 25, 27, 37
and 39.

ecution time. While not a very accurate indicator, single
link load data of selected links seems sufficient to sepa-
rate typical execution times from pathological cases.

The distribution of execution times is not continu-
ous but shows strong clustering. Mining the measure-
ments for correlations between clusters of similar exe-
cution time has revealed that increased traffic on a set of
links directly corresponds to execution times within the
cluster. This insight can be used to improve accuracy of
the above indicator.

6 Conclusions and Outlook

We have shown that MPI Allreduce execution
time is correlated with HyperTransport link load. This
is an important observation as a multitude of root causes
might originally be involved, leading ultimately to the
varying execution times observed. Relying on the cor-
relation identified, we can focus on a much smaller set
of observables. Current CPU architectures provide on-
chip hardware performance counters for monitoring of
inter-chip network traffic which allows link loads to be
observed easily from a user application at run-time.

Which links need to be observed is a function of the
full set of communication triggered by both foreground
and background tasks. Our method of identifying rele-
vant links relies on visual inspection of data which im-
plies a big overhead in case substantial changes to the set
of tasks are made. It would therefore be most desirable
to partially automate the process of identifying relevant
links.

Different implementations of MPI Allreduce lead
to different communication patterns. Therefore our
findings only apply to the specific implementation
ofMPI Allreduce in the used OpenMPI version.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

6

We have considered a single foreground traffic pat-
tern (MPI Allreduce). Further work will investigate
other MPI collective communication functions and the
effects they will encounter when being executed on an
inter-chip network with varying load.

We have not actively triggered any background com-
munication activity. The varying execution times ob-
served show that symmetric multi-core architectures in
use today sporadically exhibit extremely asymmetric
performance behaviour. This is due to the asymmetry
of the communication infrastructure (see Figure 1) as
well as conflicting resource usage by competing user
and system tasks and communication stack deficiencies
(see [12]).

There are two ways how our findings could be ap-
plied: First, it could be used to construct a predictor
for execution times of selected communication functions
under dynamic load situations. Second, it could also be
used as a bottom-up analysis tool for system activity af-
fecting the execution time of communication.

We plan to extend our work by identifying relevant
background tasks and reducing their activity if possible.
We will as well equip our benchmark with the cheap pre-
dictor proposed in this work. A simple measure to show
the viability of our predictor in a conventional MPI set-
ting would be to postpone execution of communication
calls if the predictor suggests very long execution times.

During preparation of this work, the maximum num-
ber of cores available on an AMD Opteron CPU has in-
creased from four to twelve. As a consequence, larger
distributed applications can be run on a single server,
increasing the complexity of traffic patterns on the inter-
chip network while relying heavily on its performance.

7 Acknowledgements

We thank the X4600’s system administrator Martin
Paul for his support and Richard Smith of Sun Microsys-
tems for his helpful comments and pointers on Opteron
architecture and hardware event counters under Solaris.

This work was partially supported by the CPAMMS
project of the University of Vienna (FS397001) and by
the NFN S106 (SISE) of the Austrian Science Fund
FWF.

References

[1] AMD. BIOS and Kernel Developer’s Guide for AMD
Athlon and AMD Opteron Processors, February 2006.

[2] AMD. Performance Guidelines for AMD Athlon and
AMD Opteron ccNUMA Multiprocessor Systems. Ad-
vanced Micro Devices, Inc., 3.00 edition, June 2006.

[3] L. Chai, Q. Gao, and D. K. Panda. Understanding the im-
pact of multi-core architecture in cluster computing: A
case study with intel dual-core system. In Cluster Com-
puting and the Grid, 2007. CCGRID 2007. Seventh IEEE
International Symposium on, pages 471–478, 2007.

[4] P. Conway and B. Hughes. The AMD Opteron north-
bridge architecture. Micro, IEEE, 27(2):10–21, 2007.

[5] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. Snir. MPI: The Complete
Reference. The MIT Press, September 1998.

[6] T. Hoefler, P. Gottschling, and A. Lumsdaine. Lever-
aging non-blocking collective communication in high-
performance applications. In SPAA ’08: Proceedings
of the twentieth annual symposium on Parallelism in al-
gorithms and architectures, pages 113–115, New York,
NY, USA, 2008. ACM.

[7] A. Kayi, E. Kornkven, T. E. Ghazawi, and G. Newby.
Application performance tuning for clusters with cc-
NUMA nodes. In CSE ’08: Proceedings of the 2008
11th IEEE International Conference on Computational
Science and Engineering, pages 245–252, Washington,
DC, USA, 2008. IEEE Computer Society.

[8] C. N. Keltcher, K. J. Mcgrath, A. Ahmed, and P. Con-
way. The AMD Opteron processor for multiprocessor
servers. Micro, IEEE, 23(2):66–76, 2003.

[9] A. R. Mamidala, R. Kumar, D. De, and D. K. Panda.
MPI collectives on modern multicore clusters: Perfor-
mance optimizations and communication characteris-
tics. In Cluster Computing and the Grid, 2008. CCGRID
’08. 8th IEEE International Symposium on, pages 130–
137, 2008.

[10] A. Mandal, A. Porterfield, R. J. Fowler, and M. Y. Lim.
Performance consistency on multi-socket AMD Opteron
systems. Technical Report TR-08-07, RENCI, North
Carolina, 2008.

[11] A. Porterfield, R. Fowler, A. Mandal, and M. Y. Lim.
Empirical evaluation of multi-core memory concur-
rency. Technical Report TR-09-01, RENCI, North Car-
olina, January 2009.

[12] T. Scogland, P. Balaji, W. Feng, and G. Narayanaswamy.
Asymmetric interactions in symmetric multi-core sys-
tems: analysis, enhancements and evaluation. In SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Su-
percomputing, pages 1–12, Piscataway, NJ, USA, 2008.
IEEE Press.

[13] Sun Microsystems. Solaris memory placement opti-
mization and Sun Fire servers. Technical report, Sun
Microsystems, March 2003.

[14] Sun Microsystems. Memory and Thread Placement Op-
timization Developer’s Guide, June 2007.

[15] Sun Microsystems. Sun Fire X4600 M2 server architec-
ture. Technical report, Sun Microsystems, June 2008.

[16] D. F. Swayne, D. Temple Lang, A. Buja, and D. Cook.
GGobi: evolving from XGobi into an extensible frame-
work for interactive data visualization. Computational
Statistics & Data Analysis, 43:423–444, 2003.

[17] K. Underwood. Challenges and issues in benchmark-
ing MPI. In Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, pages 339–346.
Springer, 2006.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

7

HyperTransport Over Ethernet - A Scalable, Commodity Standard for
Resource Sharing in the Data Center

Jeffrey Young, Sudhakar Yalamanchili∗ Brian Holden, Mario Cavalli
Georgia Institute of Technology HyperTransport Consortium

jyoung9@gatech.edu, sudha@ece.gatech.edu {brian.holden, mario.cavalli}@hypertransport.org

Paul Miranda
AMD

paul.miranda@amd.com

Abstract

Future data center configurations are driven by total
cost of ownership (TCO) for specific performance ca-
pabilities. Low-latency interconnects are central to per-
formance, while the use of commodity interconnects
is central to cost. This paper reports on an effort to
combine a very high-performance, commodity intercon-
nect (HyperTransport) with a high-volume interconnect
(Ethernet). Previous approaches to extending Hyper-
Transport (HT) over a cluster used custom FPGA cards
[5] and proprietary extensions to coherence schemes
[22], but these solutions mainly have been adopted for
use in research-oriented clusters. The new HyperShare
strategy from the HyperTransport Consortium proposes
several new ways to create low-cost, commodity clus-
ters that can support scalable high performance com-
puting in either clusters or in the data center.

HyperTransport over Ethernet (HToE) is the
newest specification in the HyperShare strategy that
aims to combine favorable market trends with a high-
bandwidth and low-latency hardware solution for non-
coherent sharing of resources in a cluster. This paper
illustrates the motivation behind using 10, 40, or 100
Gigabit Ethernet as an encapsulation layer for Hyper-
Transport, the requirements for the HToE specification,
and engineering solutions for implementing key por-
tions of the specification.

∗This research was supported in part by NSF grant CCF-0874991,
and Jeffrey Young was supported by a NSF Graduate Research Fel-
lowship

1. Introduction

HyperTransport interconnect technology has been
in use for several years as a low-latency interconnect for
processors and peripherals [9] [7] and more recently as
an off-chip interconnect using the HTX card [5]. How-
ever, HyperTransport adoption for scalable cluster solu-
tions has typically been limited by the number of avail-
able coherent connections between AMD processors (8
sockets) and by the need for custom HyperTransport
connectors between nodes.

The HyperTransport Consortium’s new Hyper-
Share market strategy has presented three new options
for building scalable, low-cost cluster solutions using
HyperTransport technology: 1) HyperTransport-native
torus-based network fabric using PCI Express-enabled
network interface cards implementing the HyperTrans-
port High Node Count specification [14], 2) Hyper-
Transport encapsulated into InfiniBand physical layer
packets, and 3) HyperTransport encapsulated into Eth-
ernet physical layer packets. These three approaches
provide different levels of advantages and trade-offs
across the spectrum of cost and performance. This
paper describes the encapsulation of HyperTransport
packets into Ethernet, thereby leveraging the cost and
performance advantages of Ethernet to enable sharing
of resources and (noncoherent) memory across future
data centers. More specifically, this paper describes key
aspects of the HyperTransport over Ethernet (HToE)
specification that is part of the HyperShare strategy.

In the following sections, we describe 1) the moti-
vation for using HToE in both the HPC and data cen-
ter arenas, 2) challenges facing the encapsulation of
HT packets over Ethernet, 3) an overview of the major
components of this specification, and 4) use cases that

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

8

demonstrate how this new specification can be utilized
for resource sharing in high node count environments.

2. The Motivation for HToE: Trends in In-
terconnects

The past ten years in the high-performance com-
puting world have seen dramatic decreases in off-chip
latency along with increases in available off-chip band-
width, due largely to the introduction of commodity
networking technologies like InfiniBand and 10 Giga-
bit Ethernet (10GE) from companies such as Myrinet
and Quadrics. Arguably, InfiniBand has made the most
inroads in the high-performance computing space, with
InfiniBand composing 42.6% of the fabrics for clusters
on the current Top 500 Supercomputing list [18].

At the same time, Ethernet has evolved as a lower-
cost and “software-friendly” alternative that enjoys
higher volumes. The ability to integrate HT over Ether-
net would enjoy significant infrastructure and operating
cost advantages in data center applications and certain
segments of the high-performance marketplace.

2.1. Performance

The ratification of the 10 Gigabit Ethernet standard
in 2002 [1] has led to its adoption in data centers and the
high-performance community. Woven Systems (now
Fortinet) in 2007 demonstrated that 10 Gigabit Ethernet
with TCP offloading can compete in terms of perfor-
mance with SDR InfiniBand, with both fabrics demon-
strating latencies in the low microseconds during a San-
dia test [28]. In addition, switch manufacturers have
built 10 Gigabit Ethernet devices with latencies in the
low hundreds of nanoseconds [11] [31]. Recent tests
with iWARP-enabled 10GE adapters have shown laten-
cies that are on the order of 8-10 microseconds, as com-
pared to similar InfiniBand adapters with latencies of 4-
6 microseconds [12]. More recent tests have confirmed
that 10 Gigabit Ethernet latency for MPI with iWARP
is in the range of 8 microseconds [20].

These latencies already are low enough to support
the needs of many high-throughput applications, such
as retail forecasting and many forms of financial analy-
sis which typically require end-to-end packet latencies
in the range of a few microseconds. The new IEEE
802.3ba standard for 40 and 100 Gbps Ethernet also
aims to make Ethernet more competitive with Infini-
Band. Although full-scale adoption is likely to take sev-
eral years, there are already some early products that
support 100 Gigabit Ethernet [25].

The challenge with using these lower-latency fab-
rics is in making these lower hardware latencies ac-

cessible to the application software layers without hav-
ing to engage higher overhead legacy software protocol
stacks that can add microseconds of latency [4] [23].
The HToE specification described here is a step towards
that goal, since it focuses on using Layer 2 (L2) pack-
ets and a global address space memory model to reduce
dependencies on software and OS-level techniques in
performing remote memory accesses.

2.2. Cost and Market Share

While 10 Gigabit Ethernet has had a relatively slow
adoption rate in the past few years, it should be noted
that 1 Gigabit and 10 Gigabit Ethernet still have a 45.6%
share of the Top 500 Supercomputing list [18], with a
majority of these installations still using 1 Gigabit Eth-
ernet. This indicates that cost plays an important role
in the construction of computational clusters on this
list (for example, for market analysis and geological
data analysis in the mineral and natural resource indus-
tries). Additionally, networks composed of 1 and 10
Gigabit Ethernet also have a dominant position in high-
performance web server farms. Part of this widespread
market share is due to the low cost of Gigabit Ether-
net and falling cost of 10 Gigabit Ethernet as well as
the management and operational simplicity of Ethernet
networks.

However, it should also be noted that InfiniBand
still enjoys a price and power advantage over 10 and 40
Gbps Ethernet due to being first to market. A 40 Gbps,
36 port InfiniBand switch now costs around $6,500 and
has a typical power dissipation of 226 Watts [8], while a
10 Gbps, 48 port Ethernet switch costs around $20,900
and has a power dissipation of 360 Watts.

One of the strongest factors for using Ethernet is
the trend toward converged networks, driven in large
part by the need to lower the total cost of ownership
(TCO). For example, Fibre Channel (FC) has been the
de facto high-performance standard for SANs for the
past 15 years. The technical committee behind FC has
been a major proponent of convergence in the data cen-
ter with their introduction of the Fibre Channel over
Ethernet (FCoE) standard [15]. This standard relies on
several new IEEE Ethernet standards that are collec-
tively referred to as either Data Center Bridging (DCB)
or Converged Enhanced Ethernet (CEE) and are de-
scribed in more detail in Section 3.3. The approval of
this standard and subsequent adoption by hardware ven-
dors bodes well for the continued usage of Ethernet in
data centers and smaller high-performance clusters.

Possibly one of the best indicators of the future
market share for Ethernet as a high-performance data
center and cluster fabric is the willingness of competi-

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

9

tors to embrace and extend Ethernet technologies. Two
examples are the creation of high-performance Ethernet
switches [24] and the development of RDMA over Con-
verged Ethernet (RoCE) [3], which has been referred to
by some as “InfiniBand over Ethernet” since it utilizes
the InfiniBand verbs and transport layer with a DCB
Ethernet link layer and physical network.

2.3. Scalability

As the most prevalent commodity interconnect
technology in previous generation data centers, there
has been considerable effort devoted to constructing
scalable Ethernet fabrics for data centers. For instance,
consider the use of highly scalable fat tree networks for
data centers using 10 Gigabit Ethernet [27], while net-
work vendors have already embraced the in-progress
standards for Data Center Bridging as a way to cre-
ate converged SANs and a high performance cluster
fabric [21]. Other recent studies have demonstrated
techniques for active congestion management to enable
further scaling of topologies constructed around Ether-
net [28]. We can expect to see continued efforts toward
expanding the use of Ethernet in an effort to leverage
legacy software, existing expertise in the networking-
related workforce, and volume cost-related advantages.

2.4. The Case for HToE

As the previous sections have shown, Ethernet has
significant benefits in the areas of cost, market share,
and competitive performance. HyperTransport over
Ethernet shares these benefits while adding the advan-
tage of a transparent on-package to off-package encap-
sulation using 10, 40, and 100 Gbps Ethernet. The IEEE
802.3ba standard also includes support for short-reach
(7 meter) copper cable physical layers for 40 and 100
Gigabit Ethernet, which should allow for more cost-
effective implementations of 40 and 100 Gigabit Ether-
net. As the penetration of these new flavors of Ethernet
grows, the potential for HyperTransport over Ethernet
also grows as a high-performance hardware communi-
cation and sharing mechanism. In fact, this capability
for improved resource sharing is one of the best motiva-
tors for using HToE and is discussed in more detail in
Section 5.

HyperTransport over Ethernet also addresses a dif-
ferent market space than that served by the HyperTrans-
port High Node Count specification and HyperTrans-
port over InfiniBand. Specifically, HToE is well suited
for creating scalable, low cost clusters that rely on a
converged Ethernet fabric to share resources in a non-
coherent fashion. Ethernet’s market share ensures that

Figure 1. HyperTransport Over Ethernet Layers

the barrier to entry in using HyperTransport over Ether-
net is low in most cases, and using converged Ethernet
negates the need for a custom sharing fabric like NU-
MAlink [16] or additional cabling for an InfiniBand or
other custom network.

3. HToE Specification Requirements

Due to the differences between the point-to-point
communication of HyperTransport and the switched,
many-to-many communication of Ethernet, the Hyper-
Transport over Ethernet specification needs to address
several key requirements to ensure correct functional-
ity. To manage the traversal of packets between these
fabrics, we focus on a bridged implementation using
encapsulation of HT packets (typically up to 64 Bytes
of data) in larger Ethernet packets (up to 1500 Bytes
or larger in some cases). If we are to remain faith-
ful to end-to-end HT transparency at the software level,
the requirements of the HT protocol now translate into
requirements for Ethernet transport that are realized in
Layer 2 switches.

Furthermore, to productively harness the capabili-
ties of HToE, it must be implemented in the context of a
global system model that defines how the system-wide
memory address space is deployed and utilized. Toward
this end, we advocate the use of global address space
models and specifically the Partitioned Global Address
Space (PGAS) model [30]. In particular, we are con-
cerned about the portability of the model and applica-
tion/system software across future generations of pro-
cessors with increasing physical address ranges.

To illustrate the differences between HyperTrans-
port and HToE and to help illustrate how HToE sup-
ports global address models, we have divided the core
functionality of HToE into three “layers”: the “map-
ping” layer, the “ordering and flow control” layer, and
the “encapsulation” layer, as shown in Figure 1.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

10

3.1. On-package and Off-package Addressing

HyperTransport address mapping allows for I/O
devices and local DRAM to be mapped to physical ad-
dresses that are interpreted by the processor for read and
write operations. This physical address mapping is hid-
den from applications using standard virtual addressing
techniques in the operating system.

HToE supports a global, system-wide, noncoher-
ent address space. Addresses must be transparently rec-
ognized as either local or remote, and the latter must
be mapped to memory or device addresses on a remote
node. Implicitly, this mapping must translate between
address spaces and Ethernet MAC addresses and vice
versa. Consequently, this mapping between local HT
addresses and the global HToE address space is nec-
essary to encapsulate and transmit HT packets from a
local node to a remote node’s memory. Additionally,
the remote node must not require modification to its lo-
cal HyperTransport links in order to route packets that
have been sent from a remote node – that is, any remote
requests must appear to the local HT link as an access
by a local device to a local address. For more details
on the specific mapping used by HToE, see Sections 4.2
and 4.3.

3.2. Scaling HyperTransport Ordering and
Flow Control for Cluster Environments

HyperTransport is a point-to-point protocol that
uses three virtual channels to send and receive com-
mand and data packets. The HT protocol has been de-
signed to ensure that packet ordering on these channels
is preserved on local links via the HT Section 6 Order-
ing algorithm [7]. This algorithm ensures not only that
packets arrive in a logical order but also that deadlock
freedom is ensured. In a switched Ethernet environment
with the possibility of packet loss, preservation of or-
dering becomes a much more difficult problem. Thus,
our HToE solution must ensure that packets remain or-
dered correctly within their virtual channels. For more
information on maintaining order, see Section 4.4.

In addition to packet ordering, the HT 3.1 speci-
fication also defines a multi-channel, credit-based flow
control algorithm. Credits typically flow between two
point-to-point links based on the receipt and processing
of packets within each virtual channel. In a scalable,
switched Ethernet environment, packets could conceiv-
ably flow from multiple sources to one destination.
Furthermore, since HyperTransport packets are much
smaller than Ethernet packets, another requirement is
that multiple HyperTransport packets can be encapsu-
lated in one Ethernet packet to reduce the overhead of

encapsulation. Both of these requirements indicate the
need for a careful rethinking of how to send Hyper-
Transport credits and packets when using HToE. The
requirement is that the sender must possess credits for
all HyperTransport packets that it encapsulates. Hy-
perTransport packets that are encapsulated in a single
Ethernet packet must be of the same virtual circuit and
headed for the same destination.

3.3. The Benefit of a Congestion-Managed Eth-
ernet Network for Flow Control

One recent development that was investigated
for this specification was the introduction of several
IEEE specifications, collectively known as Data Cen-
ter Bridged (DCB) Ethernet or sometimes Converged
Enhanced Ethernet (CEE), depending on the company
promoting it.

Data Center Bridged Ethernet aims to provide a
congestion-managed Ethernet environment to support
converged fabrics in the data center and was motivated
by the convergence of the Fibre Channel standard onto
Ethernet fabric, aka FCoE [29]. These fabrics aim to
prevent packet loss due to congestion but do not pre-
vent packet loss due to bit errors or other sources such
as equipment failure or fail-over. Data Center Bridged
Ethernet incorporates several specifications including
per-priority flow control (IEEE 802.1Qbb), conges-
tion notification (IEEE 802.1Qau), and Data Center
Bridging Capabilities Exchange Protocol and Enhanced
Transmission Selection (IEEE 802.1Qaz) [17]. These
congestion-management algorithms are especially help-
ful in high-performance computing because of the in-
tensely self-similar nature of HPC traffic.

3.4. Recovery from Failures

HyperTransport 3.1 has several methods for recov-
ering from errors. A special “poison” bit can be set
in HT response packets to indicate to the source pro-
cessor or device that an operation failed (e.g., a read
failed to complete). This error notification typically is
passed upstream to the initial requesting device without
any notion of the initial request’s address. In addition,
HyperTransport can use the HT 3.1 retry mechanism to
resend packets between source and destination HT de-
vices based on a Go-Back-N algorithm that relies on
sequence numbers included in packets. If this mecha-
nism should fail to recover from errors, the host pro-
cessor has the option to issue a reset using a warm or
cold reset that is communicated to devices via separate
physical signals.

In the HToE environment, these requirements for

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

11

Figure 2. HyperTransport Ethernet Adapter with
Opteron Memory Subsystem

recovery from errors become more complex due to the
nature of HyperTransport transactions and due to the
fact that Ethernet does not support the HyperTransport
physical signals. Thus the HyperTransport over Eth-
ernet specification must ensure that 1) errors can be
appropriately reported to the requesting remote node,
2) resets can be accurately communicated to remote
nodes when otherwise unrecoverable failures occur, and
3) resets for traffic between one source and destination
HTEA does not affect traffic from other HTEAs.

3.5. Requirements for Retry in HToE

The HT specification defines a retry mechanism
that resends packets when errors are discovered using
a Go-Back-N algorithm and sequence numbers for Hy-
perTransport packets. This mechanism must be ex-
tended to function over Ethernet and thereby becomes
part of the HToE specification. We did not want to rely
on TCP’s retry algorithm, but Ethernet does not define
a Layer 2 error retry protocol. Therefore, we created
a variant of HyperTransport 3.1’s retry algorithm that
would function across an Ethernet fabric in the presence
of packet loss due to congestion or due to bit errors.

4. The HyperTransport Over Ethernet
Specification

The HyperTransport over Ethernet specification
outlines the basic functionality of the HToE bridge de-
vice, or HyperTransport Ethernet Adapter (HTEA), that
is used to encapsulate HyperTransport 3.1 packets into
Ethernet packets. The location of this device in rela-
tion to a typical Opteron system is shown in Figure 2.
Note that a normal Ethernet MAC can be shared for
both HToE traffic and TCP/IP traffic, although the im-
plementer should decide on how to prioritize each traffic
type.

To assist with the implementation of each of the
specification’s requirements, functionality in the HTEA

Figure 3. HyperTransport Ethernet Adapter Vir-
tual Link

is divided into separate “layers” that are implemented in
the hardware of the HTEA and that communicate with
other layers when processing incoming or outgoing HT
packets. Here we describe some of the more interest-
ing aspects of the “mapping” layer, the “ordering” layer,
and the “encapsulation” layer. Full details are available
in the HToE specification [32].

4.1. HToE’s Relationship with DCB

HyperTransport over Ethernet is intended to be
used with switches that have been designed for Data
Center Bridging environments, such as those explic-
itly created to support Fibre Channel over Ethernet.
However, some of the DCB specifications would inter-
fere with the normal ordering and priority requirements
specified by the HT Section 6 Ordering Requirements.
For this reason, many of the solutions specified for or-
dering and flow control do not explicitly require fea-
tures like per-flow flow control. This means that HToE
could likely be supported on normal 10 GE hardware,
but it could also be enhanced by allowing for the usage
of the DCBX protocol, per-flow priorities (for packet
flows between different sources and destinations), and
with Enhanced Transmission Selection for usage with
other types of network traffic.

4.2. Mapping HT Addresses into the Global
Address Space

HyperTransport over Ethernet assumes that the
range of memory addresses on each node form a sub-
set of a global, 64 bit physical address space. In or-
der to map the local HyperTransport address to a global
memory address, such as those used with some PGAS
models [30], and to a destination Ethernet address for
remote nodes, a few of the upper bits from the physical
address are used to select among potential remote nodes

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

12

in the mapping layer of the HTEA as shown in Figure
2. This mapping allows for a processor on a local node
to make a remote noncoherent “put” or “get” operation
to the memory of a remote node.

While the creation of a mapping table is left up
to implementers of the HTEA, the selection of global
addresses for a particular HTEA and node can be de-
fined using OS-level communication and subsequent
PCI-style Programmed I/O commands to write to the
HTEA or by using the new capabilities of the Data Cen-
ter Bridging Capabilities Exchange Protocol (DCBX)
[17] to communicate mapping parameters at the link
layer level between DCB-enabled switches.

This mapping of local HT packets to remote nodes
also requires the creation of a logical organization
scheme to keep track of distinct source and destination
pairs, known as a Virtual Link in the specification. As
shown in Figure 3, a Virtual Link couples information
such as available credits and buffers for the three vir-
tual channels on the local link as well as information
like the destination MAC address. Once the mapping
layer of the HTEA decides which destination MAC ad-
dress a particular HT request address maps to, the Hy-
perTransport packet is queued according to available
credits and associated buffer space at the remote HTEA.
These credits are discussed more in Section 4.4.

4.3. Tag Remapping for Higher Performance

In addition to mapping local HT requests into the
global address space supported by HToE, the HToE
specification also supports mapping optimizations for
the HTEA that allow for increased scalability while still
preserving the local link’s ability to transparently han-
dle remote HT packets without needing knowledge of
their source.

One of the limits to scalability in an HToE imple-
mentation is related to the number of outstanding Non-
Posted requests that can be issued by a HyperTransport
device at one time. Since the HTEA interface with the
HyperTransport link follows all the normal protocols of
a HyperTransport device, it is limited to sending a rel-
atively small number of Non-Posted requests (that re-
quire a response packet) to the local link using unique
Source Tag (SrcTag) bits. Furthermore, packets that are
received at a HTEA may have their own Source Tag bits
that conflict with requests from other source HTEAs.
For this reason, the HToE standard implements a tech-
nique called tag remapping [30] to maximize the num-
ber of Non-Posted requests that can be sent to the lo-
cal HT link. Figure 4 shows how tag remapping works
with two conflicting incoming requests. The original
SrcTag, Unit ID, and source MAC address are stored in

a pending request table on receipt. If a newly arrived
request conflicts with a pending request, its SrcTag and
Unit ID bits are remapped and the mapping is main-
tained in the pending request table. On completion of
the servicing of a request, the corresponding responses
are matched up against this table to restore the SrcTag
and Unit ID fields as well as to determine the correct
destination HTEA for a response.

The HyperTransport specification also specifies an
optional technique called Unit ID Clumping that can
be used with tag remapping to give the HTEA addi-
tional Source Tags for use with the local HyperTrans-
port link. Unit ID Clumping is not a requirement for
HToE implementations, but it provides an example of
how HToE can be scaled to handle additional sending
HTEAs while conforming to the requirements of the
original HyperTransport specification.

4.4. HToE Ordering and Flow Control for Mul-
tiple Senders, Single Receivers

HToE ordering relies on the HT 3.1 ordering re-
quirements, also known as HyperTransport Section 6
Ordering Requirements. Although there are no require-
ments for packets going to different destinations (from
different VLs), ordering of packets within a VL are pre-
served by the HToE retry algorithm and by sending all
Ethernet packets for a specific source/destination pair
on the same Ethernet priority level.

In contrast to point-to-point communication, a
HTEA must receive packets from multiple source
HTEAs. To handle this many-to-many communica-
tion pattern, the HToE specification uses a very sim-
ple credit-based principle for end-to-end buffer man-
agement – any HyperTransport packets that are sent to
a remote node must have a standard HyperTransport
credit for the Virtual Link before they can be encap-
sulated into an Ethernet packet. Additionally, each HT
credit is equal to one buffer in the receiving HTEA.

Unlike HT links where HT credit-carrying NOP
packets continuously flow on the physical link, cred-
its are passed in the HToE environment only when the
receiving HTEA has available buffers for incoming HT
packets. A certain number of buffers must be reserved
to allow sending HTEAs to initiate new connections,
but additional buffers and credits are allocated by the
receiving HTEA as its flow control and credit allocation
schemes specify.

As buffers are filled in a receiving HTEA, the
lack of available credits introduces backpressure on the
sending HTEAs. Figure 5 shows how this backpressure
causes buffers in the sending HTEA at Node 1 to be-
come full, pausing transactions until more credits are

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

13

Figure 4. Tag Remapping in the HTEA

available. Note that since each Virtual Link has its own
set of credits, lack of credits for one source-destination
pair should not affect the traffic for another VL.

The HToE specification defines the minimum re-
quired flow control mechanism. However, it mentions
and leaves open many opportunities to optimize the al-
location of credits and buffers to multiple senders.

4.5. Encapsulation and Support for Recovery
and Resets

In addition to specifying how HyperTransport
packets are packed into Ethernet packets, the encapsu-
lation layer also interacts with recovery and reset mech-
anisms that have been adapted from HT 3.1 to handle
HToE packets. Each HToE packet contains a special se-
quence number that is used by the HToE retry algorithm
to determine if HToE packets are received in order. This
sequence number and retry algorithm are very similar to
the 3.1 Go-Back-N algorithm, but each sequence num-
ber refers to an entire HToE packet, not just one HT
packet. Further error checking is provided by CRCs on
both the HToE Payload and the use of the normal Eth-
ernet CRC.

In the case of an unrecoverable error that leads to
reset, the encapsulation layer specifies a method for per-
forming link-level resets of one or more Virtual Links
that is similar to HyperTransport’s concept of cold and
warm resets. Since HyperTransport over Ethernet does
not include the additional physical sideband signals that
HyperTransport devices normally include (such as the
power and reset signals), resets must be passed using
packets or using OS-level communication. A special
encapsulation packet header defines fields for these se-
lective resets, limits their scope, and keeps the entire
HTEA from having to reset due to an error between one
source and one destination.

While some errors lead to reset, many errors just
require a response to notify the original requesting pro-

cessor that a request packet has not received a valid
response. Similar to how HT 3.1 specifies a method
for sending responses with error bits to notify of errors,
HToE allows for remote transactions to be terminated
and handles error notification. To do this the HTEA
must keep track of sent HyperTransport packets that re-
quire a response (Non-Posted packets), and if it receives
a notification that the response has been lost or the re-
mote node has been reset, it can then reply with a nor-
mal HT 3.1 packet with the “poison” or error bit set.
This additional state for remote requests allows for eas-
ier error detection and detection of request timeouts.

4.6. Security in HToE-enabled Data Centers

Since HyperTransport over Ethernet enables easy,
transparent (OS interaction is not necessarily needed)
hardware sharing of noncoherent memory between
nodes, more care must be taken to make sure that ma-
licious HyperTransport packets are not inserted into an
Ethernet packet and sent to a remote node. While cer-
tain HPC-oriented clusters that are not used to handle
web-related data may not have as high security require-
ments, networks exposed to the Internet may require
additional security measures. Fortunately, HToE de-
fines the use of IEEE 802.1ae MACsec to provide for
encrypted 10 Gigabit Ethernet traffic between nodes.

5. Resource Sharing with HToE - Use
Cases

The creation of a high-performance, scalable, com-
modity network using HyperTransport over Ethernet
opens up the possibility of many application models that
are based on low-latency noncoherent communication.
Here we present two potential usages of this commod-
ity standard to promote resource sharing within a data
center or HPC environment. Both are predicated on the
assumption that future clusters will be limited not nec-

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

14

Figure 5. HToE Backpressure-based Flow Control

essarily by processing power but rather by factors like
TCO and power usage.

5.1. PGAS Support for Virtualizing DIMMs
and DRAM Power Efficiency

Previous research has examined the use of Hyper-
Transport over Ethernet as the hardware support for
a PGAS implementation that can be used to reduce
DRAM overprovisioning in servers in data centers [33].
DRAM in data centers is typically overprovisioned to
handle infrequent peaks in workloads, but low-latency
memory transfers can help reduce the need for overpro-
visioning while also providing much lower latency than
swapping data out to disk.

These low-latency remote memory accesses pro-
vide an alternative to existing RDMA models and also
allow for the “virtualizing” of DIMMs on remote nodes.
This means that a node could request the use of part of
a remote DIMM for noncoherent accesses to grow its
own available memory temporarily. At the same time,
applications running on the local node are unaware of
the DIMM’s actual location due to the transparent ad-
dress mapping of a local HT request address into the
global address space, the transmission of a low-latency
HToE packet, and traditional CPU techniques that are
used to hide normal memory access latency.

DIMM virtualization can provide opportunities for
reducing the amount of installed DRAM in a data cen-
ter, based on average memory requirements rather than
peak requirements. For instance, a 10,000 core data
center might currently consist of 625 individual blades,
each with 4 sockets and quad-core CPUs. Based on pre-
vious estimates of memory requirements for data cen-
ter workloads [6], each blade would require anywhere
from 32 to 64 GB of DRAM in an overprovisioned sce-
nario. The current retail price of a registered 8 giga-
byte DDR3-1333 DIMM is around $300 [10], so reduc-

ing the amount of memory by 50% (from 64 GB to 32
GB) would save $750,000 over the entire data center. A
75% reduction would save $1,125,000 in memory costs
alone, not to mention TCO related to cooling and power.
Using HP’s online power calculator, we can also esti-
mate that this reduction in memory would save either
8,500 Watts (50% reduction) or 12,750 Watts (75%) due
to related reductions in idle memory power [19].

5.2. Pooled Accelerators to Reduce Cluster
TCO and Power Usage

In addition to virtualizing DRAM, there are also
several researchers interested in virtualizing and shar-
ing accelerators, such as GPUs. Provisioning an entire
cluster with GPU cards can prove to be cost- and power-
inefficient, especially in situations where only a few ap-
plications can take advantage of the benefits of better
performance on these accelerators. In the same vein as
other approaches that utilize MPI or sockets to access
remote accelerators [13], HToE can be used as an en-
abling technology to allow for pooling accelerators (i.e.,
sharing a few accelerators between a larger number of
general purpose nodes) and reducing cost and power in-
efficiency in the cluster.

While current approaches to use remote accelera-
tor access would likely rely on using HToE packets to
perform remote reads and writes to shared CPU-GPU
memory pages, it is foreseeable that GPUs could be ac-
cessed directly using HyperTransport packets either na-
tively or after being translated over the PCI Express bus.
The availability of direct access to GPUs using Hyper-
Transport packets would allow remote nodes to be able
to directly read or write GPU DRAM and would provide
a much higher performing model for sharing remote ac-
celerators between nodes in a cluster.

Using our example cluster from Section 5.1 with
mid-range GPUs, we can give a simplistic approxima-

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

15

tion of how pooled accelerators could be used to re-
duce overall cost and power usage. We assume that
a blade could potentially house two PCIe-based GPU
cards and that these GPUs are not typically fully uti-
lized. The Fermi-branded, NVIDIA GeForce GTX 570
GPU currently retails for around $350 and has a max-
imum power dissipation of 220 Watts [26] and an idle
power dissipation of around 30 Watts [2]. In our pooled
accelerator scenario, one GPU could be shared between
two adjacent blades, providing a 75% reduction in cost
($328,125 for the entire data center). More importantly,
the power consumption due to idle GPUs would be re-
duced by at least 28,125 Watts (assuming each GPU
uses 30 Watts when inactive).

These savings are highly dependent on the ex-
pected workload, but the existence of pooled acceler-
ators would allow for much greater flexibility in the ini-
tial provisioning and upgrading of clusters to meet com-
putational, power, and TCO requirements.

6. Conclusions

As part of the new HyperShare strategy, Hyper-
Transport over Ethernet (HToE) provides a low-cost,
commodity standard that can be used to enable new
higher performance models of resource sharing in clus-
ters and data centers. This specification proposes sev-
eral engineering solutions for encapsulating Hyper-
Transport packets over a highly scalable, many-to-many
interconnect, and it provides cost- and performance-
related motivation for using HToE in environments
where 10 Gigabit Ethernet is already deployed and
where 40 or 100 Gigabit Ethernet is likely to gain fu-
ture market share.

Additionally, we have proposed several usage cases
to demonstrate how HToE can be utilized to dramat-
ically improve resource sharing for overprovisioned
hardware such as DRAM and expensive accelerators
such as GPUs. The HToE standard can enable these
sharing techniques in data centers while taking advan-
tage of the cost, scalability, and management benefits
associated with Ethernet interconnect technology.

References

[1] IEEE 802.3ae 10Gb/s Ethernet Task Force. 10 gigabit
ethernet 802.3ae standard. 2002. http://grouper.
ieee.org/groups/802/3/ae/index.html.

[2] Nvidia’s geforce gtx 570: Filling in the
gaps - power, temperature, and noise. 2011.
http://www.anandtech.com/show/4051/
nvidias-geforce-gtx-570-filling-in-
the-gaps/15.

[3] InfiniBand Trade Association. Rdma over con-
verged ethernet specification. 2010. http://www.
infinibandta.org.

[4] Pavan Balaji, Wu-chun Feng, and Dhabaleswar K.
Panda. Bridging the ethernet-ethernot performance gap.
IEEE Micro, 26:24–40, May 2006.

[5] Ulrich Bruening. The htx board: The universal htx
test platform. http://www.hypertransport.
org/members/u_of_man/htx_board_data_
sheet_UoH.pdf.

[6] S. Chalal and T. Glasgow. Memory sizing for server vir-
tualization. 2007. http://communities.intel.
com/docs/.

[7] HyperTransport Consortium. Hypertransport specifica-
tion, 3.10. 2008. http://www.hypertransport.
org.

[8] HyperTransport Consortium. Clustering 360 market
analysis. 2010. http://www.hypertransport.
org/default.cfm?page=Clustering360.

[9] Pat Conway and Bill Hughes. The amd opteron north-
bridge architecture. IEEE Micro, 27(2):10–21, 2007.

[10] Crucial memory 8 gb, ddr3 pc3-10600 memory mod-
ule pricing. 2011. http://www.crucial.com/
server/index.aspx.

[11] Uri Cummings. Focalpoint: A low-latency, high-
bandwidth ethernet switch chip. In Hot Chips 18,
2006. http://www.hotchips.org/archives/
hc18/3_Tues/HC18.S8/HC18.S8T1.pdf.

[12] D. Dalessandro, P. Wyckoff, and G. Montry. Initial per-
formance evaluation of the neteffect 10 gigabit iwarp
adapter. In Cluster Computing, 2006 IEEE International
Conference on, pages 1–7, 2006.

[13] J. Duato, A.J. Pea, F. Silla, R. Mayo, and E.S. Quintana-
Orti. rcuda: Reducing the number of gpu-based acceler-
ators in high performance clusters. In High Performance
Computing and Simulation (HPCS), 2010 International
Conference on, pages 224 –231, July 2010.

[14] J. Duato, F. Silla, S. Yalamanchili, B. Holden, P. Mi-
randa, J. Underhill, M. Cavalli, and U. Bruning.
Extending hypertransport protocol for improved
scalability. In First International Workshop on
HyperTransport Research and Applications, 2009.
http://ra.ziti.uni-heidelberg.de/
coeht/pages/events/20090212/whtra09-
paper16.pdf.

[15] Fibre channel over ethernet fc-bb-5 standard. 2010.
http://www.t11.org/fcoe.

[16] Silicon Graphics. Sgi numalink: Industry leading in-
terconnect technology (white paper). 2005. http:
//www.sgi.com.

[17] IEEE 802.1 Working Group. Ieee 802.1qaz standards
page (in progress). http://www.ieee802.org/
1/pages/802.1az.html.

[18] Interconnect share of top 500 for november 2010 - hpc
top 500. 2010. http://www.top500.org.

[19] Hp power advisor. 2011. http://h18000.
www1.hp.com/products/solutions/power/
advisor-online/HPPowerAdvisor.html.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

16

http://grouper.ieee.org/groups/802/3/ae/index.html
http://grouper.ieee.org/groups/802/3/ae/index.html
http://www.anandtech.com/show/4051/nvidias-geforce-gtx-570-filling-in-the-gaps/15
http://www.anandtech.com/show/4051/nvidias-geforce-gtx-570-filling-in-the-gaps/15
http://www.anandtech.com/show/4051/nvidias-geforce-gtx-570-filling-in-the-gaps/15
http://www.infinibandta.org
http://www.infinibandta.org
http://www.hypertransport.org/members/u_of_man/htx_board_data_sheet_UoH.pdf
http://www.hypertransport.org/members/u_of_man/htx_board_data_sheet_UoH.pdf
http://www.hypertransport.org/members/u_of_man/htx_board_data_sheet_UoH.pdf
http://communities.intel.com/docs/
http://communities.intel.com/docs/
http://www.hypertransport.org
http://www.hypertransport.org
http://www.hypertransport.org/default.cfm?page=Clustering360
http://www.hypertransport.org/default.cfm?page=Clustering360
http://www.crucial.com/server/index.aspx
http://www.crucial.com/server/index.aspx
http://www.hotchips.org/archives/hc18/3_Tues/HC18.S8/HC18.S8T1.pdf
http://www.hotchips.org/archives/hc18/3_Tues/HC18.S8/HC18.S8T1.pdf
http://ra.ziti.uni-heidelberg.de/coeht/pages/events/20090212/whtra09-paper16.pdf
http://ra.ziti.uni-heidelberg.de/coeht/pages/events/20090212/whtra09-paper16.pdf
http://ra.ziti.uni-heidelberg.de/coeht/pages/events/20090212/whtra09-paper16.pdf
http://www.t11.org/fcoe
http://www.sgi.com
http://www.sgi.com
http://www.ieee802.org/1/pages/802.1az.html
http://www.ieee802.org/1/pages/802.1az.html
http://www.top500.org
http://h18000.www1.hp.com/products/solutions/power/advisor-online/HPPowerAdvisor.html
http://h18000.www1.hp.com/products/solutions/power/advisor-online/HPPowerAdvisor.html
http://h18000.www1.hp.com/products/solutions/power/advisor-online/HPPowerAdvisor.html

[20] Swamy N. Kandadai and Xinghong He. Performance
of hpc applications over infiniband, 10 gb and 1 gb
ethernet. 2010. http://www.chelsio.com/
assetlibrary/whitepapers/HPC-APPS-
PERF-IBM.pdf.

[21] M. Ko, D. Eisenhauer, and R. Recio. A case for con-
vergence enhanced ethernet: Requirements and applica-
tions. In Communications, 2008. ICC ’08. IEEE Inter-
national Conference on, pages 5702 –5707, May 2008.

[22] Rajesh Kota and Rich Oehler. Horus: Large-scale sym-
metric multiprocessing for opteron systems. IEEE Mi-
cro, 25(2):30–40, 2005.

[23] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete
Wyckoff, and Dhabaleswar K. Panda. High performance
rdma-based mpi implementation over infiniband. In Pro-
ceedings of the 17th annual international conference on
Supercomputing, ICS ’03, pages 295–304, New York,
NY, USA, 2003. ACM.

[24] Myricom’s myri-10g 10-gigabit ethernet solu-
tions. 2010. http://www.myri.com/Myri-
10G/10gbe_solutions.html.

[25] Juniper Networks. Press release for juniper
network’s t1600 100 ge core router. 2009.
http://www.juniper.net/us/en/company/
press-center/press-releases/2009/pr_
2009_06_08-09_00.html.

[26] Nvidia geforce gtx 570 specification. 2011.
http://www.nvidia.com/object/product-
geforce-gtx-570-us.html.

[27] M. Schlansker, J. Tourrilhes, Y. Turner, and J.R. San-
tos. Killer fabrics for scalable datacenters. In Communi-
cations (ICC), 2010 IEEE International Conference on,
pages 1 –6, May 2010.

[28] Woven Systems. 10 ge fabric delivers con-
sistent high performance for computing clus-
ters at sandia national labs. 2007. http:
//www.chelsio.com/assetlibrary/pdf/
Sandia_Benchmark_Tech_Note.pdf.

[29] Jon Tate. An introduction to fibre channel over ether-
net, and fibre channel over convergence enhanced eth-
ernet. 2009. http://www.redbooks.ibm.com/
redpapers/pdfs/redp4493.pdf.

[30] Sudhakar Yalamanchili, Jose Duato, Jeffrey
Young, and Federico Silla. A dynamic, par-
titioned global address space model for high
performance clusters. Technical report, 2008.
http://www.cercs.gatech.edu/tech-
reports/tr2008/git-cercs-08-01.pdf.

[31] Yasushi Umezawa Yoichi Koyanagi, Tadafusa Niinomi.
10 gigabit ethernet switch blade for large-scale blade
servers. Fujitsu Scientific and Technical Journal,
46(1):56–62, 2010.

[32] Jeff Young and Brian Holden. Hypertransport over
ethernet specification, 1.0. 2010. http://www.
hypertransport.org.

[33] Jeffrey Young and Sudhakar Yalamanchili. Dynamic
partitioned global address spaces for power efficient
dram virtualization. In Works in Progress in Green Com-

puting, 2010 International Green Computing Confer-
ence, 2010.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

17

http://www.chelsio.com/assetlibrary/whitepapers/HPC-APPS-PERF-IBM.pdf
http://www.chelsio.com/assetlibrary/whitepapers/HPC-APPS-PERF-IBM.pdf
http://www.chelsio.com/assetlibrary/whitepapers/HPC-APPS-PERF-IBM.pdf
http://www.myri.com/Myri-10G/10gbe_solutions.html
http://www.myri.com/Myri-10G/10gbe_solutions.html
http://www.juniper.net/us/en/company/press-center/press-releases/2009/pr_2009_06_08-09_00.html
http://www.juniper.net/us/en/company/press-center/press-releases/2009/pr_2009_06_08-09_00.html
http://www.juniper.net/us/en/company/press-center/press-releases/2009/pr_2009_06_08-09_00.html
http://www.nvidia.com/object/product-geforce-gtx-570-us.html
http://www.nvidia.com/object/product-geforce-gtx-570-us.html
http://www.chelsio.com/assetlibrary/pdf/Sandia_Benchmark_Tech_Note.pdf
http://www.chelsio.com/assetlibrary/pdf/Sandia_Benchmark_Tech_Note.pdf
http://www.chelsio.com/assetlibrary/pdf/Sandia_Benchmark_Tech_Note.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4493.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4493.pdf
http://www.cercs.gatech.edu/tech-reports/tr2008/git-cercs-08-01.pdf
http://www.cercs.gatech.edu/tech-reports/tr2008/git-cercs-08-01.pdf
http://www.hypertransport.org
http://www.hypertransport.org

System-level Prototyping with HyperTransport

Myles Watson and Kelly Flanagan

Computer Science Department

Brigham Young University

Provo, Utah, USA

myles@byu.edu kelly@cs.byu.edu

Abstract— The complexity of computer systems continues to

increase. Emulation of proposed subsystems is one way to

manage this growing complexity when evaluating the

performance of proposed architectures. HyperTransport

allows researchers to connect directly to microprocessors with

FPGAs. This enables the emulation of novel memory

hierarchies, non-volatile memory designs, coprocessors, and

other architectural changes, combined with an existing system.

Keywords-HyperTransport; FPGA; prototype; emulation;

I. INTRODUCTION

In accordance with Moore’s Law, the number of

transistors available to chip designers has continued to

double every 18 months. For many years, this transistor

scaling also enabled increasing central processing unit

(CPU) frequencies. Although CPU frequencies and

performance increased rapidly, memory and I/O

performance increased much more slowly. This disparity

increased the importance of I/O and memory performance in

computer systems design [1].

In the last few years, power consumption and cooling
have caused CPU manufacturers to shift the focus from

frequency scaling to scaling the number of processor cores

per die [2]. This has exacerbated the pressure on, and the

importance of, the memory and I/O subsystems [3].

The increase in importance of memory and I/O

subsystems increases the need for understanding system-

level design changes, and their impact on performance.

Unfortunately, system-level simulation is error prone and

costly. One alternative is to emulate part of the system to be

studied using field-programmable gate arrays (FPGAs).

Connecting the FPGAs to commercial CPUs enables the

study of a portion of the I/O subsystem or memory
hierarchy, while eliminating the need to faithfully model the

CPUs and their internal components.

Designing and implementing an emulation system from

scratch would be a costly endeavor, however in-socket

accelerators are commercially available at a much lower

cost [4]. In-socket accelerators are FPGA boards designed to

fit into a CPU socket, and are marketed as flexible

application accelerators. They provide low-latency and low-

power computational resources for applications such as

bioinformatics, data-mining, real-time financial analysis,

and oil and gas exploration.
This work describes how an XtremeData XD1000

FPGA board in an AMD Opteron socket can serve as part of

a flexible emulation platform. Since the XD1000 tightly

couples an Altera Stratix II FPGA with the CPU and other

system resources, such as the DRAM sockets on the
motherboard, this platform is useful for exploring the design

of I/O subsystems and memory hierarchies. Two emulation

platforms incorporating the XD1000 are described, each of

which is useful for emulating different system designs. Both

of these platforms have been implemented, and preliminary

performance results in terms of latency and bandwidth for

reads and writes are presented for one of the systems.

The remainder of the paper is divided into sections.

Section II presents the design of two emulation platforms

using the XD1000, along with some of the implementation

concerns. Section III describes three target application areas.
Section IV presents preliminary performance measurements

and discusses the importance of relative performance as an

analysis tool. Section V discusses related work. Section VI

is the conclusion.

II. SYSTEM DESIGN

An important characteristic of an emulation system is

the connection point to the system, which determines the

latency and bandwidth of accesses to the emulated device.

Two possible locations are a peripheral bus (e.g., PCIe) and

the system bus (e.g., HyperTransport or QuickPath

Interconnect).
Connecting the emulation platform to a peripheral bus

is a flexible and relatively low-cost way to emulate I/O

devices and interfaces. Often, an application-specific

integrated circuit (ASIC) can be used to connect to the bus,

allowing the designer to use the FPGA entirely for the

emulated device.

Using an FPGA to connect directly to the processor via

the system bus allows lower-latency access to the device. In

general, each bus or device through which memory accesses

must pass increases the access latency. The option of using

coherent (cache-coherent) memory is another benefit of

connecting to the system bus.
Coherent memory provides more flexibility in the

memory organizations that can be studied, since it can be

cached and paged by the microprocessor. From the

perspective of the operating system (OS) and applications,

this makes it indistinguishable from DRAM connected to a

remote processor. Coherent memory allows the study of

caching and buffering schemes.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

18

Figure 1. XD1000 in a cave configuration.

Figure 2. XD1000 in an I/O host configuration.

A. Coherent HyperTransport

The coherent HyperTransport (cHT) specification is a

superset of the HyperTransport (HT) specification. The HT
specification is open, but the cHT specification is only

available under NDA with AMD [5,6]. The University of

Heidelberg’s Center Of Excellence for HyperTransport

(CoEHT) has developed HT and cHT cores which can be

deployed in FPGAs to connect to AMD Opteron processors

through processor-socket interposers (e.g, the XtremeData

XD1000) or HyperTransport Extension (HTX) boards (e.g.,

the CoEHT HTX board [7]).

B. Architectural Variations

Opterons and XD1000 modules have three HT links,

allowing some flexibility in the configuration of a system.

The cHT core adds another option to each configuration.

Figures 1 and 2 show two of the configurations available

using one or two links. In each case, the link between the

Opteron and the XD1000 can be HT or cHT, yielding two

additional configurations.

In this work, the XD1000 module is deployed in two
Tyan motherboards, the Thunder K8WE (S2895) and

Thunder K8SE (S2892). These motherboards were chosen

because they are very similar and are supported by coreboot

(open-source firmware) [8]. Using coreboot with BIOS

emulation routines allows unmodified OSs to be booted,

which eases application and driver development [9]. The

S2895 has two chipsets, which allows the XD1000 to

function as a coherent I/O host. Both configurations have

four 1GB DDR DIMMs directly attached to the XD1000.

If main memory is part of the emulated system, cHT is

chosen as the connection between the XD1000 and the

Opteron. The DRAM connected to the Opteron can then be
removed from the system, requiring all memory accesses to

be serviced by the XD1000 and the DRAM connected to it.

If more than 4 GB of emulated storage is required, the I/O

host can connect to I/O devices (PCIe) on the motherboard

through a second HT link.

In the configurations shown in Figure 2, where there are

multiple HT links, care must be taken to avoid deadlock. HT

specifies that no transactions should depend on the

completion of other transactions, and transactions should

not create new transactions. These guarantees are easily

broken by a system which changes the integration level of
components, so any new packets must be isolated from the

rest of the system. The method of choice is to separate the

traffic controlling the I/O devices from the read and write

requests from the Opteron. The HT specification requires all

packets from devices to traverse the complete chain to the

host. This allows the packets to be routed based on their

address by the I/O host. In this work, packets are filtered

based on their source and destination to make sure that

traffic that is part of the emulated system does not reach the

CPU.

The XD1000 HT links can run at 200 or 400 MHz

using the serializer/deserializer (SERDES) hardware in the
FPGA, or at 200 MHz when implemented with DDR

registers. When the XD1000 is used as an I/O host on the

S2895, at least one of the links is limited to 200 MHz. This

is due to a combination of the HT link connecting the

XD1000 to the chipset, and limited FPGA resources. Since

the links are 16 bits wide and HT is DDR, this provides 800

MB/s of theoretical peak bandwidth in each direction.

C. Firmware Modifications

In order to use the XD1000 to emulate multiple system

configurations, the firmware which initializes the system

must be modified. The modifications can be grouped into

three types: XD1000 initialization, address space allocation,

and resource reporting. The modifications are more

extensive for the I/O host than for the cave.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

19

When used as a cave, the XD1000 initialization is

minimal. It consists of an extra hard reset if the HT link is

not active. This is necessary to allow the clock generation

circuitry of the FPGA sufficient time to stabilize. The

resource allocation process must be circumvented for the 4

GB of DRAM, which is allocated above main memory. The
Advanced Configuration and Power Interface (ACPI) tables

must then be modified so that the XD1000’s bus is visible

to the OS.

When the XD1000 is an I/O host, it appears to software

to be an Opteron processor. It must be programmed with the

correct routing values and included in the routing table so

that memory accesses reach it correctly. Since the DRAM

controller is implemented in the FPGA fabric, the DRAM

initialization code needs to be skipped as well. The size of

the address space occupied by the emulated storage must be

specified, and some ACPI tables must be modified in order

for the memory to appear to be attached to node 0. Since
there are no processor cores, the code which initializes the

Opteron processor cores must be skipped so that the cores

appear to be disabled. As a final step, the devices connected

to the HT link of the I/O controller, which will be part of the

emulated system, must be initialized and hidden from the

OS.

D. Bandwidth and Write Buffering

The basic unit of transfer in the HyperTransport

protocol is the thirty-two bit (four-byte) word. The most

efficient transfers (with the lowest overhead) are transfers of

64 bytes. Transfer sizes depend on the Opteron’s memory

type and page attributes. When the address space is write-

back, reads transfer 64 bytes at a time, but writes are

performed according to the data size of the store instruction.

When the address space is write-combining, the opposite is

true.

In order to maximize bandwidth in both directions, the
XD1000 example application makes use of DMA engines in

the FPGA to transfer data to and from the host memory.

This works well when the emulated device is accessed only

through a driver, which can set up the transfers. When any

size of transfer may be used, this asymmetric performance

must be taken into account.

Even with 64-byte transfers, write buffering must be

used, since the DRAM controller has a width of 128 bytes.

This means that 128 bytes must be read from DRAM before

64 bytes can be written. Much of the complexity involved in

creating an application with HyperTransport is a product of
the different widths. The 32-bit HT bus protocol is

converted by the core to 64-bit data for processing on the

FPGA, since FPGAs make better use of wide widths than

high clock rates. These data words must be assembled for

the DRAM controller. In order to manage this complexity,

all writes to RAM are handled by the write buffer, as are

any reads that are smaller than 64-bytes.

III. APPLICATIONS

Many areas of system design can be explored using
emulation. Three of the areas that seem most promising are:

adding non-volatile memory (NVRAM), adding an

application-specific coprocessor (or changing the way one is

integrated with the system), and changing the memory

hierarchy.

A. Non-volatile Memories

Nonvolatile memory technology is advancing. Flash

memory is being used as a disk replacement in performance-

critical applications. Other technologies, such as phase-

change memory (PCM) and spin-torque transfer memory

(STTM), are also being developed. Their densities are

increasing, and they may be included in future computing

systems.

These technologies differ from the DRAM in several

important ways, which will influence their integration into

computer systems. The two most obvious differences are

asymmetric access times for writes and reads, and the need

for wear leveling. Both of these factors will influence the
design of memory controllers and the resulting performance

of applications.

Building prototype systems is prohibitively expensive

for exploring the design space, and cannot be done before

devices are produced. In order to explore the design space,

tools must be developed that will allow accurate

performance comparisons for different organizations, block

sizes, and wear-leveling and buffering algorithms.

The emulation system of Figure 1 can be used to

explore design choices and the interactions of applications

with up to 4 GB of NVRAM connected to the system.
Programmable delays can be added to the DRAM controller

[10] and/or the write buffer in order to more accurately

model the access latencies of each technology.

B. Coprocessors

One way to increase the time and power efficiency of

computation is to use application-specific processors. Many
applications have abundant available parallelism. This

parallelism can be efficiently exploited by architectures

combining many simple, low-power processing elements.

General-purpose computing on graphics processing units

(GPGPU) is an example of this. The connections between

the GPU, the CPU, and memory affect the performance of

the application. This could affect how the work is divided

among processing units.

The same architectural questions can be explored for

general graphics processing. AMD’s Fusion architecture

more tightly couples the GPU and the CPU in order to
achieve higher performance, lower power consumption, or

both. An emulated system can be used to explore the design

space and performance benefits of such a system before it is

built.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

20

C. Memory Hierarchies

The increasing gap between main memory and CPU

speed has increased the importance of the memory hierarchy

in system performance. Much of the area on recent CPU

dies is dedicated to caches. There is a large design space to

be explored, and its complexity is increasing with the

number of processor cores. Structures such as coherence

directories are good candidates for emulation, since they can

be implemented with the RAM resources of the FPGA.

One extension to the memory hierarchy which can be

explored using emulation is a hardware single-level store,

which moves control of swapping pages of memory from
the OS into hardware. Swapping is a feature of virtual

memory when the virtual memory space is larger than

physical RAM. Memory pages are swapped when pages of

data are transferred to and from the secondary store to

maintain the illusion of large memory space. If a page is

chosen for replacement that will be used again soon, its next

access will cause another swap. Since secondary storage is

much slower than RAM, minimizing swapping is essential

to performance. Some related features, such as file caching,

can also be controlled by the same hardware, since the files

reside in the secondary store and get moved to RAM for
faster access.

Hardware paging support is interesting because there is

limited information available to the OS about page usage.

Usage bits are only updated during page table walks, which

occur on TLB misses. In order for an OS to collect more

usage information, it must invalidate TLB entries to cause

misses, which is expensive. With more information, paging

algorithms make better replacement decisions, increasing

performance [11]. A hardware paging implementation

would be aware of all memory accesses that miss the last

level of cache, and therefore have more information on

which to base page replacement decisions.
Moving paging support out of the OS is not a new idea.

The IBM AS/400 and its predecessor, the IBM System/38,

implement paging in virtual machines. This simplifies

software development, since from the perspective of the OS

and applications, memory is flat and uniform [12]. A virtual

machine implementation of paging suffers the same

performance penalties as other software implementations,

due to limited usage information,.

IV. PERFORMANCE

Performance measurements and comparisons are two of

the most compelling reasons to emulate modifications to
computer systems. Although the most straightforward way

to measure system performance is by measuring wall clock

time, it is not the most helpful metric for comparing

emulated systems. Although the FPGAs used for emulation

continue to improve in speed, they are not as fast as a final

implementation.

A. Preliminary Performance Measurements

In order to understand the performance characteristics

of a system, simple latency and bandwidth measurements

are taken. The system shown in Figure 1 is booted into

Linux, and a modified device driver based on the example

XD1000 driver is loaded. A simple application is then run,

which calls mmap to obtain a pointer to the 4GB of memory

on the XD1000. Once the program has a pointer, it is

straightforward to write timing loops which measure the

average latency and bandwidth of memory accesses. The

measured latencies can be verified using Altera SignalTap
to view the HT requests.

The latency for each read or write targeting the DRAM

is around 850 ns, with the write buffer implemented, but no

workload-specific optimizations. This yields varying

bandwidths depending on the transaction types and sizes, as

shown in Table 1. Because the write buffer is organized as a

cache, each write to a new line causes a line fill from the

DRAM, and possibly a write back for dirty data. An obvious

performance optimization is to bypass the write buffer when

multiple consecutive writes are received, and write a full

128 bytes directly to DRAM. Avoiding the write buffer in
this way would substantially increase the write bandwidth.

Note that read bandwidth is significantly lower than write

bandwidth because each read must complete before software

can issue another read; writes have no such restriction.

Running two threads nearly doubles the read bandwidth

because the two processor cores can issue reads in parallel,

but it has no effect on write bandwidth.

B. Relative Performance Comparisons

Using absolute performance numbers with emulated

architectures can be misleading. The solution is to use

relative performance comparisons. Some of the factors that

make relative performance comparisons more appropriate

than using absolute performance include: the lower

frequency of an FPGA implementation of HyperTransport,

the fact that the emulated prototype may not be fully

optimized, and even restrictions with the NDA in publishing

performance numbers for the coherent core.

In order to compare the performance of multiple non-
volatile memory technologies and their controllers, the path

TABLE II. READ AND WRITE BANDWIDTH MEASUREMENTS.

Transaction Type Bandwidth

32-bit writes 60 MB/s

64-bit writes 90 MB/s

64-byte writes (write-combining) 120 MB/s

32-bit reads 5.5 MB/s

32-bit reads (two threads) 11 MB/s

64-byte reads (cacheable 32-bit) 50 MB/s

64-byte reads (two threads) 92 MB/s

TABLE I. READ AND WRITE BANDWIDTH MEASUREMENTS.

Transaction Type Bandwidth (MB/s)

32-bit writes 60

64-bit writes 90

64-byte writes (write-combining) 120

32-bit reads 5.5

32-bit reads (two threads) 11

64-byte reads (cacheable 32-bit) 50

64-byte reads (two threads) 92

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

21

for each access should be equivalent. This means that a

comparison between the delayed RAM on the XD1000 and

the RAM attached to the host Opteron would be much less

informative than a comparison between two delay settings

on the XD1000.

For the case of an emulated single-level store, the only
DRAM in the system is attached to the XD1000, and all

requests must traverse the same path. The difference being

measured can then be attributed to the difference in the

paging algorithm, and the information available to it. The

latency of a memory access in this scenario is the sum of the

latencies due to: the HT link, the write buffer access, the

DRAM access, and in the case of a miss, a page transfer

from the backing store to DRAM.

When making the baseline measurements, the Opteron

is initialized to access 4 GB of RAM with the XD1000 as

the only memory controller. Memory needs beyond 4 GB

must be supplied by OS-controlled paging to the secondary
storage. The baseline is then compared to the same

configuration, but hardware paging is enabled and the

XD1000 is initialized as a memory controller with up to 1

TB of storage addressable as RAM. The 1 TB limit is a hard

limit dictated by the 40 physical address bits available to the

processors. Newer Opterons have 48 physical address bits,

expanding their addressing capabilities to 256 TB.

V. RELATED WORK

There are many system-level simulators, but there are

relatively few systems which add emulation to an existing

system using FPGAs. In this section, a case is presented for
using emulation in place of full-system simulation. This

analysis is followed by a discussion of three related

emulation systems, and two FPGA prototype systems that

use HT to enable low-latency cluster interconnects.

A. Emulation vs. Simulation

Several factors make system-level simulation time
consuming, expensive, and error-prone. These include the

asynchronous interactions among multiple devices, the

closed nature of many CPUs, the complexity of these CPUs

and their interconnects, and the increasing sizes of caching

structures and translation look-aside buffers (TLBs).

Since modern computer systems incorporate many

diverse components, modeling their interactions faithfully

can be difficult. Computer systems include devices ranging

from PCI Express (PCIe) graphics cards to hard drives to

serial ports, with widely varying performance characteristics

and latencies. Modeling the system at a sufficient level of
detail to accurately reflect system performance is a

challenge.

Modern CPUs have complex performance

characteristics, which can be difficult to model [13].

Although some high-level details of CPU architectures are

available, many of the details needed for accurately

simulating their performance are not. Even if all the design

parameters are available, the complexity of faithful

modeling slows simulations significantly, and it is difficult

to assure the correctness of the final model. This also

applies to the interconnections among CPU cores and the

connections to other subsystems. Multi-core architectures

exacerbate this problem.

As storage structures such as caches and TLBs increase
in size, the amount of simulated run time needed in order to

characterize their performance increases. Measuring the

benefit of another level of cache, for example, will require

the benchmark to generate many misses in the previous

levels.

Emulation is a promising way to reduce the complexity

involved in understanding the effects on performance of

modifications to an existing system. FPGAs combine

programmable logic and I/O interfaces, and some contain

implementations of simple microprocessors. This makes

them suited to implement a wide variety of functions for

experimentation. Their performance is limited in terms of
maximum clock frequency, but many times that can be

mitigated by the high degree of fine-grained parallelism

available in them.

Emulated subsystems implemented in an FPGA run fast

enough to allow multiple benchmark runs. These multiple

runs add statistical significance to performance

measurements of the emulated systems and minimize the

effect of performance variability of the other system

components.

B. Emulation Systems

Three related FPGA emulation systems are Flexible

Architecture Research Machine (FARM) [14], Research

Accelerator for Multiple Processors (RAMP) [13, 15], and

High-performance Advanced Storage Technology Emulator

(HASTE) [10].

FARM is similar to this work, in that it modifies and

repurposes an existing FPGA and Opteron system in order
to explore system architecture. FARM differs from using an

in-socket accelerator because the original system is much

more expensive, and the FPGAs are not directly connected

to the DDR or chipset on the motherboard.

RAMP is a collaborative effort by a number of

researchers to enable comparable architectural research and

bring down the costs associated with FPGA emulation,

specifically for many simple cores and their interconnects.

In order to achieve this goal, RAMP specifies FPGA boards,

and encourages the sharing and reuse of design components

for the FPGA designs. RAMP focuses on the challenges of
multi-core architectures and the software which runs on

them.

HASTE is a system constructed by UCSD to evaluate

NVRAM technologies in supercomputing applications.

HASTE connects DRAM with an FPGA controller on a

PCIe card, and is compared with the system DRAM and

solid-state disks to explore the performance of storage

devices built from emerging NVRAM technologies.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

22

C. Low-Latency Cluster Interconnects

Two systems which use FPGAs with HT to prototype

low-latency cluster interconnects are the Virtualized Engine

for Low Overhead (VELO) [16], and the Hyper Parallel

Processing (HPP) architecture [17].

VELO is an implementation of a network engine using

an HTX card. The resulting network exhibits latencies of

just over 1 μs, including routing.

 HPP connects multiple motherboards with an HT

backplane and a switch implemented with an FPGA. The

HPP prototype demonstrates low-latency, high-bandwidth

connections between motherboards in a prototype high-
performance, low-cost cluster.

Both VELO and HPP are specifically designed to

prototype connections between systems, whereas systems

using in-socket emulators are better suited for emulating and

prototyping modifications to parts of a single system.

VI. CONCLUSION

This work demonstrated how HT and FPGAs can be

used in commodity systems to emulate and evaluate the

performance of proposed system modifications. The ability

of the XD1000 to connect directly to the motherboard HT

links was shown to allow the exploration of many system
configurations. Two of these configurations were presented,

along with preliminary performance results from one of

them. These emulation systems were presented as a viable

way to evaluate new technologies such as NVRAM, and the

many ways that they can be incorporated into computer

systems.

ACKNOWLEDGMENTS

Thanks to Heiner Litz, Maya Gokhale, and the

anonymous reviewers for their comments and helpful

suggestions.

REFERENCES

[1] W. A. Wulf and S. A. McKee. 1995. “Hitting the memory wall:
implications of the obvious,” SIGARCH Comput. Archit. News 23, 1

(March 1995), 20-24.

[2] K. Asanović, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J.

Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D.
Wessel, and K. Yelick. “A view of the parallel computing

landscape,” Commun. ACM 52, 10 (October 2009), 56-67.

[3] P. Conway and B. Hughes. “The AMD Opteron northbridge

architecture,” IEEE Micro 27, 2 (March 2007), 10-21.

[4] XtremeData web site, http://www.xtremedata.com/.

[5] HyperTransport Center of Excellence web site, http://ra.ziti.uni-

heidelberg.de/coeht/

[6] HyperTransport Consortium web site,
http://www.hypertransport.org/.

[7] H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, U. Brüning, “The HTX-

board: a rapid prototyping station,” Proc. Of 3rd annual FPGAworld
Conference, Nov. 16, 2006, Stockholm, Sweden.

[8] Coreboot web site, http://www.coreboot.org/.

[9] A. Agnew, A. Sulmicki, R. Minnich, W. A. Arbaugh: “Flexibility in

ROM: a stackable open source BIOS,” USENIX Annual Technical
Conference, FREENIX Track 2003: 115-124.

[10] A. M. Caulfield, J. Coburn, T. I. Mollov, A. De, A. Akel, J. He, A.
Jagatheesan, R. K. Gupta, A. Snavely, and S. Swanson,

“Understanding the impact of emerging non-volatile memories on
high-performance, IO-intensive computing,” SC'10: Proceedings of

the Conference on High Performance Computing Networking,
Storage and Analysis, New Orleans, Louisiana, Nov. 2010.

[11] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S.

Kumar. “Dynamic tracking of page miss ratio curve for memory
management,” In Proceedings of the 11th international conference on

Architectural support for programming languages and operating
systems (ASPLOS-XI). ACM, New York, NY, USA, 177-188.

[12] F. G. Soltis, Inside the AS/400, second ed. Duke Communications,

Loveland, CO, 1997.

[13] J. Wawrzynek, D. Patterson, M. Oskin, S. Lu, C. Kozyrakis, J. C.
Hoe, D. Chiou, K. Asanović. “RAMP: Research Accelerator for

Multiple Processors,” IEEE Micro, 27(2):46–57, 2007.

[14] T. Oguntebi, S. Hong, J. Casper, N. Bronson, C. Kozyrakis, K.
Olukotun, “FARM: a prototyping environment for tightly-coupled,

heterogeneous architectures,” FCCM '10: The 18th Annual
International IEEE Symposium on Field-Programmable Custom

Computing Machines, May 2010.

[15] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson,
and K. Asanović, “RAMP gold: an FPGA-based architecture

simulator for multiprocessors,” In Proceedings of the 47th Design
Automation Conference (DAC '10). ACM, New York, NY, USA,

463-468.

[16] M. Nüssle, B. Geib, H. Fröning, and U. Brüning, “An FPGA-based

custom high performance interconnection network,” In Proceedings
of the 2009 International Conference on Reconfigurable Computing

and FPGAs (RECONFIG '09). IEEE Computer Society, Washington,
DC, USA, 113-118.

[17] X. Yang, F. Chen, H. Cheng, N. Sun, “A HyperTransport-based

personal parallel computer,” Cluster Computing, 2008 IEEE
International Conference on, pp.126-132, Sept. 2008.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

23

A HT3 Platform for Rapid Prototyping and High
Performance Reconfigurable Computing

Frank Lemke, Sven Kapferer, Alexander Giese, Holger Fröning, Ulrich Brüning
Computer Architecture Group

University of Heidelberg
Mannheim, Germany

{frank.lemke,sven.kapferer,alexander.giese,holger.froening,ulrich.bruening}
@ziti.uni-heidelberg.de

Abstract — FPGAs as reconfigurable devices play an important
role in both rapid prototyping and high performance
reconfigurable computing. Usually, FPGA vendors help the
users with pre-designed cores, for instance for various
communication protocols. However, this is only true for widely
used protocols. In the use case described here, the target
application may benefit from a tight integration of the FPGA
in a computing system. Typical commodity protocols like PCI
Express may not fulfill these demands. HyperTransport (HT),
on the other hand, allows connecting directly and without
intermediate bridges or protocol conversion to a processor
interface. As a result, communication costs between the FPGA
unit and both processor and main memory are minimal. In this
paper we present an HT3 interface for Stratix IV based
FPGAs, which allows for minimal latencies and high
bandwidths between processor and device and main memory
and device. Designs targeting a HT connection can now be
prototyped in real world systems. Furthermore, this design can
be leveraged for acceleration tasks, with the minimal
communication costs allowing fine-grain work deployment and
the use of cost-efficient main memory instead of size-limited
and costly on-device memory.

Hyper Transport, FPGA, High Performance Reconfigurable
Computing

I. INTRODUCTION
In the area of accelerated computing the vast amount of

research and development focuses on using GPUs [1] [2] [3].
Compared to this, FPGAs are very sparely used. The main
reasons for this are certainly the cost advantage of GPUs
(with a mass market behind), and the easier way of
programming. FPGAs are for most users difficult to
program, and due to their small volume they have
approximately one order of magnitude higher costs.

However, GPUs are very limited in their usage. Only if
the application to be ported to the accelerator has
characteristics similar to graphical processing, it can be
successfully accelerated [4]. Additionally, a recent report by
Intel [5] shows that the speedup between CPUs and GPUs is
only about 2.5 in average. Also, the limited amount of
graphics memory is preventing a broad use, because the

stream processors of a GPU can only operate on this
memory.

FPGAs, on the other hand, are much more flexible due to
their completely reconfigurable architecture. In particular for
applications which are not suitable for GPUs they play an
important role [6] [7] [8]. It is also possible to attach a large
amount of memory to the FPGA, making it suitable for data-
intensive applications.

GPUs with their stream based processing do not rely on a
close coupling between accelerator and host system, thus
they cannot offer applications the possibility of fine grain
accesses to and from the host system. However, many
applications rely on such a tight integration. Again, this
demand can be fulfilled by FPGAs, in particular if a system
interface like HT is used and not a peripheral interface like
PCIe. If the interface to the host system is lean enough, the
costs for accessing main memory are not higher than
accessing memory attached to the FPGA. Then, it is possible
for the FPGA to operate directly on main memory, making
arbitrary amounts of memory possible.

Last, as more and more performance computing systems
are facing the power wall, the GFLOPs achieved per Watt
are of paramount importance. FPGAs are certainly one of the
best architectures for high GFLOPs/Watt. By equipping
installations with FPGA based accelerators, the power
consumption can be significantly reduced while maintaining
the computing performance.

As hardware platform enabling above described features
a Stratix IV HTX3 Board was used. Based on an existing
first version prototype it was enhanced by placing additional
components onto the board and some refinements resulting
in the version presented here providing all required basic
functionalities. For using it as fully capable HT3 device in a
system the HT3 core [9] had to be ported onto the Altera
FPGA.

Also to ensure the usability and reliability of
communication between the device and the processors in
HT3 systems HW simulations had to be performed.
Additionally a physical interface (PHY) had to be created to
deliver an interface for the HT3 core to be compatible with
the provided hardware environment. This work will enable

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

24

the Stratix IV HTX3 Board being used as a unique single
FPGA HT3 solution which supports all the required features
for HT3 and therefore representing an efficient platform for
Rapid Prototyping and High Performance Reconfigurable
Computing.

The next section presents the HyperTransport protocol as
base technology for low latency communication. The
architecture of the Stratix IV HTX3 Board serving as rapid
prototype platform is specified in section 3 followed by the
description of the HT3 implementation enabling high
performance reconfigurable computing on top of it in section
4. The fifth section presents measurement results. Finally a
conclusion and an outlook are given in section 6.

II. HYPERTRANSPORT
HT is a unique possibility to easily connect a device

directly to a processor. As it is the only public specification
[10] available to do so, it is the perfect vehicle for a low
latency communication as there are no unnecessary protocol
conversions or bridges involved. With the HTX3 connector
which is defined by the HyperTransport-Consortium (HTC)
[11] and the availability of Opteron mainboards a system can
be easily set up [12].

HT allows a broad variation of link widths and
frequencies from a 2 bit link at 200 MHz DDR (HT200) up
to a 32 bit link at 3.2 GHz DDR (HT3200). Current Opteron
architectures support link widths and frequencies from 8 bit
at 200 MHz DDR up to 16 bit at 3.2 GHz DDR. This results
in a theoretically maximum unidirectional bandwidth of 12.8
GB/s. The signal lines carry the control-, data- and info-
packets and are called CAD. Depending on the link width
those signals are grouped into independent byte lanes. Every
byte lane is accompanied by a single signal lane of additional
control information called CTL and a clock signal. As HT is
doubleword (32 bit) aligned every doubleword of CAD
comes along with 4 bit of CTL which contains additional
information about what kind of data is transported.

Three types of the specification exists HT1, HT2 and
HT3. HT1 and HT2 only differ in the maximum link
frequency. The functionality of the first two versions is
described in [13]. HT3, which is realized in state of the art
Opteron processors, begins at a link speed of HT1200 and
requires features to be implemented such as link training,
link deskew, a retry protocol and stomping which were in
earlier versions optional or not defined.

To realize link training, each bit lane has to support a
mechanism to align its logic with the help of a special
training pattern sequence. After link initialization the single
bit lanes are deskewed to ensure proper data alignment.
Therefore the receiving fifos must be able to handle an
amount of 8 bit-times of misalignment from one lane to
another. Compared to HT1 and HT2, the higher frequencies
of HT3 result in an increased possibility of bit errors on the
physical level. A retry mechanism is introduced to handle
those errors. The error detection is enhanced due to changing
the periodic CRC from HT1/HT2 every 512 bit times to a per
packet CRC. Thereby latency and the needed buffer space
for retransmission are reduced and a better performance can
be achieved. Each packet which CRC is checked correctly
increments an acknowledgement counter. If a NOP packet is
sent it contains the counter value of the last correctly
checked packet. The retry buffers on the receiver side of the
NOP packet can then be released. If an error occurred during
a transmission the retry handshake is initiated and the data
from the last correctly received packet is retransmitted.
Stomping is an additional feature to reduce latency. It is used
to speculatively forward a packet without CRC being
checked. If later the CRC shows an error the CRC is inverted
to show the final endpoint that the packet has to be
invalidated. A block diagram of the HT3 implementation is
shown in figure 1.

HT3 leverages the possibility of higher link speeds by
introducing fault detection and recovery mechanism to the
HyperTransport protocol. But it requires changes on the
physical layer as well which will be described in section 4.

Figure 1. HT3 Blockdiagram

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

25

III. BOARD ARCHITECTURE
The board design is based on a PCI normal sized card

using a HTX3 connector slot for a low latency HT link
connection to the system. The main board component is a
Stratix IV GX device family FPGA [14]. The selected
FPGA uses a F1517 footprint enabling EP4SGX 180, 230,
290, 360 and 530 variants. The used device provides an
adequate number of LVDS and I/O pins to enable
numerous prototyping features and 36 transceivers giving
the capability to use HT3 and two CX4 links with up to
6.375 Gbps per lane for network connections. The CX4
links do support implementations for Infiniband DDR.
There are also standard interfaces and components
available to use the board in different environments.

For prototyping purposes using extension cards or user
defined connectors extension adapters have been placed
onto the board. The primary used adapter is a SEAF
connector from Samtec with 500 pins supporting single-
ended signaling up to 9.5 GHz and differential pair
signaling up to 10.5 GHz. Thus speed restriction is
primarily defined by the FPGA. The pins used within the
connector are shielded considering the suggestions of
Samtec. This resulted in 114 single-ended and 55
differential pair connects together with the FPGA.

Figure 2. Stratix IV HTX3 Board

Further three QTH series Samtec connectors with 120
pins each organized in two banks with integrated metal
plane used as ground are assembled. These connectors
provide at least 9GHz single-ended and 8 GHz differential
pair capability. The connections to the FPGA are designed
to provide up to 108 differential pairs plus sideband
signals.

The board was enhanced and upgraded in several
design steps. Figure 2 shows the latest revision. All
components are tested. It can be used as a prototyping
platform or directly for high performance reconfigurable
computing needs.

IV. HT3 IMPLEMENTATION
Before porting the HT3 core onto the Altera device an

implementation of a PHY had to be realized. Therefore the
high frequency traces had to be simulated ensuring that all
parameters were within the specification.

A. Simulation
During simulation of the HT link all HT tracks

between the Opteron processor and the Stratix IV GX
were analyzed. All simulations were performed using IBIS
and HSpice models. For the FPGA high speed serial
transceiver an HSpice model and for the Opteron
processor IBIS models were available. For the HTX
connector, which is identical to the PCIe connector, the
Samtec Spice model has been used. The required S-
Parameter files among others for the vias are generated by
the Cadence Allegro PCB design suite. HT3 starts with a
minimum of HT1200 with a frequency of 1200MHz and a
data rate of 2.4Gbps. This was also the simulation target
for the first simulations. Figure 3 shows a representation of
the simulated tracks at HT1200 for a HTX3 CADOUT
signal. There are three different measure points available,
the signal after the Stratix IV GX package, on the receiver
pin, and after equalization through the Stratix IV GX
Clock Data Recovery (CDR) unit. Depending on the
measure point the eye height is in the range from 531 mV
to 998mV and the eye width is around 374ps. According
to the HT physical specification [11] the eye height must
be over 140mV and the minimal eye width must be 0.55
unit intervals (UI), the UI for 2.4Gbps is 416ps. All
simulated tracks at HT1200 were clearly within the
specification.

Figure 3. HTX Track Simulated at HT1200

Also simulations using the maximum frequency of the
high speed Stratix IV GX transceivers at 6.4Gbps were
performed. The HT specification for this frequency
requires a minimum eye width of 0.65 UI, which results in
100ps and a minimum eye height of 170mv. One of the
most critical extracted tracks is depicted in figure 4. Its eye
width is 107ps and the height is 224mV. All simulations
show, that the hardware is capable of HTX3 usage.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

26

Transceiver Channel 3

Transceiver Channel 2

Central
Control Unit

(CCU)

CMU1 Channel

CMU0 Channel

Transceiver Channel 1

Figure 4. Eye Diagram at 6.4Gbps Link Speed.

B. HT3 PHY
A PHY for HyperTransport 3 must also support HT1

operation because the HyperTransport protocol is
backwards compatible. However, this means that the PHY
must support two inherently different operation modes.
HT1 is working in a source synchronous mode and
transmits a link clock in addition to the data lanes which is
used to sample the incoming data. Since HT3 operation
starts at a link frequency of 1.2 GHz and can go up to 3.2
GHz a different technique must be used. Because the skew
requirements between clock and data would be in the
range of picoseconds if the same source synchronous
mode was used for HT3 frequencies the clock is now
recovered at the receiver side by using CDR. In order to
ensure enough transitions for a reliable clock
reconstruction scrambling is mandatory for HT3 operation.
The HyperTransport protocol specification defines several
line rates for HT3 operation in the range of 2.4 Gbps to 6.4
Gbps. Because these line rates exceed the maximum
supported data rate of LVDS transmitter / receivers by far,
high speed serializers must be used to work in HT3 mode.
In order to implement proprietary protocols the Stratix IV
GX transceivers support an operating range from 600 to
3750 Mbps in single width mode using an 1:16
serialization factor and from 1000 to 6500 Mbps in double
width mode with an 1:32 ratio for the -2 speed grade we
used for our board. In Stratix IV devices transceivers are
grouped in blocks consisting of 6 transceivers as shown in
figure 5. Four of those channels support both physical
coding sublayer (PCS) and physical medium attachment
(PMA), the other two channels are clock multiplier unit
(CMU) channels that can be configured either as a normal
data channel without PCS support or as a clocking block
that provides both the serial and the parallel clock to the
other channels.

Transceiver Channel 0

Figure 5. Stratix IV Transceiver Block Architecture [14]

For each sublink, 9 lanes (8 CAD + 1 CTL) are
connected to the fully featured serializers and both the
incoming and outgoing link clock are connected to
separate CMU channels. In order to provide a
deterministic latency across all channels the transceivers
are configured in PMA direct mode. All required PCS
functionality is provided inside the FPGA, the existing
transmitter and receiver PCS blocks in the hardware are
completely bypassed. Since all HyperTransport clocks are
derived from the 200 MHz HT reference clock this clock
is also connected to a global clock pin of the Stratix IV
FPGA after it was jitter cleaned to improve the transceiver
performance.

Although the HyperTransport 3 specification specifies
an AC coupled operation mode as well as a DC coupled
mode, AC coupled operation is not supported by AMD’s
Opteron processor and therefore irrelevant for all practical
purposes. Since the HyperTransport specification and the
Stratix IV datasheets define different common modes
electrical compatibility between the Opteron and Altera’s
transceivers had to be verified by HSPICE simulations as
described in the previous paragraph and also confirmed by
Altera engineers.

All HyperTransport systems start in Gen1 mode
running with a 200 MHz link clock (HT200). The resulting
data rate of 400 Mbps is below the minimum supported
rate of the Stratix IV transceivers. In order to overcome
this limitation, the PHY runs five times faster than actually
required by the data rate and uses a 5 time oversampling
mode for incoming data. In the same way, for the outgoing
direction each bit is just replicated 5 times to emulate a
link running at HT200.

Since HT1 employs neither scrambling nor 8b/10b
encoding clock recovery from the data stream cannot be
used, therefore the transceivers are configured in lock-to-
reference (LTR) mode and use the HT reference clock to
create the sampling points. The link clock on the receiving
side is not used to sample the incoming data. In order to
create the transmit clock that must be shifted by 90
degrees in relation to the data stream as defined in the HT
specification the clock data pattern is padded accordingly

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

27

so that the clock is driven one half of a bit-time after a data
transition. As described above all PCS handling is done in
the FPGA fabric. This means that the PHY only handles
the basic serialization and deserialization, data word
boundaries are not detected at all by the PHY. All
alignment is done later inside the HT3 core.

In order to switch to HT3 mode, starting at 1.2 GHz,
several things must happen inside the PHY. The
oversampling path that was used for HT200 must be
bypassed; the data is now processed directly as the link
data rate is now natively supported by the transceiver. The
transceivers also switch from LTR to CDR and the clock
recovery circuitry must lock to the data stream. This
means that each lane has its own recovered clock that is
used to sample the data. Although each of these lanes will
run at the same frequency there will be a phase difference
between the different lanes. Elastic buffers are used in
order to transfer all the lanes in a single clock domain to
process the data stream in parallel. Unlike in HT1 mode
this can also lead to inter-lane skew which will also be
removed in the HT3 core. The link clock in HT3 is not
used at all and requires no special handling since there is
no relation between clock and data and each lane has its
own embedded clock.

The PHY also supports the LDTSTOP signal defined
by HyperTransport specification that is used to disconnect
the links. During this time no data is transmitted over the
link and the link is idle. Because the CDR circuitry does
not recover reliably from this condition after the link
restarts the PHY switches back to LTR mode during
LDTSTOP and goes back to CDR after the link resumes
normal operation and scrambled data patterns are
transmitted again.

The PHY does not include any error detection
mechanisms. All signal integrity issues are caught by the
HT3 core using the reliability features defined in the HT3
protocol.

V. MEASUREMENTS
The measured latency of our HT3 core together with

the HT3 PHY at a HyperTransport link frequency of 1600
MHz running in 8 bit mode in a Tyan 2912-E motherboard
with two Opteron processors running at 2800 MHz was
655ns round trip for a single PIO access to the device. This
is much higher than the latency measured for our HT1 core
[15] in an older system with a slower processor. There are
several reasons for this large difference. The higher
complexity of the HT3 protocol forced us to implement
more pipeline stages to decode the incoming packets. The
most prominent factor, however, is the usage of serializer
technology inside the FPGA instead of normal LVDS IO
cells and the crossing of several clock domains inside the
PHY.

The first bandwidth measurements showed rather
disappointing results that were not even in the range of
half the available bandwidth offered by the link. This was
caused by credit starvation [9] because the default BIOS
configuration of the link did not allocate enough credits for

the posted VC inside the processor. After redistributing the
credits to achieve a better link utilization bandwidth
measurements using data packets with the maximum
allowed payload of 64 bytes showed a write performance
of about 2000 MB/s for a DMA Write operation and an
average bandwidth of about 1600 MB/s for a DMA Read
operation. These numbers, albeit being a huge
improvement, show that full utilization of a HT link can
only be reached by a device with a fast internal clock
speed that can release credits almost instantaneously as
soon as new packet is received. The performance that can
be reached by an FPGA suffers mainly from the credit
starvation that occurs during operation that is caused by
the latency added by the serializers and the many pipeline
stages in the core.

The consumption of resources within the FPGA shows
that there is enough space left to add user logic for
prototyping and high performance computing. The
synthesis results for the Stratix IV GX 230 device depict
resource usage of combinational ALUTs 42,534 / 182,400
(23 %), memory ALUTs 49 / 91,200 (< 1 %), dedicated
logic registers 40,009 / 182,400 (22 %), a logic utilization
of 34 %, and a total block memory bits 739,154 /
14,625,792 (5 %).

VI. CONCLUSION AND OUTLOOK
Both the HT3 PHY in conjunction with the HT3 core

and the developed Altera FPGA based card work reliably
in our Tyan test system. Sporadic bit errors that were
encountered during operation were easily caught and
recovered by the reliability features defined in the HT3
protocol and had no impact on the functionality.

Both HT1200 and HT1600 implementations are stable
and work as expected. Unfortunately, the core speed
directly scales in relation to the HT link speed as there is
no flow control between the PHY and the HT3 core. Thus,
reaching higher HT link speeds is currently limited by the
HT3 protocol that leads to a complex hardware
architecture for the HT3 core and makes internal core
frequencies larger than 200 MHz rather difficult to
achieve.

The HT3 platform for rapid prototyping and high
performance reconfigurable computing was a successful
development. It represents the first single FPGA HT3
implementation in comparison to the 3 FPGA solution
developed in [16]. Due to the provided low latency high
bandwidth connection directly to the processor this
platform delivers an ideal environment for developments
and research in the areas of coprocessors or FPGA
accelerators. Also its numerous extension connectors
enable the usage of extender cards such as a card with a
Content-Addressable Memory (CAM) and a reasonable
amount of RAM to realize a network search engine (NSE).

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

28

ACKNOWLEDGMENT
We would like to express our thanks to Elmar Greulich

for the work he brought into the first revision of the Stratix
IV HTX3 Board. We also thank Altera for the PHY
development and AMD for their excellent support.

REFERENCES

[1] Owens, J. D., Luebke, D., Govindaraju, N., Harris,
M., Krüger, J., Lefohn, A. E., and Purcell, T. 2007. A
Survey of General-Purpose Computation on Graphics
Hardware. Computer Graphics Forum, volume 26,
number 1, 2007, 80-113.

[2] Owens, J. D., Houston, M., Luebke, D., Green, S.,
Stone, J. E. and Phillips, J. C. 2008. GPU Computing.
In Proceedings of the IEEE, 96, 5 (May 2008), 879–
899.

[3] Alerstam, E., Svensson, T., and Andersson-Engels, S.
2008. Parallel computing with graphics processing
units for high-speed Monte Carlo simulation of
photon migration. In Journal of Biomedical Optics,
vol. 13, issue 6, Nov. 2008.

[4] Khailany, B., Dally, W. J., Kapasi, U. J., Mattson, P.,
Namkoong, J., Owens, J. D., Towles, B., Chang, A.,
and Rixner, S. 2001. Imagine: Media Processing with
Streams. IEEE Micro 21, 2 (Mar. 2001), 35-46.

[5] Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim,
D., Nguyen, A. D., Satish, N., Smelyanskiy, M.,
Chennupaty, S., Hammarlund, P., Singhal, R. and
Dubey, P. 2010. Debunking the 100X GPU vs. CPU
Myth: an Evaluation of Throughput Computing on
CPU and GPU. SIGARCH Comput. Archit. News 38,
3 (June 2010), 451-460.

[6] Das, S., Agrawal, D., and Abbadi, A. E. 2008. CAM
conscious integrated answering of frequent elements
and top-k queries over data streams. In Proceedings
of the 4th International Workshop on Data
Management on New Hardware, Vancouver, Canada,
June 2008.

[7] Bandi, N., Metwally, A., Agrawal, D., and El
Abbadi, A. 2007. Fast data stream algorithms using

associative memories. In Proceedings of the 2007
ACM International Conference on Management of
Data (SIGMOD '07), Beijing, China, June 2007.

[8] Fröning, H., Nüssle, M., Litz, H., and Brüning, U.
2010. A Case for FPGA based Accelerated
Communication. In Proceedings of 9th International
Conference on Networks (ICN 2010), Menuires,
France, April 2010.

[9] B. Kalisch, A. Giese, H. Litz and U. Bruening,
“Hypertransport 3 Core: A Next Generation Host
Interface with Extremely High Bandwidth“, First
International Workshop on Hyper Transport Research
and Applications (WHTRA), Mannheim, Germany,
Feb. 2009.

[10] HyperTransport™ Consortium: HyperTransport™
I/O Link Specification,
http://www.hypertransport.org, June 2010

[11] HyperTransport™ Consortium: HTX3™
Specification for HyperTransport™ 3.0
Daughtercards and ATX/EATX Motherboards,
http://www.hypertransport.org, Jun. 2008.

[12] Hypertransport Consortium: The Future of High-
Performance Computing: Direct Low Latency CPU-
to-Subsystem Interconnect,
http://www.hypertransport.org, 2008.

[13] D. Anderson, and J. Trodden, HyperTransport
System Architecture, Addison-Wesley, 2003.

[14] Altera: Stratix IV Device Handbook, SIV5V1-4.1,
http://www.altera.com, July 2010.

[15] David Slogsnat, Alexander Giese, Mondrian Nüssle,
Ulrich Brüning, “An Open-Source HyperTransport
Core”, ACM Transactions on Reconfigurable
Technology and Systems (TRETS), Vol. 1, Issue 3, p.
1-21, Sept 2008.

[16] Heiner Litz, Holger Fröning, Maximilian Thürmer,
Ulrich Brüning, “An FPGA based Verification
Platform for HyperTransport 3.x”, 19th International
Conference on Field Programmable Logic and
Applications (FPL2009), Prag, Czech Republic, Aug.
31-Sept. 2, 2009.

Proceedings of the Second International Workshop on
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

29

	cover-04
	foreword-01
	Binder_Papers
	WHTRA2011_paper01
	WHTRA2011_paper02
	Introduction
	The Motivation for HToE: Trends in Interconnects
	Performance
	Cost and Market Share
	Scalability
	The Case for HToE

	HToE Specification Requirements
	On-package and Off-package Addressing
	Scaling HyperTransport Ordering and Flow Control for Cluster Environments
	The Benefit of a Congestion-Managed Ethernet Network for Flow Control
	Recovery from Failures
	Requirements for Retry in HToE

	The HyperTransport Over Ethernet Specification
	HToE's Relationship with DCB
	Mapping HT Addresses into the Global Address Space
	Tag Remapping for Higher Performance
	HToE Ordering and Flow Control for Multiple Senders, Single Receivers
	Encapsulation and Support for Recovery and Resets
	Security in HToE-enabled Data Centers

	Resource Sharing with HToE - Use Cases
	PGAS Support for Virtualizing DIMMs and DRAM Power Efficiency
	Pooled Accelerators to Reduce Cluster TCO and Power Usage

	Conclusions

	WHTRA2011_paper03
	WHTRA2011_paper04
	I. Introduction
	II. HyperTransport
	III. Board Architecture
	IV. HT3 Implementation
	A. Simulation
	B. HT3 PHY

	V. Measurements
	VI. Conclusion and Outlook
	Acknowledgment
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

