61 research outputs found

    Large Scale Kernel Methods for Fun and Profit

    Get PDF
    Kernel methods are among the most flexible classes of machine learning models with strong theoretical guarantees. Wide classes of functions can be approximated arbitrarily well with kernels, while fast convergence and learning rates have been formally shown to hold. Exact kernel methods are known to scale poorly with increasing dataset size, and we believe that one of the factors limiting their usage in modern machine learning is the lack of scalable and easy to use algorithms and software. The main goal of this thesis is to study kernel methods from the point of view of efficient learning, with particular emphasis on large-scale data, but also on low-latency training, and user efficiency. We improve the state-of-the-art for scaling kernel solvers to datasets with billions of points using the Falkon algorithm, which combines random projections with fast optimization. Running it on GPUs, we show how to fully utilize available computing power for training kernel machines. To boost the ease-of-use of approximate kernel solvers, we propose an algorithm for automated hyperparameter tuning. By minimizing a penalized loss function, a model can be learned together with its hyperparameters, reducing the time needed for user-driven experimentation. In the setting of multi-class learning, we show that – under stringent but realistic assumptions on the separation between classes – a wide set of algorithms needs much fewer data points than in the more general setting (without assumptions on class separation) to reach the same accuracy. The first part of the thesis develops a framework for efficient and scalable kernel machines. This raises the question of whether our approaches can be used successfully in real-world applications, especially compared to alternatives based on deep learning which are often deemed hard to beat. The second part aims to investigate this question on two main applications, chosen because of the paramount importance of having an efficient algorithm. First, we consider the problem of instance segmentation of images taken from the iCub robot. Here Falkon is used as part of a larger pipeline, but the efficiency afforded by our solver is essential to ensure smooth human-robot interactions. In the second instance, we consider time-series forecasting of wind speed, analysing the relevance of different physical variables on the predictions themselves. We investigate different schemes to adapt i.i.d. learning to the time-series setting. Overall, this work aims to demonstrate, through novel algorithms and examples, that kernel methods are up to computationally demanding tasks, and that there are concrete applications in which their use is warranted and more efficient than that of other, more complex, and less theoretically grounded models

    Constructive Approximation and Learning by Greedy Algorithms

    Get PDF
    This thesis develops several kernel-based greedy algorithms for different machine learning problems and analyzes their theoretical and empirical properties. Greedy approaches have been extensively used in the past for tackling problems in combinatorial optimization where finding even a feasible solution can be a computationally hard problem (i.e., not solvable in polynomial time). A key feature of greedy algorithms is that a solution is constructed recursively from the smallest constituent parts. In each step of the constructive process a component is added to the partial solution from the previous step and, thus, the size of the optimization problem is reduced. The selected components are given by optimization problems that are simpler and easier to solve than the original problem. As such schemes are typically fast at constructing a solution they can be very effective on complex optimization problems where finding an optimal/good solution has a high computational cost. Moreover, greedy solutions are rather intuitive and the schemes themselves are simple to design and easy to implement. There is a large class of problems for which greedy schemes generate an optimal solution or a good approximation of the optimum. In the first part of the thesis, we develop two deterministic greedy algorithms for optimization problems in which a solution is given by a set of functions mapping an instance space to the space of reals. The first of the two approaches facilitates data understanding through interactive visualization by providing means for experts to incorporate their domain knowledge into otherwise static kernel principal component analysis. This is achieved by greedily constructing embedding directions that maximize the variance at data points (unexplained by the previously constructed embedding directions) while adhering to specified domain knowledge constraints. The second deterministic greedy approach is a supervised feature construction method capable of addressing the problem of kernel choice. The goal of the approach is to construct a feature representation for which a set of linear hypotheses is of sufficient capacity — large enough to contain a satisfactory solution to the considered problem and small enough to allow good generalization from a small number of training examples. The approach mimics functional gradient descent and constructs features by fitting squared error residuals. We show that the constructive process is consistent and provide conditions under which it converges to the optimal solution. In the second part of the thesis, we investigate two problems for which deterministic greedy schemes can fail to find an optimal solution or a good approximation of the optimum. This happens as a result of making a sequence of choices which take into account only the immediate reward without considering the consequences onto future decisions. To address this shortcoming of deterministic greedy schemes, we propose two efficient randomized greedy algorithms which are guaranteed to find effective solutions to the corresponding problems. In the first of the two approaches, we provide a mean to scale kernel methods to problems with millions of instances. An approach, frequently used in practice, for this type of problems is the Nyström method for low-rank approximation of kernel matrices. A crucial step in this method is the choice of landmarks which determine the quality of the approximation. We tackle this problem with a randomized greedy algorithm based on the K-means++ cluster seeding scheme and provide a theoretical and empirical study of its effectiveness. In the second problem for which a deterministic strategy can fail to find a good solution, the goal is to find a set of objects from a structured space that are likely to exhibit an unknown target property. This discrete optimization problem is of significant interest to cyclic discovery processes such as de novo drug design. We propose to address it with an adaptive Metropolis–Hastings approach that samples candidates from the posterior distribution of structures conditioned on them having the target property. The proposed constructive scheme defines a consistent random process and our empirical evaluation demonstrates its effectiveness across several different application domains

    The Role of Riemannian Manifolds in Computer Vision: From Coding to Deep Metric Learning

    Get PDF
    A diverse number of tasks in computer vision and machine learning enjoy from representations of data that are compact yet discriminative, informative and robust to critical measurements. Two notable representations are offered by Region Covariance Descriptors (RCovD) and linear subspaces which are naturally analyzed through the manifold of Symmetric Positive Definite (SPD) matrices and the Grassmann manifold, respectively, two widely used types of Riemannian manifolds in computer vision. As our first objective, we examine image and video-based recognition applications where the local descriptors have the aforementioned Riemannian structures, namely the SPD or linear subspace structure. Initially, we provide a solution to compute Riemannian version of the conventional Vector of Locally aggregated Descriptors (VLAD), using geodesic distance of the underlying manifold as the nearness measure. Next, by having a closer look at the resulting codes, we formulate a new concept which we name Local Difference Vectors (LDV). LDVs enable us to elegantly expand our Riemannian coding techniques to any arbitrary metric as well as provide intrinsic solutions to Riemannian sparse coding and its variants when local structured descriptors are considered. We then turn our attention to two special types of covariance descriptors namely infinite-dimensional RCovDs and rank-deficient covariance matrices for which the underlying Riemannian structure, i.e. the manifold of SPD matrices is out of reach to great extent. %Generally speaking, infinite-dimensional RCovDs offer better discriminatory power over their low-dimensional counterparts. To overcome this difficulty, we propose to approximate the infinite-dimensional RCovDs by making use of two feature mappings, namely random Fourier features and the Nystrom method. As for the rank-deficient covariance matrices, unlike most existing approaches that employ inference tools by predefined regularizers, we derive positive definite kernels that can be decomposed into the kernels on the cone of SPD matrices and kernels on the Grassmann manifolds and show their effectiveness for image set classification task. Furthermore, inspired by attractive properties of Riemannian optimization techniques, we extend the recently introduced Keep It Simple and Straightforward MEtric learning (KISSME) method to the scenarios where input data is non-linearly distributed. To this end, we make use of the infinite dimensional covariance matrices and propose techniques towards projecting on the positive cone in a Reproducing Kernel Hilbert Space (RKHS). We also address the sensitivity issue of the KISSME to the input dimensionality. The KISSME algorithm is greatly dependent on Principal Component Analysis (PCA) as a preprocessing step which can lead to difficulties, especially when the dimensionality is not meticulously set. To address this issue, based on the KISSME algorithm, we develop a Riemannian framework to jointly learn a mapping performing dimensionality reduction and a metric in the induced space. Lastly, in line with the recent trend in metric learning, we devise end-to-end learning of a generic deep network for metric learning using our derivation

    Meta Learning MPC using Finite-Dimensional Gaussian Process Approximations

    Full text link
    Data availability has dramatically increased in recent years, driving model-based control methods to exploit learning techniques for improving the system description, and thus control performance. Two key factors that hinder the practical applicability of learning methods in control are their high computational complexity and limited generalization capabilities to unseen conditions. Meta-learning is a powerful tool that enables efficient learning across a finite set of related tasks, easing adaptation to new unseen tasks. This paper makes use of a meta-learning approach for adaptive model predictive control, by learning a system model that leverages data from previous related tasks, while enabling fast fine-tuning to the current task during closed-loop operation. The dynamics is modeled via Gaussian process regression and, building on the Karhunen-Lo{\`e}ve expansion, can be approximately reformulated as a finite linear combination of kernel eigenfunctions. Using data collected over a set of tasks, the eigenfunction hyperparameters are optimized in a meta-training phase by maximizing a variational bound for the log-marginal likelihood. During meta-testing, the eigenfunctions are fixed, so that only the linear parameters are adapted to the new unseen task in an online adaptive fashion via Bayesian linear regression, providing a simple and efficient inference scheme. Simulation results are provided for autonomous racing with miniature race cars adapting to unseen road conditions

    Approximate Inference for Determinantal Point Processes

    Get PDF
    In this thesis we explore a probabilistic model that is well-suited to a variety of subset selection tasks: the determinantal point process (DPP). DPPs were originally developed in the physics community to describe the repulsive interactions of fermions. More recently, they have been applied to machine learning problems such as search diversification and document summarization, which can be cast as subset selection tasks. A challenge, however, is scaling such DPP-based methods to the size of the datasets of interest to this community, and developing approximations for DPP inference tasks whose exact computation is prohibitively expensive. A DPP defines a probability distribution over all subsets of a ground set of items. Consider the inference tasks common to probabilistic models, which include normalizing, marginalizing, conditioning, sampling, estimating the mode, and maximizing likelihood. For DPPs, exactly computing the quantities necessary for the first four of these tasks requires time cubic in the number of items or features of the items. In this thesis, we propose a means of making these four tasks tractable even in the realm where the number of items and the number of features is large. Specifically, we analyze the impact of randomly projecting the features down to a lower-dimensional space and show that the variational distance between the resulting DPP and the original is bounded. In addition to expanding the circumstances in which these first four tasks are tractable, we also tackle the other two tasks, the first of which is known to be NP-hard (with no PTAS) and the second of which is conjectured to be NP-hard. For mode estimation, we build on submodular maximization techniques to develop an algorithm with a multiplicative approximation guarantee. For likelihood maximization, we exploit the generative process associated with DPP sampling to derive an expectation-maximization (EM) algorithm. We experimentally verify the practicality of all the techniques that we develop, testing them on applications such as news and research summarization, political candidate comparison, and product recommendation

    Principal Component Analysis

    Get PDF
    This book is aimed at raising awareness of researchers, scientists and engineers on the benefits of Principal Component Analysis (PCA) in data analysis. In this book, the reader will find the applications of PCA in fields such as image processing, biometric, face recognition and speech processing. It also includes the core concepts and the state-of-the-art methods in data analysis and feature extraction

    Apprentissage Ă  grande Ă©chelle et applications

    Get PDF
    This thesis presents my main research activities in statistical machine learning aftermy PhD, starting from my post-doc at UC Berkeley to my present research position atInria Grenoble. The first chapter introduces the context and a summary of my scientificcontributions and emphasizes the importance of pluri-disciplinary research. For instance,mathematical optimization has become central in machine learning and the interplay betweensignal processing, statistics, bioinformatics, and computer vision is stronger thanever. With many scientific and industrial fields producing massive amounts of data, theimpact of machine learning is potentially huge and diverse. However, dealing with massivedata raises also many challenges. In this context, the manuscript presents differentcontributions, which are organized in three main topics.Chapter 2 is devoted to large-scale optimization in machine learning with a focus onalgorithmic methods. We start with majorization-minimization algorithms for structuredproblems, including block-coordinate, incremental, and stochastic variants. These algorithmsare analyzed in terms of convergence rates for convex problems and in terms ofconvergence to stationary points for non-convex ones. We also introduce fast schemesfor minimizing large sums of convex functions and principles to accelerate gradient-basedapproaches, based on Nesterov’s acceleration and on Quasi-Newton approaches.Chapter 3 presents the paradigm of deep kernel machine, which is an alliance betweenkernel methods and multilayer neural networks. In the context of visual recognition, weintroduce a new invariant image model called convolutional kernel networks, which is anew type of convolutional neural network with a reproducing kernel interpretation. Thenetwork comes with simple and effective principles to do unsupervised learning, and iscompatible with supervised learning via backpropagation rules.Chapter 4 is devoted to sparse estimation—that is, the automatic selection of modelvariables for explaining observed data; in particular, this chapter presents the result ofpluri-disciplinary collaborations in bioinformatics and neuroscience where the sparsityprinciple is a key to build intepretable predictive models.Finally, the last chapter concludes the manuscript and suggests future perspectives.Ce mémoire présente mes activités de recherche en apprentissage statistique après mathèse de doctorat, dans une période allant de mon post-doctorat à UC Berkeley jusqu’àmon activité actuelle de chercheur chez Inria. Le premier chapitre fournit un contextescientifique dans lequel s’inscrivent mes travaux et un résumé de mes contributions, enmettant l’accent sur l’importance de la recherche pluri-disciplinaire. L’optimisation mathématiqueest ainsi devenue un outil central en apprentissage statistique et les interactionsavec les communautés de vision artificielle, traitement du signal et bio-informatiquen’ont jamais été aussi fortes. De nombreux domaines scientifiques et industriels produisentdes données massives, mais les traiter efficacement nécessite de lever de nombreux verrousscientifiques. Dans ce contexte, ce mémoire présente différentes contributions, qui sontorganisées en trois thématiques.Le chapitre 2 est dédié à l’optimisation à large échelle en apprentissage statistique.Dans un premier lieu, nous étudions plusieurs variantes d’algorithmes de majoration/minimisationpour des problèmes structurés, telles que des variantes par bloc de variables,incrémentales, et stochastiques. Chaque algorithme est analysé en terme de taux deconvergence lorsque le problème est convexe, et nous montrons la convergence de ceux-civers des points stationnaires dans le cas contraire. Des méthodes de minimisation rapidespour traiter le cas de sommes finies de fonctions sont aussi introduites, ainsi que desalgorithmes d’accélération pour les techniques d’optimisation de premier ordre.Le chapitre 3 présente le paradigme des méthodes à noyaux profonds, que l’on peutinterpréter comme un mariage entre les méthodes à noyaux classiques et les techniquesd’apprentissage profond. Dans le contexte de la reconnaissance visuelle, ce chapitre introduitun nouveau modèle d’image invariant appelé réseau convolutionnel à noyaux, qui estun nouveau type de réseau de neurones convolutionnel avec une interprétation en termesde noyaux reproduisants. Le réseau peut être appris simplement sans supervision grâceà des techniques classiques d’approximation de noyaux, mais est aussi compatible avecl’apprentissage supervisé grâce à des règles de backpropagation.Le chapitre 4 est dédié à l’estimation parcimonieuse, c’est à dire, à la séléction automatiquede variables permettant d’expliquer des données observées. En particulier, cechapitre décrit des collaborations pluri-disciplinaires en bioinformatique et neuroscience,où le principe de parcimonie est crucial pour obtenir des modèles prédictifs interprétables.Enfin, le dernier chapitre conclut ce mémoire et présente des perspectives futures

    Learning from complex networks

    Get PDF
    Graph Theory has proven to be a universal language for describing modern complex systems. The elegant theoretical framework of graphs drew the researchers' attention over decades. Therefore, graphs have emerged as a ubiquitous data structure in various applications where a relational characteristic is evident. Graph-driven applications are found, e.g., in social network analysis, telecommunication networks, logistic processes, recommendation systems, modeling kinetic interactions in protein networks, or the 'Internet of Things' (IoT) where modeling billions of interconnected web-enabled devices is of paramount importance. This thesis dives deep into the challenges of modern graph applications. It proposes a robustified and accelerated spectral clustering model in homogeneous graphs and novel transformer-driven graph shell models for attributed graphs. A new data structure is introduced for probabilistic graphs to compute the information flow efficiently. Moreover, a metaheuristic algorithm is designed to find a good solution to an optimization problem composed of an extended vehicle routing problem. The thesis closes with an analysis of trend flows in social media data. Detecting communities within a graph is a fundamental data mining task of interest in virtually all areas and also serves as an unsupervised preprocessing step for many downstream tasks. One most the most well-established clustering methods is Spectral Clustering. However, standard spectral clustering is highly sensitive to noisy input data, and the eigendecomposition has a high, cubic runtime complexity O(n^3). Tackling one of these problems often exacerbates the other. This thesis presents a new model which accelerates the eigendecomposition step by replacing it with a Nyström approximation. Robustness is achieved by iteratively separating the data into a cleansed and noisy part of the data. In this process, representing the input data as a graph is vital to identify parts of the data being well connected by analyzing the vertices' distances in the eigenspace. With the advances in deep learning architectures, we also observe a surge in research on graph representation learning. The message-passing paradigm in Graph Neural Networks (GNNs) formalizes a predominant heuristic for multi-relational and attributed graph data to learn node representations. In downstream applications, we can use the representations to tackle theoretical problems known as node classification, graph classification/regression, and relation prediction. However, a common issue in GNNs is known as over-smoothing. By increasing the number of iterations within the message-passing, the nodes' representations of the input graph align and become indiscernible. This thesis shows an efficient way of relaxing the GNN architecture by employing a routing heuristic in the general workflow. Specifically, an additional layer routes the nodes' representations to dedicated experts. Each expert calculates the representations according to their respective GNN workflow. The definitions of distinguishable GNNs result from k-localized views starting from a central node. This procedure is referred to as Graph Shell Attention (SEA), where experts process different subgraphs in a transformer-motivated fashion. Reliable propagation of information through large communication networks, social networks, or sensor networks is relevant to applications concerning marketing, social analysis, or monitoring physical or environmental conditions. However, social ties of friendship may be obsolete, and communication links may fail, inducing the notion of uncertainty in such networks. This thesis addresses the problem of optimizing information propagation in uncertain networks given a constrained budget of edges. A specialized data structure, called F-tree, addresses two NP-hard subproblems: the computation of the expected information flow and the optimal choice of edges. The F-tree identifies independent components of a probabilistic input graph for which the information flow can either be computed analytically and efficiently or for which traditional Monte-Carlo sampling can be applied independently of the remaining network. The next part of the thesis covers a graph problem from the Operations Research point of view. A new variant of the well-known vehicle routing problem (VRP) is introduced, where customers are served within a specific time window (TW), as well as flexible delivery locations (FL) including capacity constraints. The latter implies that each customer is scheduled in one out of a set of capacitated delivery service locations. Practically, the VRPTW-FL problem is relevant for applications in parcel delivery, routing with limited parking space, or, for example, in the scope of hospital-wide scheduling of physical therapists. This thesis presents a metaheuristic built upon a hybrid Adaptive Large Neighborhood Search (ALNS). Moreover, a backtracking mechanism in the construction phase is introduced to alter unsatisfactory decisions at early stages. In the computational study, hospital data is used to evaluate the utility of flexible delivery locations and various cost functions. In the last part of the thesis, social media trends are analyzed, which yields insights into user sentiment and newsworthy topics. Such trends consist of bursts of messages concerning a particular topic within a time frame, significantly deviating from the average appearance frequency of the same subject. This thesis presents a method to classify trend archetypes to predict future dissemination by investigating the dissemination of such trends in space and time. Generally, with the ever-increasing scale and complexity of graph-structured datasets and artificial intelligence advances, AI-backed models will inevitably play an important role in analyzing, modeling, and enhancing knowledge extraction from graph data.Die Graphentheorie hat sich zur einer universellen Sprache entwickelt, mit Hilfe derer sich moderne und komplexe Systeme und Zusammenhänge beschreiben lassen. Diese theoretisch elegante und gut fundierte Rahmenstruktur attrahierte über Dekaden hinweg die Aufmerksamkeit von Wissenschaftlern/-innen. In der heutigen Informationstechnologie-Landschaft haben sich Graphen längst zu einer allgegenwärtigen Datenstruktur in Anwendungen etabliert, innerhalb derer charakteristische Zusammenhangskomponenten eine zentrale Rolle spielen. Anwendungen, die über Graphen unterstützt werden, finden sich u.a. in der Analyse von sozialen Netzwerken, Telekommunikationsnetwerken, logistische Prozessverwaltung, Analyse von Empfehlungsdiensten, in der Modellierung kinetischer Interaktionen von Proteinstrukturen, oder auch im "Internet der Dinge" (engl.: 'Internet Of Things' (IoT)), welches das Zusammenspiel von abermillionen web-unterstützte Endgeräte abbildet und eine prädominierende Rolle für große IT-Unternehmen spielt. Diese Dissertation beleuchtet die Herausforderungen moderner Graphanwendungen. Im Bereich homogener Netzwerken wird ein beschleunigtes und robustes spektrales Clusteringverfahren, sowie ein Modell zur Untersuchung von Teilgraphen mittels Transformer-Architekturen für attribuierte Graphen vorgestellt. Auf wahrscheinlichkeitsbasierten homogenen Netzwerken wird eine neue Datenstruktur eingeführt, die es erlaubt einen effizienten Informationsfluss innerhalb eines Graphen zu berechnen. Darüber hinaus wird ein Optimierungsproblem in Transportnetzwerken beleuchtet, sowie eine Untersuchung von Trendflüssen in sozialen Medien diskutiert. Die Untersuchung von Verbünden (engl.: 'Clusters') von Graphdaten stellt einen Eckpfeiler im Bereich der Datengewinnung dar. Die Erkenntnisse sind nahezu in allen praktischen Bereichen von Relevanz und dient im Bereich des unüberwachten Lernens als Vorverarbeitungsschritt für viele nachgeschaltete Aufgaben. Einer der weit verbreitetsten Methodiken zur Verbundanalyse ist das spektrale Clustering. Die Qualität des spektralen Clusterings leidet, wenn die Eingabedaten sehr verrauscht sind und darüber hinaus ist die Eigenwertzerlegung mit O(n^3) eine teure Operation und damit wesentlich für die hohe, kubische Laufzeitkomplexität verantwortlich. Die Optimierung von einem dieser Kriterien exazerbiert oftmals das verbleibende Kriterium. In dieser Dissertation wird ein neues Modell vorgestellt, innerhalb dessen die Eigenwertzerlegung über eine Nyström Annäherung beschleunigt wird. Die Robustheit wird über ein iteratives Verfahren erreicht, das die gesäuberten und die verrauschten Daten voneinander trennt. Die Darstellung der Eingabedaten über einen Graphen spielt hierbei die zentrale Rolle, die es erlaubt die dicht verbundenen Teile des Graphen zu identifizieren. Dies wird über eine Analyse der Distanzen im Eigenraum erreicht. Parallel zu neueren Erkenntnissen im Bereich des Deep Learnings lässt sich auch ein Forschungsdrang im repräsentativen Lernen von Graphen erkennen. Graph Neural Networks (GNN) sind eine neue Unterform von künstlich neuronalen Netzen (engl.: 'Artificial Neural Networks') auf der Basis von Graphen. Das Paradigma des sogenannten 'message-passing' in neuronalen Netzen, die auf Graphdaten appliziert werden, hat sich hierbei zur prädominierenden Heuristik entwickelt, um Vektordarstellungen von Knoten aus (multi-)relationalen, attribuierten Graphdaten zu lernen. Am Ende der Prozesskette können wir somit theoretische Probleme angehen und lösen, die sich mit Fragestellungen über die Klassifikation von Knoten oder Graphen, über regressive Ausdrucksmöglichkeiten bis hin zur Vorhersage von relationaler Verbindungen beschäftigen. Ein klassisches Problem innerhalb graphischer neuronaler Netze ist bekannt unter der Terminologie des 'over-smoothing' (dt.: 'Überglättens'). Es beschreibt, dass sich mit steigender Anzahl an Iterationen des wechselseitigen Informationsaustausches, die Knotenrepräsentationen im vektoriellen Raum angleichen und somit nicht mehr unterschieden werden können. In dieser Forschungsarbeit wird eine effiziente Methode vorgestellt, die die klassische GNN Architektur aufbricht und eine Vermittlerschicht in den herkömmlichen Verarbeitungsfluss einarbeitet. Konkret gesprochen werden hierbei Knotenrepräsentationen an ausgezeichnete Experten geschickt. Jeder Experte verarbeitet auf idiosynkratischer Basis die Knoteninformation. Ausgehend von einem Anfrageknoten liegt das Kriterium für die Unterscheidbarkeit von Experten in der restriktiven Verarbeitung lokaler Information. Diese neue Heuristik wird als 'Graph Shell Attention' (SEA) bezeichnet und beschreibt die Informationsverarbeitung unterschiedlicher Teilgraphen von Experten unter der Verwendung der Transformer-technologie. Eine zuverlässige Weiterleitung von Informationen über größere Kommunikationsnetzwerken, sozialen Netzwerken oder Sensorennetzwerken spielen eine wichtige Rolle in Anwendungen der Marktanalyse, der Analyse eines sozialen Gefüges, oder der Überwachung der physischen und umweltorientierten Bedingungen. Innerhalb dieser Anwendungen können Fälle auftreten, wo Freundschaftsbeziehungen nicht mehr aktuell sind, wo die Kommunikation zweier Endpunkte zusammenbricht, welches mittels einer Unsicherheit des Informationsaustausches zweier Endpunkte ausgedrückt werden kann. Diese Arbeit untersucht die Optimierung des Informationsflusses in Netzwerken, deren Verbindungen unsicher sind, hinsichtlich der Bedingung, dass nur ein Bruchteil der möglichen Kanten für den Informationsaustausch benutzt werden dürfen. Eine eigens entwickelte Datenstruktur - der F-Baum - wird eingeführt, die 2 NP-harte Teilprobleme auf einmal adressiert: zum einen die Berechnung des erwartbaren Informationsflusses und zum anderen die Auswahl der optimalen Kanten. Der F-Baum unterscheidet hierbei unabhängige Zusammenhangskomponenten der wahrscheinlichkeitsbasierten Eingabedaten, deren Informationsfluss entweder analytisch korrekt und effizient berechnet werden können, oder lokal über traditionelle Monte-Carlo sampling approximiert werden können. Der darauffolgende Abschnitt dieser Arbeit befasst sich mit einem Graphproblem aus Sicht der Optimierungsforschung angewandter Mathematik. Es wird eine neue Variante der Tourenplanung vorgestellt, welches neben kundenspezifischer Zeitfenster auch flexible Zustellstandorte beinhaltet. Darüber hinaus obliegt den Zielorten, an denen Kunden bedient werden können, weiteren Kapazitätslimitierungen. Aus praktischer Sicht ist das VRPTW-FL (engl.: "Vehicle Routing Problem with Time Windows and Flexible Locations") eine bedeutende Problemstellung für Paketdienstleister, Routenplanung mit eingeschränkten Stellplätzen oder auch für die praktische Planung der Arbeitsaufteilung von behandelnden Therapeuten/-innen und Ärzten/-innen in einem Krankenhaus. In dieser Arbeit wird für die Bewältigung dieser Problemstellung eine Metaheuristik vorgestellt, die einen hybriden Ansatz mit der sogenannten Adaptive Large Neighborhood Search (ALNS) impliziert. Darüber hinaus wird als Konstruktionsheuristik ein 'Backtracking'-Mechanismus (dt.: Rückverfolgung) angewandt, um initiale Startlösungen aus dem Lösungssuchraum auszuschließen, die weniger vielversprechend sind. In der Evaluierung dieses neuen Ansatz werden Krankenhausdaten untersucht, um auch die Nützlichkeit von flexiblen Zielorten unter verschiedenen Kostenfunktionen herauszuarbeiten. Im letzten Kapitel dieser Dissertation werden Trends in sozialen Daten analysiert, die Auskunft über die Stimmung der Benutzer liefern, sowie Einblicke in tagesaktuelle Geschehnisse gewähren. Ein Kennzeichen solcher Trends liegt in dem Aufbraußen von inhaltsspezifischen Themen innerhalb eines Zeitfensters, die von der durchschnittlichen Erscheinungshäufigkeit desselben Themas signifikant abweichen. Die Untersuchung der Verbreitung solches Trends über die zeitliche und örtliche Dimension erlaubt es, Trends in Archetypen zu klassifizieren, um somit die Ausbreitung zukünftiger Trends hervorzusagen. Mit der immerwährenden Skalierung von Graphdaten und deren Komplexität, und den Fortschritten innerhalb der künstlichen Intelligenz, wird das maschinelle Lernen unweigerlich weiterhin eine wesentliche Rolle spielen, um Graphdaten zu modellieren, analysieren und schlussendlich die Wissensextraktion aus derartigen Daten maßgeblich zu fördern.La théorie des graphes s'est révélée être une langue universel pour décrire les systèmes complexes modernes. L'élégant cadre théorique des graphes a attiré l'attention des chercheurs pendant des décennies. Par conséquent, les graphes sont devenus une structure de données omniprésente dans diverses applications où une caractéristique relationnelle est évidente. Les applications basées sur les graphes se retrouvent, par exemple, dans l'analyse des réseaux sociaux, les réseaux de télécommunication, les processus logistiques, les systèmes de recommandation, la modélisation des interactions cinétiques dans les réseaux de protéines, ou l'"Internet des objets" (IoT) où la modélisation de milliards de dispositifs interconnectés basés sur le web est d'une importance capitale. Cette thèse se penche sur les défis posés par les applications modernes des graphes. Elle propose un modèle de regroupement spectral robuste et accéléré dans les graphes homogènes et de nouveaux modèles d'enveloppe de graphe pilotés par transformateur pour les graphes attribués. Une nouvelle structure de données est introduite pour les graphes probabilistes afin de calculer efficacement le flux d'informations. De plus, un algorithme métaheuristique est conçu pour trouver une bonne solution à un problème d'optimisation composé d'un problème étendu de routage de véhicules. La thèse se termine par une analyse des flux de tendances dans les données des médias sociaux. La détection de communautés au sein d'un graphe est une tâche fondamentale d'exploration de données qui présente un intérêt dans pratiquement tous les domaines et sert également d'étape de prétraitement non supervisé pour de nombreuses tâches en aval. L'une des méthodes de regroupement les mieux établies est le regroupement spectral. Cependant, le regroupement spectral standard est très sensible aux données d'entrée bruitées, et l'eigendecomposition a une complexité d'exécution cubique élevée O(n^3). S'attaquer à l'un de ces problèmes exacerbe souvent l'autre. Cette thèse présente un nouveau modèle qui accélère l'étape d'eigendecomposition en la remplaçant par une approximation de Nyström. La robustesse est obtenue en séparant itérativement les données en une partie nettoyée et une partie bruyante. Dans ce processus, la représentation des données d'entrée sous forme de graphe est essentielle pour identifier les parties des données qui sont bien connectées en analysant les distances des sommets dans l'espace propre. Avec les progrès des architectures de Deep Learning, nous observons également une poussée de la recherche sur l'apprentissage de la représentation graphique. Le paradigme du passage de messages dans les réseaux neuronaux graphiques (GNN) formalise une heuristique prédominante pour les données graphiques multi-relationnelles et attribuées afin d'apprendre les représentations des nœuds. Dans les applications en aval, nous pouvons utiliser les représentations pour résoudre des problèmes théoriques tels que la classification des nœuds, la classification/régression des graphes et la prédiction des relations. Cependant, un problème courant dans les GNN est connu sous le nom de lissage excessif. En augmentant le nombre d'itérations dans le passage de messages, les représentations des nœuds du graphe d'entrée s'alignent et deviennent indiscernables. Cette thèse montre un moyen efficace d'assouplir l'architecture GNN en employant une heuristique de routage dans le flux de travail général. Plus précisément, une couche supplémentaire achemine les représentations des nœuds vers des experts spécialisés. Chaque expert calcule les représentations en fonction de son flux de travail GNN respectif. Les définitions de GNN distincts résultent de k vues localisées à partir d'un nœud central. Cette procédure est appelée Graph Shell Attention (SEA), dans laquelle les experts traitent différents sous-graphes à l'aide d'un transformateur. La propagation fiable d'informations par le biais de grands réseaux de communication, de réseaux sociaux ou de réseaux de capteurs est importante pour les applications concernant le marketing, l'analyse sociale ou la surveillance des conditions physiques ou environnementales. Cependant, les liens sociaux d'amitié peuvent être obsolètes, et les liens de communication peuvent échouer, induisant la notion d'incertitude dans de tels réseaux. Cette thèse aborde le problème de l'optimisation de la propagation de l'information dans les réseaux incertains compte tenu d'un budget contraint d'arêtes. Une structure de données spécialisée, appelée F-tree, traite deux sous-problèmes NP-hard: le calcul du flux d'information attendu et le choix optimal des arêtes. L'arbre F identifie les composants indépendants d'un graphe d'entrée probabiliste pour lesquels le flux d'informations peut être calculé analytiquement et efficacement ou pour lesquels l'échantillonnage Monte-Carlo traditionnel peut être appliqué indépendamment du reste du réseau. La partie suivante de la thèse couvre un problème de graphe du point de vue de la recherche opérationnelle. Une nouvelle variante du célèbre problème d'acheminement par véhicule (VRP) est introduite, où les clients sont servis dans une fenêtre temporelle spécifique (TW), ainsi que des lieux de livraison flexibles (FL) incluant des contraintes de capacité. Ces dernières impliquent que chaque client est programmé dans l'un des emplacements de service de livraison à capacité. En pratique, le problème VRPTW-FL est pertinent pour des applications de livraison de colis, d'acheminement avec un espace de stationnement limité ou, par exemple, dans le cadre de la programmation de kinésithérapeutes à l'échelle d'un hôpital. Cette thèse présente une métaheuristique construite sur une recherche hybride de grands voisinages adaptatifs (ALNS). En outre, un mécanisme de retour en arrière dans la phase de construction est introduit pour modifier les décisions insatisfaisantes à des stades précoces. Dans l'étude computationnelle, des données hospitalières sont utilisées pour évaluer l'utilité de lieux de livraison flexibles et de diverses fonctions de coût. Dans la dernière partie de la thèse, les tendances des médias sociaux sont analysées, ce qui donne un aperçu du sentiment des utilisateurs et des sujets d'actualité. Ces tendances consistent en des rafales de messages concernant un sujet particulier dans un laps de temps donné, s'écartant de manière significative de la fréquence moyenne d'apparition du même sujet. Cette thèse présente une méthode de classification des archétypes de tendances afin de prédire leur diffusion future en étudiant la diffusion de ces tendances dans l'espace et dans le temps. D'une manière générale, avec l'augmentation constante de l'échelle et de la complexité des ensembles de données structurées en graphe et les progrès de l'intelligence artificielle, les modèles soutenus par l'IA joueront inévitablement un rôle important dans l'analyse, la modélisation et l'amélioration de l'extraction de connaissances à partir de données en graphe
    • …
    corecore