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Abstract

This thesis develops several kernel-based greedy algorithms for di�erent machine learning problems and analyzes
their theoretical and empirical properties. Greedy approaches have been extensively used in the past for tackling
problems in combinatorial optimization where �nding even a feasible solution can be a computationally hard
problem (i.e., not solvable in polynomial time). A key feature of greedy algorithms is that a solution is constructed
recursively from the smallest constituent parts. In each step of the constructive process a component is added to
the partial solution from the previous step and, thus, the size of the optimization problem is reduced. The selected
components are given by optimization problems that are simpler and easier to solve than the original problem.
As such schemes are typically fast at constructing a solution they can be very e�ective on complex optimization
problems where �nding an optimal/good solution has a high computational cost. Moreover, greedy solutions are
rather intuitive and the schemes themselves are simple to design and easy to implement. There is a large class of
problems for which greedy schemes generate an optimal solution or a good approximation of the optimum.

In the �rst part of the thesis, we develop two deterministic greedy algorithms for optimization problems
in which a solution is given by a set of functions mapping an instance space to the space of reals. The �rst
of the two approaches facilitates data understanding through interactive visualization by providing means for
experts to incorporate their domain knowledge into otherwise static kernel principal component analysis. This is
achieved by greedily constructing embedding directions that maximize the variance at data points (unexplained
by the previously constructed embedding directions) while adhering to speci�ed domain knowledge constraints.
The second deterministic greedy approach is a supervised feature construction method capable of addressing
the problem of kernel choice. The goal of the approach is to construct a feature representation for which a set
of linear hypotheses is of su�cient capacity—large enough to contain a satisfactory solution to the considered
problem and small enough to allow good generalization from a small number of training examples. The approach
mimics functional gradient descent and constructs features by �tting squared error residuals. We show that the
constructive process is consistent and provide conditions under which it converges to the optimal solution.

In the second part of the thesis, we investigate two problems for which deterministic greedy schemes can
fail to �nd an optimal solution or a good approximation of the optimum. This happens as a result of making a
sequence of choices which take into account only the immediate reward without considering the consequences
onto future decisions. To address this shortcoming of deterministic greedy schemes, we propose two e�cient
randomized greedy algorithms which are guaranteed to �nd e�ective solutions to the corresponding problems.
In the �rst of the two approaches, we provide a mean to scale kernel methods to problems with millions of
instances. An approach, frequently used in practice, for this type of problems is the Nyström method for low-rank
approximation of kernel matrices. A crucial step in this method is the choice of landmarks which determine
the quality of the approximation. We tackle this problem with a randomized greedy algorithm based on the
K-means++ cluster seeding scheme and provide a theoretical and empirical study of its e�ectiveness. In the
second problem for which a deterministic strategy can fail to �nd a good solution, the goal is to �nd a set of objects
from a structured space that are likely to exhibit an unknown target property. This discrete optimization problem
is of signi�cant interest to cyclic discovery processes such as de novo drug design. We propose to address it with
an adaptive Metropolis–Hastings approach that samples candidates from the posterior distribution of structures
conditioned on them having the target property. The proposed constructive scheme de�nes a consistent random
process and our empirical evaluation demonstrates its e�ectiveness across several di�erent application domains.





C H A P T E R 1

Introduction

Machine learning is the study of methods for programming computers to learn (Dietterich,
2003). Over the past two decades it has become a core building block of intelligent systems
capable of learning from experience and adapting to their environment. On a daily basis,
machine learning algorithms provide search results, recommendations about movies and
shopping items, tra�c predictions, optimal navigation routes, automatic language transla-
tions, and similar services to hundreds of millions of people around the world (Dietterich and
Horvitz, 2015). The development of these systems was accompanied by the technological
advancement and increase in the computational power and storage capacities of computing
devices. As a result of the latter, the amount of data available for analysis has increased signif-
icantly and the current trend indicates that this will continue in the years to come. It is, thus,
reasonable to expect that data analysis and machine learning will become one of the driving
forces of the technological progress and advancement in many �elds of science (Dietterich
and Horvitz, 2015; Smola and Vishwanathan, 2010).

A central problem in machine learning is that of estimating dependences and extracting
law-like relationships from empirical data (Vapnik, 1982). In the past two decades, a class of
theoretically well founded machine learning algorithms known as kernel methods has tackled
this problem with success across many di�erent application areas (Schölkopf and Smola, 2002).
Following this line of research, the thesis develops several kernel-based greedy algorithms for
di�erent machine learning problems and analyzes their theoretical and empirical properties.
A characteristic common to all investigated problems is that a solution is given by a set
of atoms represented as functions or instances. We propose to tackle these problems with
deterministic and/or randomized greedy algorithms. In particular, the �rst part of the thesis
develops two deterministic greedy algorithms for optimization problems in which a solution
is given by a set of functions mapping an instance space to the space of reals. The second
part of the thesis, on the other hand, focuses on two discrete optimization problems in
which a deterministic greedy strategy can fail to �nd an optimal solution or a satisfactory
approximation of the optimum. Common to these two discrete optimization problems is that
a solution is given by a set of instances with an a priori speci�ed cardinality.

The �rst of the two deterministic greedy approaches facilitates data understanding
through interactive visualization by providing means for experts to incorporate their domain
knowledge into otherwise static kernel principal component analysis (Schölkopf et al., 1999).
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This is achieved by greedily constructing embedding directions that maximize the variance at
data points (unexplained by the previously constructed embedding directions) while adhering
to speci�ed domain knowledge constraints. The second deterministic greedy approach is a
supervised feature construction method capable of addressing the problem of kernel choice.
The goal of the approach is to construct a feature representation for which a set of linear
hypotheses is of su�cient capacity—large enough to contain a satisfactory solution to the
considered problem and small enough to allow good generalization from a small number of
training examples. The approach mimics functional gradient descent and constructs features
by �tting squared error residuals. We show that the constructive process is consistent and
provide conditions under which it converges to the optimal solution.

In the �rst of the two randomized greedy approaches, we provide a mean to scale kernel
methods to problems with millions of instances. An approach, frequently used in practice,
for this type of problems is the Nyström method (Williams and Seeger, 2001) for low-rank
approximation of kernel matrices. A crucial step in this method is the choice of landmarks
which determine the quality of the approximation. We tackle this discrete optimization
problem with a randomized greedy approach based on the K-means++ cluster seeding
scheme (Arthur and Vassilvitskii, 2007) and provide a theoretical and empirical study of its
e�ectiveness. In the second problem for which a deterministic strategy can fail to �nd a
good solution, the goal is to �nd a set of objects from a structured space that are likely to
exhibit an unknown target property. This discrete optimization problem is of signi�cant
interest to cyclic discovery processes such as de novo drug design (Schneider and Fechner,
2005). We propose to address it with an adaptive Metropolis–Hastings approach that samples
candidates from the posterior distribution of structures conditioned on them having the
target property. The proposed scheme de�nes a consistent random process and our empirical
evidence demonstrates its e�ectiveness across several di�erent application domains.

As the developed approaches are designed for di�erent learning tasks, in the remainder of
the chapter we provide a high-level overview of supervised, semi-supervised, and transductive
learning. Precise mathematical de�nitions of all the required technical terms will be provided
in the main part of the thesis, so that the chapters with developed approaches can be read
independently. Having reviewed relevant learning tasks, we give an informal introduction
to kernel methods that are at the core of the developed greedy approaches. Following this,
we outline a greedy approach to machine learning and provide a high-level description of
components constituting a greedy algorithm. This chapter concludes with a summary of the
contributions and an overview of the remaining chapters.

1.1 Learning Tasks

In this section, we provide a brief review of machine learning tasks investigated in this thesis.
Formal and more precise descriptions will be given in chapters that apply to these tasks.

1.1.1 Supervised Learning

Let us begin by introducing supervised learning through the simplest machine learning task
– classi�cation of objects. Assume we are required to write a program that is capable of
determining whether an email belongs to a spam or non-spam class of emails. The main
problem in this task is to develop an algorithm that assigns a correct class label (i.e., spam
or non-spam) to an object/instance (i.e., email) based on a set of already classi�ed training
examples. In this particular case, a training example is a pair consisting of an email and its
associated class label (e.g., 1 for spam and 0 for non-spam emails). The machine learning task
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in which an algorithm is required to extract a dependency/rule from given labeled training
data is called supervised learning. As the algorithm is required to work for any possible
email, it needs to generalize well and provide accurate predictions on unseen instances. The
generalization ability and quality of an algorithm in supervised learning is evaluated by
applying the learned predictor to test examples, unavailable to the algorithm during training.

In the presented example, supervised learning was introduced with a task where the
labels are constrained to binary numbers. The term supervised learning, however, is not
limited to such tasks and refers also to tasks with categorical, real-valued, and structured
labels (e.g., graphs). A supervised learning problem with objects/instances associated to
real-valued labels is known as regression.

1.1.2 Semi-Supervised and Transductive Learning

In semi-supervised and transductive learning tasks, in addition to having labeled training data,
a program required to extract a dependence from data has also a set of unlabeled instances at
its disposal. Often, it is the case that labels are expensive to obtain and there is only a small
number of labeled instances together with a large number of unlabeled ones. While in semi-
supervised tasks a learning algorithm is required to generalize to all possible instances, in
transductive tasks an algorithm is only required to output a prediction on instances available
to it during training (i.e., labeled and unlabeled instances provided as input to the algorithm).
In these two machine learning tasks, the additional unlabeled data can help with learning
if it contains information useful for the inference of an unknown target dependence being
inferred from training examples. Precise assumptions often imposed on unlabeled data will
be given in chapters speci�c to these tasks.

Beside the described standard forms of supervision that involve labeled instances, there
are cases in which only partial supervision is provided to semi-supervised and transductive
algorithms. An example of partial supervision is a pairwise constraint that speci�es whether
a pair of instances belongs to the same class or not. A pair of instances from the same class is
usually referred to as a must-link constraint and, otherwise, a cannot-link constraint.

1.2 Kernel Methods

In all the reviewed learning tasks, machine learning algorithms are required to generalize
from training examples to unseen instances. In order to achieve this, beside information
in labeled training data algorithms need a notion of similarity on the available instances.
Often, this information is provided to learning algorithms through a similarity function that
quanti�es the relationship between any two instances from the instance space. In this way,
similarity functions add an additional structure to learning algorithms that is required for
generalization. The choice of a similarity function determines the generalization properties
of learning algorithms and is a core question in machine learning.

A kernel function is a special type of similarity function that is symmetric and positive
de�nite. It is de�ned by a mapping that embeds instances into an inner product space. For
any two instances, the kernel function computes their similarity as the inner product between
their mappings. This type of similarity is bene�cial for the study of learning algorithms
because it allows the study of convergence properties using techniques from analysis and
understanding of the algorithms on an intuitive level using analytical geometry.

Kernel methods represent a class of learning algorithms in which the relation between
instances is de�ned using kernel functions. In learning algorithms from this class, for a given
kernel function an optimal predictor is often given as a solution to a convex optimization
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problem. These convex optimization problems usually consist of two terms: i) a cost function
that takes into account the deviations between predictions and labels at training instances,
and ii) a regularization term that takes into account the complexity of inferred functional
dependence and promotes the choice of smooth hypotheses. The mathematical properties
of the space de�ned by a kernel function allow one to express an optimal prediction at any
particular instance with a linear combination of kernel function values between that and all
training instances. As a result of this, the optimization problems in kernel methods can be
expressed solely in terms of kernel values between pairs of instances. In literature, the latter
is known as the kernel trick. An important consequence of the kernel trick is the fact that
explicit non-linear maps that de�ne kernel functions do not need to be stored and highly
expressive kernel functions corresponding to in�nite dimensional inner product spaces can
be seamlessly used with developed kernel methods.

The most popular approaches from this class of learning algorithms are support vector
machines (Vapnik, 1982; Schölkopf and Smola, 2002), kernel ridge regression (Schölkopf and
Smola, 2002), and kernel principal component analysis (Schölkopf et al., 1999). The �rst two
approaches were initially developed for supervised learning tasks, and later extended to
semi-supervised and transductive learning (e.g., see Chapelle et al., 2006). Kernel principal
component analysis is a non-linear dimensionality reduction technique that projects instances
to a lower-dimensional space while retaining as much as possible of the variation present
in the dataset. As a result of the kernel trick, the inputs to these algorithms consist of a
kernel matrix with entries corresponding to kernel values between pairs of instances and
(for tasks with supervision) labels assigned to a subset of the available instances. Thus, these
algorithms are highly �exible and for any particular algorithm an identical implementation
can be used in combination with di�erent kernel functions.

1.3 Greedy Algorithms

The focus of this thesis is on learning problems in which a solution is given by a set of atoms
which can be represented as functions or instances. Greedy approaches have been extensively
used in the past for tackling a large class of related problems in combinatorial optimization
where atoms are elements of a discrete space (e.g., see Chapter 16 in Cormen et al., 2009).
A deterministic greedy algorithm constructs a solution to a problem by making a sequence
of choices which take into account only the immediate reward without considering the
consequences onto future decisions. Thus, at each decision point of this constructive process
a deterministic greedy algorithm adds an atom (i.e., a smallest constituent part/component)
to the partial solution derived at the previous decision point. The selected atom at a decision
point is given by an optimization problem that is computationally simpler and easier to solve
than the original optimization problem. There are many problems for which deterministic
greedy strategies generate an optimal solution or a good approximation of the optimum (Cor-
men et al., 2009). Such algorithms are especially e�ective in situations where an estimate
of an optimal solution is needed quickly. Typically, it is not an easy task to show that a
greedy algorithm constructs an optimal solution to an optimization problem. However, there
are two properties of the optimization problems which can aid in designing deterministic
greedy algorithms (Cormen et al., 2009): i) a greedy choice property which ensures that a
globally optimal solution can be derived by making a locally optimal (i.e., greedy) choice, and
ii) an optimal substructure property which establishes that an optimal solution to a problem
contains within it optimal solutions to subproblems (i.e., subsets of a set of atoms comprising
an optimal solution are optimal solutions to the corresponding subproblems). While deter-
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ministic greedy strategies are e�ective and e�cient for a large class of optimization problems
there are many problems in which such strategies can fail to generate an optimal solution or
a good approximation of the optimum. This typically happens as a result of considering only
the immediate bene�t at each decision point during the construction of the greedy solution.
To address this shortcoming of deterministic greedy strategies, we investigate the e�ects of
randomization at decision points of such a constructive process. More speci�cally, we focus
on strategies in which an atom is added to a partial solution by sampling proportional to a
suitable measure of improvement over that solution. We leave the speci�cs of the developed
approaches to their respective chapters, and provide here a high-level overview of the main
components characteristic to a greedy algorithm.

A greedy algorithm can be characterized by the following four components:

i) A set of atoms de�ning the smallest constituent parts of a solution. In Chapter 2, the
atoms are functions from a reproducing kernel Hilbert space and a solution (i.e., a data
visualization) is a set of such functions. In Chapter 3, the atoms are ridge-wave functions
that comprise a dictionary of features and a solution for the problem investigated in
this chapter is a set of such features. In Chapter 4, the atoms are instances provided
as input to the algorithm and a solution is a subset of the instances with an a priori
speci�ed cardinality. In Chapter 5, the atoms are elements of an instance space that can
be accessed via a sampler and a solution is a set of instances with desired properties.

ii) A solution space is a set of all feasible solutions to a considered problem. For the greedy
algorithms considered in this thesis, the respective solution spaces consist of data
visualizations (Chapter 2), feature representations (Chapter 3), subsets of the available
instances with a �xed cardinality (Chapter 4), and sets of structured objects with an a
priori speci�ed cardinality (Chapter 5).

iii) A selection function that chooses the next atom to be added to the current partial
solution. For deterministic greedy approaches (Chapters 2 and 3), the selection func-
tion always chooses an atom that o�ers the most rewarding immediate bene�t. For
randomized greedy approaches, investigated in Chapters 4 and 5, the selection function
is randomized based on a theoretical consideration of the respective problems.

iv) An evaluation function capable of evaluating the quality of intermediate/partial and
complete solutions with respect to the optimization objective of a considered problem.

Having described what characterizes a greedy algorithm, we proceed to the next section
where we give an outline of the thesis that summarizes our main contributions.

1.4 Outline of the Thesis

We provide here an outline of this thesis consisting of two main parts: i) deterministic greedy
approaches (Chapters 2 and 3), and ii) randomized greedy approaches (Chapters 4 and 5). The
outline is given by covering the investigated problems and our contributions by chapters.

Chapter 2

Data understanding is an iterative process in which domain experts combine their knowledge
with the data at hand to explore and con�rm hypotheses about the data. One important set of
tools for exploring hypotheses about data are visualizations. Typically, traditional unsuper-
vised dimensionality reduction algorithms are used to generate visualizations. These tools
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allow for interaction, i.e., exploring di�erent visualizations, only by means of manipulating
some technical parameters of the algorithm. Therefore, instead of being able to intuitively
interact with visualizations, domain experts have to learn and argue about these technical
parameters. To address this shortcoming of unsupervised algorithms for data visualization,
we propose a greedy approach that enables experts to incorporate their domain knowledge
into the otherwise static kernel principal component analysis algorithm. The developed
approach is not limited to data lying in a Euclidean space (e.g., it can generate visualizations
of data represented with vectors, graphs, strings etc.) and allows for an intuitive interaction
with data visualizations. More speci�cally, the approach allows domain experts to explore
hypotheses and discover structure in datasets by: i) selecting a small number of control points
and moving them across the projection space, ii) specifying whether pairs of points should
be placed close together or far apart, and iii) providing class labels for a small number of data
points. Each embedding direction in a visualization generated by the proposed approach can
be expressed as a non-convex quadratic optimization problem over a hypersphere of constant
radius. A globally optimal solution for this problem can be found in polynomial time using
the algorithm presented in this chapter. To facilitate direct feedback from domain experts,
i.e., updating the whole embedding with a su�ciently high frame-rate during interaction,
we reduce the computational complexity further by incremental up- and down-dating. Our
empirical evaluation demonstrates the �exibility and utility of the approach.

Chapter 3

A key aspect of kernel methods is the choice of kernel function that de�nes a notion of
similarity between instances. This choice is crucial for the e�ectiveness of kernel-based
learning algorithms and it is important to select a kernel function such that it expresses the
properties of data relevant to a dependence being learned. As such properties of the data are
not provided as input to a learning algorithm, it needs to learn to select a good kernel for the
problem at hand. To address this shortcoming of kernel methods, we develop an e�ective
method for supervised feature construction. The main goal of the approach is to construct a
feature representation for which a set of linear hypotheses is of su�cient capacity—large
enough to contain a satisfactory solution to the considered problem and small enough to
allow good generalization from a small number of training examples. We provide conditions
under which this goal can be achieved with a greedy procedure that constructs features
by �tting squared error residuals. The proposed constructive process is consistent and can
output a rich set of features. More speci�cally, it allows for learning a feature representation
that corresponds to an approximation of a positive de�nite kernel from the class of stationary
kernels. The e�ectiveness of the approach is evaluated empirically by �tting a linear ridge
regression model in the constructed feature space and our empirical results indicate a superior
performance of the proposed approach over the competing methods.

Chapter 4

In this chapter, we focus on the problem of scaling kernel methods to datasets with millions of
instances. An approach, frequently used in practice, for this type of problems is the Nyström
method for low-rank approximation of kernel matrices. A crucial step in this method is the
choice of landmarks. This is a di�cult combinatorial problem that directly determines the
quality of the approximation. To address this problem we propose to use a randomized greedy
sampling scheme developed for the seeding of K-means++ clusters. Our main contribution
is the theoretical and empirical study of the e�ectiveness of landmarks generated with this
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sampling scheme. Previous empirical studies (Zhang et al., 2008; Kumar et al., 2012) also
observe that the landmarks obtained using (kernel) K-means clustering de�ne a good low-
rank approximation of kernel matrices. However, the existing work does not provide a
theoretical guarantee on the approximation error for this approach to landmark selection. We
close this gap and provide the �rst bound on the approximation error of the Nyström method
with kernel K-means++ samples as landmarks. Moreover, for the frequently used Gaussian
kernel we provide a theoretically sound motivation for doing the Lloyd re�nements of kernel
K-means++ samples in the instance space. We substantiate our theoretical results empirically
by comparing the approach to several state-of-the-art landmark sampling algorithms.

Chapter 5

In this chapter, we consider an active classi�cation problem in a structured space with
cardinality at least exponential in the size of its combinatorial objects. The ultimate goal in this
setting is to discover structures from structurally di�erent partitions of a �xed but unknown
target class. An example of such a process is that of computer-aided de novo drug design. In
the past 20 years several Monte Carlo search heuristics have been developed for this process.
Motivated by these hand-crafted search heuristics, we devise a Metropolis–Hastings sampling
scheme that samples candidates from the posterior distribution of structures conditioned on
them having the target property. The Metropolis–Hastings acceptance probability for this
sampling scheme is given by a probabilistic surrogate of the target property, modeled with a
max-entropy conditional model. The surrogate model is updated in each iteration upon the
evaluation of a selected structure. The proposed approach is consistent and our empirical
results indicate that it achieves a large structural variety of discovered targets.
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Deterministic Greedy Approaches





C H A P T E R 2

Knowledge-Based Kernel Principal Component Analysis

Data visualization is an important part of knowledge discovery and at the core of data
understanding and exploration tasks (e.g., see Shearer, 2000). Its importance for data science
has been recognized already by Tukey (1974). While knowledge discovery is inherently
interactive and iterative, most data visualization methods are inherently static. Switching
algorithms and changing their parameters allow for some interaction with the visualization
but this interaction is rather indirect and only feasible for machine learning experts rather
than domain experts. As data science and its tools are getting more and more widespread, the
need arises for methods that allow domain experts to directly interact with data visualizations
through intuitive domain-knowledge constraints. Motivated by this, we propose two variants
of kernel principal component analysis that allow domain experts to directly interact with
data visualizations and to add domain-knowledge and other constraints in an intuitive way.
The proposed approach represents an extension of kernel principal component analysis to
semi-supervised tasks and it can be, with a suitable choice of kernel, used for interactive
visualization of data represented as graphs, strings, vectors, time-series etc. Similar to kernel
principal component analysis, a projection/embedding direction (i.e., knowledge-based kernel
principal component) corresponds to a function in the underlying reproducing kernel Hilbert
space. For each such projection direction, we propose to �nd a function which (i) either
maximizes the variance at data instances while having constant norm or minimizes the norm
while having constant variance at data instances, (ii) is as orthogonal as possible to previously
generated embedding directions, and (iii) adheres to the knowledge-based constraints as
much as possible. The �rst two requirements are common for kernel principal component
analysis and the third one ensures that an embedding direction accounts not only for the
variation at data instances but also for the relationship to their labels. Our knowledge-based
principal components can take into account a variety of hard and/or soft constraints, allowing
�exible placement of control points in an embedding space, addition of must-link and cannot-
link constraints, as well as known class labels. The goal of the proposed approach is to
allow domain experts to interact with a low-dimensional embedding and choose from the
many possible ones not by tuning parameters but by dragging or grouping the chosen data
points in the embedding, whereby all related data points automatically and smoothly adjust
their positions accordingly. As it is unrealistic to expect that domain experts will provide
supervision for all available data points (possibly millions of unlabeled instances), the problem
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setting of our algorithms is that of semi-supervised learning. Thus, the e�ectiveness of an
approach depends on its ability to incorporate standard semi-supervised learning assumptions
and given knowledge-based constrains into the search for good projection directions.

We start our presentation with a brief review of kernel principal component analysis
(Section 2.1) and semi-supervised learning (Section 2.2). Following this, we devise means to
incorporate domain-knowledge into kernel principal component analysis and propose two
knowledge-based variants of that approach (Section 2.3). Having expressed knowledge-based
kernel principal components as optimization problems over a reproducing kernel Hilbert
space of functions (Section 2.3.1), we show that the representer theorem (Wahba, 1990)
applies to these problems (Section 2.3.2). Following this, we apply the representer theorem
and transform them to the optimization of an inde�nite quadratic form over a hypersphere
of constant radius, and subject to an optional linear equality constraint (Section 2.3.3). The
optimization of a quadratic form over a hypersphere of constant radius is, in general, a non-
convex optimization problem with potentially exponentially many local optima. We analyze
this problem in Section 2.4 and show that a globally optimal solution can be found in time
cubic in the size of the kernel expansion. The algorithms for solving this non-convex problem
rely on the work by Forsythe and Golub (1965) and Gander et al. (1989), who were the �rst
to consider the optimization of a quadratic form over a hypersphere. In particular, Gander
et al. (1989) generally suggested two approaches for solving this problem: i) transforming
it to a quadratic and then linear eigenvalue problem or ii) reducing it to solving a one-
dimensional secular equation. While the �rst approach is more elegant, the second one
is numerically much more stable. Both approaches have computational complexity that is
cubic in the number of instances. The runtime complexity of these algorithms prohibits
us from scaling knowledge-based kernel principal component analysis to datasets with
millions of instances. In order to address this shortcoming, we propose two methods for
the approximation of knowledge-based kernel principal components (Section 2.5). In the
�rst approach, we observe that the minimization of a quadratic form over a hypersphere of
constant radius is equivalent to solving a linear system de�ned with a symmetric and positive
de�nite matrix (Section 2.5.1). For that problem, an iterative solution is possible using the
conjugate gradient descent method (e.g., see Chapter 10 in Golub and van Loan, 1996). The
approach computes an approximation to an optimal solution by iteratively improving over the
existing estimate of the solution and the cost of such an iteration is quadratic in the number
of instances. The iterative approach is presented in Section 2.5.1 and it is guaranteed to �nd a
good approximation to an optimal solution with a small number of iterations in cases where
the matrix de�ning the quadratic form is well-conditioned or has a low-rank. In the second
approach for scaling knowledge-based kernel principal component analysis, we propose to use
a low-rank factorization of the kernel matrix in the place of the original matrix (Section 2.5.2).
For example, such a factorization can be obtained using the Nyström method for low-rank
approximation of kernel matrices (Nyström, 1930; Williams and Seeger, 2001). Alternatively,
if the kernel function is from the class of stationary kernels, it is possible to approximate the
kernel matrix with a low-rank factorization de�ned by the corresponding random Fourier
features (Rahimi and Recht, 2008a). These techniques are described in Section 2.5.2, together
with transformations of the corresponding optimization problems that allow us to e�ciently
compute the low-rank approximations of knowledge-based kernel principal components.

In order to allow a direct interaction with the embedding, i.e., updating the whole embed-
ding with a su�ciently high frame-rate, the cubic complexity of the presented solvers (Forsythe
and Golub, 1965; Gander et al., 1989) is not su�cient. To overcome this, we observe that in an
interactive setup it is hardly ever the case that the optimization problem has to be solved from
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scratch. Instead, consecutive optimization problems will be strongly related and indeed we
show (in Section 2.6) that consecutive solutions di�er only in rank-one updates which allows
for much more �uent and natural interaction. However, even quadratic computational com-
plexity of such interactions is not su�cient for large scale datasets with millions of instances.
To e�ciently interact with visualizations of such datasets, we propose to combine low-rank
approximations of kernel matrices with rank-one updates of the consecutive problems.

To generate an informative visualization using the proposed approach a number of
hyperparameters needs to be �ne-tuned. These parameters can, for instance, specify the
con�dence in speci�c type of knowledge-based constraints or provide additional �exibility
when it comes to the choice of kernel function. In Section 2.7, we consider the problem of
selecting a good set of hyperparameters automatically without putting any e�ort on domain
experts. We achieve this goal by deriving closed form hyperparameter gradients for di�erent
validation objective functions. The derived gradients can then be used with minimization
procedures such as the limited memory Broyden–Fletcher–Goldfarb–Shanno method (l-
bfgs-b) to determine a good set of hyperparameters. The hyperparameter optimization is,
in general, posed as a non-convex problem and does not yield a globally optimal solution.

Having presented our approach, we provide a discussion of the alternative approaches
to interactive data visualization (Section 2.8) and present the results of our empirical study
(Section 2.9). The main focus of the study is on demonstrating the �exibility and usability
of the proposed approach in an interactive knowledge discovery setting. To achieve this,
we �rst show that small perturbations of the location of control points only lead to small
perturbations of the embedding of all points. This directly implies that it is possible to
smoothly change the embedding without sudden and unexpected jumps (large changes) of
the visualization. We then show that by appropriate placement of control points, knowledge-
based kernel principal component analysis can mimic other embeddings. In particular, we
consider the sum of two di�erent kernels and observe that by placing a few control points,
the 2d kernel principal component analysis embedding of either of the original kernels
can be reasonably well recovered. In addition, we investigate the amount of information
retained in low-dimensional embeddings. More speci�cally, we take the benchmark datasets
for semi-supervised classi�cation prepared by Chapelle et al. (2006) and assess the predictive
performance of the �rst knowledge-based kernel principal component in relation to other
approaches. Last but not least, we show that it is possible to discover structures within the
dataset that do not necessarily exhibit the highest correlation with variance and, thus, remain
hidden in the plain kernel principal component analysis embedding.

2.1 Kernel Principal Component Analysis

Dimensionality reduction is the process of reducing the dimensionality of a dataset consisting
of a large number of possibly interrelated variables, while retaining as much as possible of
the information present in the dataset (Jolli�e, 1986). Principal component analysis (pca) is a
linear dimensionality reduction technique that transforms a dataset to a new low-dimensional
representation with mutually independent features, while retaining most of the variation
present in the dataset. The earliest formulations of the technique can be traced back to Pearson
(1901) and Hotelling (1933). The name itself originates from the work of Hotelling (1933) in
which he considered the problem of �nding mutually uncorrelated features that determine the
input data representation. Motivated by the ongoing research in psychology, Hotelling (1933)
called such uncorrelated features components. The components are called principal because
they are obtained by successively trying to retain as much as possible of the previously
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unexplained variation present in the dataset. In addition to dimensionality reduction, this
technique can also be used for exploratory analysis or visualization of datasets (Jolli�e,
1986; Jeong et al., 2009). For example, a data visualization can be generated by projecting
instances to a space spanned by the �rst two principal components. Having generated a data
visualization, domain experts can then use it to gain di�erent insights into properties of the
dataset such as the di�culty of a learning task, separation of instances into clusters and/or
classes, or detection of outliers. Kernel principal component analysis (Schölkopf et al., 1999)
is an extension of principal component analysis in which the relation between input features
and principal components is no longer linear. In contrast to principal component analysis, this
kernel method is also not restricted to Euclidean spaces and can be used with data represented
as graphs, strings, time-series, relations etc. As kernel principal component analysis is at the
core of our approach for interactive data visualization (described in Section 2.3), we provide
a brief review of it in the remainder of this section.

2.1.1 De�nition of Kernel Principal Components

This section reviews two principles for obtaining (kernel) principal components. The �rst
principle originates from the work by Hotelling (1933) and the second one is due to Pearson
(1901). For kernel principal component analysis with a centered kernel function these two
principles are equivalent. In the remainder of this section, we review these two principles
and discuss their similarities and di�erences. We start our review by introducing the relevant
terms that will be used throughout this chapter. Following this, we formulate two optimization
problems which can be used to derive the �rst principal component in a reproducing kernel
Hilbert space of functions mapping an instance space to the space of reals. The section
concludes with a scheme for the iterative computation of the remaining principal components.

Let us assume that n instances {x1,x2, . . . ,xn} are sampled from a Borel probability mea-
sure de�ned on an instance space X (not necessarily Euclidean). Let r � d denote the
dimensionality of the transformed dataset andH a reproducing kernel Hilbert space with
kernel k : X ×X → R. Without loss of generality, we can assume that the columns of the data
matrix X ∈ Rd×n are centered instances (i.e.,

∑n
i=1 xi = 0). While in principal component

analysis a component f is a linear combination of input features, i.e., f = α>x and α ∈ Rd , in
kernel principal component analysis it is an element of the Hilbert space of functions de�ned
on X . As we will see in the next section, the representer theorem (Wahba, 1990; Schölkopf
et al., 2001; Dinuzzo and Schölkopf, 2012) allows us to write a kernel principal component as
f =

∑n
i=1αik (xi , ·), where αi ∈ R and i = 1,2, . . . ,n. We now describe how kernel principal

components can be computed from a set of instances.
On the one hand, following the approach by Hotelling (1933), the �rst principal component

can be obtained by maximizing the component variance at the given instances. As collinear
components are equivalent, principal components can be without loss of generality restricted
to functions having unit norm inH. Thus, the �rst principal component is given as a solution
of the following optimization problem (Hotelling, 1933)

f1 = argmax
‖f ‖H=1

n∑
i=1

f (xi)− 1
n

n∑
j=1

f
(
xj

)
2

. (2.1)

On the other hand, building on the work of Pearson (1901), the �rst principal component
can be derived by �nding a functional direction that minimizes the squared residual errors
between images of instances inH and their projections over that functional direction. More
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formally, the �rst principal component can be computed as (Pearson, 1901)

f1 = argmin
‖f ‖H=1

n∑
i=1

‖k (xi , ·)− 〈k (xi , ·), f 〉f ‖2H . (2.2)

The optimization objective from problem (2.2) can be simpli�ed using the reproducing
property of the kernel, i.e.,

n∑
i=1

‖k (xi , ·)− 〈k (xi , ·), f 〉f ‖2H =
n∑
i=1

k (xi ,xi)− 2f (xi)2 + f (xi)2 ‖f ‖2H =

n∑
i=1

k (xi ,xi)− f (xi)2 .

Eliminating the constant terms from the transformed objective, the optimization problem
from Eq. (2.2) becomes

f1 = argmax
‖f ‖H=1

n∑
i=1

f (xi)
2 . (2.3)

For centered kernel functions, the optimization problems from Eq. (2.1) and (2.2) are
equivalent. We say that a kernel function is centered if it can be written as

k
(
xi ,xj

)
=

〈
k̃ (xi , ·)− 1

n

n∑
l=1

k̃ (xl , ·), k̃(xj , ·)− 1
n

n∑
l=1

k̃ (xl , ·)
〉
,

where k̃ : X ×X → R is also a kernel function. To see that the two objectives are equivalent,
�rst observe that from the de�nition of centered kernel function it follows that

1
n

n∑
i=1

k (xi , ·) = 1
n

n∑
i=1

k̃ (xi , ·)− 1
n2

n∑
i=1

n∑
l=1

k̃ (xl , ·) = 0 .

Thus, we can rewrite the optimization problem from Eq. (2.1) to match that in Eq. (2.3), i.e.,

f1 = argmax
‖f ‖H=1

n∑
i=1

〈
f ,k (xi , ·)− 1

n

n∑
l=1

k (xl , ·)
〉2

= argmax
‖f ‖H=1

n∑
i=1

f (xi)
2 .

For simplicity of our derivations, in the remainder of the section we, without loss of
generality, assume that the kernel function is centered and that the optimization problem in
Eq. (2.3) de�nes the �rst principal component. To obtain successive principal components,
additional constraints need to be imposed on the objective in problem (2.3) so that the
principal components are not correlated. Thus, to compute the s-th principal component
(s > 1), the following optimization problem needs to be solved (Schölkopf et al., 1999)

fs = argmax
f ∈H

n∑
i=1

f (xi)
2

s.t. ‖f ‖H = 1 ∧ 〈f , fi〉 = 0 for i = 1,2, . . . , s − 1 .
(2.4)

In Section 2.1.2, we show that the representer theorem (Wahba, 1990) applies to the
optimization problems from Eq. (2.3) and (2.4). Building on this result, we then demonstrate
how to solve these problems and compute the kernel principal components (Section 2.1.3).
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2.1.2 Representer Theorem

Having formulated optimization problems for the computation of the �rst principal com-
ponent, we proceed to show that the representer theorem (Wahba, 1990) applies to these
problems. If the kernel function is centered, we can rewrite problems (2.1) and (2.2) as

max
‖f ‖H=1

n∑
i=1

f (xi)
2 =max

f ∈H

∑n
i=1 f (xi)

2

‖f ‖2H
=min
f ∈H

‖f ‖2H∑n
i=1 f (xi)

2 = min∑n
i=1 f (xi )

2=1
‖f ‖2H . (2.5)

The �rst equality follows from the fact that in the second optimization problem, for an optimal
solution f ∈ H, the identical value of the objective is attained at c · f ∈ H with c ∈ R \ {0}.
The same argument is used to derive the last equality in Eq. (2.5). A component f ∈ H and
this implies that it can be expressed as f = u+v, where u ∈ HX = span({k (x, ·) | x ∈ X}) and
v ⊥HX . Plugging this representation of a component into optimization problem (2.5), we
deduce that the �rst principal component satis�es

f1 = argmin∑n
i=1 f (xi )

2
‖f ‖2H = argmin∑n

i=1 u(xi )
2=1

‖u‖2H + ‖v‖2H = argmin∑n
i=1 u(xi )

2=1

‖u‖2H .

Hence, the �rst principal component can be expressed as a linear combination of evalu-
ation functionals de�ned by data instances, i.e., f1 =

∑n
i=1α1,ik (xi , ·) with α1,i ∈ R and

i = 1,2, · · · ,n. Having shown this, we have derived a version of the representer theorem for
the problem of �nding the �rst principal component in kernel principal component analysis.

To derive the representer theorem for the s-th principal component (with s > 1), let us
consider the following optimization problem

fs = argmax
f ∈H

∑n
i=1 f (xi)

2

‖f ‖2H
s.t. 〈f , fi〉 = 0 for i = 1,2, . . . , s − 1 .

(2.6)

On the one hand, for an optimal solution f ∈ H of problem (2.6), the optimal value of the
optimization objective is also attained at c · f ∈ H with c ∈ R \ {0}. Thus, the optimization
problems from Eq. (2.4) and (2.6) are equivalent. On the other hand, the latter optimization
problem is equivalent to

fs = argmin
f ∈H

‖f ‖2H

s.t.
n∑
i=1

f (xi)
2 = 1 ∧ 〈f , fi〉 = 0 for i = 1,2, . . . , s − 1 .

(2.7)

Let us now consider the case with s = 2. Similar to the reasoning above, f ∈ H can be
expressed as f = u + v with u ∈ HX and v ⊥ HX . From the fact that the �rst principal
component f1 ∈ HX it follows that 〈f , f1〉 = 〈u,f1〉. On the other hand, from the reproducing
property of the kernel it follows that

∑n
i=1 f (xi)

2 =
∑n
i=1u (xi)

2. Thus, the constraints from
problem (2.7) are independent of v and the minimum value of the optimization objective in
Eq. (2.7) is attained at f2 ∈ HX . Having shown this, we have demonstrated that the representer
theorem applies to the problem for the computation of the second principal component. For
s > 2, the claim follows by reasoning along the lines of the case s = 2.
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2.1.3 Derivation of Kernel Principal Components

The fact that the representer theorem applies to the optimization problems de�ning principal
components allows us to exploit the kernel trick and transform these problems into optimiza-
tion problems over a Euclidean space. For that, let K denote the kernel matrix with entries
Kij = k

(
xi ,xj

)
and columns Ki (1 ≤ i, j ≤ n). From the representer theorem it follows that a

principal component can be expressed as fs =
∑n
i=1αs,ik (xi , ·), where αs,i ∈ R, 1 ≤ s ≤ r , and

1 ≤ i ≤ n. Now, using this representation and the reproducing property of the kernel we get

‖f ‖2H =
〈 n∑
i=1

αik(xi , ·),
n∑
j=1

αjk(xj , ·)
〉
=

n∑
i=1

n∑
j=1

αiαjk
(
xi ,xj

)
= α>Kα ,

n∑
i=1

f (xi)
2 =

n∑
i=1

〈 n∑
j=1

αjk(xj , ·), k(xi , ·)
〉2

=
n∑
i=1

∥∥∥K>i α∥∥∥22 = α>
 n∑
i=1

KiK
>
i

α = α>K2α ,

〈f , fs〉 =
〈 n∑
j=1

αjk(xj , ·),
n∑
l=1

αs,lk(xl , ·)
〉
=

n∑
j=1

n∑
l=1

αjαs,lk
(
xj ,xl

)
= α>Kαs .

Let K =UDU> be an eigendecomposition of the symmetric and positive de�nite kernel
matrix K . Then, if we denote with K1/2 =UD1/2U> and γ = K1/2α, the optimization problem
for the �rst principal component can be written as

max
α∈Rd

α>K2α
α>Kα

=max
γ∈Rd

γ>Kγ
γ>γ

.

The latter optimization problem is known as the Rayleigh–Ritz quotient (e.g., see Lütkepohl,
1997) and an optimal solution is obtained when γ is the eigenvector corresponding to the
largest eigenvalue of K . Assuming that the eigenvalues {λi}ni=1 in diagonal matrix D are
sorted in descending order, the result implies that γ∗ = u1, where u1 is the �rst column in
matrix U and an eigenvector corresponding to the eigenvalue λ1. Hence, we deduce that

α1 = K
−1/2γ∗ =UD−1/2U>u1 =

1√
λ1
u1 ∧ f1 =

n∑
i=1

α1,ik (xi , ·) .

For the s-th principal component we have that the optimization problem from Eq. (2.4)
can be transformed into the matrix form as

max
α∈Rd

α>K2α

s.t. α>Kα = 1 ∧ α>Kαi = 0 for i = 1,2, . . . , s − 1 .
(2.8)

To solve this problem, we �rst form the Lagrangian function

L (α,µ) = α>K2α −µ0
(
α>Kα − 1

)
−
s−1∑
i=1

µiα
>Kαi , (2.9)

where µ is a vector of Lagrange multipliers and µ0 is a scalar Lagrange multiplier. Setting
the gradient of the Lagrangian to zero we obtain the stationary constraints

2K2α = 2µ0Kα +
s−1∑
i=1

µiKαi ,

α>Kα = 1 ∧ α>Kαi = 0 for 1 ≤ i ≤ s − 1 .
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Let us now focus on the case with s = 2. As shown above, the �rst principal component
f1 =

∑n
j=1α1,jk(xj , ·) is given byα1 = u1/

√
λ1. From here it then follows that the corresponding

orthogonality constraint, α>Kα1 = 0, can be transformed into

α>UDU>u1 = 0 =⇒ α>u1 = 0 .

Thus, after multiplying the �rst stationary constraint by α>1 from the left, we deduce that

µ1 = 2α>1 K
2α =

2√
λ1
u>1 UD

2U>α = 2λ3/2
1 u
>
1 α = 0 .

Plugging this into the �rst stationary constraint and multiplying it by α> from the left, we
conclude that µ0 = α>K2α. From here, after factoring out the kernel matrix from the �rst
stationary constraint, we obtain that

Kα = µ0α .

Thus, µ0 is an eigenvalue of K and the optimal value of the optimization objective in Eq. (2.8).
From this result and the fact that α ⊥ u1 it follows that α is collinear with the eigenvector
u2 corresponding to the second largest eigenvalue λ2. The fact that α>Kα = 1 now implies
that the second principal component, f2 =

∑n
j=1α2,jk(xj , ·), is given by α2 = u2/

√
λ2.

Having demonstrated how to derive the kernel principal components for s = 1 and s = 2,
we conclude our description of kernel principal component analysis. The remaining principal
components (for s > 2) can be derived by reasoning analogously as in the case s = 2.

2.2 Semi-Supervised Learning

This section provides an overview of semi-supervised learning and assumptions speci�c to
this learning task. The de�nitions and terminology used throughout the section follow along
the lines of the edited volume ‘Semi-supervised learning’ by Chapelle et al. (2006).

2.2.1 Problem Setting

Supervised learning is a learning task in which the goal is to �nd a mapping from an instance
space X to a space of labels Y based on a training sample z = {(x1, y1) , . . . , (xn, yn)} of n
examples sampled independently from a Borel probability measure ρ de�ned on Z = X ×Y .
The task can be evaluated on test examples sampled independently from ρ and unavailable
to the learning algorithm during training. Semi-supervised learning is a class of supervised
learning tasks where the algorithm required to extract a functional dependence from training
data, in addition to having a training sample z ∈ Zn, has also a set of unlabeled instances
at its disposal. More formally, in semi-supervised learning the training data consists of a
training sample z ∈ Zn and a set X ′ = {xn+1, . . . ,xn+n′ } of n′ unlabeled instances that are
sampled independently from the marginal probability measure ρX de�ned on X .

A related learning task, sometimes confused with semi-supervised learning, is that of
transductive learning. In contrast to semi-supervised learning, the goal in such tasks is to
predict correct labels on unlabeled instancesX ′ = {xn+1, . . . ,xn+n′ }. Typically, semi-supervised
learning algorithms are evaluated in transductive setting with test samples consisting only
of unlabeled instances available during training (i.e., a subset of X ′) and their labels.
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2.2.2 When Can Unlabeled Data Aid in Learning?

In general, unlabeled instances do not necessarily aid in semi-supervised learning tasks.
Moreover, there are cases when additional unlabeled instances negatively a�ect the predictive
performance of learning algorithms (e.g., see Chapter 4 in Chapelle et al., 2006). For unlabeled
data to be useful in a semi-supervised learning task it needs to contain information relevant
to the inference of a target concept. More formally (Chapelle et al., 2006), the knowledge
on ρX extracted from unlabeled instances has to carry information that is useful in the
inference of ρ (y | x). Thus, for semi-supervised learning to work certain assumptions on
the data distribution will need to hold. In their edited volume on semi-supervised learning,
Chapelle et al. (2006) formulate three standard assumptions of semi-supervised learning: i)
smoothness assumption, ii) cluster assumption, and iii) manifold assumption. At least one of
these assumptions on the data distribution will need to be satis�ed for unlabeled data to aid
in learning. In the remainder of the section, similar to Chapelle et al. (2006), we cover each of
these three assumptions by focusing on the problem of classi�cation.

Smoothness assumption: If two instances x1 and x2 from a high-density region of
ρX are close, then so should be the corresponding outputs y1 and y2.

This is an adaptation of a standard smoothness assumption for supervised learning where
it is assumed that if two instances are close in the instance space then so should be the
corresponding outputs y1 and y2. Such assumptions are required to be able to generalize from
training data to unseen instances. In contrast to the smoothness assumption for supervised
learning, the smoothness assumption for semi-supervised learning depends on the marginal
distribution of instances and this is precisely the source of additional information that allows
improvement in predictive performance of learning algorithms as a result of taking into
account the unlabeled instances in addition to labeled training examples.

Cluster assumption: If instances are in the same cluster, then they are likely to of
the same class.

A cluster is often de�ned as a set of instances that can be connected by short curves which
traverse only high-density regions of an instance space (Chapelle et al., 2006). Thus, for
classi�cation problems the cluster assumption is equivalent to the semi-supervised smooth-
ness assumption. The motivation for the cluster assumption comes from datasets in which
each class tends to form a cluster and in those cases unlabeled data can aid in determining
boundaries of clusters (i.e., curves encompassing sets of instances) which correspond to
decision boundaries separating the classes. As the boundary of a cluster cannot pass through
a high-density region of the instance space, the assumption implies that the boundary lies in
a low-density region. Here it is also important to note that the assumption does not state
that clusters are compact structures consisting only of instances of the same class, but that
frequently instances from the same class are observed close together in a high-density region
of the instance space.

Manifold assumption: The instances lie (roughly) on a low-dimensional manifold.

A manifold is a topological space that is locally Euclidean, i.e., around every point, there is a
neighborhood that is topologically the same as the open unit ball in a Euclidean space (Row-
land, 2017). To illustrate it consider the Earth which is roughly spherical in shape but in a
small neighborhood it looks �at and not round. Such small neighborhoods can be accurately
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represented by planes (e.g., geographical maps) unlike the Earth itself. In general, any object
that is nearly �at on small scales is a manifold. The manifold assumption for semi-supervised
learning can be seen as a link between the smoothness assumptions for supervised and
semi-supervised learning. In particular, a manifold can be seen as an approximation to a
high-density region of the instance space and in this case the semi-supervised smoothness
assumption is identical to the supervised smoothness assumption restricted to the data on
the manifold. When the manifold assumption is satis�ed, additional unlabeled instances
can aid in approximating the manifold boundaries and allow embedding of data from a
possibly high-dimensional input space to a low-dimensional space of the manifold. In this
way, learning algorithms can overcome problems faced in high-dimensional spaces where
exponentially many samples are needed for consistent estimation due to the fact that volume
grows exponentially with the dimension of the problem.

2.3 Knowledge-Based Kernel Principal Component Analysis

Having reviewed the prerequisites, kernel principal component analysis (Section 2.1) and semi-
supervised learning (Section 2.2), we now propose an extension of the former in which the
principal components adhere to a set of knowledge-based constraints while still maximizing
the variance at data instances. We start our presentation by introducing means for incorpo-
rating domain knowledge into kernel principal component analysis (Section 2.3.1). Following
this, we show that the representer theorem (Wahba, 1990) applies to the optimization prob-
lems for the computation of knowledge-based kernel principal components (Section 2.3.2),
which are de�ned over a reproducing kernel Hilbert space of functions. We then apply the
representer theorem to these optimization problems and express the knowledge-based kernel
principal components via optimization problems over a Euclidean space (Section 2.3.3).

2.3.1 De�nition of Knowledge-Based Kernel Principal Components

We �rst give a formal de�nition of our knowledge-based constraints and then introduce two
variants of semi-supervised kernel principal component analysis capable of incorporating
these constraints into the process of �nding functional directions with maximum-variance at
data instances. In doing so, we retain the notation introduced in the previous sections.

2.3.1.1 Knowledge-Based Constraints

In this section, we formulate three types of constraints allowing experts to incorporate their
domain knowledge into kernel principal component analysis. The �rst constraint allows one
to specify an approximate or explicit value of a kernel principal component at a particular
instance. In a data visualization generated by knowledge-based kernel principal component
analysis such constraints express the placements of instances in a one/two/three dimensional
space of the visualization. The second constraint allows for weak supervision via a pair
of instances that should be close/far from each other in the projection space. The third
constraint is characteristic to classi�cation tasks and allows one to group instances by their
class. Henceforth, we refer to points for which a constraint is speci�ed as control points.

The placement of control points along a principal component can be incorporated into
kernel principal component analysis as a soft constraint with

Ω(f ,As) = 1
|As|

∑
(x,ys)∈As

‖f (x)− ys‖2 ,
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where ys is the placement coordinate ‘along’ the s-th projection axis corresponding to an
instance x and As denotes a set of such placements. An alternative way is to treat the
placements as hard constraints (Paurat et al., 2013b) and incorporate them into a linear
operator de�ned on the s-th functional direction as

f (x) = ys for all (x,ys) ∈ As .

Note that soft constraints allow some displacement which can lead to better visualizations if
noise is to be expected in the positions of the control points.

Domain knowledge can also be expressed in terms of similarity between points and such
knowledge-based constraints can, for instance, be de�ned by pairing points which should or
should not be placed close to each other. Squared distances between projections of paired
points are then minimized for must-link pairs and maximized for cannot-link pairs, i.e.,

Ω(f ,Bs) = 1
|Bs|

∑
(i,l,yil )∈Bs

yil (f (xi)− f (xl))2 ,

where yil = +1 for a must-link and yil = −1 for a cannot-link constraint, and Bs denotes a
set of such pairwise constraints.

Beside pairwise constraints and explicit placements of control points, domain knowledge
can be incorporated into kernel principal component analysis by providing class labels for
a small number of instances. In particular, a soft constraint corresponding to this type of
supervision can be de�ned as

Ω (f ,Cs) =
∑

(x,y)∈Cs

∑
i∈k-NN(x)

wi∑
j∈k-NN(x)wj

yf (xi) +
∑

(x,∗)<Cs

∑
i∈k-NN(x)

wi∑
j∈k-NN(x)wj

f (x)f (xi) ,

where wi re�ects the similarity between instances x and xi , y = ±1, Cs denotes a set of
classi�cation constraints, and k-NN(x) denotes a set with the arguments of the k nearest
unlabeled neighbors of an instance x. The motivation for this soft constraint comes from
the consideration of an upper bound on the leave-one-out error of the k-NN classi�er given
in Joachims (2003). More speci�cally, a similarity weighted k-NN classi�er makes a leave-
one-out mistake on example (x,y) when

δ (x) =
∑

i∈k-NN(x)

yyi
wi∑

j∈k-NN(x)wj
≤ 0 .

From here it then follows that an upper bound on the zero-one leave-one-out error is given
by (Joachims, 2003)

Lk-NN (X,Y ) ≤ 1
n

n∑
i=1

(1− δ (xi)) .

Having formally de�ned our knowledge-based constraints, we proceed to next section in
which we de�ne knowledge-based kernel principal components.

2.3.1.2 Knowledge-Based Kernel Principal Components

We propose two variants of kernel principal component analysis which extend this unsuper-
vised method to semi-supervised tasks via incorporation of domain-knowledge constraints
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described in the previous section. The two proposed approaches stem from the transfor-
mations of the optimization problems for kernel principal component analysis considered
in Eq. (2.5). Similar to Section 2.1.2, in order to simplify our derivation we, without loss of
generality, assume that the kernel function is centered.

In the �rst approach that extends kernel principal component analysis to semi-supervised
tasks, we iteratively �nd the constantHX-norm (discussed subsequently) knowledge-based
kernel principal components f1, . . . , fr ∈ H by solving the following optimization problem

fs = argmax
f ∈H

1
n

n∑
i=1

f (xi)
2 −Ω(f , s)−λ0

s−1∑
s′=1

〈
f , fs′

〉2
subject to ‖f ‖HX = R ∧ Υ (f ,As) = 0 ,

(2.10)

where Ω (f , s) = λ1Ω (f ,As) +λ2Ω (f ,Bs)−λ3Ω (f ,Cs), Υ is a linear operator over direc-
tion f de�ned using the hard placements of control points, and λ0,λ1,λ2,λ3,R ∈ R+ are
hyperparameters of the optimization problem. Additionally, Υ can be used to express a hard
orthogonality constraint over the computed directions, i.e.,〈

f , fs′
〉
= 0 for all s′ = 1, . . . , s − 1 .

In contrast to this, the current objective expresses the orthogonality between components
using a soft constraint term consisting of the sum of squared inner products between the
current and already computed knowledge-based principal components f1, . . . , fs−1.

Alternatively, it is possible to formulate an extension of kernel principal component
analysis by starting from a di�erent formulation of it, which reverses the roles of the norm
of the projection direction and its variance at data instances. More speci�cally, the second
approach extends kernel principal component analysis to semi-supervised tasks by iteratively
�nding the constant variance knowledge-based kernel principal components f1, . . . , fr ∈ H
which adhere to the domain knowledge constraints, i.e.,

fs = argmin
f ∈H

‖f ‖2H +Ω(f , s) +λ0
s−1∑
s′=1

〈
f , fs′

〉2
subject to 1

n

n∑
i=1

f (xi)
2 = R2 ∧ Υ (f ,As) = 0 .

(2.11)

In contrast to the optimization problem in Eq. (2.10), the latter optimization problem does
not restrict the norm of knowledge-based principal components to a subspaceHX ⊂H. The
reason for this is given in next section, where we show that the representer theorem (Wahba,
1990; Schölkopf et al., 2001; Dinuzzo and Schölkopf, 2012) applies to these two problems.

2.3.2 Representer Theorem

Let us now show that the representer theorem (Wahba, 1990; Schölkopf et al., 2001; Dinuzzo
and Schölkopf, 2012) applies to problems (2.10) and (2.11). First, we show that the theorem
applies to all knowledge-based constraints. In the soft constraint terms Ω (f ,As), Ω (f ,Bs),
and Ω (f ,Cs) an optimizer f ∈ H, f = u +v with u ∈ HX and v ⊥HX , is de�ned with a data
instance x ∈ X . Thus, from the reproducing property of the kernel we have that the optimizer
in these constraints is an element ofHX , i.e.,

f (x) = 〈f ,k (x, ·)〉 = 〈u + v,k (x, ·)〉 = 〈u,k (x, ·)〉 = u (x) .
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The hard constraint term Υ is also independent of v as it holds that f (x) = u(x) for all x ∈ X .
Hence, the representer theorem applies to both, soft and hard, knowledge-based constraints.

Let us now show that the representer theorem holds for problem (2.10). In the compu-
tation of the �rst extreme variance direction, f1, there is no soft orthogonality term in the
optimization objective. Plugging the representation of an optimizer expressed in terms of
the data span and its orthogonal complement, f1 = u1 + v1 with u1 ∈ HX and v1 ⊥HX , into
Eq. (2.10), we conclude (noting that the theorem applies to knowledge-base constraints) that
the optimization objective is independent of v1, and that the representer theorem applies to
this case. For the computation of the s-th variance direction fs with s > 1, we additionally
have orthogonality terms 〈fs, fs′〉 = 〈us + vs, fs′〉 = 〈us, fs′〉 for s′ < s, which are also indepen-
dent of vs. Therefore, the representer theorem applies to problem (2.10) and we can express
an optimizer as fs =

∑
i αs,ik(xi , ·) with αs,i ∈ R.

To show that the representer theorem applies to problem (2.11), �rst observe that the
constant variance constraint, together with all knowledge-based constraints, are independent
of vs ⊥ HX . Thus, the only term that depends on vs in problem (2.11) is the norm of the
principal component in the optimization objective. Now, as the knowledge-based kernel
principal component is obtained by minimizing this objective the norm is minimized too and
the minimum value is attained when vs = 0. Hence, the representer theorem applies also to
problem (2.11) and we can express an optimizer as fs =

∑
i αs,ik(xi , ·) with αs,i ∈ R.

Here it is important to note that in problem (2.10), the norm constraint is de�ned over
HX instead of the whole Hilbert space. The reason for this lies in the fact that with norm
de�ned overH, the representer theorem no longer applies to that optimization problem. In
the remainder of the section, we focus on solving the optimization problem in Eq. (2.11) and
note that an optimal solution to problem (2.10) can be obtained using the same techniques.
Moreover, a detailed derivation for the latter problem can be found in Oglic et al. (2014b).

2.3.3 Derivation of Knowledge-Based Kernel Principal Components

Having shown that the representer theorem applies to problem (2.11), we now transform it
to an optimization problem over a Euclidean space.

As the representer theorem applies to Ω (f ,As) term, we are able to express it using the
kernel matrix and coe�cients de�ning f =

∑n
i=1αik (xi , ·) ∈ HX , i.e.,

Ω(f ,As) = 1
|As|

αTKAKα − 2
|As|

yTs AKα ,

where K denotes the kernel matrix and A is a diagonal matrix such that Aii = 1 when a
label is provided for instance xi , otherwise Aii = 0. Alternatively, one could assign weights
to particular examples by setting Aii = a2i with ai ∈ R. Similarly, we can express the hard
constraint Υ as

Υ (f ,As) = AKα −Ays = 0 .

To obtain a compact matrix-form representation of the pairwise constraint term Ω (f ,Bs),
we start by transforming it using the representer theorem,

Ω (f ,Bs) =
∑

(i,j,yij)∈Bs
yij

(
f (xi)− f (xj )

)2
=

∑
(i,j,yij)∈Bs

yij

((
ei − ej

)>
Kα

)2
=

α>K

 ∑
(i,j,yij)∈Bs

yij∆ij∆
>
ij

Kα ,
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where ei is the canonical basis vector with one at the i-th coordinate and ∆ij = ei − ej . Thus,
denoting with B =

∑
(i,j,yij)∈Bs yij∆ij∆

>
ij the pairwise constraint matrix we obtain a compact

representation of the corresponding soft constraint

Ω (f ,Bs) = 1
|Bs|

α>KBKα .

We note here that the pairwise constraint matrix B is in fact a Laplacian matrix of the graph
given by edge weights yij , where 1 ≤ i, j ≤ n.

Before we give a compact matrix-form representation of the classi�cation constraint,
we need to introduce a weighted k-NN adjacency matrix. Let G denote a weighted k-NN
adjacency matrix such that

g ij =


wij∑

l∈k-NN(xi )wil
if j ∈ k-NN(xi)

0 otherwise .

Similar to Joachims (2003), in order to make this k-NN relation symmetric we replace the
matrix G with the adjacency matrix G = G+G

>
/2. We can now using the matrix G express the

�rst summand in the classi�cation constraint as∑
(xi ,yi )∈Cs

∑
j∈k-NN(xi )

gijyif (xj ) =
∑

(xi ,yi )∈Cs

∑
j∈k-NN(xi )

gijyie
>
j Kα = y>CGKα ,

where C is a diagonal matrix such that Cii = 1 when a label is provided for instance xi ,
otherwise Cii = 0. Similarly, for the second summand in the classi�cation constraint we have∑

(xi ,∗)<Cs

∑
j∈k-NN(xi )

gijf (xi)f (xj ) =
∑

(xi ,∗)<Cs

∑
j∈k-NN(xi )

gije
>
i Kαe

>
j Kα = α>K (I−C)GKα .

Hence, we can express the classi�cation constraint in matrix-form as

Ω (f ,Cs) = 1∣∣∣C⊥s ∣∣∣α>KC⊥GKα +
1
|Cs|

y>CGKα ,

where C⊥s = {x ∈ X | (x,∗) < Cs}, |C⊥s | = n− |Cs|, and C⊥ = I−C.
Having expressed knowledge-based constraints in the matrix form, let us now do the same

for the remaining terms in the optimization problem from Eq. (2.11). As the variance term
has already been expressed in Section 2.1.3, it remains only to express the soft orthogonality
term using the representer theorem. For this term, we have that it holds

s−1∑
s′=1

〈f , fs′〉2 =
s−1∑
s′=1

(
α>Kαs′

)2
= α>K

 s−1∑
s′=1

αs′α
>
s′

Kα .
Denoting with H =

∑s−1
s′=1αs′α

>
s′ , we can rewrite the optimization problem in Eq. (2.11) as

min
α∈Rn

α>K
K−1 + λ1

|As|
A+

λ2
|Bs|

B− λ3∣∣∣C⊥s ∣∣∣C⊥G+λ0H

Kα − y>s (
2
λ1
|As|

A+
λ3
|Cs|

CG

)
Kα

s.t. α>K2α = R2 ∧ Ahard (Kα − ys) = 0 ,

where Ahard is a diagonal matrix specifying the hard placements of the control points over
the s-th knowledge-based kernel principal component.
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Let us assume now that all constraints are soft constraints (hard constrains will be
addressed later) and set

z = Kα ,

S = K−1 +
λ1
|As|

A+
λ2
|Bs|

B− λ3∣∣∣C⊥s ∣∣∣C⊥G+λ0H , and

b =
(
λ1
|As|

A+
λ3
2 |Cs|

CG

)
ys .

Then, the latter optimization problem becomes

zs = argmin
z∈Rn

z>Sz − 2b>z

s.t. z>z = R2 .
(2.12)

In case the soft orthogonality constraint is replaced with the hard one, the optimization
problem from Eq. (2.11) becomes

zs = argmin
z∈Rn

z>Sz − 2b>z

s.t. z>z = R2 ∧ L>z = 0 ,
(2.13)

where L ∈ Rn×(s−1) with coe�cient vectors αs′ corresponding to knowledge-based kernel
principal components fs′ (1 ≤ s′ < s) as columns, and S = K−1 + λ1

|As |A+ λ2
|Bs |B−

λ3

|C⊥s |C
⊥G.

Let us now return to the hard constraint on the placement of control points. From our
derivations, we know that this constraint can be expressed as

0 = Ahard (Kα − ys) = Ahard(z − ys) .
The matrix Ahard is a diagonal matrix with ones at the diagonal entries corresponding to
labeled instances speci�ed with the hard constraint (the remaining diagonal entries are equal
to zero). This hard constraint de�nes a homogeneous linear system of rank given by the
number of such labeled instances. As we will demonstrate in the next section, this constraint
�xes a part of the solution vector zs and, thus, reduces the rank of the optimization problem.
The resulting optimization problem (e.g., see Section 2.4.1) is again given as a quadratic form
over a hypersphere of constant radius.

2.4 Optimization Problem

As demonstrated in Section 2.3.3, to compute our embedding, for any combination of
knowledge-based constraints, we have to solve the following optimization problem

min
z∈Rn

z>Sz − 2b>z
s.t. z>z = R2 ∧ L>z = d,

(2.14)

where S ∈ Rn×n is a symmetric matrix, L ∈ Rn×m with m� n, b ∈ Rn, d ∈ Rm, and R ∈ R.
The problem in Eq. (2.14) is de�ned with an inde�nite quadratic form over a hypersphere of
constant radius and subject to an additional linear equality constraint. Thus, this optimization
problem is non-convex with potentially exponentially many local optima (with respect to the
rank of the optimization problem). Despite this, building on the work by Forsythe and Golub
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(1965) and Gander et al. (1989) it is possible to �nd a globally optimal solution for this problem
in time cubic in the size of the kernel expansion n. In particular, we �rst show (in Section
2.4.1) how to eliminate the hard linear constraint from the optimization problem in Eq. (2.14)
and optimize only a quadratic form over a hypersphere of constant radius. Following this, we
show (in Section 2.4.2) how to derive a globally optimal solution for that problem in a closed
form. The closed form solution can be numerically unstable to compute and, in Section 2.4.3,
we provide an e�cient alternative with a numerically stable secular solver.

2.4.1 Eliminating Linear Constraint

For knowledge-based kernel principal component analysis with hard orthogonality or hard
placement of control points, we have an additional linear equality constraint in the optimiza-
tion problem. As the linear constraint is of rank m� n, it can be eliminated and the initial
problem can be transformed to the minimization of a possibly inde�nite quadratic form over
an (n−m)-dimensional hypersphere of constant radius.

In order to eliminate the linear constraint, we perform a QR factorization of its matrix
L =QΓ , where Q ∈ Rn×n is an orthogonal matrix,

Γ =
[
Γ

0

]
∈ Rn×m ,

and Γ ∈ Rm×m is an upper-triangular matrix. Substituting

Q>z =
[
ζ∗
ζ

]
, such that ζ∗ ∈ Rm and ζ ∈ Rn−m,

linear and hypersphere constraints from Eq. (2.14) can be transformed into

d = L>z = Γ>(Q>z) = Γ
>
ζ∗ =⇒ ζ∗ =

(
Γ
>)−1

d ,

R2 = z>z = ‖ζ∗‖2 + ζ>ζ =⇒ ζ>ζ = R2 − ‖ζ∗‖2 = R̂2 .

As ζ∗ is a constant vector, we can rewrite the objective in Eq. (2.14) as a quadratic form over
an (n−m)-dimensional hypersphere of constant radius. More speci�cally, the quadratic term
can be rewritten as

z>Sz = z>QQ>SQQ>z = ζ∗>S11ζ∗ +2ζ>S12ζ∗ + ζ>S22ζ, where

Q>SQ =
[
S11 S>12
S12 S22

]
with S11 ∈ Rm×m,S12 ∈ R(n−m)×m and S22 ∈ R(n−m)×(n−m).

On the other hand, the linear term can be transformed into

b>z = b>QQ>z = b>1 ζ
∗ + b>2 ζ ,

where b1 ∈ Rm and b2 ∈ Rn−m are the corresponding blocks in the vector Q>b. Denoting
with b̂ = b2 − S12ζ∗ we obtain the resulting optimization problem,

min
ζ∈Rn−m

ζ>S22ζ − 2b̂>ζ
s.t. ζ>ζ = R̂2 .
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2.4.2 Optimization of a Quadratic Form over a Hypersphere

In this section, we review the works by Forsythe and Golub (1965) and Gander et al. (1989),
in which two approaches are described for �nding a globally optimal solution for the opti-
mization of a quadratic form over a hypersphere of constant radius. To �nd an optimizer for
this optimization problem (e.g., see problem 2.12), we �rst derive the Lagrange function

L (z,µ) = z>Sz − 2b>z −µ(z>z −R2) , (2.15)

and set its derivatives to zero, i.e.

Sz = b+µz ∧ z>z = R2 . (2.16)

Notice here that we have, in order to simplify our notation, performed the change of variable
and instead of the variable ζ used in Section 2.4.1, the optimization is performed with respect
to the variable z (i.e., as formulated in Eq. 2.12). As the optimization problem from Eq. (2.12)
is non-convex, a solution to the system in Eq. (2.16) is only a local optimum for that problem.
The following proposition, however, gives a criterion for distinguishing the global optimum of
problem (2.12) from the solution set of the system in Eq. (2.16). Alternative and slightly more
complex proofs for the same claim are given by Forsythe and Golub (1965) and Gander (1980).
Let us now denote the optimization objective from Eq. (2.12) with Θ (z) = z>Sz − 2b>z.
Proposition 2.1. (Forsythe and Golub, 1965; Gander, 1980) The optimization objective Θ (z)
attains the minimal value at the tuple (z,µ) satisfying the stationary constraints (2.16) with the
smallest value of µ. Analogously, the maximal value of Θ (z) is attained at the stationary tuple
with the largest value of the Lagrange multiplier.

Proof. Let (z1,µ1) and (z2,µ2) be two tuples satisfying the stationary constraints (2.16) with
µ1 ≥ µ2. Plugging the two tuples into the �rst stationary constraint we obtain

Sz1 = µ1z1 + b , (2.17)
Sz2 = µ2z2 + b . (2.18)

Substracting (2.18) from (2.17) we have

Sz1 − Sz2 = µ1z1 −µ2z2 . (2.19)

Multiplying Eq. (2.19) �rst with z>1 and then with z>2 and adding the resulting two equations
(having in mind that the matrix S is symmetric) we derive

z>1 Sz1 − z>2 Sz2 = (µ1 −µ2)(R2 + z>1 z2) . (2.20)

On the other hand, using the Cauchy-Schwarz inequality and (2.16) we deduce

z>1 z2 ≤ ‖z1‖‖z2‖ = R2 . (2.21)

Now, combining the results obtained in (2.20) and (2.21) with the initial assumption µ1 ≥ µ2,

z>1 Sz1 − z>2 Sz2 ≤ 2R2(µ1 −µ2) . (2.22)

Finally, subtracting the optimization objectives for the two tuples and using (2.17) and (2.18)
multiplied by z>1 and z>2 , respectively, we show that

Θ(z1)−Θ(z2) = 2R2(µ1 −µ2)− (z>1 Sz1 − z>2 Sz2) ≥ 0 ,

where the last inequality follows from (2.22).
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Hence, instead of the original optimization problem (2.12) we can solve the system with
two stationary equations (2.16) and minimal µ. Gander et al. (1989) propose two methods for
solving such problems. In the �rst approach, the problem is reduced to a quadratic eigenvalue
problem and afterwards transformed into a linear eigenvalue problem. In the second approach
the problem is reduced to solving a one-dimensional secular equation. The �rst approach is
more elegant, as it allows us to compute the solution in a closed form. Namely, the solution
to the problem (2.12) is given by (Gander et al., 1989)

z∗ = (S −µminI)−1 b ,

where µmin is the smallest real eigenvalue of[
S −I

− 1
R2 bb

> S

]
.

Despite its elegance, the approach requires us to decompose a non-symmetric block matrix
of dimension 2n and this is not a numerically stable task for every such matrix. Furthermore,
the computed solution z∗ highly depends on the precision up to which the optimal µ is
computed and for an imprecise value the solution might not be on the hypersphere at all (for
a detailed study refer to Gander et al., 1989). For this reason, we rely on the secular approach
in the computation of the optimal solution. In the next section, we present an e�cient
algorithm (Gander et al., 1989) for the computation of the optimal Lagrange multiplier
to machine precision and here we describe how to derive the secular equation required
to compute the multiplier. First, the stationary constraint from Eq. (2.16) is simpli�ed by
decomposing the symmetric matrix S =UΣU> as

UΣU>z = b+µz .

Then, the resulting equation is multiplied with the orthogonal matrix U> from the left and
transformed into

Σz̃ = b̃+µz̃ with b̃ =U>b ∧ z̃ =U>z .
From the latter equation we compute

z̃i(µ) =
b̃i

σi −µ
(i = 1,2, ...,n) ,

and substitute the computed vector z̃ (µ) into the second stationary constraint to form the
secular equation

g(µ) =
n∑
i=1

z̃2i (µ)−R2 =
n∑
i=1

b̃2i
(σi −µ)2

−R2 = 0 . (2.23)

The optimal value of parameter µ is the smallest root of the non-linear secular equation and
the optimal solution to problem (2.12) is given by

z∗ =U · z̃(µmin) .

Moreover, the interval at which the root lies is known (Gander et al., 1989). In particular,
it must hold µmin ≤ σn ≤ σn−1 ≤ . . .σ1 ≤ µmax, where {σi}ni=1 are the eigenvalues of matrix
S . To see this, suppose that σn , 0 and observe that the derivative of the secular function
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g ′ (µ) > 0 for µ ∈ (−∞,σn). From here it then follows that the secular function is monotone
increasing on the interval (−∞,σn). Thus, if the secular function has a root in that interval
then the root is unique. That such a root exists follows from the fact that the secular function
changes sign on (−∞,σn), i.e., limµ→−∞ g (µ) = −R2 < 0 and limµ→σ−n g (µ) = +∞.

The complexity of both approaches (secular and eigenvalue) for an r-dimensional embed-
ding is O(rn3). The cubic term arises from the eigendecompositions required to compute the
solutions to problem (2.12) for each of the r knowledge-based kernel principal components.

2.4.3 Secular Equation

We review here an e�ective iterative method (Gander et al., 1989) for �nding the small-
est/largest root of the secular equation in Eq. (2.23). An obvious choice for the root �nder
is the Newton method and, yet, it is not well suited for the problem. The tangent at certain
points in the interval of interest crosses the x-axis outside that interval leading to incorrect
solution or division by zero. An e�cient root �nder, then, must overcome these issues and
converge very quickly. The main idea behind the e�cient iterative root �nder is to �rst
approximate the secular equation with a quadratic surrogate and then update the current
root estimate with the root of the surrogate function.

As the smallest root µmin ∈ (−∞,σn), the secular equation (2.23) has a quadratic surrogate
for only one side of the interval (Gander et al., 1989), i.e.,

ht (µ) =
pt

(qt −µ)2
−R2 ,

where pt ,qt ∈ R and ht (µ) is a quadratic surrogate function of the secular equation g (µ). In
order to determine the coe�cients of the surrogate at the step t, the secular equation and its
derivative are matched to the corresponding surrogate approximations at the candidate root.
More formally, the following constraints are enforced on the surrogate function

ht(µt) = g(µt) ∧ h′t(µt) = g ′(µt) ,

where
{
µt

}
t≥0 is a sequence of iterative approximations of µmin (de�ned subsequently). From

this constraint on the derivate of the two functions it follows that

g ′ (µt) = 2
g (µt) +R2

qt −µt
=⇒ qt = µt +2

g (µt) +R2

g ′ (µt)
.

Now, combining the computed coe�cient qt with the constraint on the surrogate value at µt
we obtain the second coe�cient

pt = 4

(
g (µt) +R2

)3
g ′ (µt)2

.

Having computed the coe�cients pt and qt the sequence
{
µt

}
t≥0 is given by

pt
(qt −µt+1)2

−R2 = 0 =⇒ µt+1 = qt −
√
pt
R

= µt +2
g (µt) +R2

g ′ (µt)

1− √
g (µt) +R2

R

 .
For an initial solution that satis�es µmin < µ0 < σn, the convergence is monotonic (Bunch
et al., 1978), i.e., µmin < µt+1 < µt for all t > 0.
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2.5 Large Scale Approximations

In this section, we address the problem of extracting knowledge-based kernel principal
components from large scale datasets with millions of instances. The approaches described
in the previous section are not suitable for such problems because of their computational
complexity. In particular, both of the presented approaches have cubic runtime complexity in
the size of the kernel expansion and do not scale to problems with millions of instances. We
propose two approaches to overcome this shortcoming of knowledge-based kernel principal
component analysis. The approaches are motivated by the fact that frequently used kernel
matrices have a fast decaying spectrum and that small eigenvalues can be removed without a
signi�cant e�ect on the precision (Schölkopf and Smola, 2002). In the �rst approach (presented
in Section 2.5.1), we propose to iteratively solve the optimization problem from Eq. (2.12)
using the conjugate gradient descent method (Golub and van Loan, 1996). An iteration of
the approach has quadratic computational complexity in the number of instances and for
low-rank matrices it is possible to obtain a good approximation of the optimal solution
with a small number of such iterations. In the second approach (presented in Section 2.5.2),
we �rst �nd an approximate low-rank factorization of the kernel matrix and then derive
knowledge-based kernel principal components with that matrix in place of the original kernel
matrix. The approach has the computational complexity linear in the number of instances
and can scale knowledge-based kernel principal component analysis to millions of instances.

2.5.1 Iterative Optimization of a Quadratic Form over a Hypersphere

In this section, we build on the work by Golub and van Loan (1996) an propose an iterative
approach for solving the optimization problem in Eq. (2.12) that has the quadratic runtime
cost per iteration (with respect to the number of instances). The approach is based on the
conjugate gradient descent method (Golub and van Loan, 1996) for solving linear systems
of equations de�ned with symmetric and positive de�nite matrices. First, we describe (in
Section 2.5.1.1) a procedure for an approximate computation of the smallest value of the
Lagrange multiplier satisfying the stationary constraints from Eq. (2.16). The procedure is
based on the conjugate gradient descent method and has the quadratic runtime cost in the
number of instances. For the optimal value of the Lagrange multiplier, the optimal solution
to problem in Eq. (2.12) is the solution of the following linear system

(S −µminI)z = b . (2.24)

As discussed in Section 2.4, the matrix S is symmetric and µmin < σn ≤ σn−1 ≤ · · · ≤ σ1. From
here it then follows that the matrix P = (S −µminI) is symmetric and positive de�nite. Hence,
we can apply the conjugate gradient descent method (Section 10.2, Golub and van Loan, 1996)
to iteratively solve this system with the quadratic cost per iteration. In Section 2.5.1.2, we
provide a brief review of this method and present a theoretical guarantee on the quality of the
solution obtained in this way. In our review of the approach, we follow closely the exposition
by Golub and van Loan (Chapter 10, 1996).

2.5.1.1 Iterative Computation of the Lagrange Multiplier

In this section, we propose a mean to approximate the optimal Lagrange multiplier (de�ning
the linear system in Eq. 2.24) in large scale problems. In order to compute the multiplier, we
�rst need to derive the open interval containing this root of the secular equation. As shown
in Section 2.4.2, the optimal multiplier lies in the open interval determined by the smallest
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eigenvalue of the matrix S . To obtain the smallest eigenvalue of the matrix S , we propose
to use the power iteration algorithm (Golub and van Loan, 1996) which has the quadratic
runtime cost per iteration. However, as we need the smallest eigenvalue and the power
iteration algorithm computes the largest one, we apply the algorithm to the matrix −S .

Having computed the smallest eigenvalue of the matrix S , we have determined the
interval of the secular root corresponding to the optimal Lagrange multiplier. In order to
compute this multiplier we form a slightly di�erent version of the secular equation,

g (µ) = z> (S −µI)−2 z −R2 .

In our empirical evaluations (Section 2.9), the iterative algorithm described in Section 2.4.3
proved to be very fast and always converged in few iterations to machine precision. To apply
this algorithm with the conjugate gradient descent method and without an eigendecompo-
sition of S , we need to be able to derive the coe�cients, pt and qt (t > 0), of the surrogate
quadratic function (see Section 2.4.3). For this, we need to be able to evaluate the secular
equation and its derivative at any iteration. The �rst is simple to achieve using the conjugate
gradient descent algorithm from the previous section. In particular, for the derivative of the
secular equation at an estimate µt of µmin we have

g ′ (µt) = 2z>µt (S −µtI)−1 zµt ,

where zµt is the solution of the linear system Pµtz = b with Pµt = S − µtI, obtained using
the conjugate gradient descent method. Thus, by applying the conjugate gradient descent
method one more time to solve the linear system Pµt ẑ = zµt , one obtains the gradient of the
secular equation at µt . The described procedure has quadratic runtime complexity stemming
from the cost per iteration of the conjugate gradient descent method. Hence, for low-rank
kernel matrices (or matrices with a fast decaying spectrum) we can use this approach to
compute an approximation of the optimal multiplier for problem (2.12) in O(n2) time.

2.5.1.2 Conjugate Gradient Descent

This section reviews the conjugate gradient descent approach (Chapter 10, Golub and van
Loan, 1996) in the context of Section 2.4 and the optimization problem in Eq. (2.24). The
approach is based on the observation that solving the linear system, P z = b, is equivalent to
minimizing the quadratic form

Φ (z) =
1
2
z>P z − b>z .

The fact that P is a symmetric and positive de�nite matrix implies that the minimal value
of Φ (z) is attained by setting z = P −1b. Thus, the simplest iterative method for solving the
linear system in Eq. (2.24) is the gradient descent approach. The negative gradient of the
quadratic form at the step t is given by the residual at that step, i.e.,

rt = b − P zt = −∇Φ (zt) .

If the residual vector is non-zero then there exists a positive constant τ ∈ R+ such that
zt+1 = zt + τrt and Φ (zt+1) < Φ (zt). While simple and easy to implement, the gradient
descent method can be ine�cient when the condition number κ (P ) = σ1−µmin/σn−µmin is large.

To avoid this issue, the conjugate gradient descent method minimizes the quadratic
form Φ (z) along a set of linearly independent directions {gi}ti=1 that do not necessarily
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correspond to residuals {ri}ti=1, with t = 1,2, . . . ,n. The convergence is guaranteed in at most
n steps because that is the dimension of the problem and a solution can be written as a
linear combination of at most n linearly independent vectors. Similar to Golub and van Loan
(1996), let us �rst consider the choice of a direction gt . For this purpose, let us now take (we
subsequently show that this can always be done)

zt = z0 +Gt−1ξ + τgt ,

where Gt−1 is a matrix with columns {gi}t−1i=1, ξ ∈ Rt−1, and τ ∈ R. Then, we have that

Φ (zt) = Φ (z0 +Gt−1ξ + τgt) =

Φ (z0 +Gt−1ξ) + τξ>G>t−1P gt +
τ2

2
g>t P gt + τg

>
t (P z0 − b) =

Φ (z0 +Gt−1ξ) + τξ>G>t−1P gt +
τ2

2
g>t P gt − τg>t r0 .

If gt ⊥ span({P g1, . . . , P gt−1}) then ξ>G>t−1P gt = 0 and the search for zt splits into two
independent optimization problems,

min
z ∈ z0+span({g1,...,gt})

Φ (z) = min
ξ∈Rt−1, τ∈R

Φ (z0 +Gt−1ξ + τgt) =

argmin
ξ∈Rt−1, τ∈R

Φ (z0 +Gt−1ξ) +
τ2

2
g>t P gt − τg>t r0 =

min
ξ∈Rt−1

Φ (z0 +Gt−1ξ) +min
τ∈R

(
τ2

2
g>t P gt − τg>t r0

)
.

From here it then follows that the solution to the �rst optimization problem minimizes the
quadratic form over z0 + span({g1, . . . , gt−1}). On the other hand, the optimal solution to the
second problem is τt =

g>t r0
g>t P gt

. Moreover, the fact that gt ⊥ span({P g1, . . . , P gt−1}) implies

g>t rt−1 = −g>t (P zt−1 − b) = −g>t (P z0 + PGt−1ξ − b) = g>t r0 .
Thus, direction gt should be chosen so that gt ⊥ span {P g1, . . . , P gt−1} and g>t rt−1 , 0.
In Golub and van Loan (Section 10.2, 1996), the authors show that such conjugate directions
can always be selected by setting

gt = rt−1 +πtgt−1 .

Multiplying the latter equation with g>t−1P from the left and using the fact that the vectors
P gt−1 and gt are mutually orthogonal we obtain that

πt = −
g>t−1P rt−1
g>t−1P gt−1

.

Hence, the conjugate gradient descent can be performed by setting

zt = zt−1 + τtgt = zt−1 +
g>t r0
g>t P gt

(rt−1 +πtgt−1) = zt−1 +
g>t rt−1
g>t P gt

(
rt−1 −

g>t−1P rt−1
g>t−1P gt−1

gt−1
)
.

The conjugate gradient descent iteration in this form requires three matrix-vector multiplica-
tions. This is computationally ine�cient and it can be improved by observing that

rt = b − P zt = b − P zt−1 − τtP gt = rt−1 − τtP gt .
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From here it then follows that

‖rt−1‖2 = r>t−1rt−1 = r>t−1rt−2 − τt−1r>t−1P gt−1 .
Noting that r>t−1rt−2 = 0 (e.g., see Theorem 10.2.3 in Golub and van Loan, 1996) we get

‖rt−1‖2 = −τt−1r>t−1P gt−1 .
On the other hand, from the de�nition of τt−1 it follows that

g>t−1rt−2 = g
>
t−1r0 = τt−1g

>
t−1P gt−1 .

The latter expression implies that we can express πt as

πt =
‖rt−1‖2
g>t−1rt−2

.

Hence, we can now give a conjugate gradient descent iteration that requires only one matrix-
vector multiplication,

zt = zt−1 +
g>t rt−1
g>t P gt

(
rt−1 +

‖rt−1‖2
g>t−1rt−2

gt−1
)
.

Having given an iterative solution that requires a single matrix-vector multiplication and,
thus, has the quadratic runtime cost per iteration, we now review the theoretical properties of
the method. First, we present a worst case bound on the approximation error of the approach
expressed in terms of the number of iterations and condition number of the matrix de�ning
the linear system in Eq. (2.24).
Theorem 2.2. (Luenberger, 1973) Assume P ∈ Rn×n is a symmetric and positive de�nite matrix
and b ∈ Rn. If the conjugate gradient descent method produces iterates {zi} and κ = κ (P ) then

‖z∗ − zt‖P ≤ 2
(√
κ − 1√
κ+1

)t
‖z∗ − z0‖P ,

where z∗ = P −1b and ‖z‖2P = z>P z.

Corollary 2.3. The approximation error of the conjugate gradient descent method satis�es∥∥∥zt − P −1b∥∥∥ ≤ 2
√
κ

(√
κ − 1√
κ+1

)t ∥∥∥z0 − P −1b∥∥∥ .
Proof. This corollary is formulated as a self-study problem in Golub and van Loan (Problem
10.2.8, 1996). In order to show this claim, let us �rst observe that∥∥∥zt − P −1b∥∥∥2P =

(
zt − P −1b

)>
P
(
zt − P −1b

)
=

∥∥∥∥P 1/2
(
zt − P −1b

)∥∥∥∥2 .
For the resulting expression, using the properties of the operator norm, we obtain

√
σn −µmin

∥∥∥zt − P −1b∥∥∥ ≤ ∥∥∥∥P 1/2
(
zt − P −1b

)∥∥∥∥ ≤ √σ1 −µmin

∥∥∥zt − P −1b∥∥∥ .
Hence, from Theorem 2.2 and the latter inequality it follows that

√
σn −µmin

∥∥∥zt − P −1b∥∥∥ ≤ ‖z∗ − zt‖P ≤ 2
(√
κ − 1√
κ+1

)t
‖z∗ − z0‖P ≤

2
√
σ1 −µmin

(√
κ − 1√
κ+1

)t ∥∥∥z0 − P −1b∥∥∥ .
The result follows after dividing the latter inequality by √σn −µmin.
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From these two bounds, we conclude that the conjugate gradient descent method con-
verges fast, i.e., in a small number iterations, for well-conditioned matrices. Thus, for
knowledge-based kernel principal component analysis with a well-conditioned matrix P the
approach can provide an e�cient approximation of the optimal solution for the optimization
of a quadratic form over a hypersphere of constant radius (described in Section 2.4). Beside
these two results, Golub and van Loan (1996) give an upper bound on the number of required
iterations for matrices that can be written as a sum of the identity and a low-rank matrix.
The following theorem states that result more formally.

Theorem 2.4. (Golub and van Loan, 1996) Assume that P = I + P ∈ Rn×n is a symmetric
and positive de�nite matrix and rank

(
P
)
= r . Then, the conjugate gradient descent method

converges in at most r +1 steps.

Thus, for low-rank kernel matrices the conjugate gradient descent method can provide
an e�ective approximation of the optimal solution de�ning the knowledge-based kernel
principal components. Having reviewed this approach and theoretical results giving insights
into its e�ectiveness, we proceed to the next section where we derive knowledge-based kernel
principal components using an approximate low-rank factorization of a kernel matrix.

2.5.2 Low-Rank Approximations

In this section, we propose an alternative approach for the derivation of knowledge-based
kernel principal components in large scale problems compared to the approach presented in
Section 2.5.1. The main idea behind this approach is to substitute the full kernel matrix with
an approximate low-rank factorization and adapt the techniques presented in Section 2.4
to account for the low-rank approximation. More speci�cally, we propose to use a matrix
K = Ψ >Ψ with Ψ ∈ Rl×n such that for all ε > 0 there exists l ≤ n so that∥∥∥K −Ψ >Ψ ∥∥∥

p
< ε ,

where ‖·‖p denotes the Schatten p-norm of a symmetric and positive de�nite matrix (Weid-
mann, 1980). Typically, the rank of the approximation l� n and this enables us to �nd the
approximate knowledge-based kernel principal components using the closed form solvers
in time O(l3). This is a signi�cant speed-up compared to the runtime cost of O(n3) for the
optimization problem in Eq. (2.11) de�ned with the full kernel matrix.

For the moment, suppose that the kernel matrix K can be approximated with a low-rank
factorization Ψ >Ψ . Then, the optimization problem from Eq. (2.12) can be written as

min
z∈Rn

z>Ψ >Ψ
((
Ψ >Ψ

)−1
+E

)
Ψ >Ψ z − 2b>Ψ >Ψ z

s.t. z>
(
Ψ >Ψ

)2
z = R2 ,

(2.25)

where E = S−K−1. The fact that the matrix Ψ is of rank l� n implies that the inverse matrix
(Ψ >Ψ )−1 ∈ Rn×n is also of rank l. To see this, let us perform a singular value decomposition of
matrix Ψ =UΠV >, where U ∈ Rl×l and V ∈ Rn×n are orthogonal matrices, and Π ∈ Rl×n
is a diagonal matrix with at most l positive singular values. From the decomposition it
follows that Ψ >Ψ = VΠ2V >. If we denote with Πl ∈ Rl×l the diagonal matrix with l
non-zero singular values then the inverse matrix (Ψ >Ψ )−1 = VlΠ−2l V

>
l , where Vl denotes

the right singular vectors corresponding to non-zero singular values in Πl . The fact that
the singular value matrix Π is of rank l also implies that in (Ψ >Ψ )2 = VlΠ

4
l V
>
l there is
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no dependence on the right singular vectors corresponding to zero singular values. Hence,
substituting z = Π2

l V
>
l z ∈ Rl into Eq. (2.25) we obtain the optimization problem for the

low-rank approximation of knowledge-based kernel principal components,

min
z∈Rl

z>
(
Π−2l +V >l EVl

)
z − 2

(
V >l b

)>
z

s.t. z>z = R2 .
(2.26)

In the latter problem, Π−2l +V >l EVl ∈ Rl×l is a symmetric matrix that can be computed in
time O(l3 + l2n), where O(l3) stems from the singular value decomposition of matrix Ψ and
O(l2n) from the matrix-matrix multiplications in V >l EVl . The latter computational cost is
not cubic because the matrices comprising E are either diagonal or very sparse (e.g., see
Eq. 2.12). Hence, a closed form solution for the problem in Eq. (2.26) can be computed in
time O(l3 + l2n) using the approaches from Section 2.4. As l � n the approach can scale
knowledge-based kernel principal component analysis to millions of instances.

Having described the optimization problem for the computation of low-rank approx-
imations to knowledge-based kernel principal components, we now review two standard
approaches for obtaining a good low-rank factorization of the kernel matrix. While the
approach reviewed in Section 2.5.2.1 is suitable for any kernel function, the one reviewed in
Section 2.5.2.2 works only for the class of stationary kernels (e.g., see Chapter 3).

2.5.2.1 Nyström Method

The section provides a brief review of the Nyström method (Nyström, 1930; Williams and
Seeger, 2001) for low-rank approximation of kernel matrices. The method will be investi-
gated in more details in Chapter 4, where an approximation bound will also be given. The
presentation in this section follows closely that of Williams and Seeger (2001), where the
approach was �rst introduced for the purpose of low-rank approximation of kernel matrices.

The Nyström method computes a low-rank approximation K of a kernel matrix K by
�rst sampling (without replacement) l instances from X. The literature often refers to
these selected instances as landmarks. If we denote with Kl,l the block in the kernel matrix
corresponding to kernel function values between the landmarks and with Kn,l the block
with kernel values between all available instances and the landmarks, then the Nyström
approximation is given by

K = Kn,lK
−1
l,l Kl,n .

Now, from the eigendecomposition of the symmetric and positive de�nite matrix Kl,l =
Vl,lΣ

2
l,lV

>
l,l , we obtain that the low-rank approximation can be written as

K = Kn,lVl,lΣ
−1
l,l

(
Kn,lVl,lΣ

−1
l,l

)>
= Ψ >Ψ ,

where Ψ =
(
Kn,lVl,lΣ

−1
l,l

)>
. In order to express a particular instance xi ∈ X in this feature

representation, one �rst needs to compute the column vector, Ki , with kernel values between
that instance and landmarks. Then, the instance xi can be represented as K>i Vl,lΣ

−1
l,l .

The computational complexity of the Nyström method is O
(
l3 + l2n

)
and the fact that

l� n implies that the method is capable of alleviating the cubic complexity of our approach.
If we denote with Vl and Σl matrices with the top l eigenvectors and eigenvalues of the
kernel matrix K = VΣV >, then the optimal approximation of the kernel matrix (measured
in the Schatten p-norm) is obtained if the landmarks can be selected such that K = VlΣlV

>
l .
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2.5.2.2 Random Fourier Features

In this section, we provide a brief overview of the random Fourier features method for the
approximation of stationary kernel functions. A more detailed review of this approach is
provided in Chapter 3. Before we give a low-rank approximation of the kernel matrix using
random Fourier features, we de�ne the class of shift-invariant/stationary kernel functions.

De�nition 2.1. Let D ⊂ Rd be an open set. A positive de�nite kernel k : D ×D→ R is called
stationary or shift-invariant if there exists a function s : D→ R such that k (x,y) = s (x − y),
for all x,y ∈D . The function s is said to be a function of positive type.

Having de�ned the class of stationary kernels, let us now review the key theoretical
result for the approximation of kernel functions using random Fourier features.

Theorem 2.5. (Bochner, 1932) The Fourier transform of a bounded positive measure on Rd is
a continuous function of positive type. Conversely, any function of positive type is the Fourier
transform of a bounded positive measure.

From this theorem it follows that for a stationary kernel k it holds

k (x,y) = s (x − y) =
∫
Rd

exp(−i 〈w,x − y〉)dµ (w) ,
where µ is a positive and bounded measure. As k (x,y) is a real function in both arguments,
the complex part in the integral on the right hand-side is equal to zero, and we have

k (x,y) = 2
∫

cos
(
w>x+ b

)
cos

(
w>y + b

)
dµ̂ (w,b) ,

where µ̂ (w,b) = µ(w)
2π > 0 for all w ∈ Rd and b ∈ [−π,π]. Hence, it is possible to sample

(w,b) proportional to µ̂ (w,b) and approximate the kernel value at (x,y) by the Monte-Carlo
estimate of the integral de�ning the inner product between two instances. The �rst kernel
approximation algorithm based on this idea was proposed by Rahimi and Recht (2008a). That
work gives an approximation of a stationary kernel using l random Fourier features by

k (x,y) =
2
l

l∑
i=1

cos
(
w>i x+ bi

)
cos

(
w>i y + bi

)
,

where {(wi ,bi)}li=1 are independent samples from the probability distribution that is pro-
portional to the measure µ̂ (w,b). The convergence of the approximation to the actual
value of the kernel function at a given pair of instances follows from the Hoe�ding’s
concentration inequality (e.g., see Chapter 3 for more details). Hence, if we denote with
ψl (x) = vec

{√
2/l cos

(
w>1 x+ b1

)
, . . . ,
√
2/l cos

(
w>l x+ bl

)}
, the approximation of the kernel

function at (x,y) can be written as

k (x,y) = ψl (x)
>ψl (y) .

From here it then follows that the approximation of the kernel matrix can be written as

K = ψl (X)
>ψl (X) ,

where xi denotes the i-th column in the data matrix X (1 ≤ i ≤ n) and ψl (X) ∈ Rl×n is the
matrix with random Fourier features, ψl (xi), as columns.
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2.6 Interactive Data Visualization

Having introduced means for incorporating domain knowledge constraints into kernel prin-
cipal component analysis (Section 2.3), we now propose an e�cient algorithm for interaction
with a data visualization generated using the knowledge-based kernel principal components.
To shape such an embedding interactively with the help of knowledge-based constraints
it is required to solve the optimization problem in Eq. (2.11) at each interaction step. In
Section 2.4, we have described how to solve the arising optimization problem in a closed
form with runtime complexity O(rn3), where r is the number of embedding directions. In
this section, we show how the proposed algorithm can be adapted to enable user interaction
in O(r2n2) time. For low-rank approximations (Section 2.5.2), the runtime complexity of
computing a closed form solution is O(rl3) with l � n, and for such data embeddings the
interaction can be performed in O(r2l2) time. In order to achieve this speed-up in runtime,
we express the interaction in terms of rank-one updates of the original problem (Section 2.6.1)
and review a linear time algorithm for solving the arising secular equations (Section 2.6.2).

2.6.1 E�cient Formulation of Interaction

Each interaction step consists of moving a single control point. In particular, either one selects
a new control point or updates the position of an existing one. To compute such an embedding
interactively the algorithm needs to solve a variant of the problem in Eq. (2.12) for di�erent
interaction steps and for all r directions. Let us assume, without loss of generality, that the
algorithm is required to �nd r knowledge-based kernel principal components de�ned with
only soft control point placements and soft orthogonality. We denote with St,s the symmetric
matrix de�ning the quadratic term in the problem arising for a step t and a direction s. The
linear term corresponding to the s-th direction in the step t is a function of a block of the
kernel matrix and control point placements yt . We denote such a linear term with bt,s and
write the �rst stationary constraint for the s-th direction in the step t as

St,sz = µz+ bt,s .

For a knowledge-based principal component corresponding to s > 1 and t > 1, the matrix
St,s is a rank-one update of the matrix St,s−1. To see this, observe that the soft orthogonality
term is the only di�erence between these two matrices. Otherwise, for s = 1 and t > 1 either
a new control point is selected and the matrix St,s is a rank-one update of the matrix St−1,s
or the position of an existing control point is updated and St,s = St−1,s. For simplicity of our
derivation, we can without loss of generality assume that a new control point has been added
in the step t > 1 and focus on �nding the �rst projection direction. The derivation for the
update of an existing control point di�ers only in that St,1 = St−1,1.

As we have already solved the optimization problem for the step t − 1 and s = 1, we can
reuse the eigendecomposition of St−1,s =Ut−1,sΣt−1,sU>t−1,s and express the matrix St,s as

St,s = St−1,s − τat,sa>t,s =Ut−1,s
(
Σt−1,s − τat,sa>t,s

)
U>t−1,s ,

where at,s is the rank-one update of the quadratic term from Eq. (2.12) corresponding to an
addition of a control point and at,s = U>t−1,sat,s. Let us denote the rank-one update of the
diagonal matrix Σt−1,s as

Θt,s = Σt−1,s − τat,saTt,s . (2.27)



38 Knowledge-Based Kernel Principal Component Analysis

The computational complexity of a complete eigendecomposition (e.g., see Bunch et al., 1978;
Arbenz, 2012) of the matrix Θt,s is O(n2). The decomposition can be computed by solving n
secular equations (see Section 2.6.2), one for each of the eigenvalues of Θt,s. Rewriting the
�rst stationary constraint using the substitution we get

Ut−1,sΘt,sUT
t−1,sz = µz+ bt,s =⇒ Θt,sz = µz+ bt,s ,

where z =UT
t−1,sz and bt,s =UT

t−1,sbt,s. Now, using the eigendecompositionΘt,s = Vt,sΣ′t,sV Tt,s
we transform the latter problem into

Σ′t,sz̃t,s = µz̃t,s + b̃t,s , (2.28)

where z̃t,s = V Tt,sz and b̃t,s = V Tt,sbt,s. The second stationary constraint combined with
Eq. (2.28) gives the secular solution z̃t,s (µmin), similar to the one from Eq. (2.23). Hence, for
t > 1 and s = 1 the knowledge-based kernel principal component zt,s is given by

zt,s =Ut−1,sVt,sz̃t,s (µmin) ,

where z̃t,s (µ) is a vector with the i-th component given by

z̃t,s,i (µ) =
Ut−1,sVt,sbt,s
σ ′t,s,i −µ

.

Here, σ ′t,s,i denotes an eigenvalue of Θt,s and i = 1, . . . ,n.
For the interaction in a step t > 1 and for a component s > 1, the matrix St,s is a rank-one

update of St,s−1. Thus, the knowledge-based kernel principal component zt,s is given by

zt,s =Ut,s−1Vt,sz̃t,s (µmin) =Ut−1,s

 s∏
i=1

Vt,i

 z̃t,s (µmin) ,

where z̃t,s (µ) is a vector with components (1 ≤ i ≤ n)

z̃t,s,i (µ) =
Ut−1,s

(∏s
i=1Vt,i

)
bt,s

σ ′t,s,i −µ
.

Hence, to compute r directions at the interaction step t the algorithm needs to perform
O(r2) matrix-vector multiplications, each incurring a quadratic cost, together with r quadratic
time decompositions of Θt,s matrices. What remains to compute the data embedding is a
multiplication of direction vectors with the kernel matrix which is again of quadratic runtime
complexity. Therefore, the overall complexity of an interaction step isO(r2n2). When dealing
with low-rank approximations of rank l � n, the optimization problem is solved over the
space of dimension l instead of n, and the computational cost of the interaction is O(r2l2).

In a similar fashion, it is possible to show that the computational cost of the interaction
with other knowledge-based constraints is also quadratic.

2.6.2 Rank-One Modi�cation of a Diagonal Matrix

In this section, we review an approach for computing an eigendecomposition of a matrix
that can be written as a rank-one modi�cation of a diagonal matrix. Hence, expressed in the
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notation from the previous section (for simplicity, indices s and t are omitted), we consider
the problem of �nding an eigendecomposition of the matrix

Θ = Σ+ τaa> .

The review follows along the lines of the works by Arbenz (2012) and Li (1993). Let us begin
by assuming that the diagonal entries of the matrix Σ satisfy σn < σn−1 < · · · < σ1 and that
all components in the vector a are non-zero real numbers.

If (σ ′ ,v) is an eigenpair of Θ, then it holds

(Σ− σ ′I)v = −τaa>v .

Now, if σ ′ = σi for some 1 ≤ i ≤ n, then either a>v = 0 or ai = 0. According to our
initial assumption ai , 0 for all 1 ≤ i ≤ n and then it must hold that a>v = 0. The latter,
however, implies that (Σ′ − σiI)v = 0 and v = ei . From here, on the other hand, it follows
that ai = a>v = a>ei = 0. As this is in contradiction with our assumption about the vector a,
it follows that σ ′ , σi for all 1 ≤ i ≤ n. Hence, the matrix Σ− σ ′I is of full-rank and

v = −τa>v (Σ− σ ′I)−1 a . (2.29)

Multiplying this equation with a> from the left, we deduce that

a>v
(
1+ τa> (Σ− σ ′I)−1 a

)
= 0 .

As we have already established that a>v , 0, the latter expression gives the secular equation
for the eigenproblem of rank-one modi�cation of a diagonal matrix,

g(σ ′) = 1+ τ
n∑
i=1

a2i
σi − σ ′

. (2.30)

Thus, to �nd the eigenvalues of Θ we need to determine the roots of the secular equation
from Eq. (2.30). The problem of �nding such roots has been investigated in details by Bunch
et al. (1978) and (Li, 1993). We review such an approach in Section 2.6.2.1 and focus now on
determining the intervals of the eigenvalues and corresponding eigenvectors of Θ.

The derivative of the secular equation is given by

g ′ (σ ) = τ
n∑
i=1

a2i
(σi − σ )2

.

Thus, the secular function g (σ ) is, for τ > 0, increasing on open intervals (σi+1,σi) for
1 ≤ i ≤ n− 1, as well as on the interval (σ1,+∞). In other words, the interlacing property
holds for the entries from the diagonal matrix Σ and the eigenvalues of Θ, i.e.,

σn < σ
′
n < σn−1 < σ ′n−1 < · · · < σ1 < σ ′1 .

For τ < 0, the smallest eigenvalue σ ′n ∈ (−∞,σn) and σ ′i ∈ (σi+1,σi) for 1 ≤ i ≤ n − 1.
Moreover, we can observe that for τ > 0 and â =

√
τa, the secular equation can be written as

g(σ ) = 1+
n∑
i=1

â2i
σi − σ

.
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A similar property holds for τ < 0 and we can, without loss of generality, assume that τ = 1.
Having formulated the secular equation and determined the intervals with secular roots,

we now show how to compute the corresponding eigenvectors. From Eq. (2.29), it follows that
an eigenvector v corresponding to the eigenvalue σ ′ is collinear with the vector (Σ− σ ′I)−1 a.
Hence, once the eigenvalues are computed the eigenvectors are given by (1 ≤ i ≤ n)

vi =

(
Σ− σ ′i I

)−1
a∥∥∥∥(Σ− σ ′i I)−1 a∥∥∥∥ .

This method for the computation of eigenvectors can, however, be numerically unstable
when a secular root is close to one of the interval endpoints (e.g., the case with σ ′i ∈ (σi ,σi−1)
and σ ′i very close to either σi or σi−1). An e�cient and more numerically stable approach for
computing the eigenvectors can be found in Gu and Eisenstat (1994).

2.6.2.1 Secular Equation of a Rank-One Modi�cation of a Diagonal Matrix

The secular equation of a rank-one update modi�cation of a diagonal matrix di�ers from
the secular equation investigated in Section 2.4.3 in that the denominators σi − σ ′ are not
squared. Moreover, the secular roots now correspond to eigenvalues and all of them need to
be computed. This implies that a secular root �nding procedure needs to be informed of the
fact that the interval endpoints are, in general, �nite real numbers. Let us now review an
approach (Bunch et al., 1978; Li, 1993; Arbenz, 2012) for �nding the secular root from the
interval (σm,σm−1), with 1 ≤ m ≤ n and σ0 = +∞. First, the non-constant terms from the
secular function g are split into two functions

ψ1(ξ) =
n∑
i=m

a2i
σi − ξ

> 0 ∧ ψ2(ξ) =
m−1∑
i=1

a2i
σi − ξ

< 0 .

Then, each function ψi (i = 1,2) is approximated by a quadratic surrogate function

hi,t(ξ) = pi,t +
qi,t

σm+1−i − ξ
,

where pi,t ,qi,t ∈ R are constants. These constants are computed such that (Li, 1993)

hi,t(ξt) = ψi(ξt) ∧ h′i,t(ξt) = ψ
′
i(ξt) ,

where {ξt}t≥0 ⊂ (σm,σm−1) is a sequence of iterative approximations of the secular root from
the interval (σm,σm−1). Thus, for the quadratic surrogate with i = 1 we obtain that

q1,t = ψ
′
1 (ξt) (σm − ξt)2 ∧ p1,t = ψ1 (ξt)−ψ′1 (ξt) (σm − ξt) .

Similarly, for the surrogate with i = 2 we have that

q2,t = ψ
′
2 (ξt) (σm−1 − ξt)2 ∧ p2,t = ψ2 (ξt)−ψ′2 (ξt) (σm−1 − ξt) .

Now, combining the surrogates for the two terms we obtain a quadratic surrogate for the
secular function in Eq. (2.30),

ht (ξ) = pt +
q1,t
σm − ξ

+
q2,t

σm−1 − ξ
, (2.31)
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where pt = p1,t + p2,t . The next candidate for the root ξt+1 is then given as a root of
the quadratic surrogate function ht (ξt+1) = 0. While the quadratic function ht (ξ) has
two roots, only one of them lies in the interval (σm,σm−1). To see this, �rst observe that
limξ→σm ht (ξ) = −∞, limξ→σm−1 ht (ξ) = +∞, and h′t (ξ) > 0 for ξ ∈ (σm,σm−1). Thus, there
can only be one root in that interval because ht (ξ) is an increasing function with di�erent
signs on the left and the right endpoint of the interval.

Bunch et al. (1978) have shown that the presented secular root �nder converges to the
desired root quadratically (i.e., the accuracy gets doubled at each iteration). In our empirical
evaluations of the approach, the convergence usually happens after 5− 10 iterations. The
computational complexity of �nding all secular roots isO(n2). As the secular roots correspond
to the eigenvalues of Θ, the computational complexity of �nding all eigenvalues of a rank-one
modi�cation of a diagonal matrix is also O(n2). Here, we note that di�erent roots of the
secular function in Eq. (2.30) belong to distinct intervals and can be, therefore, computed in
parallel. This enables an e�cient gpu implementation of the secular solver resulting in a
signi�cant speed-up to the presented algorithm. Consequently, with a gpu implementation of
the secular solver it is possible to increase the interaction frame rate and improve scalability.

2.6.2.2 De�ation

In this section, we address the cases not covered by the assumptions leading to the secular
function in Eq. (2.30). In particular, we review an approach (Arbenz, 2012) for dealing with
rank-one modi�cation vectors that contain some zero-valued entries and diagonal matrices
with multiple occurrences of a non-zero eigenvalue.

Assume that ai = 0 for some 1 ≤ i ≤ n. Then, (σi ,ei) is an eigenpair for the matrix
Θ because it holds that Θei = σiei . As each zero-valued entry in the vector a determines
one eigenpair for the matrix Θ, we can omit these components from our eigenproblem and
focus only on the components with non-zero values. In this way, the general case in which
zero-valued entries in a are possible is transformed to the already considered case with the
vector a having all non-zero entries.

Having addressed the zero-valued entries in a, assume now that σi = σj for i , j and
1 ≤ i, j ≤ n. For the two corresponding entries in vector a it is possible to de�ne the Givens
rotation (e.g., see Golub and van Loan, 1996), Gij , so that the vector â = G>ija is given by

âk =


ak , k , i ∧ k , j√
a2i + a

2
j , k = i

0 , k = j .

On the other hand, as the matrix Σ is diagonal it also holds that G>ijΣGij = Σ. This property
implies that we can work with the transformed matrix

Θ̂ = G>ΘG = Σ+G>a
(
G>a

)>
=

[
Σ1 + a1a

>
1 0

0 Σ2

]
,

where the vector a1 consists of non-zero entries, Σ1 is a diagonal matrix with distinct diagonal
entries, and G is the product of the Givens rotation matrices (one for each index from a that
gets set to zero). For matrix Θ̂, we can immediately compute the eigenpairs corresponding
to the matrix block de�ned with Σ2. For the non-trivial block with diagonal matrix Σ1,
we can use the described secular solvers (see Section 2.6.2.1) to �nd the corresponding
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eigendecomposition. Having computed the eigenvectors V̂ of matrix Θ̂, we need to transform
them to obtain the eigenvectors V = GV̂ for the corresponding eigendecomposition of Θ.

The computation of an eigenvector of Θ can be numerically unstable when the secular
root is too close to the corresponding interval endpoints. Typically, this happens when the
gap between the successive diagonal values from Σ that determine a secular root interval is
too small. To avoid this numerical instability, it is possible to �rst set such successive entries
from Σ to identical values and then transform the matrix Θ using the Givens rotations. This
transformation sets the corresponding components of the vector a to zero and adds numerical
stability to the computation of an eigendecomposition of Θ.

2.7 Hyperparameter Optimization

In this section, we show how to improve the inductive bias (Baxter, 2000) of our approach by
automatically tuning the hyperparameters while performing inner cross-validation. In this
process, we split the training data into training and validation folds and select a validation
function that will be optimized with respect to the hyperparameter vector. The optimization
can be performed with an o�-the-shelf optimization algorithm (e.g., l-bfgs-b solver) as long
as we are able to derive the hyperparameter gradient of the validation function in a closed form.
In the remainder of the section, we show how to achieve this for knowledge-based kernel
principal components de�ned with soft control point placements and classi�cation constraints,
combined with soft orthogonality. We note here that the hyperparameter optimization
problem is, in general, non-convex and that the optimization procedure outlined in this
section is guaranteed to �nd a locally optimal set of hyperparameters. However, in our
empirical evaluation (Section 2.9) we demonstrate that it is possible to �nd a good set of
hyperparameters with a suitable initial solution to this non-convex optimization problem.

Let us begin by considering the case where knowledge-base constraints are given by the
placements of control points. For this type of knowledge-based principal components, we
choose the mean squared error loss as our validation function. If we denote with F and F⊥
the training and validation examples, then the validation function is given by

Ξ (F,f ) =
1
|F⊥|

∑
(x,y)∈F⊥

(f (x)− y)2 = 1
|F⊥|

∑
(x,y)∈F⊥

(
K>x α − y

)2
,

where f =
∑n
i=1αik (xi , ·) is a knowledge-based kernel principal component obtained using

training examples F. Now, denote the hyperparameter vector with θ such that it includes
the hyperparameters of the model R, λ1, λ0, together with a hyperparameter vector de�ning
the kernel function η. Then, the gradient of the validation function is given by

∇Ξ (F,f ) =
2
|F⊥|

∑
(x,y)∈F⊥

(
K>x α − y

)((∂Kx
∂θ

)>
α +K>x

∂α
∂θ

)
. (2.32)

Now, using the �rst stationary constraint from Eq. (2.16), we obtain that

α = K−1 (S −µminI)−1 b .
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From here, we can compute the gradient of the solution α with respect to hyperparameters,

K>x
∂α
∂θ

= −K>x (SK −µminK)
−1

(
∂S
∂θ
K + S

∂K
∂θ
− ∂µmin

∂θ
K −µmin

∂K
∂θ

)
(SK −µminK)

−1 b+

K>x (SK −µminK)
−1 ∂b
∂θ

=

K>x K−1 (S −µminI)−1
(
∂b
∂θ
− ∂S
∂θ
Kα − S ∂K

∂θ
α +

∂µmin

∂θ
Kα +µmin

∂K
∂θ

α

)
.

If we now denote with

ι =
2
|F⊥|

∑
(x,y)∈F⊥

(
K>x α − y

)
Kx

and solve the linear system (S −µminI)u = ι with Kû = u, then we get

ι>
∂α
∂θ

= u>
(
∂b
∂θ
− ∂S
∂θ
Kα − S ∂K

∂θ
α +

∂µmin

∂θ
Kα +µmin

∂K
∂θ

α

)
. (2.33)

Here, it is important to note that the system (S −µminI)u = ι can be solved in quadratic time
using an eigendecomposition of the matrix S , which can be obtained e�ciently from the
eigendecomposition of K for the �rst knowledge-based kernel principal component.

Before we proceed with the derivatives of the matrix-based terms, we need to �nd the
derivative of the optimal Lagrange multiplier µmin. In order to do this, we plug the expression
for α into the second stationary constraint from Eq. (2.16) to deduce that

b> (S −µminI)−2 b = R2.

Thus, to �nd the derivative of µmin with respect to θ we need to implicitly derive the latter
equation. In particular, taking the derivative of both sides with respect to θ we obtain

∂R2

∂θ
= 2b> (S −µminI)−2

∂b∂θ −
(
∂S
∂θ
− ∂µmin

∂θ
I
)
(S −µminI)−1 b

 .
Now, plugging Kα = (S −µminI)−1 b we can transform this equation into

∂R2

∂θ
= 2α>K (S −µminI)−1

(
∂b
∂θ
− ∂S
∂θ
Kα +

∂µmin

∂θ
Kα

)
.

If we now solve the linear system (S −µminI)ν = Kα, then

∂R2

∂θ
= 2ν>

(
∂b
∂θ
− ∂S
∂θ
Kα +

∂µmin

∂θ
Kα

)
.

Before we give the derivatives of the optimal Lagrange multiplier with respect to the individual
hyperparamters, let us remind ourselves that in the considered case S = K−1 + λ2

1
|A|A+λ20H

and b = λ2
1
|A|y

>A (hyperparameters are squared to ensure their non-negativity). Thus, we
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have that it holds

∂µmin

∂R
=

R
ν>Kα

∂µmin

∂λ1
=

2
ν>Kα

(
λ1
|A|ν

>AKα − ν
>b
λ1

)
∂µmin

∂λ0
=

2λ0
ν>Kα

ν>HKα

∂µmin

∂η
= − 1

ν>Kα
ν>K−1

∂K
∂η

α .

Having computed the gradient of the optimal Lagrange multiplier, we now turn to the
gradient of the validation function. Plugging the computed gradients for the optimal multiplier
into Eq. (2.33) we obtain

ι>
∂α
∂R

= R
u>Kα
ν>Kα

ι>
∂α
∂λ1

= 2∆>
(
b
λ1
− λ1|A|AKα

)
ι>
∂α
∂λ0

= − 2λ0∆>HKα

ι>
∂α
∂η

= ∆>K−1
∂K
∂η

α −u>S ∂K
∂η

α +µminu
>∂K
∂η

α ,

where ∆ = u − u>Kαν>Kαν. Now, plugging these individual gradients into Eq. (2.32) we obtain the
gradient of the validation function Ξ (F,f ).

For domain knowledge speci�ed through classi�cation constraints, the mean squared
error loss function might not be the best choice on the validation folds. Instead, we propose
to use the squared hinge loss as the validation function, i.e.,

Ξ (F,f ) =
1
|F⊥|

∑
(x,y)∈F⊥

max {0,1− yf (x)}2 = 1
|F⊥|

∑
(x,y)∈F⊥

max
{
0,1− yK>x α

}2
.

The gradient of this validation function is given by

∇Ξ (F,z) = − 2
|F⊥|

∑
(x,y)∈F⊥∗

y
(
1− yK>x α

)((∂Kx
∂θ

)>
α +K>x

∂α
∂θ

)
,

where F⊥∗ = {(x,y) ∈ F⊥ | 1− yf (x) > 0}. Now, following the derivation for the mean squared
error validation function it is possible to derive the gradients of the latter validation function
with respect to the individual hyperparameters.

Having shown how to compute the hyperparameter gradient on a validation sample, we
now discuss the choice of fold splits in inner cross-validation. In order to select good and
reliable hyperparameters, we propose to use (strati�ed)K-fold splits for inner cross-validation.
For one such split, the training is performed on the batch of (K − 1) training folds and the
hyperparameters are optimized on the remaining validation fold. Each inner cross-validation
fold is used exactly once as a validation fold and we refer to the hyperparameter gradients
computed on these folds as fold gradients. Having determined the fold gradients for all inner
cross-validation splits, the ultimate hyperparameter gradient is de�ned as their average.
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2.8 Discussion

Traditional dimensionality reduction methods are in many problems used primarily for vi-
sualization purposes. There are several well known methods for dimensionality reduction,
but the majority of them is unsupervised and unable to incorporate domain knowledge into
a low-dimensional data representation. Some of the well known traditional methods for
dimensionality reduction are principal component analysis (Jolli�e, 1986), metric multidi-
mensional scaling (Cox and Cox, 2000), isomap (Tenenbaum et al., 2000), maximum variance
unfolding (Weinberger and Saul, 2004), and locally linear embedding (Roweis and Saul, 2000).
These methods can be also viewed as instances of kernel principal component analysis with
a suitably de�ned kernel matrix (Ham et al., 2004).

Interaction with these traditional dimensionality reduction methods is hardly intuitive
and forces domain experts to express their reasoning about parameters of the algorithm
instead of data points. In contrast, a user study conducted by Andrews et al. (2010) shows
domain experts prefer to interact directly with a visualization by placing a few control
points in accordance with the current understanding of data. In general, user studies report
bene�ts of the interactive over the static approach in data visualization (e.g., see Callahan
and Koenemann, 2000; Jeong et al., 2009). To overcome this problem several tools for data
visualization were designed with the ultimate goal to facilitate the understanding of the
underlying algorithm and the interaction with model parameters. One such tool (Jeong et al.,
2009) facilitates the understanding of principal component analysis (Jolli�e, 1986) through four
coordinated views of that approach: i) projection view, ii) eigenvector view, iii) data view, and
iv) correlation view. In the �rst view, instances are projected onto two principal components
(typically, the top two principal components). The second view displays instances as lines
passing through points for which the x-axis represents the index of a principal component
and the y-axis corresponds to projections of instances onto principal components. Similar to
this, the third view displays instances as lines with respect to the input features and their
values. The correlation view shows the Pearson correlation between pairs of features and
plots the instances in two dimensional spaces given by the pairs of features. Beside these
views, the tool also provides means for feature weighting such that the covariance matrix for
the input data is computed using the weighted inner products between instances. Interaction
with a data visualization is provided through the projection view and feature weighting. In
particular, for movement of a point in the projection space along one of the two principal
directions the tool updates all four views simultaneously. In this way, interactive principal
component analysis (Jeong et al., 2009) provides an interpretation of the in�uence of the
movement of a point in the projection space on the coordinates of the corresponding instance
in the input space. In addition to this, sliders for feature weights provide means for domain
experts to reason about the importance of particular features for an insight gained from
a data visualization. Similar to interactive principal component analysis, Buja et al. (2008)
and Broekens et al. (2006) have developed a variant of interactive multi-dimensional scaling.
The interaction with a visualization is restricted to a static placement of a small number of
control points in the projection space, whereby the algorithm positions the remaining points.

From the interactive visualization perspective, the most related to our work are techniques
developed by Endert et al. (2011) and Leman et al. (2013). The proposed techniques allow
movement of control points in a projection space and the update to the projections is inter-
preted as a feedback similar to must- and cannot-link constraints. Both approaches (Endert
et al., 2011; Leman et al., 2013) perform interaction by incorporating expert feedback into
probabilistic principal component analysis (Tipping and Bishop, 1999), multi-dimensional
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scaling, and generative topographic mapping. In particular, the two interactive variants of
multidimensional scaling compute the pairwise distances between instances using weighted
features. Then, after re-arranging a small number of control points in the projection space
the algorithm optimizes the feature weights such that the weighted pairwise distances in
the input space re�ect the pairwise distances between the control points in the projection
space. This type of interaction allows experts to reason about the importance of particular
features for knowledge injected into multi dimensional scaling through a data visualization.
For interactive probabilistic principal component analysis, Endert et al. (2011) assume that the
covariance matrix of input features conditioned on the hyperparameters of the model follows
the inverse Wishart distribution. The interaction with probabilistic principal component
analysis is then modeled by �rst constructing a hypothetical covariance matrix that interprets
movement of control points in the projection space and then replacing the actual covariance
of input features with the maximum a posteriori estimator given by an inverse Wishart
distribution that combines the two covariance matrices. The hypothetical covariance matrix
is constructed by interpreting the movement of control points in terms of input features
and then enforcing low/high variance along features for which the pre-images of control
points are close/far from each other. The approaches by Endert et al. (2011) and Leman
et al. (2013) do not o�er means for structural exploration of the dataset by observing how
the embedding reacts to a placement of a selected control point. Moreover, probabilistic
principal component analysis and multi-dimensional scaling are highly sensitive to outliers
and produce visualizations with huge number of overlapping points for such datasets.

The Invis tool (Paurat and Gärtner, 2013) is one of the �rst truly interactive tools that
enables interaction with a visualization through explicit placement of control points, whereby
all related data points automatically and smoothly adjust their location accordingly. The tool
realizes this type of interaction using the least square projections (lsp). As argued in our
workshop paper (Paurat et al., 2013b), the least square projections are in general not a good
choice for data visualization and the same can be said about any purely supervised learning
algorithm (e.g., linear discriminant analysis Izenman, 2008). To see this, consider training
a linear regression on a sparse high dimensional dataset. If it is trained using a very few
instances, the weight vector will only be non-zero over the union of their non-zero attributes
and all instances having di�erent non-zero attributes will be mapped to the origin.

From the methodological perspective, our method is a spectral method for semi-supervised
learning and closely related to spectral graph transducer (Joachims, 2003) and semi-supervised
kernel principal component analysis (Walder et al., 2010). These two approaches can be
seen as a relaxation of transductive support vector machines and/or a generalization of
kernel principal component analysis. In spectral graph transducer (Joachims, 2003), the
goal is to �nd a hypothesis such that the predictions at neighboring instances are similar
in value and of the same sign over two di�erent classes. Joachims (2003) proposed to �nd
such hypothesis by solving a constrained version of the normalized graph cut problem.
The relaxed version of that problem can directly be related to problems in Eq. (2.11) and
Eq. (2.12) In particular, for a positive de�nite kernel matrix given by the pseudo-inverse
of a graph Laplacian and domain knowledge speci�ed via placement of control points the
optimization problem in Eq. (2.11) with s = 1 is equivalent to the relaxed graph cut problem
proposed by Joachims (2003). In contrast to our approach, spectral graph transducer does
not consider a variety of domain knowledge constraints nor cases in which the matrix
de�ning the quadratic term in the optimization problem from Eq. (2.12) is inde�nite (e.g., as
a result of using pairwise constraints). Moreover, that approach is restricted to transductive
settings and does not provide means for hyperparameter optimization. Motivated by spectral
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Figure 2.1: The distortion of embeddings generated using knowledge-based kernel principal component analysis
as the number of perturbed control points increases.
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graph transducer, Walder et al. (2010) considered the least square variant of kernel principal
component analysis that corresponds to the discussed variant of our knowledge-based kernel
principal component analysis, in which domain knowledge can be injected only through
placement of control points. As the approach does not o�er means for the optimization of
a large number of hyperparameters (radius, regularization parameter, and kernel speci�c
hyperparameters), the process of inner cross-validation can be computationally intensive.
Also, neither of the two approaches has been considered in the context of data visualization.

2.9 Experiments

The best, and ultimately only true, way to evaluate an algorithm for interactive data vi-
sualization and exploration is via a study with real domain experts that are using a tool
implementing that algorithm. In the absence of the study we performed a number of in silico
experiments which aim at illustrating the utility and sensibility of our approach. In particular,
we show that: (i) a rendered embedding is robust under small changes in the placement of
control points; (ii) the approach is �exible in choosing a low-dimensional embedding from
the many possible ones; (iii) ‘su�cient’ amount of information is retained in a visualization;
(iv) it is possible to detect structures that do not necessarily exhibit the highest correlation
with variance and which are, therefore, obscured in a regular kernel principal component
analysis embedding. We study the properties (i) − (iii) on benchmark data sets for semi-
supervised learning (Chapelle et al., 2006) and use an arti�cial and a real-world dataset to
show the property (iv). In the experiments we use di�erent kernels: the Gaussian kernel with
the bandwidth parameter equal to the median of pairwise distances between instances, the
pseudo-inverse Laplacian kernel with the k-NN graph de�ned by the cosine metric, linear
and polynomial kernel of degree three. All the reported results are averaged over ten runs.

How stable is our approach?

In exploratory data visualization it should be possible to smoothly change the embedding by
moving a control point throughout the projection space. In other words, small perturbations of
a control point should result in small perturbations of the overall embedding. We empirically
verify the stability of the proposed method by moving control points randomly throughout
the projection space. More speci�cally, for each coordinate of a control point we sample an
additive perturbation value from the zero mean Gaussian distribution with the variance given
by a fraction of the median of pairwise distances between projections generated by kernel
principal component analysis. The distortion or the di�erence between the two embeddings
is measured by the average displacement of a point between them and this value is scaled
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Figure 2.2: The distortion between the target and current embeddings with respect to the number of re-arranged
control points. The results show that we can recover a target embedding with a small number of re-arrangements.

0 5 10 15 20 25
0.

3.

6.

9.

12.

# control points

di
st
or
tio

n

(a) Digit1

linear kernel Gaussian kernel kNN-PINVLaplacian kernel Polynomial kernel (deg = 3)

0 5 10 15 20 25
0.

1.5

3.

4.5

6.

# control points

(b) USPS

0 5 10 15 20 25
0.

0.7

1.4

2.1

2.8

# control points

(c) COIL

0 5 10 15 20 25
0.

0.7

1.4

2.1

2.8

# control points

(d) BCI

0 5 10 15 20 25
0.

1.3

2.6

3.9

5.2

# control points

(e) g241c

by the median pairwise distance between the projections generated by kernel principal
component analysis. In Figure 2.1 we show the distortion as the perturbation increases across
�ve benchmark data sets (Chapelle et al., 2006). The empirical results clearly indicate that
the proposed method provides means for a stable interactive visualization of datasets.

How �exible is our approach?

It is possible to generate di�erent embeddings of the same dataset with kernel principal
component analysis using di�erent kernels. To show the �exibility of the proposed method
we set up an experiment with a sum of di�erent kernels and show that the proposed method
can choose the kernel principal component analysis embedding corresponding to a kernel
by re-arranging control points accordingly. In particular, we combine the Gaussian and
pseudo-inverse Laplacian kernel that produce geometrically very di�erent kernel principal
component analysis embeddings of the considered datasets. We again report the distortion
between the two embeddings as a measure of their di�erence. The empirical results indicate
that, for each used kernel, it is possible to recover the corresponding embedding generated
by kernel principal component analysis. Figure 2.2 shows the distortion between the current
and the target embeddings as the number of selected control points increases.

Table 2.1: The test error is given by the percentage of misclassi�ed instances on the semi-supervised learning
benchmark datasets prepared by Chapelle et al. (2006). The results for all baselines also originate from that work.

Algorithm g241c g241d Digit1 usps coil bci Text
10 100 10 100 10 100 10 100 10 100 10 100 10 100

1-nn 47.88 43.93 46.72 42.45 13.65 3.89 16.66 5.81 63.36 17.35 49.00 48.67 38.12 30.11
svm 47.32 23.11 46.66 24.64 30.60 5.53 20.03 9.75 68.36 22.93 49.85 34.31 45.37 26.45
mvu + 1-nn 48.68 44.05 47.28 43.21 11.92 3.99 14.88 6.09 65.72 32.27 49.76 47.42 39.40 30.74
isomap + 1-nn 47.88 43.93 46.72 42.45 13.65 3.89 16.66 5.81 63.36 17.35 49.00 48.67 38.12 30.11
lle + 1-nn 47.15 43.03 45.56 38.20 14.42 2.83 23.34 6.50 62.62 28.71 47.95 47.89 45.32 32.83
pca + 1-nn 39.38 33.51 37.03 25.92 21.70 8.27 23.40 9.50 67.88 28.41 49.17 48.58 41.65 28.83
LapEig + 1-nn 47.47 42.14 45.34 39.43 12.04 2.52 19.14 6.09 67.96 36.49 49.94 48.64 40.84 30.92
lem + 1-nn 44.05 40.28 42.22 37.49 23.47 6.12 19.82 7.64 65.91 23.27 48.74 44.83 39.44 30.77
qc + cmn 39.96 22.05 46.55 28.20 9.80 3.15 13.61 6.36 59.63 10.03 50.36 46.22 40.79 25.71
DiscreteReg 49.59 43.65 49.05 41.65 12.64 2.77 16.07 4.68 63.38 9.61 49.51 47.67 40.37 24.00
t-svm 24.71 18.46 50.08 22.42 17.77 6.15 25.20 9.77 67.50 25.80 49.15 33.25 31.21 24.52
sgt 22.76 17.41 18.64 9.11 8.92 2.61 25.36 6.80 − − 49.59 45.03 29.02 23.09
ClusterKernel 48.28 13.49 42.05 4.95 18.73 3.79 19.41 9.68 67.32 21.99 48.31 35.17 42.72 24.38
Data-DepReg 41.25 20.31 45.89 32.82 12.49 2.44 17.96 5.10 63.65 11.46 50.21 47.47 − −
lds 28.85 18.04 50.63 23.74 15.63 3.46 17.57 4.96 61.90 13.72 49.27 43.97 27.15 23.15
LapRLS 43.95 24.36 45.68 26.46 5.44 2.92 18.99 4.68 54.54 11.92 48.97 31.36 33.68 23.57
chm 39.03 24.82 43.01 25.67 14.86 3.79 20.53 7.65 − − 46.90 36.03 − −
kb-kpca 14.58 12.41 43.79 22.54 8.18 1.96 19.87 6.40 *17.51 *7.31 48.69 29.25 30.76 24.98
* This is a multi-class classi�cation problem and the reported error (kb-kpca) is the classi�cation error of class 1 vs all classi�er.
* In Chapelle et al. (2006), the authors do not specify whether the errors reported for other baselines are multi-class or 1 vs all classi�cation errors.
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How informative is our approach?

A satisfactory embedding should be able to retain a fair amount of information from the
input space. To measure the amount of information the proposed method retains we simulate
a classi�cation task. We use the semi-supervised learning benchmark datasets with a small
number of labeled instances, prepared by Chapelle et al. (2006). The benchmark was designed
to provide an objective evaluation of semi-supervised learning algorithms, which typically
rely either on the clustering or manifold assumption (e.g., see Section 2.2). In constructing
knowledge-based kernel principal components we use the classi�cation constraints and mea-
sure the e�ectiveness of the approach using the 1-NN classi�er on test samples. We compare
our method using only 1 dimensional projections against the state-of-the-art unsupervised
dimensionality reduction techniques with many more dimensions and other approaches
designed especially for semi-supervised classi�cation. The considered dimensionality reduc-
tion algorithms use the estimated intrinsic dimension of a dataset as the dimension of the
projection space (Chapelle et al., 2006). In particular, the dimensionality reduction baselines
use (Chapelle et al., 2006): 38 dimensions for g241c, 4 dimensions for Digit1, 9 dimensions for
usps, 8 dimensions for bci, and 3 dimensions for coil dataset. Table 2.1 presents the results
of our simulations and gives the numbers reported by Chapelle et al. (2006) for di�erent
baselines. Our empirical results demonstrate that the proposed approach is competitive
with the state-of-the-art baselines over the whole collection of benchmark datasets and,
thus, capable of retaining a satisfactory amount of information from the input space. The
simulations of knowledge-based kernel principal component analysis were performed using
the Gaussian and pseudo-inverse Laplacian kernels.

Can we discover structures hidden by the plain principal component analysis?

We have created a three dimensional arti�cial dataset to demonstrate that the proposed
approach is able to discover structures in datasets that do not exhibit the highest correlation
with variance. Such structures remain hidden in kernel principal component analysis and the
proposed method is capable of detecting them by the appropriate placement of control points.
In particular, we sample 3 sets/clusters of points from a two dimensional Gaussian distribution
and embed these sets into three dimensional space such that the z-axis coordinates for each
cluster are obtained by sampling from the normal distributions with means at 1,0 and −1. We
choose the variance for the z-axis sampling such that the clusters/sets of points barely touch
each other. For a sample generated in this way the within-clusters variance is higher than
the between-cluster variance and the cluster structure remains hidden in kernel principal
component analysis (see the leftmost picture in Figure 2.3). Moving the two most distant
points of each cluster apart (a total of 6 displacements) we discover the cluster structure
obscured by kernel principal component analysis (the rightmost picture in Figure 2.3).

Figure 2.3: Discovering clusters that are hidden in the embedding generated by kernel principal components.
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Figure 2.4: Discovering cluster structures which are hidden in the embedding of a cocktail dataset (Paurat et al.,
2014) generated by kernel principal component analysis. The plots are produced using a variant of the InVis
tool (Paurat and Gärtner, 2013) for interactive data visualization.

Having demonstrated that knowledge-based kernel principal component analysis can
discover clusters hidden in embeddings generated by plain kernel principal component
analysis, we now perform a study on a real-world dataset. The dataset contains cocktail
recipes with fractions of each ingredient required to make a cocktail (Paurat et al., 2013b). The
left panel in Figure 2.4 shows the embedding generated using kernel principal component
analysis. The panel also shows the location of a few selected control points. After we
re-arrange these points and compute the corresponding knowledge-based kernel principal
components we obtain the embedding at the right panel in Figure 2.4. This panel shows
additional cluster structures which are obscured by plain kernel principal component analysis.

Having discovered additional clusters, we proceed further to understand their relation
to actual cocktails. For that, we generate ingredient clouds which depict the dominating
ingredients appearing in cocktails corresponding to projections within selected clusters. The
ingredient clouds depicted in Figure 2.5 indicate that discovered clusters group cocktails
according to their �avors (e.g., see also Paurat et al., 2014). More speci�cally, the ingredient
cloud at the left panel in Figure 2.5 contains cocktails in which juices dominate and indeed
in the labels provided for the dataset (Paurat et al., 2014) these points corresponds to juicy
cocktails. Similarly, the ingredient cloud at the right panel of the �gure contains points
corresponding to creamy cocktails, which are created by using dominantly creamy ingredients.

Figure 2.5: An interpretation of cluster structures discovered using the embedding of a cocktail dataset (Paurat
et al., 2014) generated by knowledge-based kernel principal component analysis. The plots are produced using a
variant of the InVis tool (Paurat and Gärtner, 2013) for interactive data visualization.
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Greedy Feature Construction

Every supervised learning algorithm with the ability to generalize from training examples to
unseen data points has some type of inductive bias (Baxter, 2000). The bias can be de�ned as
a set of assumptions that together with the training data explain the predictions at unseen
points (Mitchell, 1997). In order to simplify theoretical analysis of learning algorithms, the
inductive bias is typically represented by a choice of a hypothesis space (e.g., the inductive
bias of linear regression models is the assumption that the relationship between inputs and
outputs is linear). The fundamental limitation of learning procedures with an a priori speci�ed
hypothesis space (e.g., linear models or kernel methods with a preselected kernel) is that
they can learn good concept descriptions only if the hypothesis space selected beforehand
is large enough to contain a good solution to the considered problem and small enough to
allow good generalization from a small number of training examples. As �nding a good
hypothesis space is equivalent to �nding a good set of features (Baxter, 2000), we propose an
e�ective supervised feature construction method to tackle this problem. The main goal of the
approach is to embed the data into a feature space for which a set of linear hypotheses is of
su�cient capacity. The motivation for this choice of hypotheses is in the desire to exploit the
scalability of existing algorithms for training linear models. It is for their scalability that these
models are frequently a method of choice for learning on large scale datasets. For example,
the implementation of linear svm (Fan et al., 2008) has won the large scale learning challenge
at icml 2008 and kdd cup 2010. However, as the set of linear hypotheses de�ned on a
small or moderate number of input features is usually of low capacity these methods often
learn inaccurate descriptions of target concepts. The proposed approach surmounts this and
exploits the scalability of existing algorithms for training linear models while overcoming
their low capacity on input features. The latter is achieved by harnessing the information
contained in the labeled training data and constructing features by empirically �tting squared
error residuals (Section 3.1).

We draw motivation for our approach by considering the minimization of the expected
squared error using functional gradient descent (Section 3.1.1). In each step of the descent,
the current estimator is updated by moving in the direction of the residual function. We want
to mimic this behavior by constructing a feature representation incrementally so that for each
step of the descent we add a feature which approximates well the residual function. In this
constructive process, we select our features from a predetermined set of basis functions which
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can be chosen so that a high capacity set of linear hypotheses corresponds to the constructed
feature space (Section 3.1.2). In our theoretical analysis of the approach, we provide a
convergence rate for this constructive procedure (Section 3.1.3) and give a generalization
bound for the empirical �tting of squared error residuals (Section 3.1.4). The latter is needed
because the feature construction is performed based on an independent and identically
distributed sample of labeled instances. The approach, presented in Section 3.1.5, is highly
�exible and allows for an extension of a feature representation without complete re-training
of the model. As the constructive procedure imitates gradient descent, a stopping criteria
based on an accuracy threshold can be devised and the algorithm can then be simulated
without specifying the number of features a priori. In this way, the algorithm can terminate
sooner than alternative approaches for simple hypotheses. The method is easy to implement
and it can be scaled to millions of instances with a parallel implementation.

Having described a distributed version of greedy feature construction, we turn our atten-
tion to an instance of the approach that can construct a feature representation corresponding
to a high capacity set of linear hypotheses (Section 3.2). In particular, we focus on greedy
feature construction with Fourier features as basis functions and review a connection to an
important class of kernel functions known as stationary kernels (Section 3.2.1). This connec-
tion between Fourier features and stationary kernels allows us to show that our approach can
approximate arbitrarily well any bounded function from any stationary reproducing kernel
Hilbert space (Section 3.2.2). Moreover, previous work (Micchelli et al., 2006) has shown
that some kernels from this class (e.g., the Gaussian kernel) correspond to high capacity
hypothesis spaces capable of approximating any continuous function de�ned on a compact
set containing instances in its interior. Thus, our approach can for a particular choice of basis
function overcome problems with low capacity of linear hypotheses on input features.

To evaluate the e�ectiveness of our approach empirically, we compare it to other related
approaches by training linear ridge regression models in the feature spaces constructed by
these methods. The focus of the evaluation is on the described instance of our approach with
Fourier features as basis functions. For this particular choice of features, our approach is
directly comparable to two popular algorithms for learning with Fourier features: random
kitchen sinks (Section 3.2.1) and à la carte (Section 3.2.3). Our empirical results indicate a
superior performance of the proposed approach over these two baselines. The results are
presented in Section 3.3 and the approaches are discussed in Section 3.4.

3.1 Greedy Feature Construction

In this section, we present our feature construction approach. We start with an overview
where we introduce the problem setting and motivate our approach by considering the
minimization of the expected squared error using functional gradient descent. We then de�ne
a set of features and show that our greedy constructive procedure converges. Following
this, we give a generalization bound for the empirical �tting of squared error residuals and
provide a pseudo-code description of our approach.

3.1.1 Overview

We consider a learning problem with the squared error loss function where the goal is to
�nd a mapping from a Euclidean space to the set of reals. In these problems, it is typically
assumed that a sample z = ((x1, y1) , . . . , (xn, yn)) of n examples is drawn independently from
a Borel probability measure ρ de�ned on Z = X ×Y , where X is a compact subset of a �nite
dimensional Euclidean space with the inner product 〈·, ·〉 and Y ⊂ R. For every x ∈ X let



3.1 Greedy Feature Construction 53

ρ (y | x) be the conditional probability measure on Y and ρX be the marginal probability
measure on X. For the sake of brevity, when it is clear from the context, we will write ρ
instead of ρX . Let fρ(x) =

∫
y dρ (y | x) be the bounded target/regression function of the

measure ρ. Our goal is to construct a feature representation such that there exists a linear
hypothesis on this feature space that approximates well the target function. For an estimator
f of the function fρ, we measure the goodness of �t with the expected squared error in ρ,

Eρ (f ) =
∫

(f (x)− y)2dρ .

The empirical counterpart of the error, de�ned over a sample z ∈ Zn, is denoted with

Ez (f ) = 1
n

n∑
i=1

(f (xi)− yi)2 .

Having de�ned the problem setting, we proceed to motivate our approach by considering
the minimization of the expected squared error using functional gradient descent. For that,
we �rst review the de�nition of functional gradient (e.g., see Section 3.2 in Gelfand and Fomin,
1963). For a functional F de�ned on a normed linear space and an element p from this space,
the functional gradient ∇F (p) is the principal linear part of a change in F after it is perturbed
in the direction of q,

F (p+ q) = F (p) +ψ (q) + ε ‖q‖ ,
where ψ (q) is the linear functional with ∇F (p) as its principal linear part, and ε→ 0 as
‖q‖ → 0. In our case, the normed space is the Hilbert space of square integrable functions,
L2ρ (X), and for the expected squared error functional on this space we have that it holds

Eρ (f + εq)−Eρ (f ) =
〈
2
(
f − fρ

)
, εq

〉
L2ρ(X) +O

(
ε2

)
.

Hence, an algorithm for the minimization of the expected squared error using functional
gradient descent on this space could be speci�ed by

ft+1 = νft +2(1− ν)
(
fρ − ft

)
,

where 0 ≤ ν ≤ 1 denotes the learning rate and ft is the estimate at step t. The functional
gradient direction 2

(
fρ − ft

)
is the residual function at the step t and the main idea behind

our approach is to iteratively re�ne our feature representation by extending it with a new
feature that approximates well the current residual function. In this way, for a suitable choice
of learning rate ν, the functional descent would be performed through a convex hull of
features and in each step we would have an estimate of the target function fρ expressed as a
convex combination of the constructed features.

3.1.2 Greedy Features

We introduce now a set of features parameterized with a ridge basis function and hyperpa-
rameters controlling the smoothness of these features. As each subset of features corresponds
to a set of hypothesis (Baxter, 2000), in this way we specify a family of possible hypothesis
spaces. For a particular choice of ridge basis function, we later argue (in Section 3.2.2) that
the approach outlined in the previous section can construct a highly expressive feature
representation (i.e., a high capacity hypothesis space).
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Let C (X) be the Banach space of continuous functions on X with the uniform norm. For a
Lipschitz continuous function φ : R→ R,

∥∥∥φ∥∥∥∞ ≤ 1, and constants r, s, t > 0 let FΘ ⊂ C (X),
Θ = (φ,r, s, t), be a set of ridge-wave functions de�ned on the set X,

FΘ =
{
aφ (〈w,x〉+ b) | w ∈ Rd , a,b ∈ R, |a| ≤ r,‖w‖2 ≤ s, |b| ≤ t

}
.

From this de�nition, it follows that for all g ∈ FΘ it holds ‖g‖∞ ≤ r . As all the ridge-wave
functions from FΘ are bounded and Lipschitz continuous, they are also square integrable in
the measure ρ. Therefore, FΘ is a subset of the Hilbert space of square integrable functions
de�ned on X with respect to the probability measure ρ, i.e., FΘ ⊂ L2ρ (X).

3.1.3 Convergence

For the purpose of this chapter, it su�ces to show the convergence of ε-greedy sequences of
functions (see De�nition 3.1) in Hilbert spaces. We, however, choose to provide a stronger
result which holds for ε-greedy sequences in uniformly smooth Banach spaces. In the
remainder of the chapter, co(S) and S will be used to denote the convex hull of elements
from a set S and the closure of S , respectively.

De�nition 3.1. Let B be a Banach space with norm ‖·‖ and let S ⊆ B. An incremental sequence
is any sequence {fm}m≥1 of elements of B such that f1 ∈ S and for each m ≥ 1 there is some
g ∈ S such that fm+1 ∈ co({fm, g}). An incremental sequence is greedy with respect to an element
f ∈ co(S) if for all m ∈ N it holds

‖fm+1 − f ‖ = inf
{
‖h− f ‖ | h ∈ co({fm, g}) , g ∈ S

}
.

Given a positive sequence of allowed slack terms {εm}m≥1, an incremental sequence {fm}m≥1 is
called ε-greedy with respect to f if for all m ∈ N it holds

‖fm+1 − f ‖ < inf
{
‖h− f ‖ | h ∈ co({fm, g}) , g ∈ S

}
+ εm .

Having introduced the notion of an ε-greedy incremental sequence of functions, let us
now relate it to our feature construction approach. In the outlined constructive procedure
(Section 3.1.1), we proposed to select new features corresponding to the functional gradient
at the current estimate of the target function. Now, if at each step of the functional gradient
descent there exists a ridge-wave function from our set of features which approximates well
the residual function (w.r.t. fρ) then this sequence of functions de�nes a descent through
co(FΘ) which is an ε-greedy incremental sequence of functions with respect to fρ ∈ co(FΘ).
In Section 3.1.1, we have also demonstrated that FΘ is a subset of the Hilbert spaceL2ρ (X) and
this is by de�nition a Banach space. Thus, in accordance with De�nition 3.1, we now consider
under what conditions an ε-greedy sequence of functions from this space converges to any
target function fρ ∈ co(FΘ). Note that this relates to our result from Section 3.2.2 where
we will show that the capacity of co(FΘ) can be large. Before we show the convergence
of our constructive procedure, we need to prove that an ε-greedy incremental sequence of
functions/features can be constructed in our setting. For that, we characterize the Banach
spaces in which it is always possible to construct such sequences of functions/features.

De�nition 3.2. Let B be a Banach space, B∗ the dual space of B, and f ∈ B, f , 0. A peak
functional for f is a bounded linear operator F ∈ B∗ such that ‖F‖B∗ = 1 and F (f ) = ‖f ‖B . The
Banach space B is said to be smooth if for each f ∈ B, f , 0, there is a unique peak functional.
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The existence of at least one peak functional for all f ∈ B, f , 0, is guaranteed by the
Hahn-Banach theorem (Rudin, 1991). For a Hilbert spaceH, for each element f ∈ H, f , 0,
there exists a unique peak functional F = 〈f ,·〉H/‖f ‖H. Thus, every Hilbert space is a smooth
Banach space. Donahue et al. (1997, Theorem 3.1) have shown that in smooth Banach spaces,
and in particular in the Hilbert space L2ρ (X), an ε-greedy incremental sequence of functions
can always be constructed. However, not every such sequence of functions converges to the
function with respect to which it was constructed (Appendix D, Donahue et al., 1997). For
the convergence to hold, a stronger notion of smoothness is needed.

De�nition 3.3. The modulus of smoothness of a Banach space B is a function τ : R+
0 → R+

0
such that

τ (r) =
1
2

sup
‖f ‖=‖g‖=1

(
‖f + rg‖+ ‖f − rg‖

)
− 1 ,

where f ,g ∈ B. The Banach space B is said to be uniformly smooth if τ (r) ∈ o (r) as r→ 0.

We need to observe now that every Hilbert space is a uniformly smooth Banach space.
For the sake of completeness, we provide a proof of this proposition.

Proposition 3.1. (Donahue et al., 1997) For any Hilbert space the modulus of smoothness is
equal to τ (r) =

√
1+ r2 − 1.

Proof. Expanding norms using the dot product we get

2(τ (r) + 1) = sup
‖f ‖=‖g‖=1

(√
1+ r2 +2r 〈f ,g〉+

√
1+ r2 − 2r 〈f ,g〉

)
.

Denoting with u = 1+ r2 and v = 2r 〈f ,g〉 and using the inequality between arithmetic and
quadratic mean we get

√
u + v +

√
u − v ≤ 2

√
u + v +u − v

2
= 2
√
u .

As the equality is attained for v = 0, it follows that the modulus of smoothness of a Hilbert
space is given by

τ (r) =
√
1+ r2 − 1 .

Having shown that Hilbert spaces are uniformly smooth Banach spaces, we proceed with
two results specifying a convergence rate of an ε-greedy incremental sequence of functions.
What is interesting about these results is the fact that a feature does not need to match exactly
the residual function in a greedy descent step (Section 3.1.1); it is only required that condition
(ii) from the next theorem is satis�ed.

Theorem3.2. (Donahue et al., 1997) LetB be a uniformly smooth Banach space havingmodulus
of smoothness τ (u) ≤ γut , with γ being a constant and t > 1. Let S be a bounded subset of B
and let f ∈ co(S). Let K > 0 be chosen such that ‖f − g‖ ≤ K for all g ∈ S , and let ε > 0 be a
�xed slack value. If the sequences {fm}m≥1 ⊂ co(S) and {gm}m≥1 ⊂ S are chosen such that

i) f1 ∈ S ,
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ii) Fm (gm − f ) ≤ 2γ((K+ε)t−K t)
mt−1‖fm−f ‖t−1

, and

iii) fm+1 =
m
m+1 fm + 1

m+1 gm,

where Fm is the peak functional of fm − f , then it holds

‖fm − f ‖ ≤
(2γt)

1
t (K + ε)

m1− 1
t

[
1+

(t − 1)log2m
2tm

] 1
t

.

The following corollary gives a convergence rate for an ε-greedy incremental sequence
of functions constructed according to Theorem 3.2 with respect to fρ ∈ co(FΘ). As this result
holds for all such sequences of functions, it also holds for our constructive procedure.

Corollary 3.3. Let {fm}m≥1 ⊂ co(FΘ) be an ε-greedy incremental sequence of functions
constructed according to the procedure described in Theorem 3.2 with respect to a function
f ∈ co(FΘ). Then, it holds

‖fm − f ‖ρ ≤
K + ε√
m

√
2+

log2m
2m

.

Proof. As L2ρ (X) is a Hilbert space, it follows from Proposition 3.1 that the modulus of
smoothness of this space is τ (r) =

√
1+ r2 − 1. While it is straightforward to show that√

1+ r2 ≤ 1+ r for r ∈ R+
0 , this bound is not tight enough as r→ 0. A tighter upper bound

for this modulus of smoothness can be derived from the inequality
√
1+ r2 ≤ 1+ r2

2 . To see
that this is a better bound for the case when r→ 0, it is su�cient to check that 1+ r2

2 ≤ 1+ r
for all 0 ≤ r ≤ 2. Hence, all conditions of Theorem 3.2 are satis�ed and the claim follows by
setting t = 2 and γ = 1

2 .

3.1.4 Generalization Bound

In step t +1 of the empirical residual �tting, based on a sample {(xi , yi)}ni=1 and the current
estimate of the target function ft , the approach selects a ridge-wave function from FΘ that
approximates well the residual function

(
fρ − ft

)
. In Section 3.1.3, we have speci�ed in which

cases such ridge-wave functions can be constructed and provided a convergence rate for
this constructive procedure. As the convergence result is not limited to target functions
from FΘ and co(FΘ), we give a bound on the generalization error for hypotheses from
F = co(FΘ), where the closure is now taken with respect to C (X). In the remainder of this
section, we present a proof of this result, organized into several parts/steps. In the �rst part,
we introduce a notion of ε-capacity (Kolmogorov and Tikhomirov, 1959) to characterize the
massiveness of a set in a metric space by means of the order at which the minimal number
of disks/hyperspheres of radius ε covering that set increases as ε→ 0. In the second part,
we quantify the ε-capacity of our hypothesis space by �rst showing that F is a convex and
compact subset of the metric space C (X) and then bounding its ε-capacity using a result
by Kolmogorov and Tikhomirov (1959). Following this, we provide two results by Cucker and
Smale (2002) that guarantee the existence of the unique minimizer of the expected squared
error on F as an element of L2ρ (X). Having established all the relevant auxiliary results, we
give our generalization bound for the empirical squared error residual �tting.

For a subset A of a metric space and any ε > 0, we measure the complexity/capacity
of A with the ε-covering number, given by the minimal number of disks of radius ε that
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cover A. Following Kolmogorov and Tikhomirov (1959), we denote the ε-covering number
of A with Nε (A; ‖·‖), where ‖·‖ is the metric function de�ned on A. The instance space
X is a compact subset of a Euclidean space and, for all ε > 0, it has a �nite ε-covering
number. On the other hand, our ridge-wave basis function φ de�ned on X is a Lipschitz
continuous function and Kolmogorov and Tikhomirov (1959) have given an upper bound on
the ε-covering number of the set of 1-Lipschitz continuous functions de�ned on a compact
set. For the sake of completeness, we present here their proof and later on use this result to
show that F is a compact subset of C (X). However, before presenting this result we need to
introduce the notion of a centralizable space, required in the proof.
De�nition 3.4. The space is called centralizable if in it, for any open set U of diameter 2R,
there exists a point x0 from which any point x is at a distance no greater than R.

Having introduced the notion of a centralizable space, we now give a result that bounds
the ε-covering number of the set of 1-Lipschitz continuous functions de�ned on a compact
set X, with respect to the metric space C (X).
Theorem 3.4. (Kolmogorov and Tikhomirov, 1959) Let S be a connected totally bounded set
which is contained in a centralizable space and let Lip1 (S) be a set of bounded 1-Lipschitz
continuous functions on S . If all functions from Lip1 (S) are bounded by a constant C > 0, then

Nε (Lip1 (S) ; ‖·‖∞) ≤ 2N ε
2
(S; ‖·‖) (2⌈2C

ε

⌉
+1

)
.

Proof. As the set S is totally bounded, then for any ε > 0 there exists a �nite ε-covering of S .
Let {Ui}ni=1 denote an ε

2 -covering of the set S and let xi be the center of the set Ui . Let f̂ be
an approximation of f ∈ Lip1 (S). De�ne f̂ over the set U1 with the value

⌈
2f (x1)
ε

⌉
ε
2 . Then,

for all x ∈U1 ∣∣∣f (x)− f̂ (x)∣∣∣ = ∣∣∣f (x)− f̂ (x1)∣∣∣ ≤ ∣∣∣∣f (x)− f (x1) + ε2 ∣∣∣∣ ≤ ε.
Setting x = x1, we see that

∣∣∣f (x1)− f̂ (x1)∣∣∣ ≤ ε
2 .

On the other hand, for the center of the setUi that is adjacent toU1,Ui∩U1 , ∅, it holds∣∣∣f (xi)− f̂ (x1)∣∣∣ ≤ |f (xi)− f (x1)|+ ∣∣∣f (x1)− f̂ (x1)∣∣∣ ≤ ε2 +
ε
2
= ε.

The �rst inequality follows from the properties of an ε
2 -covering of S , i.e., if the neighboring

disk centers are at distance more than ε
2 then there exists a point violating the de�nition

of such covering. Thus, knowing the value at the center of U1 with precision ε
2 su�ces

to approximate with precision ε the value at the centers of neighboring sets in the cover.
From here it follows that by taking f̂ (x) = f̂ (x1)± ε

2 for all x ∈Ui , such that U1 and Ui are
adjacent, we can approximate f (xi) by f̂ (xi) with precision ε

2 . As the space S is connected
it is possible to connect any two non-adjacent sets Ui and Uj by a sequence of intersecting
sets Uk . Hence, we can construct the entire functional f̂ in this way and approximate the
function f such that

∥∥∥f − f̂ ∥∥∥∞ ≤ ε.
Now, covering the range of these functions, [−C,C], with ε-intervals we see that it is

su�cient to take 2
⌈
2C
ε

⌉
+1 numbers as the center-values at x1. For each of the sets in the

ε
2 -cover we have two choices and thus the ε-covering number of Lip1 (S) satis�es

Nε (Lip1 (S) ; ‖·‖∞) ≤ 2N ε
2
(S; ‖·‖) (2⌈2C

ε

⌉
+1

)
.



58 Greedy Feature Construction

Theorem 3.4 provides an upper bound on the ε-covering number of the set of 1-Lipschitz
continuous functions de�ned on a compact set as a function of the ε

2 -covering number of
that domain set (i.e., compact subset of a �nite dimensional Euclidean space). The following
result complements the latter bound by providing an upper bound on the ε-covering number
of a disk containing the domain set of interest in its interior.
Proposition 3.5. (Carl and Stephani, 1990) Let E be a �nite dimensional Banach space and let
BR be the ball of radius R centered at the origin. Then, for d = dim(E)

Nε (BR; ‖·‖) ≤
(4R
ε

)d
.

Having introduced all the preliminary results, we are now ready to show that our hy-
pothesis space F is a convex and compact subset of the metric space C (X).
Proposition 3.6. The hypothesis space F is a convex and compact subset of the metric space
C(X). Moreover, the elements of this hypothesis space are Lipschitz continuous functions.

Proof. Let f ,g ∈ F . As the hypothesis space F is the closure of the convex hull, co(FΘ), it
follows that there are sequences of functions {fn}n≥1, {gn}n≥1 ∈ co(FΘ) such that for every
ε > 0 and su�ciently large n it holds ‖f − fn‖∞ < ε and ‖g − gn‖∞ < ε. Then, for a convex
combination of functions f and g and su�ciently large n we have

‖αf + (1−α)g −αfn − (1−α)gn‖∞ ≤ α ‖f − fn‖∞ + (1−α)‖g − gn‖∞ < ε.
From here it follows that for every 0 ≤ α ≤ 1 and f ,g ∈ F it holds αf + (1−α)g ∈ F . Thus,
we have showed that the hypothesis space F is a convex set.

As a convex combination of Lipschitz continuous functions is again a Lipschitz continuous
function, we have that all functions f ∈ co(FΘ) are Lipschitz continuous. It remains to prove
that all functions from the closure are Lipschitz continuous, as well. Let f and {fn}n≥1 be
de�ned as above and let Lφ be the Lipschitz constant of the function φ. We have that it holds∣∣∣f (x)− f (y)∣∣∣ ≤ |f (x)− fn (x)|+ ∣∣∣fn (x)− fn (y)∣∣∣+ ∣∣∣fn (y)− f (y)∣∣∣ < 2‖f − fn‖∞ + rLφ

∥∥∥x − y∥∥∥ .
Taking the limit of both sides as n→∞, we deduce that function f is Lipschitz continuous
with a Lipschitz constant bounded by rLφ.

A metric space is compact if and only if it is complete and totally bounded (Rudin, 1991),
i.e., for all ε > 0 there exists a �nite ε-net of F . Thus, as the hypothesis space F is complete
by de�nition, it is su�cient to show that for all ε > 0 there exists a �nite ε-net of F in C (X).
The set X is a compact subset of a �nite dimensional Euclidean space and as such it is totally
bounded and contained in a centralizable space (see De�nition 3.4 for details). Then, from
Theorem 3.4 it follows that

Nε (Lip1 (X) ; ‖·‖∞) ≤ 2N ε
2
(X; ‖·‖) (2⌈2C

ε

⌉
+1

)
,

where Lip1 (X) denotes the set of 1-Lipschitz continuous functions de�ned on a set X and
C > 0 is an upper bounds on all functions from Lip1 (X). This result allows us to bound the
ε-covering number of the space of Lipschitz continuous functions on X. Namely, from the
assumptions about F we conclude that all functions in F have Lipschitz constant bounded
by LF = rLφ, where Lφ denotes the Lipschitz constant of the function φ. Then, an upper
bound on the ε-covering number of the space LipLF (X) is given by

2
N ε

2LF
(X; ‖·‖2) (2⌈2r

ε

⌉
+1

)
.

As F ⊂ LipLF (X) andNε
(
LipLF (X) ; ‖·‖∞

)
is �nite for all ε > 0, the result follows.
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The choice of a compact hypothesis space is important because it guarantees that a
minimizer of the expected squared error Eρ and its empirical counterpart Ez exists. In
particular, a continuous function attains its minimum and maximum value on a compact set
and this guarantees the existence of minimizers of Eρ and Ez. The following result by Cucker
and Smale (2002) shows that the functionals Eρ and Ez are continuous on F .

Proposition 3.7. (Cucker and Smale, 2002) Let f1, f2 ∈ C (X),M ∈ R+, and
∣∣∣fi (x)− y∣∣∣ ≤M on

a set U ⊂ Z of full measure for i = 1,2. Then for all z ∈Un functions Eρ and Ez are Lipschitz
continuous on the metric space C (X).
Proof. For all f1, f2 ∈ C (X) we have that∣∣∣(f1 (x)− y)2 − (f2 (x)− y)2∣∣∣ = |f1 (x)− f2 (x)| ∣∣∣f1 (x)− y + f2 (x)− y∣∣∣ ≤ 2M ‖f1 − f2‖∞ ,

and the claim follows from this inequality.

In addition to this, for a hypothesis space that is both convex and compact, the minimizer
of the expected squared error is unique as an element of L2ρ (X). A simple proof of the
uniqueness of such a minimizer in L2ρ (X) can also be found in Cucker and Smale (2002). For
the sake of completeness, we provide here a proof of this result.

Proposition 3.8. (Cucker and Smale, 2002) Let K be a convex and compact subset of C (X).
Then there exists a function in C (X) with a minimal distance to fρ in L2ρ (X). Moreover, this
function is unique as an element of L2ρ (X).
Proof. From the compactness of the subspace it follows that a minimizer exists. However, it
does not have to be unique. Let f1 and f2 be two minimizers and let

S = {αf1 + (1−α)f2 | 0 ≤ α ≤ 1}
be the line segment connecting these two points. As the subspace K is convex, then the
segment S is contained within K. Furthermore, for all f ∈ S , it holds∥∥∥f1 − fρ∥∥∥ρ = ∥∥∥f2 − fρ∥∥∥ρ ≤ ∥∥∥f − fρ∥∥∥ρ .
From the inequality for the �rst term, we have〈
fρ − f1, f − f1

〉
ρ
+
〈
fρ − f1, fρ − f

〉
ρ
≤

∥∥∥fρ − f ∥∥∥2ρ⇒ 〈
fρ − f1, f − f1

〉
ρ
≤

〈
f1 − f , fρ − f

〉
ρ
.

Similarly, from the inequality for the second term, we obtain〈
fρ − f2, f − f2

〉
ρ
≤

〈
f2 − f , fρ − f

〉
ρ
.

As the cosine is a decreasing function over [0,π], it follows that ∠fρf1f ≥ ∠fρf f1 and
∠fρf2f ≥ ∠fρf f2 for all f ∈ S . Hence, if f1 , f2 then the angles ∠fρf1f and ∠fρf2f are
obtuse. As there does not exist a triangle with two obtuse angles, then f1 = f2.

Having established that the hypothesis space is a compact and convex set with a unique
minimizer of the expected squared error, we can now give a generalization bound for learning
on this hypothesis space. In particular, the fact that F is compact allows us to derive a
sample complexity bound by using the ε-covering number of the space as a measure of its
capacity (Kolmogorov and Tikhomirov, 1959). The following theorem and corollary give a
generalization bound for learning on the hypothesis space F .
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Theorem 3.9. LetM > 0 be a �nite constant such that, for all f ∈ F ,
∣∣∣f (x)− y∣∣∣ ≤M almost

everywhere. Then, for all ε > 0,

Pz∈Zn
[
Eρ (fz)−Eρ (f ∗) ≤ ε

]
≥ 1−N ε

24M
(F ; ‖·‖∞)exp

(
− nε

288M2

)
,

where fz and f ∗ are the minimizers of Ez and Eρ on the set F .

Our proof of the theorem relies on the following result by Cucker and Smale (2002).

Theorem 3.10. (Cucker and Smale, 2002) Let K be a compact and convex subset of C (X) and
letM > 0 be a �nite constant such that for all f ∈ K,

∣∣∣f (x)− y∣∣∣ ≤M almost everywhere. Then,
for all ε > 0,

Pz∈Zn
[
Eρ (fz)−Eρ (fK) ≤ ε

]
≥ 1−N ε

24M
(K; ‖·‖∞)exp

(
− nε

288M2

)
,

where fz and fK are the minimizers of Ez and Eρ over K.

Proof of Theorem 3.9. The claim follows from Proposition 3.6 and Theorem 3.10.

Corollary 3.11. For all ε,δ > 0, with probability 1− δ, a minimizer of the empirical squared
error on the hypothesis space F is (ε,δ)-consistent when the number of samples

n ∈Ω
(
r (Rs+ t)Lφ

1
ε2

+
1
ε
ln

1
δ

)
.

Here, R is the radius of a ball containing the set of instances X in its interior, Lφ is the Lipschitz
constant of a function φ, and r , s, and t are hyperparameters of FΘ .

Proof. To derive the sample complexity bound from this corollary, we need a tighter bound
on the ε-covering number of our hypothesis space than the one provided in Proposition 3.6.
We �rst give one such bound and then prove the corollary.

The set of instances X is a compact subset of a Euclidean space and we can, without loss
of generality, assume that there exists a ball of radius R centered at the origin and containing
the set X in its interior. From the de�nition of the hypothesis space F we see that the
argument of the ridge function φ is bounded, i.e.,

|〈w,x〉+ b| ≤ ‖w‖‖x‖+ t ≤ Rs+ t .

From here we conclude that the hypothesis space F is a subset of the space of 1-
dimensional Lipschitz continuous functions on the compact interval [− (Rs+ t) ,Rs+ t]. Then,
the covering number of F is upper bounded by the covering number of the space of LF -
Lipschitz continuous one dimensional functions de�ned on the segment [− (Rs+ t) ,Rs+ t].
From Proposition 3.5, it follows that the ε-covering number of the segment [− (Rs+ t) ,Rs+ t]
is upper bounded by 4(Rs+t)/ε. This, together with Theorem 3.4 implies that the upper bound
on the ε-covering number of the hypothesis space F is given by

Nε (F ; ‖·‖∞) ≤ 2
8r(Rs+t)Lφ

ε

(
2
⌈2r
ε

⌉
+1

)
. (3.1)
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On the other hand, from Theorem 3.9 we obtain that for all δ > 0 with probability 1− δ the
empirical estimator is (ε,δ)-consistent when

2
192r(Rs+t)MLφ

ε

(
2
⌈48Mr

ε

⌉
+1

)
exp

(
− nε

288M2

)
≤ δ ⇐⇒

192r (Rs+ t)MLφ
ε

ln2+ ln
(
2
⌈48Mr

ε

⌉
+1

)
≤ nε

288M2 − ln
1
δ
.

Hence, for all ε,δ > 0 and

n ≥ 288M2

ε

192r (Rs+ t)MLφε
ln2+ ln

(
2
⌈48Mr

ε

⌉
+1

)
+ ln

1
δ

 (3.2)

with probability 1− δ the empirical estimator is (ε,δ)-consistent.

The concentration inequality from Theorem 3.10 is tighter by a factor of 1/ε for convex
and compact compared to compact only hypothesis spaces. For instance, this can be seen
by comparing the bounds from the corresponding theorems in Cucker and Smale (2002). In
our case with convex and compact hypothesis space F , the sample complexity bound from
Theorem 3.9 is still Ω (1/ε2) due to the 1/ε factor coming from the ε-covering number of F .

We conclude this section by noting that a detailed study of the properties of ridge basis
functions in high dimensional Euclidean spaces can be found in Mayer et al. (2015).

3.1.5 Algorithm

Algorithm 3.1 is a pseudo-code description of the outlined approach. To construct a feature
space with a good set of linear hypotheses the algorithm takes as input a set of labeled
instances and an initial empirical estimate of the target function. A dictionary of features is
speci�ed with a ridge basis function and the smoothness of individual features is controlled
with a regularization parameter. Other parameters of the algorithm are the maximum allowed
number of descent steps and a precision term that de�nes the convergence of the descent. As
outlined in Sections 3.1.1 and 3.1.3, the algorithm works by selecting a feature that matches
the residual function at the current estimate of the target function. For each selected feature
the algorithm also chooses a suitable learning rate and performs a functional descent step
(note that we are inferring the learning rate instead of setting it to 1/m+1 as in Theorem 3.2).
To avoid solving these two problems separately, we have coupled both tasks into a single
optimization problem (line 3). In particular, we �t a linear model to a feature representation
consisting of the current empirical estimate of the target function and a ridge function
parameterized with a d-dimensional vectorw. The regularization term Ω is chosen to control
the smoothness of the new feature and avoid over-�tting. The optimization problem over
the coe�cients of the linear model and the spectrum of the ridge basis function is solved by
casting it as a hyperparameter optimization problem (see Section 3.2.2 or Keerthi et al., 2007).

While the hyperparameter optimization problem is in general non-convex, Theorem 3.2
indicates that a globally optimal solution is not (necessarily) required and instead speci�es
a weaker condition. To account for the non-convex nature of the problem and compensate
for the sequential generation of features, we propose to parallelize the feature construction
process by running several instances of the greedy descent simultaneously. A pseudo-code
description of this parallelized approach is given in Algorithm 3.2. The algorithm takes as
input parameters required for running the greedy descent and some parameters speci�c to the
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Algorithm 3.1 GreedyDescent
Input: sample z = {(xi , yi)}si=1, initial estimates at sample points

{
f0,i

}s
i=1, ridge basis function φ,

maximum number of descent steps p, regularization parameter λ, and precision ε
1: W ←∅
2: for k = 1,2, . . . ,p do
3: wk , ck ← argminw,c=(c′ ,c′′)

∑s
i=1

(
c′fk−1,i + c′′φ (w>xi)− yi

)2 +λΩ (c,w)

4: W ←W ∪ {wk} and fk,i ← c′kfk−1,i + c
′′
kφ

(
w>k xi

)
, i = 1, . . . , s

5: if |Ez(fk )−Ez(fk−1)|/max{Ez(fk ),Ez(fk−1)} < ε then Exit For Loop end if
6: end for
7: returnW

Algorithm 3.2 Greedy Feature Construction (gfc)
Input: sample z = {(xi , yi)}ni=1, ridge basis function φ, number of data passes T , maximum number

of greedy descent steps p, number of machines/cores M , regularization parameters λ and ν,
precision ε, and feature cut-o� threshold η

1: W ← {0} and f0,k ← 1
n

∑n
i=1 yi , k = 1, . . . ,n

2: for i = 1, . . . ,T do
3: for j = 1,2, . . . ,M parallel do

4: Sj ∼ U{1,2,...,n} and W ←W ∪ GreedyDescent
(
{(xk , yk)}k∈Sj ,

{
fi−1,k

}
k∈Sj ,φ,p,λ,ε

)
5: end for
6: a∗← argmina

∑n
k=1

(∑|W |
l=1 alφ

(
w>l xk

)
− yk

)2
+ ν ‖a‖22

7: W ←W \
{
wl ∈W | |a∗l | < η,1 ≤ l ≤ |W |

}
and fi,k ←

∑|W |
l=1 a

∗
lφ

(
w>l xk

)
, k = 1, . . . ,n

8: end for
9: return (W,a∗)

parallelization scheme: number of data passes and available machines/cores, regularization
parameter for the �tting of linear models in the constructed feature space, and cut-o�
parameter for the elimination of redundant features. The whole process is started by adding
a bias feature and setting the initial empirical estimates at sample points to the mean value
of the outputs (line 1). Following this, the algorithm mimics stochastic gradient descent and
makes a speci�ed number of passes through the data (line 2). In the �rst step of each pass,
the algorithm performs greedy functional descent in parallel using a pre-speci�ed number
of machines/cores M (lines 3-5). This step is similar to the splitting step in parallelized
stochastic gradient descent (Zinkevich et al., 2010). Greedy descent is performed on each of
the machines for a maximum number of iterations p and the estimated parameter vectors are
added to the set of constructed features W (line 4). After the features have been learned the
algorithm �ts a linear model to obtain the amplitudes (line 6). To �t a linear model, we use
least square regression penalized with the l2-norm because it can be solved in a closed form
and cross-validation of the capacity parameter involves optimizing a 1-dimensional objective
function (e.g., see Section 3.2.2 or Keerthi et al., 2007). Fitting of the linear model can be
understood as averaging of the greedy approximations constructed on di�erent chunks of
the data. At the end of each pass, the empirical estimates at sample points are updated and
redundant features are removed (line 7).

One important detail in the implementation of Algorithm 3.1 is the data splitting between
the training and validation samples for the hyperparameter optimization. In particular, during
the descent we are more interested in obtaining a good spectrum than the amplitude because
a linear model will be �t in Algorithm 3.2 over the constructed features and the amplitude
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values will be updated. For this reason, during the hyperparameter optimization over a k-fold
splitting in Algorithm 3.1, we propose to choose a single fold as the training sample and a
batch of folds as the validation sample.

3.2 Learning with Fourier Features

In this section, we present an instance of our approach with a set of Fourier features (Rahimi
and Recht, 2008a) as ridge-wave bases. We start by introducing a notion of Fourier feature
and then review the relation between these features and stationary kernels (Section 3.2.1),
the class of kernel functions that corresponds to a rich set of hypotheses (Micchelli et al.,
2006). In Section 3.2.2, we exploit the relationship between Fourier features and stationary
kernels to show that this particular instance of our approach can approximate any bounded
hypothesis from any stationary reproducing kernel Hilbert space. Following this, we give
a detailed description of the proposed procedure for solving the optimization problem for
greedy feature construction with Fourier features as ridge bases (i.e., optimization problem in
line 3 of Algorithm 3.1). The section concludes with a review of a related, alternative approach
for learning with Fourier features (Section 3.2.3), that contrary to our approach approximates
a target regression function by optimizing jointly over an e�ciently parameterized set of
Fourier features and corresponding regression coe�cients.

3.2.1 Fourier Features

Fourier features were �rst introduced to the machine learning community by Rahimi and
Recht (2008a) as a mean to approximate stationary kernel functions and scale kernel methods
to large scale datasets with millions of instances. This section reviews that work and a relation
between Fourier features and a class of high-capacity kernel functions known as stationary
kernels (Section 3.2.1.1). Following this, we provide a brief overview of a frequently used
approach for learning with random Fourier features, random kitchen sinks (Sections 3.2.1.2).
The approach serves as one of the baselines in the empirical study of the e�ectiveness of our
greedy feature construction approach (e.g., see Section 3.3).

3.2.1.1 Stationary Kernels

This section provides a brief review of a class of positive de�nite kernel functions known
as stationary kernels. The de�nitions and terminology used throughout the section follow
along the lines of Genton (2002).

LetD ⊂ Rd be an open set. A positive de�nite kernel k : D×D→ R is called stationary or
anisotropic if there exists a function s : D→ R such that k (x,x′) = s (x − x′), for all x,x′ ∈D .
Alternatively, a function s : D → R is said to be of positive type if there exists a positive
de�nite kernel k : D×D→ R such that s(x−x′) = k(x,x′) for all x,x′ ∈D . Thus, a stationary
kernel function depends only on the lag vector separating two instances x and x′ and not
on the instances themselves. A large number of stationary positive de�nite kernels can be
derived from their spectral representation given by Bochner (1932).

Theorem 3.12. (Bochner, 1932) The Fourier transform of a bounded positive measure on Rd is
a continuous function of positive type. Conversely, any function of positive type is the Fourier
transform of a bounded positive measure.
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This theorem implies that any stationary positive de�nite kernel k satis�es

k (x,x′) = s (x − x′) =
∫
Rd

exp(−i 〈w,x − x′〉)dµ (w) ,
where µ is a positive and bounded measure. The quantity µ/s(0) is called the spectral distribu-
tion function. Now, as k (x,x′) is a real function in both arguments, the complex part in the
integral on the right-hand side is equal to zero, and we have that (Rahimi and Recht, 2008a)

k (x,x′) = 2
∫
Rd×[−π,π]

cos
(
w>x+ b

)
cos

(
w>x′ + b

)
dµ̂ (w,b) , (3.3)

where µ̂ (w,b) = µ(w)/2π > 0 for all w ∈ Rd and b ∈ [−π,π].
A stationary kernel function that depends only on the distance between two instances is

called isotropic or homogeneous. The spectral representation of isotropic stationary kernels
has been derived by Yaglom (1957). In particular, for any isotropic kernel it holds

k (x,x′) = s
(∥∥∥x − x′∥∥∥) = ∫ ∞

0
Ωd

(
w

∥∥∥x − x′∥∥∥)dµ (w) ,
where

Ωd (x) =
(2
x

) (d−2)
2 · Γ

(
d
2

)
· J (d−2)

2
(x)

form a basis for kernel functions in Rd (Genton, 2002). Here, µ is some non-decreasing
bounded function, Γ (d/2) is the gamma function, and J(d−2)/2(x) is the Bessel function of the
�rst kind of order (d−2)/2. As pointed by Genton (2002), all isotropic stationary kernels
obtained with Ωd are positive de�nite in Rd and in lower dimensions, but not necessarily in
higher dimensions. Stein (1999) has provided a lower bound on isotropic stationary kernels,

k (x,x′) = s
(∥∥∥x − x′∥∥∥) ≥ s (0) · inf

x≥0
Ωd (x) .

From this lower bound and properties of Ωd one can observe that isotropic stationary
kernels fall o� quickly as the dimension of the instance space increases (Stein, 1999; Genton,
2002). Schönberg (1938, Section 2) showed that if Bd is the class of isotropic positive de�nite
kernels in Rd , then the classes for all d have the property

B∞ ⊂ · · · ⊂ Bd ⊂ · · · ⊂ B2 ⊂ B1 .

As Ωd (x) → exp(−x2) when d → ∞, then only isotropic positive de�nite kernels with
basis function exp(−x2) are contained in all the classes. This observation implies that as the
dimension of the instance space increases, the space of available isotropic positive de�nite
kernels reduces (Schönberg, 1938; Genton, 2002).

An isotropic positive de�nite kernel that is frequently used with kernel methods in
machine learning is the Gaussian or squared exponential kernel. For this particular kernel,
from Theorem 3.12 we obtain that the spectral distribution is also Gaussian. More formally,

k (x,x′) = exp
(
−‖x − x

′‖2
2σ2

)
=

(
σ2

2π

)d/2∫
Rd

exp(−i 〈w,x − x′〉)exp(
−σ

2 ‖w‖2
2

)
dw .
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Thus, for the Gaussian kernel we have that s(0) = 1 and the spectral distribution is given by
µ (w) = σ exp(−σ2‖w‖2/2)/√2π. Beside the Gaussian kernel, Genton (2002) has provided several
other isotropic positive de�nite kernels used with kernel methods such as the Laplace or
exponential kernel. Similar to the Gaussian kernel, we can compute the spectral density
corresponding to the Laplace kernel using Theorem 3.12. More speci�cally, we have that it
holds (Rahimi and Recht, 2008a)

k (x,x′) = exp
(
−‖x − x

′‖
θ

)
=

∫
Rd

exp(−i 〈w,x − x′〉) d∏
i=1

θ/π

1+θ2w2
i

dw .

Thus, for the Laplace kernel the spectral distribution is given by the product of one dimen-
sional Cauchy distributions, µ (w) =

∏d
i=1

θ
π/(1+θ2w2

i ).
This review of stationary kernels concludes with the Matérn kernel (Matérn, 1986) that

has been advocated recently for its ability to control the smoothness of hypotheses via kernel
parameters (e.g., see Le et al., 2013). The kernel is formally de�ned as (Genton, 2002)

k (x,x′) =
1

2ν−1Γ (ν)

(
2
√
ν ‖x − x′‖
θ

)ν
Hν

(
2
√
ν ‖x − x′‖
θ

)
,

where Γ is the Gamma function and Hν is the modi�ed Bessel function of the second kind of
order ν. For ν = 1/2 the Matérn kernel reduces to the Laplace kernel and for ν→∞ to the
Gaussian kernel. As pointed by Rasmussen and Williams (2005), perhaps the most interesting
cases for machine learning community are ν = 3/2 and ν = 5/2, for which

kν=3/2 (x,x
′) =

(
1+

√
3‖x − x′‖
θ

)
exp

(
−
√
3‖x − x′‖
θ

)
kν=5/2 (x,x

′) =
(
1+

√
5‖x − x′‖
θ

+
5‖x − x′‖2

3θ2

)
exp

(
−
√
5‖x − x′‖
θ

)
.

For ν = 1/2, hypotheses are rough and not necessarily mean squared di�erentiable (e.g., see
Section 4.2.1 in Rasmussen and Williams, 2005), and for ν ≥ 7/2 combined with a noisy set
of examples it is not easy to distinguish between hypotheses corresponding to the Matérn
kernel with �nite ν and that with ν→∞ (i.e., the Gaussian or squared exponential kernel).

In the remainder of the chapter, we will use the term stationary/isotropic kernel for
kernels that are both stationary/isotropic and positive de�nite.

3.2.1.2 Random Kitchen Sinks

Having introduced stationary kernels, we now review an e�cient learning approach capable
of approximating and scaling kernel machines with stationary kernels to datasets with
millions of instances. The materials and terminology in this section follow along the lines of
works by Rahimi and Recht (2008a,b, 2009).

In their seminal work, Rahimi and Recht (2008a) have introduced Fourier features as
ζw,b (x) =

√
2cos(w>x+ b) with w ∈ Rd and −π ≤ b ≤ π. Fourier features, together with

Theorem 3.12, allow one to express the kernel value between instances x and x′ as

k(x,x′)/s(0) = E(w,b)∼ µ(w)s(0) ×U[−π,π]
[
ζw,b (x)ζw,b (x

′)
]
.

For simplicity of the presentation, in the remainder of the section we assume that s (0) = 1
(i.e., µ is a probability measure). Thus, we can approximate the kernel value at instances x and
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x′ using a Monte Carlo estimate of the expectation with respect to random variables w ∼ µ
and b ∼ U[−π,π]. More formally, if we let Sm = {(w1, s1) , . . . , (wm,bm)} be an independent
sample from µ×U[−π,π] and denote with ζ (x | Sm) = vec(ζw1 ,b1 (x),...,ζwm,bm (x))/

√
m, then

ζ (x | Sm)>ζ (x′ | Sm) = 1
m

m∑
i=1

ζwi ,bi (x)ζwi ,bi (x
′)

is an approximation of the expectation in Eq. (3.3). For any two �xed instances and a stationary
kernel, the concentration bound follows from the Hoe�ding’s inequality.

Proposition 3.13. (Rahimi and Recht, 2008a) For x,x′ ∈ Rd and a sample Sm from the spectral
distribution µ×U[−π,π] of a stationary positive de�nite kernel k, we have that it holds

P
(∣∣∣ζ (x | Sm)>ζ (x′ | Sm)− k (x,x′)∣∣∣ ≥ ε) ≤ 2exp

(
−mε

2

4

)
.

This result holds only pointwise, that is for a �xed pair of instances x and x′ and a given
sample of spectral parameters Sm. Rahimi and Recht (2008a) have extended the bound from
Proposition 3.13 to a uniform bound holding for any two instances from a compact set X
using a standard ε-net argument (e.g., see Kolmogorov and Tikhomirov, 1959). The following
theorem is a formal statement of that much stronger result.

Theorem 3.14. (Rahimi and Recht, 2008a) Let X be a compact subset of Rd with diameter R.
Then, for the mapping ζ (x | Sm) de�ned above, we have

P

 sup
x,x′∈X

∣∣∣ζ (x | Sm)>ζ (x′ | Sm)− k (x,x′)∣∣∣ ≥ ε ≤ 256
(Rγ
ε

)2
exp

(
− mε2

4(d +2)

)
, (3.4)

where γ = Ew
[
‖w‖2

]
is the second moment of the Fourier transform of k. Moreover,

sup
x,x′∈X

∣∣∣ζ (x | Sm)>ζ (x′ | Sm)− k (x,x′)∣∣∣ ≤ ε
with any constant probability when m =Ω

(
d
ε2 log

Rγ
ε

)
.

The constant γ2 quanti�es the curvature of the kernel at the origin and it can be com-
puted using standard Fourier identities. For example, for the Gaussian kernel Rahimi and
Recht (2008a) have computed that γ2 = d/σ2. The computational and space complexities of
transforming a dataset with n instances from Rd to a random Fourier feature representation
with m features are O (nmd). Le et al. (2013) have proposed an approach, Fastfood, that can
speed up such transformations for the Gaussian and Matérn kernels. The computational
complexity of that approach is O (nm logd) and is especially e�ective for problems with
high dimensional instance spaces. However, this improvement in computational complexity
comes at the cost of a slightly worst concentration bound for the approximation. In particular,
the result by Le et al. (2013) for the pointwise concentration (i.e., directly comparable to
Proposition 3.13) can be formally stated as follows.

Theorem 3.15. (Le et al., 2013) For x,x′ ∈ Rd let k̂ (x,x′) denote the approximation of the
Gaussian kernel, denoted with k (x,x′), that arises from a Fastfood block of size m ×m with
m = d. Then, for all δ > 0

P

 ∣∣∣k̂ (x,x′)− k (x,x′)∣∣∣ ≥ 2
‖x − x′‖
σ

√
log2m/δ log2/δ

m

 ≤ 2δ .
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This pointwise result can be extended to a concentration bound over a compact set X by
mimicking the ε-net argument from Rahimi and Recht (2008a). A direct comparison to Theo-
rem 3.14 then implies that the error of the Fastfood approximation is at most O

(√
logm/δ

)
times larger than that of random Fourier features (Le et al., 2013). Moreover, for the approx-
imation bound from Theorem 3.14 that holds with any constant probability, the Fastfood
approach requires at least log1/δ times more Fourier features.

The results from Theorems 3.14 and 3.15 quantify the approximation quality of ran-
dom Fourier features in the task of approximating stationary kernels. To learn with such
approximate stationary kernels, one can �rst transform data to a representation given by
random Fourier features and then apply a linear learning algorithm such as linear regression
or support vector machine to the resulting representation. The computational complexity
of learning with random Fourier features in that case is linear in the number of instances
and cubic in the number of Fourier features. A moderate number of Fourier features then
allows kernel methods to scale to millions of instances. To quantify the e�ectiveness of
such approximations, Rahimi and Recht (2008b, 2009) have provided generalization bound
and approximation properties of learning with random Fourier features. Their results relate
learning with random features to kernel methods with stationary kernels. In the remainder
of this section, we review these results and in Section 3.2.2 provide similar bounds to quantify
the approximation properties of our greedy feature construction approach.

In our review of random kitchen sinks (Rahimi and Recht, 2008b), we follow the approach
by Rahimi and Recht (2008b, 2009) and instead of Fourier features use a more general basis
function φ : X ×Θ → R with Θ ⊆ Rd . In summary, random kitchen sinks �rst sample
spectral parameters {θi}mi=1 independently from a probability density function p such that

k (x,x′) =
∫
Θ

φ (x,θ)φ (x′ ,θ)p (θ)dθ .

Then, the algorithm solves the following convex optimization problem

α∗ = min
α∈Rm

1
n

n∑
i=1

l
(
α>φ (xi) , yi

)
‖α‖∞ ≤

C
m
,

(3.5)

where φ (x) = vec(φ (x,θ1) , . . . ,φ (x,θm)) and l (y,y′) = l (yy′) is an L-Lipschitz continuous
loss function. In practice, the uniform norm regularization from the latter optimization prob-
lem is replaced with the squared norm regularization. Such relaxation of the random kitchen
sinks optimization problem is equivalent to learning with linear ridge regression/support
vector machine. For a �xed spectral distribution p, the hypothesis space of random kitchen
sinks is given by (Rahimi and Recht, 2008b, 2009)

Fp =
f (x) =

∫
Θ

α (θ)φ (x,θ)dθ

∣∣∣∣∣∣ |α (θ)| ≤ Cp (θ)
 , (3.6)

with a constant C ∈ R+. For learning with random kitchen sinks on this hypothesis
space Rahimi and Recht (2009) have given the following generalization bound.

Theorem 3.16. (Rahimi and Recht, 2009) Let p be a probability density function de�ned on
Θ ∈ Rd and let supx∈X,θ∈Θ

∣∣∣φ (x,θ)
∣∣∣ ≤ 1. If the training data {(xi , yi)}ni=1 are drawn iid from a
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probability measure ρ, then, for all δ > 0, the random kitchen sinks algorithm returns a function
fn,m such that

E(x,y)∼ρ
[
l
(
fn,m (x) , y

)]−min
f ∈Fp

E(x,y)∼ρ [l (f (x) , y)] ∈ O
LC (

1√
n
+

1√
m

)√
log

1
δ


with probability at least 1−2δ over the training dataset and the choice of the parameters {θi}mi=1.

Moreover, for learning with squared error loss function, the bound from Theorem 3.16
can be improved under the assumption (see also Section 3.1.1) that the target regression
function fρ ∈ Fp. More speci�cally, we derive the following result using mainly the auxiliary
claims from Rahimi and Recht (2009).

Proposition 3.17. Suppose that the target regression function fρ ∈ Fp. Then, for all δ > 0, the
random kitchen sinks algorithm returns a function fn,m such that

E(x,y)∼ρ
[(
fn,m (x)− y)2]−E(x,y)∼ρ

[(
fρ (x)− y

)2] ∈ OC2
(
1√
n
+

1
m

)
log

1
δ


with probability at least 1−2δ over the training dataset and the choice of the parameters {θi}mi=1.
Proof. Suppose that the random kitchen sinks algorithm has drawn an i.i.d. sample of random
features {θi}mi=1 from the spectral distribution p. Then, this sample of Fourier features �xes
the following hypothesis space

F̂p =
f (x) = m∑

i=1

αiφ (x,θi)

∣∣∣∣∣∣ |αi | ≤ Cm
 .

Let f̂ ∈ F̂p and observe that

E(x,y)∼ρ
[(
f̂ (x)− y

)2]−E(x,y)∼ρ
[(
fρ (x)− y

)2]
=∫

f̂ (x)2dρ − 2
〈
f̂ , fρ

〉
L2ρ(X) −

∫
fρ (x)

2dρ+2
〈
fρ, fρ

〉
L2ρ(X) =

∥∥∥f̂ − fρ∥∥∥2ρ .
On the other hand, Rahimi and Recht (Lemma 1, 2009) show that there exists a hypothesis
f̂ ∈ F̂p de�ned by m random features such that

∥∥∥f̂ − fρ∥∥∥ρ ∈ O
 C√m

√
log

1
δ

 .
If we now denote the minimizer of the expected squared error on F̂p with f̂m, we ob-
tain (Lemma 3, Rahimi and Recht, 2009)

E(x,y)∼ρ
[(
fn,m (x)− y)2]−E(x,y)∼ρ

[(
fρ (x)− y

)2] ≤∣∣∣∣∣E(x,y)∼ρ
[(
fn,m (x)− y)2]−E(x,y)∼ρ

[(
ˆfm (x)− y

)2]∣∣∣∣∣+ ∥∥∥ ˆfm − fρ
∥∥∥2 ∈ OC2

(
1√
n
+

1
m

)
log

1
δ

 .
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Thus, if fρ ∈ Fp then the latter proposition implies that it is su�cient to take m ∈ O
(√
n
)

random Fourier features for the consistency of the corresponding empirical hypothesis fn,m.
This is a signi�cant improvement over the bound from Theorem 3.16 that requires n random
Fourier features for the consistency of hypotheses generated by random kitchen sinks. In
addition to providing a generalization bound for learning with random kitchen sinks, Rahimi
and Recht (2008b) have investigated the approximation properties of hypotheses from Fp. The
following theorem gives a concentration bound for functions returned by the random kitchen
sinks algorithm (concentration around hypotheses from Fp), as the number of sampled
random (Fourier) features increases.

Theorem 3.18. (Rahimi and Recht, 2008b) Let ρ be any probability measure with support on
a compact set X and let f ∈ Fp. Suppose φ : X ×Θ→ R satis�es supx,θ

∣∣∣φ (x,θ)
∣∣∣ ≤ 1. Then,

for all δ > 0, with probability at least 1− δ over {θi}mi=1 drawn iid from p, there exists {ci}mi=1
such that the function fm (x) =

∑m
i=1 ciφ (x,wi) satis�es

‖fm − f ‖ρ <
‖f ‖ρ√
m

1+
√
2log

1
δ

 .
Thus, as we increase the number of random Fourier features our approximation of a

hypothesis from Fp concentrates around it in the Hilbert space L2ρ (X). The following is an
even stronger result with a concentration bound in the uniform norm.

Theorem 3.19. (Rahimi and Recht, 2008b) Let f ∈ Fp and let φ : R→ R be an L-Lipschitz
function such φ (x,θ) = φ (θ>x), φ (0) = 0, and

∥∥∥φ∥∥∥∞ < 1. Suppose furthermore that p has a
�nite second moment. Then, for all δ > 0, with probability at least 1− δ over {θi}mi=1 drawn iid
from p there exist {ci}mi=1 such that the function fm (x) =

∑m
i=1 ciφ

(
θ>i x

)
satis�es

‖fm − f ‖∞ <
‖f ‖ρ√
m


√
log

1
δ
+4LB

√
E
[
‖θ‖2

] .
While these two results show that the hypotheses returned by the random kitchen sinks

algorithm concentrate, they do not provide an insight into the approximation properties of the
hypothesis space Fp. For that, Rahimi and Recht (2008b) have shown that Fp is dense in the
reproducing Hilbert space of the stationary kernel corresponding to the spectral distribution
p that de�nes the hypothesis space Fp. More formally, we have the following theorem.

Theorem 3.20. (Rahimi and Recht, 2008b) Let Hk be the reproducing kernel Hilbert space
corresponding to a positive de�nite kernel

k (x,x′) =
∫
Θ

φ (x,θ)φ (x′ ,θ)p (θ)dθ .

Then, the hypothesis space Fp is dense inHk .
Hence, if the reproducing kernel Hilbert space is dense in the space of continuous

functions de�ned on a compact set X , then the same holds for the hypothesis space Fp. From
previous work (Micchelli et al., 2006), we know that the reproducing kernel Hilbert space of
the Gaussian kernel is dense in the space of continuous functions. Thus, the random kitchen
sinks algorithm can, with su�ciently large number of random Fourier features (sampled
from the Gaussian density function) and su�ciently large number of training examples,
approximate arbitrarily well any continuous function de�ned on a compact set X ⊂ Rd .
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3.2.2 Learning with Greedily Constructed Fourier Features

The random kitchen sinks algorithm, reviewed in the previous section, is an e�cient method
for the approximation of hypotheses from a stationary reproducing kernel Hilbert space.
However, for good generalization properties that approach requires an a priori speci�cation
of a suitable spectral measure which is often not feasible. To address this shortcoming of
random kitchen sinks, we investigate here an instance of our approach in which Fourier
features act as greedy features. We start by showing that, for this particular choice of
greedy features, our approach is capable of approximating arbitrarily well any bounded
function from any stationary reproducing kernel Hilbert space. Following this, we discuss
the regularization term in the feature construction step at line 3 of Algorithm 3.1 and provide
the hyperparameter gradient for this optimization problem. The hyperparameter gradient
can then be used in combination with any o�-the-shelf minimization algorithm such as the
l-bfgs-b solver available in most numerical packages (e.g., SciPy, Matlab etc.).

Taking φ (·) = cos(·) in the de�nition of FΘ we obtain a set of cosine-wave features

Fcos =
{
acos(〈w,x〉+ b) | w ∈ Rd , a,b ∈ R, |a| ≤ r,‖w‖2 ≤ s, |b| ≤ t

}
.

For this set of features, the approach outlined in Section 3.1.1 can construct a rich set of
hypotheses. To demonstrate this, we make a connection to stationary reproducing kernel
Hilbert spaces and show that the approach can approximate any bounded function from
any stationary reproducing kernel Hilbert space. This means that a set of linear hypotheses
de�ned by cosine features can be of high capacity and our approach can overcome the
problems with the low capacity of linear hypotheses de�ned on few input features.

Theorem 3.21. Let Hk be a reproducing kernel Hilbert space corresponding to a continuous
stationary/shift-invariant and positive de�nite kernel k de�ned on a compact set X. Let µ be
the positive and bounded spectral measure whose Fourier transform is the kernel k. For any
probability measure ρ de�ned on X , it is possible to approximate any bounded function f ∈ Hk
using a convex combination of m ridge-wave functions from Fcos such that the approximation
error in ‖·‖ρ decays with rate O (1/√m).

Proof. Let f ∈ Hk be any bounded function. From the de�nition ofHk it follows that the set
H0 = span {k (x, ·) | x ∈ X} is a dense subset ofHk . In other words, for every ε > 0 there is a
bounded function g ∈ H0 such that ‖f − g‖Hk < ε. As feature functions k (x, ·) are continuous
and de�ned on the compact set X, they are also bounded. Thus, we can assume that there
exists a constant B > 0 such that supx,y∈X

∣∣∣k (x,y)∣∣∣ < B. From here it follows

‖f − g‖∞ = sup
x∈X

∣∣∣〈f − g,k (x, ·)〉Hk ∣∣∣ ≤ √B‖f − g‖Hk .
This means that convergence in ‖·‖Hk implies the uniform convergence. The uniform conver-
gence, on the other hand, implies the convergence in L2ρ (X) norm, i.e., for any probability
measure ρ on the set X, for any ε > 0, and for any f ∈ Hk there exists g ∈ H0 such that

‖f − g‖ρ < ε. (3.7)

The function g is by de�nition a �nite linear combination of feature functions k (xi , ·) (see,
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e.g., Chapter 1 in Bertinet and Agnan, 2004) and by Theorem 2.5 it can be written as

g (x) =
l∑
i=1

αik (xi ,x) = 2
∫  l∑

i=1

αi cos
(
w>xi + b

)cos(w>x+ b)dµ̂ (w,b)
= 2µ (0)

∫
u (w,b)cos

(
w>x+ b

)
dµ̃ (w,b) ,

where µ̃ is a probability measure on Rd × [−π,π], u (w,b) = ∑l
i=1αi cos(w

>xi + b), and∫
dµ̂ (w,b) = µ (0) <∞. From the boundedness of g , it follows that the function u is bounded

for all w and b from the support of µ̃, i.e., |u (w,b)| ≤∑l
i=1 |αi | <∞. Denoting with γ (w,b) =

2µ (0)u (w,b), we see that it is su�cient to prove that

Eµ̃(w,b)
[
γ (w,b)cos

(
w>x+ b

)]
∈ co(Fcos) ,

where the closure is taken with respect to the norm in L2ρ (X). In particular, for a sample
(w,b) = {(wi ,bi)}si=1 drawn independently from µ̃ we have

E(w,b)


∫ g (x)− 1

s

s∑
i=1

γ (wi ,bi)cos
(
w>i x+ bi

)2dρ
 =

1
s2

∫
E(w,b)



s∑
i=1

g (x)−γ (wi ,bi)cos
(
w>i x+ bi

)
︸                                ︷︷                                ︸

ξ(x; wi ,bi )


2dρ =

1
s2

∫
E(w,b)


 s∑
i=1

ξ (x; wi ,bi)

2
dρ = 1

s

∫
Eµ̃

[
ξ (x; w,b)2

]
dρ =

1
s

∫
Varµ̃

[
g (x)−γ (w,b)cos

(
w>x+ b

)]
dρ =

1
s

∫
Varµ̃

[
γ (w,b)cos

(
w>x+ b

)]
dρ .

Note that the third equation follows from the fact that ξ (x; wi ,bi) are independent and
identically distributed random variables and E

[
ξ (x; wi ,bi)ξ

(
x; wj ,bj

)]
= 0. As estab-

lished earlier, coe�cients γ (w,b) are bounded and, therefore, random variable ηx (w,b) =
γ (w,b)cos(w>x+ b) is bounded, as well. Hence, from supw,b

∣∣∣ηx (w,b)∣∣∣ =D <∞ it follows
that Varµ̃ (ηx (w,b)) ≤D2 and consequently

gs (x; (w,b)) =
1
s

s∑
i=1

γ (wi ,bi)cos
(
w>i x+ bi

)
=⇒ Egs

[
‖g − gs‖2ρ

]
≤ D

2

s
.

As the expected value of the norm ‖g − gs‖ρ is bounded by a constant, it follows that there
exists a function gs which can be represented as a convex combination of s ridge-wave func-
tions from Fcos and for which it holds ‖g − gs‖ρ ∈ O

(
1√
s

)
. Moreover, there exists a sequence

of functions {gm}m≥1 converging to g in ‖·‖ρ such that each gm is a convex combination of m

elements from Fcos and ‖g − gm‖ρ ∈ O
(

1√
m

)
.

Hence, we have proved that g ∈ co(Fcos), where the closure is taken with respect to ‖·‖ρ.
It is then possible to approximate any bounded function f ∈ Hk using a convex combination
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of m ridge-wave functions from Fcos with the rate O
(

1√
m

)
, i.e., for all m ∈ N

‖f − gm‖ρ ≤ ‖f − g‖ρ + ‖g − gm‖ρ ∈ O
(

1√
m

)
.

Having established that the proposed approach can construct a rich set of hypotheses,
we discuss the regularization term in the feature construction step of Algorithm 3.1. It is
frequently the case that generalization properties and capacity of a hypothesis space are
controlled by penalizing the objective function with the squared l2 norm of parameter vectors
de�ning the features. For instance, this is the case for the majority of standard activation
functions in neural networks literature (e.g., see Anthony and Bartlett, 2009). A reason behind
this choice of regularization lies in the fact that those activation functions are monotone and
the variation of any such basis function corresponds with the variation in its ridge argument.
Assuming that the data is centered, the variation of the ridge argument is∫

w>xx>wdρ = w>
∫
xx>dρ︸     ︷︷     ︸
Σ

w = ‖w‖2Σ .

If now the instances are also normalized such that the features have the unit variance over
the dataset, the diagonal of Σ is then the vector of all ones. Thus, for learning with monotone
activation/ridge functions regularization via the squared l2 norm of the parameter vectors
de�ning features can be interpreted as the penalization of an upper bound on a regularization
term that would impose a low variation constraint on the features.

In contrast to monotone basis functions, for cosine ridge-wave bases it is not straightfor-
ward to relate the variation of the basis function to its argument (considered over a given �nite
sample of the data). Namely, cosine is a periodic function and while spectral parameters with
large norms can cause signi�cant variation in the ridge argument, this does not necessarily
imply a large variation of the basis function over a �nite sample. It is also possible for a
parameter vector with the smaller norm to cause more variation in the basis function over a
�nite sample than the one with the larger norm. We, therefore, opt to regularize the spectrum
of the cosine ridge function by penalizing the objective with its squared L2ρ (X) norm. Before
we give the regularization term, we �rst note that the bias term from the cosine-wave features
can be eliminated using the trigonometric additive formulas and then the cosine-wave basis
function takes the from

φw,a (x) = a1 sin
(
w>x

)
+ a2 cos

(
w>x

)
. (3.8)

Now, taking the squared L2ρ (X) norm of this function we get

∥∥∥φw,a∥∥∥2ρ = a21

∫
sin2

(
w>x

)
dρ+ a22

∫
cos2

(
w>x

)
dρ+ a1a2

∫
sin

(
2w>x

)
dρ

=
a21 + a

2
2

2
+
a22 − a21

2

∫
cos(2r)dµw + a1a2

∫
sin(2r)dµw ,

where µw (r) = ρ ({x | w>x = r}). If we assume that the probability measure ρ is symmetric,
then we have that µw (r) = µw (−r) and using the fact that sin(2r) is an odd function, we
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obtain
∫
sin(2w>x)dρ = 0. In the absence of the marginal distribution ρ, the integral∫

cos(2r)dµw can be estimated from the training sample with 1
n

∑n
i=1 cos(2w

>xi), where
xi

i.i.d.∼ ρ (x). Moreover, if under these assumptions a1 = a2 (i.e., the bias term in the cosine-
wave is given by b = π

4 + lπ, l ∈ N+) then the dependence on the spectrum is lost and the
variation of φw,a can be controlled with ‖a‖22. Alternatively, if the probability measure ρ is
not symmetric and a1 = a2, then we can attempt to control the variation inφw,a by penalizing
the objective with ‖a‖22 (1 + ‖w‖2Σ). The latter is motivated by the fact that for r > 0 the term
sin(2r) can be upper bounded with 2r .

Having discussed means to control the variation in the ridge-wave basis function, we now
formulate the optimization problem (line 3, Algorithm 3.1) for the setting with cosine-wave
features and provide the gradients for the hyperparameters. The optimization problem, for
this particular choice of features, can be speci�ed as

min
w,λ,c

1
n

n∑
i=1

(
c0f0,i + c1 sin

(
w>xi

)
+ c2 cos

(
w>xi

)
− yi

)2
+

λ

c20n
n∑
i=1

f 20,i +
c21 + c

2
2

2
+
c22 − c21
2n

n∑
i=1

cos
(
2w>xi

)
+
2c0c1
n

n∑
i=1

sin
(
w>xi

)
f0,i+

2c0c2
n

n∑
i=1

cos
(
w>xi

)
f0,i +

c1c2
n

n∑
i=1

sin
(
2w>xi

) ,
where w and λ are optimized as hyperparameters and the amplitude vector c as a regressor.
This optimization problem is convex in c because the regularization term can be expressed
using a quadratic term de�ned with a positive de�nite matrix (see the matrix D given below).
For a �xed choice of the hyperparameters w and λ, an optimal amplitude vector c can be
computed in a closed form. As such an amplitude vector is completely determined by the
choice of the hyperparameters, it is su�cient to optimize this problem only by w and λ.
The hyperparameter optimization is, in general, non-convex and typically results in a local
optimum. In Section 3.1.3 we have, however, demonstrated that for the convergence of the
greedy procedure an optimal solution is not required in each step of the constructive process.

In the feature construction step of Algorithm 3.1, we want to choose the hyperparameters
via k-fold cross-validation and in order to achieve this we follow the procedure proposed
by Keerthi et al. (2007). Let us denote the above described 3-dimensional feature represen-
tation of the data withZw ∈ Rn×3 and set σ0 (w) = 1

n

∑n
i=1 f

2
0,i , σ1 (w) =

1
n

∑n
i=1 sin(w

>xi)f0,i ,
σ2 (w) =

1
n

∑n
i=1 cos(w

>xi)f0,i , σ3 (w) = 1
n

∑n
i=1 sin(2w

>xi), and σ4 (w) = 1
n

∑n
i=1 cos(2w

>xi).
Now, in the place of the identity matrix in the standard derivation of the ridge regression
objective function we have the following symmetric and positive de�nite matrix

D =


σ0 σ1 σ2
σ1 0.5(1− σ4) 0.5σ3
σ2 0.5σ3 0.5(1+ σ4)

 = 1
n

n∑
i=1

zw (xi)zw (xi)
> ,

where zw (xi) = vec
(
f0,i ,sin(w>xi) ,cos(w>xi)

) ∈ R3.
At this point our derivation follows closely the derivation by Keerthi et al. (2007). Taking

the derivatives with respect to c and setting the gradient of the loss to zero we get

Z>wZwc −Z>wy +nλDc = 0 =⇒
(
Z>wZw +nλD

)
c = Z>wy .
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Let us denote with P = Z>wZw+nλD , q = Z>wy, and θ = (w,λ). We note here that P and q are
de�ned over the training instances x and their labels y. We now take the implicit derivative of
this equation to obtain the derivative of the regressor c with respect to the hyperparameters,

∂c
∂θ

= P −1
(
∂q

∂θ
− ∂P
∂θ
c

)
.

As already stated, the choice of λ directly determines the coe�cients c and to obtain these
we need to perform the hyperparameter selection which is done over the validation samples.
In other words,

θ∗ = argmin
θ

1
k

k∑
i=1

1
|Fi |

∑
(x,y)∈Fi

(
c>zw(x)− y

)2
,

where Fi denotes one of the k validation folds in k-fold cross-validation. Let us now consider
only the sample from one validation fold and denote it with F. At the same time let Fc
denotes its complement or the training sample when F is used as the validation fold. Here,
we note that (x,y) ∈ F are di�erent from samples participating in the de�nitions of P and
q when taking F as the validation fold. Taking derivatives with respect to θ we obtain the
hyperparameter gradient

2
|F|

∑
(x,y)∈F

(
c>zw(x)− y

)(∂zw (x)
∂θ

c+ zw (x)P
−1

(
∂q

∂θ
− ∂P
∂θ
c

))
.

Let us introduce the vector t = vec(t0, t1, t2) ∈ R3 as a solution to the following linear system

P t =
1
|F|

∑
(x,y)∈F

(
c>zw(x)− y

)
zw (x) .

We then write the derivative of each term in the hyperparameter gradient separately as
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∂
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= n t>Dc .

Performing the gradient descent using these hyperparameter gradients we obtain both the
spectrum w and the amplitudes c. The spectrum regularization term which is de�ned using
the empirical estimates of the sine and cosine integrals a�ects the gradient with respect to w
via the λ factor in the third expression. In our experiments (Section 3.3), we have observed
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that the capacity parameter λ usually takes the value below 10−4. Thus, the in�uence of the
spectrum regularization term is less signi�cant than the amplitude regularization term. For
this reason, in our implementation we only penalize the empirical squared error objective with
the squared norm of the amplitude vector, i.e., Ω (c,w) = ‖c‖22. We leave it for future work to
empirically evaluate the behavior of the regularization operator Ω (c,w) = ‖c‖22 (1 + ‖w‖2Σ).

3.2.3 À la Carte

À la carte is a related, recent approach (Yang et al., 2015) for learning with Fourier features
that estimates a suitable spectral distribution of features with a mixture of Gaussians and
learns a linear regression model in that feature space. As the mixture of Gaussians is dense in
the space of probability distributions (Silverman, 1986), this approach can also approximate
any bounded hypotheses from any reproducing kernel Hilbert space. The quality of such
approximations crucially depends on the number of components in the Gaussian mixture and
the number of samples allocated to individual components. These parameters are typically
unknown prior to model �tting and are often estimated via cross-validation. Thus, an e�cient
Fourier features parametrization is speci�ed beforehand and all the parameters are optimized
jointly together with the regression coe�cients, rather than sequentially in a greedy manner.
More formally, Yang et al. (2015) represent their regression estimator as

f (x) =
m∑
i=1

αi sin
(
w>i x

)
+α

′
i cos

(
w>i x

)
,

where m denotes the number of spectral features, and

w ∼
Q∑
j=1

γj√
(2π)d

∣∣∣Σj ∣∣∣ exp
−

(
x −µj

)>
Σ−1j

(
x −µj

)
2

 ,
with Σj diagonal, γj ≥ 0, and

∑Q
j=1γj = 1. The proposed algorithm then �nds a feature

representation together with a linear model by optimizing the marginal likelihood of the
corresponding Gaussian process. As we have chosen to compare all feature construction
approaches using the standard linear regression, we present an equivalent implementation
of this approach based on the hyperparameter optimization method by Keerthi et al. (2007).
More speci�cally, we solve the following optimization problem

min
1
n

n∑
i=1

 Q∑
q=1

ν2q

s∑
j=1

αqj sin
(
u>qjΣ

1/2
q xi +µ

>
q xi

)
+ βqj cos

(
u>qjΣ

1/2
q xi +µ

>
q xi

)
− yi

2+
λ
(
‖α‖2 +

∥∥∥β∥∥∥2) ,
where α and β are optimized as regressors and µq, Σq (diagonal covariance matrix), νq, and
λ as hyperparameters. The u-vectors are random vectors sampled from the multivariate
standard normal distribution. These vectors act as a regularization term on the spectrum
of the cosine features forcing the frequencies to stay in the pre-speci�ed number of clus-
ters/components. The optimization problem with respect to regression coe�cients α and β is
convex and solvable in a closed form. In particular, let us denote Σ1/2

q with Dq, parameterized
features with Zθ ∈ Rn×2Qs, hyperparameters with θ = (µ,D,ν) ∈ RQ(2d+1), and regressors
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with c = (α,β) ∈ R2Qs. Then, if we set P = Z>θ Zθ +nλI and q = Z>θ y, the latter optimization
problem becomes

min c>P c − 2c>q .
While this problem is convex in c = (α,β), the optimization over the regressors only does
not de�ne an à la carte hypothesis. In particular, that approach �nds a hypothesis by
optimizing over the regression coe�cients c and the hyperparameters θ. As noted earlier,
the hyperparameter optimization is, in general, a non-convex problem and typically results
in a local optimum. Yang et al. (2015) have, however, for this particular approach provided a
heuristic for initializing the hyperparameters which often results in a good approximation of
an optimal solution (e.g., see the empirical results in Section 3.3).

From this point onwards, we follow the derivation from the previous section and denote
with t ∈ R2Qs the solution of the following linear system of equations

P t =
1
|F|

∑
(x,y)∈F

(
c>zθ (x)− y

)
zθ (x) .

Let us also denote with ⊕ and ⊗ the element-wise addition and multiplication operators for
vectors/matrices, with U ∈ RQd×d the block matrix comprised of vertically stacked standard
normal matricesUq ∈ Rd×d , withD ∈ RQd×d the block matrix comprised of vertically stacked
diagonal matrices Dq ∈ Rd×d , µ ∈ Rd×Q the matrix with stacked mean parameter vectors
µq ∈ Rd , τq = UqDqx⊕µ>q x, and τ = UDx⊕µ>x. Then, following the outlined principles
for implicit derivation (Section 3.2.2), we obtain the hyperparameter gradients with respect
to the validation objective:
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The cost of computing the gradient at a hyperparameter vector involves solving a (2Qs)-
dimensional linear system. Moreover, this system needs to be solved for each validation fold
in a k-fold splitting, required for the hyperparameter optimization over validation samples.
In contrast to this, our greedy feature contruction approach has the linear worst case runtime
complexity in the number of instances and the number of Fourier features (see Section 3.4).

Related and quite similar to à la carte is an approach for learning sparse Gaussian pro-
cesses (Lázaro-Gredilla et al., 2010). The approach speci�es only the number of Fourier
features in the representation and works by optimizing jointly over the feature parameters
and regression coe�cients. A derivation similar to the one provided here for à la carte
shows that the hyperparameter gradient requires solving a (2m)-dimensional linear system
in problems with m Fourier features, which can be computationally ine�cient (e.g., see
Section 3.3). Moreover, the approach does not rely on an e�cient parametrization of the
spectral distribution and the hyperparameter gradients can also be signi�cantly more expen-
sive to compute compared to à la carte. This can be seen by comparing the total number of
hyperparameters for the two approaches, i.e., 2md�Q (2d +1).

3.3 Experiments

In this section, we assess the performance of our approach (see Algorithm 3.2) by comparing
it to other feature construction approaches on synthetic and real-world datasets. We evaluate
the e�ectiveness of the approach with a variant of Fourier features as ridge bases. For this
particular set of features, our approach is directly comparable to random Fourier features
(Section 3.2.1) and à la carte (Section 3.2.3). The implementation details of the three approaches
are provided in Section 3.3.1 and the results of the experiments are discussed in Section 3.3.2.
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Before we proceed with a detailed description of the baselines, we brie�y describe the
datasets and the experimental setting. The experiments were conducted on three groups
of datasets. The �rst group contains four uci datasets on which we performed parameter
tuning of all three algorithms (Table 3.1, datasets 1-4). The second group contains the datasets
with more than 5000 instances available from Torgo (2016). The idea is to use this group of
datasets to test the generalization properties of the considered algorithms (Table 3.1, datasets
5-10). The third group contains two arti�cial and very noisy datasets that are frequently
used in regression tree benchmark tests. For each considered dataset, we split the data into
10 folds; we refer to these splits as the outer cross-validation folds. In each step of the outer
cross-validation, we use nine folds as the training sample and one fold as the test sample. For
the purpose of the hyperparameter tuning we split the training sample into �ve folds; we
refer to these splits as the inner cross-validation folds. We run all algorithms on identical
outer cross-validation folds and construct feature representations with 100 and 500 features.
The performance of the algorithms is assessed by comparing the root mean squared error of
linear ridge regression models trained in the constructed feature spaces and the average time
needed for the outer cross-validation of one fold.

3.3.1 Baselines

Having described the experimental setting, we now provide implementation details for all
the considered algorithms: greedy feature construction, à la carte method (Yang et al., 2015),
and random kitchen sinks (Rahimi and Recht, 2009).

We have implemented a distributed version of Algorithm 3.2 using a python package
mpi4py. For the experiments with 100 spectral features the algorithm is simulated using
5 cores on a single physical machine – each core corresponds to one instance of greedy
functional descent. The remaining parameters are: the number of data passes T = 1, the
maximum number of greedy descent steps p = 20, precision parameter ε = 0.01 that stops the
greedy descent when the successive improvement in the accuracy is less than 1%, and feature
cut-o� η that is set to 0.0001% of the range of the output variable. For the experiments with
500 spectral features the algorithm is simulated using 5 physical machines. To communicate
features more e�ciently 5 cores on each of the physical machines are used giving the
total number of 25 cores corresponding to 25 instances of greedy functional descent. The
remaining parameters for this setting are identical to the ones used in the experiments with
100 features. As the greedy functional descent is stopped when the successive improvement
in the accuracy is below 1%, the approach terminates sooner than the alternative approaches
(w.r.t. the number of constructed features) for simple hypotheses (see Section 3.3.2). Having
described the parameter con�guration for Algorithm 3.2, we now address the choice of the
regularization term. In particular, to control the smoothness of newly constructed features,
we penalize the objective in line 3 so that the solutions with the small L2ρ (X) norm are
preferred. For this choice of regularization term and cosine-wave features, we empirically
observe that the optimization objective is almost exclusively penalized by the l2 norm of the
coe�cient vector c. Following this observation, we have simulated the greedy descent with
Ω (c,w) = ‖c‖22. In contrast to á la carte (see below), we did not engineer a heuristic for the
initial solution of the hyperparameter optimization problem. Instead, we have initialized the
spectral features by sampling from the standard normal distribution and dividing the entries
of the sampled vector with the square root of its dimension.

To be as objective as possible to the best performing competing method, we have paral-
lelized the implementation of this algorithm and simulated it by following the ard-heuristic
for choosing the initial solution (e.g., see the supplementary materials in Yang et al., 2015).
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This, in particular, refers to the initial choice of diagonal covariance matrices that de�ne
components in a mixture of Gaussians. We also follow the instructions from the supplemen-
tary material of Yang et al. (2015) and initialize the means to vectors that are close to zero.
The ν parameters are initialized by setting their values to the standard deviation of outputs
divided by the number of components Q. We have optimized the hyperparameters with the
l-bfgs-b solver from SciPy. As reported in Yang et al. (2015), we simulate the algorithm
with 10 random restarts such that for each initial solution the algorithm makes 20 iterations
of l-bfgs-b minimization and then continues with the best hyperparameter vector for
another 200 iterations. In all the experimental settings (with 100 and 500 features), we
have run this algorithm using Q = 1, Q = 2, and Q = 5 mixture components. As this can
be computationally intensive on a single core, we have parallelized our implementation of
à la carte by computing the parts of hyperparameter gradient that correspond to di�erent
validation folds on di�erent cores. For the inner cross-validation performed with 5-fold
splitting this has resulted in a speed up of approximately 4-5 times compared to a single core
implementation. In Section 3.3.2, we report the walltimes of the parallelized implementation
of à la carte for all the experimental settings (with 100 and 500 features).

As already outlined in Section 3.2.1, any stationary positive de�nite kernel can be rep-
resented as a Fourier transform of a positive measure. Thus, in order to generate a kernel
feature map it is su�cient to sample spectral frequencies from this measure. Genton (2002)
and Rahimi and Recht (2008a) have provided the parameterized spectral density functions
corresponding to Gaussian, Laplace, and Cauchy kernels. We use these parameterizations to
generate spectral features and then train a linear ridge regression model in the constructed
feature space. To choose the most suitable parameterization, we cross-validate 10 parameters
from the log-space of [−3,2].
Table 3.1: To facilitate the comparison between datasets we have normalized the outputs so that their range
is one. The accuracy of the algorithms is measured using the root mean squared error, multiplied by 100 to
mimic percentage error (w.r.t. the range of the outputs). The mean and standard deviation of the error are
computed after performing 10-fold cross-validation. The reported walltime is the average time it takes a method
to cross-validate one fold. To assess whether a method performs statistically signi�cantly better than the other
on a particular dataset we perform the paired Welch t-test (Welch, 1947) with p = 0.05. The signi�cantly better
results for the considered settings are marked in bold.

Dataset n d
m = 100 m = 500

gfc alc gfc alc
Error Walltime Error Walltime Error Walltime Error Walltime

parkinsons tm (total) 5875 21 2.73 (±0.19) 00 : 03 : 49 0.78 (±0.13) 00 : 05 : 19 2.20 (±0.27) 00 : 04 : 15 0.31 (±0.17) 00 : 27 : 15
ujindoorloc (latitude) 21048 527 3.17 (±0.15) 00 : 21 : 39 6.19 (±0.76) 01 : 21 : 58 3.04 (±0.19) 00 : 36 : 49 6.99 (±0.97) 02 : 23 : 15
ct-slice 53500 380 2.93 (±0.10) 00 : 52 : 05 3.82 (±0.64) 03 : 31 : 25 2.59 (±0.10) 01 : 24 : 41 2.73 (±0.29) 06 : 11 : 12
Year Prediction MSD 515345 90 10.06 (±0.09) 01 : 20 : 12 9.94 (±0.08) 05 : 29 : 14 10.01 (±0.08) 01 : 30 : 28 9.92 (±0.07) 11 : 58 : 41
delta-ailerons 7129 5 3.82 (±0.24) 00 : 01 : 23 3.73 (±0.20) 00 : 05 : 13 3.79 (±0.25) 00 : 01 : 57 3.73 (±0.24) 00 : 25 : 14
kinematics 8192 8 5.18 (±0.09) 00 : 04 : 02 5.03 (±0.23) 00 : 11 : 28 4.65 (±0.11) 00 : 04 : 44 5.01 (±0.76) 00 : 38 : 53
cpu-activity 8192 21 2.65 (±0.12) 00 : 04 : 23 2.68 (±0.27) 00 : 09 : 24 2.60 (±0.16) 00 : 04 : 24 2.62 (±0.15) 00 : 25 : 13
bank 8192 32 9.83 (±0.27) 00 : 01 : 39 9.84 (±0.30) 00 : 12 : 48 9.83 (±0.30) 00 : 02 : 01 9.87 (±0.42) 00 : 49 : 48
pumadyn 8192 32 3.44 (±0.10) 00 : 02 : 24 3.24 (±0.07) 00 : 13 : 17 3.30 (±0.06) 00 : 02 : 27 3.42 (±0.15) 00 : 57 : 33
delta-elevators 9517 6 5.26 (±0.17) 00 : 00 : 57 5.28 (±0.18) 00 : 07 : 07 5.24 (±0.17) 00 : 01 : 04 5.23 (±0.18) 00 : 32 : 30
ailerons 13750 40 4.67 (±0.18) 00 : 02 : 56 4.89 (±0.43) 00 : 16 : 34 4.51 (±0.12) 00 : 02 : 11 4.77 (±0.40) 01 : 05 : 07
pole-telecom 15000 26 7.34 (±0.29) 00 : 10 : 45 7.16 (±0.55) 00 : 20 : 34 5.55 (±0.15) 00 : 11 : 37 5.20 (±0.51) 01 : 39 : 22
elevators 16599 18 3.34 (±0.08) 00 : 03 : 16 3.37 (±0.55) 00 : 21 : 20 3.12 (±0.20) 00 : 04 : 06 3.13 (±0.24) 01 : 20 : 58
cal-housing 20640 8 11.55 (±0.24) 00 : 05 : 49 12.69 (±0.47) 00 : 11 : 14 11.17 (±0.25) 00 : 06 : 16 12.70 (±1.01) 01 : 01 : 37
breiman 40768 10 4.01 (±0.03) 00 : 02 : 46 4.06 (±0.04) 00 : 13 : 52 4.01 (±0.03) 00 : 03 : 04 4.03 (±0.03) 01 : 04 : 16
friedman 40768 10 3.29 (±0.09) 00 : 06 : 07 3.37 (±0.46) 00 : 18 : 43 3.16 (±0.03) 00 : 07 : 04 3.25 (±0.09) 01 : 39 : 37

3.3.2 Results

As the best performing con�guration of à la carte on the development datasets is the one
with Q = 5 components, we report in Table 3.1 the error and walltime for this con�guration.
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Table 3.2: This table presents the results of experiments with the à la carte method using 100 Fourier features.
The mean and standard deviation of the root mean squared error are computed after performing 10-fold cross-
validation. The fold splitting is performed such that all algorithms train and predict over identical samples. The
reported walltime is the average time it takes a method to cross-validate one fold.

Dataset n d
m = 100

Q = 1, s = 100 Q = 2, s = 50 Q = 5, s = 20
Error Walltime Error Walltime Error Walltime

parkinsons tm (total) 5875 21 0.81 (±0.67) 00 : 07 : 58 0.73 (±0.33) 00 : 08 : 29 0.78 (±0.13) 00 : 05 : 19
ujindoorloc (latitude) 21048 527 6.21 (±0.41) 00 : 27 : 41 6.94 (±0.66) 00 : 45 : 55 6.19 (±0.76) 01 : 21 : 58
ct-slice 53500 380 4.11 (±0.25) 00 : 46 : 56 3.86 (±0.28) 01 : 18 : 00 3.82 (±0.64) 03 : 31 : 25
Year Prediction MSD 515345 90 10.10 (±0.07) 02 : 49 : 21 10.03 (±0.08) 02 : 32 : 09 9.94 (±0.08) 05 : 29 : 14
delta-ailerons 7129 5 3.83 (±0.18) 00 : 04 : 19 3.84 (±0.27) 00 : 05 : 27 3.73 (±0.20) 00 : 05 : 13
kinematics 8192 8 6.21 (±0.54) 00 : 10 : 21 5.31 (±0.34) 00 : 09 : 30 5.03 (±0.23) 00 : 11 : 28
cpu-activity 8192 21 2.59 (±0.17) 00 : 08 : 22 2.77 (±0.33) 00 : 06 : 19 2.68 (±0.27) 00 : 09 : 24
bank 8192 32 9.72 (±0.32) 00 : 12 : 03 9.79 (±0.29) 00 : 10 : 27 9.84 (±0.30) 00 : 12 : 48
pumadyn 8192 32 3.17 (±0.07) 00 : 10 : 34 3.18 (±0.06) 00 : 11 : 01 3.24 (±0.07) 00 : 13 : 17
delta-elevators 9517 6 5.28 (±0.17) 00 : 03 : 31 5.27 (±0.17) 00 : 06 : 52 5.28 (±0.18) 00 : 07 : 07
ailerons 13750 40 4.62 (±0.34) 00 : 08 : 42 4.57 (±0.12) 00 : 09 : 54 4.89 (±0.43) 00 : 16 : 34
pole-telecom 15000 26 8.73 (±0.52) 00 : 12 : 39 7.34 (±0.32) 00 : 15 : 00 7.16 (±0.55) 00 : 20 : 34
elevators 16599 18 3.46 (±0.23) 00 : 07 : 51 3.70 (±0.55) 00 : 07 : 41 3.37 (±0.55) 00 : 21 : 20
cal-housing 20640 8 13.61 (±0.35) 00 : 09 : 49 13.07 (±1.53) 00 : 12 : 17 12.69 (±0.47) 00 : 11 : 14
breiman 40768 10 4.01 (±0.03) 00 : 12 : 34 4.02 (±0.04) 00 : 09 : 13 4.06 (±0.04) 00 : 13 : 52
friedman 40768 10 3.16 (±0.03) 00 : 18 : 58 3.16 (±0.03) 00 : 19 : 46 3.37 (±0.46) 00 : 18 : 43

From the walltime numbers we see that our approach is in both considered settings – with
100 and 500 features – always faster than à la carte. Moreover, the proposed approach is
able to generate a feature representation with 500 features in less time than required by à la
carte for a representation of 100 features. In order to compare the performance of the two
methods with respect to accuracy, we use the Wilcoxon signed rank test (Wilcoxon, 1945;
Demšar, 2006). As our approach with 500 features is on all datasets faster than à la carte with
100 features, we �rst compare the errors obtained in these experiments. For 95% con�dence,
the threshold value of the Wilcoxon signed rank test with 16 datasets is T = 30 and from
our results we get the T-value of 28. As the T-value is below the threshold, our algorithm
can with 95% con�dence generate in less time a statistically signi�cantly better feature
representation than à la carte. For the errors obtained in the settings where both methods
have the same number of features, we obtain the T-values of 60 and 42. While in the �rst
case for the setting with 100 features the test is inconclusive, in the second case our approach
is with 80% con�dence statistically signi�cantly more accurate than à la carte. To evaluate
the performance of the approaches on individual datasets, we perform the paired Welch
(1947) t-test with p = 0.05. Again, the results indicate a good/competitive performance of
our algorithm compared to this baseline. An extensive summary containing the results of
experiments with di�erent con�gurations of à la carte, is provided in Tables 3.2 and 3.3.

In addition to à la carte, we have also evaluated the approach against random kitchen
sinks (Rahimi and Recht, 2008b) with random Fourier features corresponding to Gaussian,
Laplace, and Cauchy kernels. Table 3.4 provides an extensive summary of the results of these
experiments. From this table, we can observe that both, greedy feature construction and
à la carte, can always construct a better feature representation than random kitchen sinks.
However, while these two approaches are signi�cantly more accurate than random kitchen
sinks, the latter approach is computationally more e�ective.

3.4 Discussion

In this section, we discuss the advantages of the proposed method over the state-of-the-art
baselines in learning fast stationary kernels and other related approaches.
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Table 3.3: This table presents the results of experiments with the à la carte method using 500 Fourier features.
The mean and standard deviation of the root mean squared error are computed after performing 10-fold cross-
validation. The fold splitting is performed such that all algorithms train and predict over identical samples. The
reported walltime is the average time it takes a method to cross-validate one fold.

Dataset n d
m = 500

Q = 1, s = 500 Q = 2, s = 250 Q = 5, s = 100
Error Walltime Error Walltime Error Walltime

parkinsons tm (total) 5875 21 0.29 (±0.33) 00 : 30 : 00 0.34 (±0.17) 00 : 37 : 05 0.31 (±0.17) 00 : 27 : 15
ujindoorloc (latitude) 21048 527 8.08 (±1.67) 01 : 34 : 01 7.83 (±1.05) 02 : 02 : 19 6.99 (±0.97) 02 : 23 : 15
ct-slice 53500 380 2.98 (±0.07) 02 : 43 : 28 2.97 (±0.19) 04 : 09 : 43 2.73 (±0.29) 06 : 11 : 12
Year Prediction MSD 515345 90 10.00 (±0.07) 07 : 51 : 20 9.94 (±0.07) 08 : 55 : 38 9.92 (±0.07) 11 : 58 : 41
delta-ailerons 7129 5 3.82 (±0.18) 00 : 14 : 37 3.85 (±0.37) 00 : 18 : 23 3.73 (±0.24) 00 : 25 : 14
kinematics 8192 8 5.34 (±0.48) 00 : 29 : 45 4.82 (±0.32) 00 : 41 : 13 5.01 (±0.76) 00 : 38 : 53
cpu-activity 8192 21 2.47 (±0.36) 00 : 52 : 16 2.52 (±0.20) 00 : 29 : 34 2.62 (±0.15) 00 : 25 : 13
bank 8192 32 9.62 (±0.29) 00 : 51 : 08 9.97 (±0.37) 00 : 48 : 22 9.87 (±0.42) 00 : 49 : 48
pumadyn 8192 32 3.12 (±0.07) 00 : 44 : 17 3.17 (±0.05) 00 : 44 : 28 3.42 (±0.15) 00 : 57 : 33
delta-elevators 9517 6 5.27 (±0.18) 00 : 15 : 59 5.28 (±0.18) 00 : 22 : 44 5.23 (±0.18) 00 : 32 : 30
ailerons 13750 40 4.50 (±0.10) 00 : 41 : 45 4.49 (±0.17) 00 : 36 : 54 4.77 (±0.40) 01 : 05 : 07
pole-telecom 15000 26 6.30 (±0.45) 01 : 08 : 32 5.35 (±0.27) 01 : 17 : 48 5.20 (±0.51) 01 : 39 : 22
elevators 16599 18 3.28 (±0.27) 01 : 01 : 44 3.37 (±0.12) 00 : 36 : 30 3.13 (±0.24) 01 : 20 : 58
cal-housing 20640 8 12.27 (±1.51) 01 : 03 : 49 12.15 (±0.43) 00 : 55 : 06 12.70 (±1.01) 01 : 01 : 37
breiman 40768 10 4.01 (±0.04) 00 : 39 : 36 4.02 (±0.04) 00 : 35 : 45 4.03 (±0.03) 01 : 04 : 16
friedman 40768 10 3.16 (±0.04) 00 : 55 : 19 3.24 (±0.06) 00 : 56 : 33 3.25 (±0.09) 01 : 39 : 37

Table 3.4: This table presents the results of experiments with the random kitchen sinks approach using 100
and 500 Fourier features. The mean and standard deviation of the root mean squared error are computed after
performing 10-fold cross-validation. The fold splitting is performed such that all algorithms train and predict
over identical samples. The reported walltime is the average time it takes a method to cross-validate one fold.

Dataset n d
m = 100 m = 500

Gauss Cauchy Laplace Walltime Gauss Cauchy Laplace Walltime
parkinsons tm 5875 21 5.81 (±0.32) 5.79 (±0.41) 6.22 (±1.31) 00 : 04 : 38 4.75 (±0.70) 4.63 (±0.37) 4.34 (±0.22) 00 : 11 : 10
ujindoorloc 21048 527 12.55 (±0.60) 12.36 (±0.67) 10.23 (±0.88) 00 : 05 : 02 7.40 (±0.25) 7.19 (±0.31) 5.53 (±0.48) 00 : 24 : 41
ct-slice 53500 380 11.45 (±0.30) 11.44 (±0.31) 11.69 (±0.50) 00 : 04 : 32 7.85 (±0.17) 7.77 (±0.09) 7.90 (±0.13) 00 : 49 : 10
Year Prediction 515345 90 10.75 (±0.04) 10.79 (±0.34) 11.07 (±0.13) 00 : 10 : 26 10.53 (±0.04) 10.51 (±0.03) 10.46 (±0.06) 03 : 10 : 41
delta-ailerons 7129 5 3.84 (±0.14) 3.84 (±0.14) 3.86 (±0.14) 00 : 04 : 02 3.82 (±0.13) 3.84 (±0.15) 3.81 (±0.15) 00 : 15 : 35
kinematics 8192 8 11.09 (±0.26) 11.01 (±0.25) 11.47 (±0.39) 00 : 03 : 27 7.33 (±0.53) 7.37 (±0.43) 8.17 (±0.31) 00 : 11 : 53
cpu-activity 8192 21 6.72 (±0.62) 5.94 (±0.59) 3.90 (±0.66) 00 : 04 : 38 3.10 (±0.17) 3.05 (±0.17) 2.75 (±0.25) 00 : 14 : 31
bank 8192 32 10.15 (±0.46) 10.13 (±0.42) 10.10 (±0.46) 00 : 04 : 38 9.91 (±0.44) 9.97 (±0.49) 9.92 (±0.45) 00 : 15 : 53
pumadyn 8192 32 15.19 (±0.29) 15.18 (±0.29) 15.20 (±0.29) 00 : 04 : 50 15.20 (±0.28) 15.18 (±0.31) 15.25 (±0.27) 00 : 16 : 52
delta-elevators 9517 6 5.30 (±0.14) 5.30 (±0.13) 5.28 (±0.13) 00 : 05 : 16 5.29 (±0.15) 5.27 (±0.14) 5.27 (±0.14) 00 : 14 : 49
ailerons 13750 40 4.77 (±0.16) 4.77 (±0.21) 4.89 (±0.07) 00 : 03 : 58 4.53 (±0.11) 4.52 (±0.10) 4.58 (±0.12) 00 : 17 : 40
pole-telecom 15000 26 24.26 (±0.75) 22.62 (±0.68) 25.07 (±1.37) 00 : 04 : 44 18.08 (±0.56) 17.53 (±0.46) 15.63 (±0.63) 00 : 19 : 08
elevators 16599 18 4.11 (±0.23) 3.88 (±0.21) 4.09 (±0.54) 00 : 04 : 43 3.44 (±0.19) 3.56 (±0.37) 3.39 (±0.15) 00 : 19 : 24
cal-housing 20640 8 12.99 (±0.36) 12.66 (±0.35) 12.83 (±0.53) 00 : 05 : 27 11.78 (±0.38) 11.80 (±0.43) 11.51 (±0.37) 00 : 19 : 02
breiman 40768 10 4.01 (±0.03) 4.01 (±0.03) 4.02 (±0.03) 00 : 04 : 26 4.01 (±0.03) 4.01 (±0.03) 4.01 (±0.03) 00 : 24 : 45
friedman 40768 10 5.15 (±0.10) 5.25 (±0.16) 5.06 (±0.32) 00 : 03 : 58 3.30 (±0.03) 3.29 (±0.03) 3.26 (±0.04) 00 : 21 : 17

Flexibility

The presented approach is a highly �exible supervised feature construction method. In
contrast to random kitchen sinks (Rahimi and Recht, 2008a,b), the proposed method does not
require a spectral measure to be speci�ed a priori. In the experiments, we have demonstrated
that the choice of spectral measure is important as, for the considered measures (corre-
sponding to Gaussian, Laplace, and Cauchy kernels), the random kitchen sinks approach is
outperformed on all datasets. The second baseline, à la carte, is more �exible when it comes
to the choice of spectral measure and works by approximating it with a mixture of Gaussians.
However, the number of components and features per component needs to be speci�ed
beforehand or cross-validated. In contrast, our approach mimics functional gradient descent
and can be simulated without specifying the size of the feature representation beforehand.
Instead, a stopping criteria (see, e.g., Algorithm 3.1) based on the successive decay of the error
can be devised. As a result, the proposed approach terminates sooner than the alternative
approaches for simple concepts/hypotheses (i.e., outputs a sparse solution). The proposed
method is also easy to implement (the hyperparameter gradients are provided in Section 3.2.2)
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and allows us to extend the existing feature representation without complete re-training of
the model. We note that the approaches based on random Fourier features are also simple to
implement and can be re-trained e�ciently with the increase in the number of features (Dai
et al., 2014). À la carte, on the other hand, is less �exible in this regard – due to the number
of hyperparameters and the complexity of gradients it is not straightforward to implement it.

Scalability

The fact that our greedy descent can construct a feature in time linear in the number of
instances n and dimension of the problem d makes the proposed approach highly scalable. In
particular, the complexity of the proposed parallelization scheme is dominated by the cost of
�tting a linear model and the whole algorithm runs in time O

(
T (m3 +m2n+nmd)

)
, where

T denotes the number of data passes (i.e., linear model �ts) and m number of constructed
features. To scale this scheme to problems with millions of instances, it is possible to �t linear
models using the parallelized stochastic gradient descent (Zinkevich et al., 2010). For linear
models �tted with a variant of this optimization algorithm, our approach has better than
linear worst case runtime complexity O (nmd/κ), where κ denotes the number of available
processing cores. As for the choice of T , the standard setting in simulations of stochastic
gradient descent is 5-10 data passes. Thus, the presented approach is quite robust and can
be applied to large scale datasets. In contrast to this, the cost of performing a gradient step
in the hyperparameter optimization of à la carte is O

(
m3 +m2n+nmd

)
. In our empirical

evaluation using an implementation with 10 random restarts, the approach needed at least 20
steps per restart to learn an accurate model. The required number of gradient steps and the
cost of computing them hinder the application of à la carte to large scale datasets. In random
kitchen sinks which also run in time O

(
m3 +m2n+nmd

)
, the main cost is the �tting of

linear models – one for each pair of considered spectral and regularization parameters.

Related Approaches

Beside fast kernel learning approaches, the presented method is also related to neural net-
works parameterized with a single hidden layer. These approaches can be seen as feature
construction methods jointly optimizing over the whole feature representation. A detailed
study of the approximation properties of a hypothesis space of a single layer network with the
sigmoid ridge function has been provided by Barron (1993). In contrast to these approaches,
we construct features incrementally by �tting residuals and we do this with a set of non-
monotone ridge functions as a dictionary of features. Regarding our generalization bound,
we note that the past work on single layer neural networks contains similar results but in the
context of monotone ridge functions (Anthony and Bartlett, 2009).

As the goal of our approach is to construct a feature space for which linear hypotheses
will be of su�cient capacity, the presented method is also related to linear models working
with low-rank kernel representations. For instance, Fine and Scheinberg (2002) investigate a
training algorithm for svms using low-rank kernel representations. The di�erence between
our approach and this method is in the fact that the low-rank decomposition is performed
without considering the labels. Side knowledge and labels are considered by Kulis et al.
(2006) and Bach and Jordan (2005) in their approaches to construct a low-rank kernel matrix.
However, these approaches are not selecting features from a set of ridge functions, but �nd a
subspace of a preselected kernel feature space with a good set of hypothesis.

From the perspective of the optimization problem considered in the greedy descent
(Algorithm 3.1) our approach can be related to single index models (sim) where the goal is to
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learn a regression function that can be represented as a single monotone ridge function (Kalai
and Sastry, 2009; Kakade et al., 2011). In contrast to this, our approach learns target/regression
functions from the closure of the convex hull of ridge functions. Typically, these target
functions cannot be written as single ridge functions. Moreover, our ridge functions are not
necessarily monotone and are more general than the ones considered in sim models.

In addition to these approaches and considered baseline methods, the presented feature
construction approach is also related to methods optimizing expected loss functions using
functional gradient descent (Mason et al., 2000). However, while Mason et al. (2000) focus
on classi�cation problems and hypothesis spaces with �nite vc dimension, we focus on the
estimation of regression functions in spaces with in�nite vc dimension (e.g., see Sections 3.1
and 3.2.2). In contrast to that work, we also provide a convergence rate for our approach.
Similarly, Friedman (2000) has proposed a gradient boosting machine for greedy function
estimation. In their approach, the empirical functional gradient is approximated by a weak
learner which is then combined with previously constructed learners following a stagewise
strategy. This is di�erent from the stepwise strategy that is followed in our approach where
previously constructed estimators are readjusted when new features are added. The approach
in Friedman (2000) is investigated mainly in the context of regression trees, but it can be
adapted to feature construction. To the best of our knowledge, theoretical and empirical
properties of this approach in the context of feature construction and stationary reproducing
kernel Hilbert spaces have not been considered so far.





Part II

Randomized Greedy Approaches





C H A P T E R 4

Nyström Method with Kernel K-means++ Landmarks

Kernel methods are a powerful class of machine learning algorithms that can be used for
solving classi�cation and regression problems, clustering, anomaly detection, and dimen-
sionality reduction (Schölkopf and Smola, 2002). For this class of methods, the learning
problem can often be posed as a convex optimization problem for which the representer
theorem (Wahba, 1990) guarantees that an optimal solution can be found in the subspace of
the kernel feature space spanned by the instances. Typically, the algorithms from this class
of methods �rst transform the data to a symmetric and positive de�nite matrix and then
use an o�-the-shelf matrix-based algorithm for solving the resulting convex optimization
problem (Bach and Jordan, 2005). Computational and space complexities of these approaches
are at least quadratic in the number of instances and in several algorithms, requiring a matrix
inversion or eigendecomposition, the computational complexity is cubic. To overcome this
computational shortcoming and scale kernel methods to large scale datasets, Williams and
Seeger (2001) have proposed to use a variant of the Nyström method (Nyström, 1930) for
low-rank approximation of kernel matrices. The approach is motivated by the fact that
frequently used kernels have a fast decaying spectrum and that small eigenvalues can be
removed without a signi�cant e�ect on the precision (Schölkopf and Smola, 2002). For a
learning problem with n instances and a given subset of l landmarks, the Nyström method
�nds a low-rank approximation in time O(l2n+ l3) and kernel methods with the low-rank
approximation in place of the kernel matrix scale asO(l3). In practice, l� n and the approach
can scale kernel methods to millions of instances.

The crucial step in the Nyström approximation of a symmetric and positive de�nite
matrix is the choice of landmarks and an optimal choice is a di�cult discrete/combinatorial
problem directly in�uencing the quality of the approximation. A large part of the existing
work has, therefore, focused on providing approximation guarantees for di�erent landmark
selection strategies. Following this line of research, we investigate the e�ectiveness of kernel
K-means++ samples (Arthur and Vassilvitskii, 2007) as landmarks in the Nyström method
for low-rank approximation of kernel matrices. Previous empirical studies (Zhang et al., 2008;
Kumar et al., 2012) observe that the landmarks obtained using K-means clustering de�ne
a good low-rank approximation of kernel matrices. However, the existing work does not
provide a theoretical guarantee on the approximation error for this approach to landmark
selection. We close this gap and provide the �rst bound on the relative approximation error in
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the Frobenius norm for this landmark selection strategy. An important part of our theoretical
contribution is the �rst complete proof of a claim by Ding and He (2004) on the relation
between the subspace spanned by optimal K-means centroids and left singular vectors of the
feature space. While our results (Propositions 4.3 and 4.5) cover the general case, that of Ding
and He (2004) is restricted to data matrices with piecewise constant right singular vectors.

In Section 4.1, we provide a brief review of the Nyström method for low-rank approxi-
mation of kernel matrices with two di�erent perspectives on the approach. Following this,
we review K-means clustering and express the corresponding optimization problem as a
constrained low-rank approximation problem (Section 4.2.1). In Section 4.2.2, we build on the
constrained low-rank formulation of K-means clustering and give the �rst complete proof
of a claim by Ding and He (2004) on the relation between the subspace spanned by optimal
K-means centroids and left singular vectors of the feature space. Having established that
the claim by Ding and He (2004) does not hold for general data matrices, we then review
the K-means++ sampling scheme for cluster seeding (Section 4.3.1) and give a pseudo-code
description of our landmark selection strategy (Section 4.3.2), which is a kernelized variant
of the K-means++ algorithm. In Section 4.3.3, we analyze the theoretical properties of the
kernel K-means++ landmark selection strategy and give the �rst bound on the relative
approximation error in the Frobenius norm for this strategy. Having given a bound on
the approximation error for the proposed landmark selection strategy, we provide a brief
overview of the existing landmark selection algorithms and discuss our work in relation
to approaches directly comparable to ours (Section 4.4). For the frequently used Gaussian
kernel, we also theoretically motivate the instance space Lloyd re�nements (Lloyd, 1982) of
kernel K-means++ landmarks. The results of our empirical study are presented in Section 4.5
and indicate a superior performance of the proposed approach over competing methods. This
is also in agreement with the previous studies on K-means centroids as landmarks by Zhang
et al. (2008) and Kumar et al. (2012).

4.1 Nyström Method

In this section, we review the Nyström method for low-rank approximation of kernel matrices.
The method was originally proposed for the approximation of integral eigenfunctions (Nys-
tröm, 1930) and later adapted to low-rank approximation of kernel matrices by Williams
and Seeger (2001). In the literature, however, the latter adaptation of the original approach
is known as the Nyström method. We review the original approach in Section 4.1.1 and
its adaptation to low-rank approximation of kernel matrices in Section 4.1.2. Following
this, we provide an alternative derivation of the approach relating it to subspace approxima-
tions (Smola and Schölkopf, 2000; Schölkopf and Smola, 2002). The section concludes with a
characterization of an optimal low-rank approximation of a kernel matrix (Section 4.1.4).

4.1.1 Nyström Method for Approximation of Integral Eigenfunctions

Let X be an instance space, X = {x1,x2, · · · ,xn} an independent sample from a Borel proba-
bility measure ρ de�ned on X , andH the reproducing kernel Hilbert space with a Mercer
kernel h : X × X → R. Such kernels can be decomposed in terms of the eigenfunctions
and eigenvalues of the corresponding integral operator. More precisely, we have that the
following theorem holds (note that in the original formulation, ρ is a bounded Borel measure).
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Theorem 4.1. (Mercer, 1909; Schölkopf and Smola, 2002) Suppose h ∈ L∞ (X ×X ) is a sym-
metric real-valued function such that the integral operator Th : L2 (X )→ L2 (X ),

(Thf ) (x)B
∫
X
h (x,x′)f (x′)dρ (x′) ,

is positive de�nite; that is, for all f ∈ L2 (X ), we have∫
X×X

h (x,x′)f (x)f (x′)dρ (x)dρ (x′) ≥ 0 .

Let ψi ∈ L2 (X ) be the normalized orthogonal eigenfunctions of Th associated with eigenvalues
λi > 0, sorted in non-increasing order. Then, {λi}i≥1 ∈ `1 and

h (x,x′) =
NH∑
i=1

λiψi (x)ψi (x
′)

for almost all (x,x′) ∈ X ×X . Either NH ∈ N or NH =∞; in the latter case, the series converges
absolutely and uniformly for almost all (x,x′) ∈ X ×X .

As the eigenfunctions are normalized and mutually orthogonal, it follows that

(Thψi) (x) =
∫
X
h (x,x′)ψi (x′)dρ (x′) =

NH∑
j=1

λjψj (x)
∫
X
ψj (x

′)ψi (x′)dρ (x′) = λiψi (x) .

The original Nyström method (Nyström, 1930) considers the problem of approximating
eigenfunctions ψi given an independent sample X from the probability measure ρ. In order
to approximate an eigenfunction ψi using the sample X, the eigenfunction is matched with
the Monte–Carlo estimate of the corresponding integral operator, i.e.,

1
n

n∑
l=1

h (x,xl)ψi (xl) ≈ λiψi (x) . (4.1)

On the other hand, the empirical version of the orthogonality constraint implies that

1
n

n∑
l=1

ψi (xl)ψj (xl) ≈ 0 .

Now, plugging xj in place of x in Eq. (4.1) we get

1
n

n∑
l=1

h
(
xj ,xl

)
ψi (xl) ≈ λiψi

(
xj

)
.

As the latter equation holds for all 1 ≤ i, j ≤ n, then we can write it in a matrix form as

H (n)U (n) =Λ(n)U (n) , (4.2)

where H (n) denotes the kernel matrix with h(n)ij = h
(
xi ,xj

)
, U (n) the column orthonormal

matrix with u(n)ij ≈ 1√
n
ψj (xi), and Λ(n) the diagonal matrix with λ(n)i ≈ nλi (1 ≤ i, j ≤ n).

Hence, combining the eigendecomposition of the kernel matrix H (n) with Eq. (4.1) we obtain
an empirical estimate of the eigenfunction ψi ,

ψi (x) ≈ 1
nλi

n∑
l=1

h (x,xl)ψi (xl) ≈
√
n

λ
(n)
i

n∑
l=1

h (x,xl)u
(n)
li =

√
n

λ
(n)
i

h>xU
(n)
i ,

where hx = vec(h (x,x1) , . . . ,h (x,xn)) and U (n)
i is the i-th column in the matrix U (n).
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4.1.2 Application of the Nyström Method to Low-Rank Approximation of
Kernel Matrices

The Nyström method approximates integral eigenfunctions and eigenvalues using an in-
dependent and identically distributed sample of instances. Thus, the approach can also be
applied to a uniformly selected subsample of instances and the resulting approximation of
integral eigenfunctions and eigenvalues should be approximately equal to that obtained using
the full sample. In other words, the eigendecomposition of the kernel matrix de�ned by the
subsample can be used to make a low-rank approximation of the full kernel matrix.

To see this, let us assume that Z = {z1, . . . , zm} are landmarks sampled uniformly from X .
Then, from Section 4.1.1 we have that

λ
(n)
i B nλi ≈ n

m
λ
(m)
i ∧ u

(n)
ji B

1√
n
ψi

(
xj

)
≈

√
m
n

1

λ
(m)
i

h>xj×ZU
(m)
i ,

where HZ = U (m)Λ(m)U (m)> is an eigendecomposition of the kernel matrix de�ned by a
subsample Z , hx×Z = vec(h (x,z1) , . . . ,h (x,zm)), 1 ≤ i ≤ m, and 1 ≤ j ≤ n. Thus, the i-th
column in the column orthonormal matrix U (n) is given by

U
(n)
i =

√
m
n

1

λ
(m)
i

HX×ZU
(m)
i ,

where HX×Z is the block in the kernel matrix H corresponding to kernel values between the
instances from X and Z , respectively. From here it then follows that H (n) =U (n)Λ(n)U (n)>

is an approximate eigendecomposition of the kernel matrix H . More precisely, we have that

H (n) =
m∑
i=1

λ
(n)
i U

(n)
i U

(n)
i

>
=HX×Z

 m∑
i=1

1

λ
(m)
i

U
(m)
i U

(m)
i

>
HZ×X

=HX×ZH−1Z×ZHZ×X .

(4.3)

The matrix H (n) is a rank m approximation of the kernel matrix H and in the relevant
literature it is known as the Nyström approximation of the kernel matrix.

4.1.3 AlternativeDerivation of theNyströmMethod for Low-RankApprox-
imation of Kernel Matrices

Let us now describe an alternative method for derivation of the Nyström low-rank approx-
imation of a kernel matrix. For that, assume we are given a set of landmark instances
Z = {z1, · · ·zm} (not necessarily a subset of the sample) and that the goal is to approximate
the evaluation functionals h (xi , ·) for all 1 ≤ i ≤ n using linear combinations of evaluation
functionals de�ned by the landmarks. This goal can be formally stated as

min
α∈Rm×n

n∑
i=1

∥∥∥∥∥∥∥∥h (xi , ·)−
m∑
j=1

αjih
(
zj , ·

)∥∥∥∥∥∥∥∥
2

H
. (4.4)

After expanding the norm, the problem is transformed into

min
α∈Rm×n

n∑
i=1

hii − 2h>xiαi +α>i HZ×Zαi , (4.5)
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where αi denotes the i-th column of α. Each summand in the optimization objective is a
convex function depending only on one column of α. Hence, the optimal solution is

α∗ =H−1Z×ZHZ×X .

From here it then follows that given landmarks Z , the optimal low-rank approximation H̃ of
kernel matrix H can be written as

H̃ =HX×ZH−1Z×ZHZ×X .

The latter is precisely the Nyström low-rank approximation of kernel matrix H , as de�ned in
Eq. (4.3). Thus, the approach computes the optimal embedding of instances to a subspace of
the kernel feature space spanned by the maps of the landmarks from the instance space.

4.1.4 Optimal Low-Rank Approximation of Kernel Matrix

While the problem of computing the optimal embedding of instances to a subspace spanned
by the kernel functions corresponding to landmarks is convex and solvable in closed form
(Section 4.1.3), the problem of choosing the best set of landmarks is a combinatorial problem
that is di�cult to solve. To evaluate the e�ectiveness of the subspace spanned by a given set
of landmarks it is standard to use the Schatten matrix norms (Weidmann, 1980). The Schatten
p-norm of a symmetric and positive de�nite matrix H is de�ned as

‖H‖p =
 n∑
i=1

λ
p
i


1
p

,

where λi ≥ 0 are eigenvalues of H and p ≥ 1. For p =∞ the Schatten p-norm is equal to the
operator norm and for p = 2 it is equal to the Frobenius norm. The three most frequently
used Schatten norms are p = 1,2,∞ and for these norms the following inequalities hold

‖H‖∞ =max
i
λi ≤

√∑
i

λ2i =
√
tr (H>H) = ‖H‖2 ≤

∑
i

λi = tr(H) = ‖H‖1 .

From Eq. (4.4) and (4.5) it follows that for a subspace of the kernel feature space spanned
by kernel functions corresponding to a given set of landmarks Z , the Schatten 1-norm
approximation error of the optimal embedding into this subspace is given by

L (α∗) = tr(H)− tr(H̃) =
∥∥∥H − H̃∥∥∥

1
.

The latter equation follows from the properties of trace and the fact that Ξ = H − H̃ is a
symmetric and positive de�nite matrix with ξij =

〈
ξ (xi , ·),ξ

(
xj , ·

)〉
H and ξ (xi , ·) = h (xi , ·)−∑m

k=1α
∗
kih (zk , ·). Thus, for a good Nyström approximation of a kernel matrix it is crucial to

select the landmarks to reduce the error in one of the frequently used Schatten p-norms, i.e.,

Z∗ = argmin
Z⊂X ∧ |Z |=m

∥∥∥H −HX×ZH−1Z×ZHZ×X∥∥∥p .
Having characterized an optimal set of landmarks, let us now characterize the optimal

low-rank approximation of the kernel matrix H . The following proposition is a special
case of the Eckart–Young–Mirsky theorem (Eckart and Young, 1936; Mirsky, 1960) and it
characterizes the optimal low-rank approximation of a symmetric and positive de�nite matrix.
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Proposition 4.2. (Eckart and Young, 1936; Mirsky, 1960) Suppose Um and Λm are the top m
eigenvectors and eigenvalues from an eigendecomposition of the kernel matrix H . Then, at the
low-rank approximation H̃ ∗ =UmΛmU

>
m , the Schatten p-norm error of a rankm approximation

of the matrix H attains its minimal value.

Proof. While the Eckart–Young–Mirsky theorem holds for all Schatten p-norms (i.e., 1 ≤
p ≤ ∞), the focus of the proof will be on the cases with p = 1, p = 2, and p =∞. If we let
Hm = AB> with A,B ∈ Rn×m be a rank m approximation of H , then we need to show that

‖H −Hm‖p ≥
∥∥∥H − H̃ ∗∥∥∥

p
.

Let us begin by showing the claim for p = ∞. For that, let H = UΛU> be an eigen-
decomposition of the matrix H with eigenvalues λ1 ≥ λ2 ≥ . . .λn ≥ 0 and corresponding
eigenvectors {ui}ni=1. As the low-rank approximation Hm = AB> is of rank m, then there
exists a vector g ∈ span {u1, . . . ,um+1} such that B>g = 0. To see this, �rst note that the null
space of the matrix B is of dimension dim(N (B)) = n−m. From here it then follows that

dim(N (B)) + dim(span {u1, . . . ,um+1}) = n+1 ,

and there exists g ∈ N (B)∩ span {u1, . . . ,um+1} such that ‖g‖ = 1. Hence,

‖H −Hm‖∞ ≥ ‖(H −Hm)g‖2 = ‖Hg‖2 =
∥∥∥∥∥∥∥
n∑
i=1

λiuiu
>
i g

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
m+1∑
i=1

λiuiu
>
i g

∥∥∥∥∥∥∥
2

=∥∥∥∥∥∥∥
m+1∑
i=1

λigiui

∥∥∥∥∥∥∥
2

= ‖UΛm+1g‖2 ≥ λm+1 =
∥∥∥H − H̃ ∗∥∥∥∞ ,

where the �rst inequality follows from the operator norm and the latter one can be obtained
using the Rayleigh–Ritz quotient (Lütkepohl, 1997).

Having shown the claim for case p =∞, we now proceed with the proof for cases p = 1
and p = 2. For that, we need to �rst introduce the Weyl’s spectral inequality (Weyl, 1912).
For matrices P1, P2 ∈ Cr×n and 1 ≤ r ≤ n, the inequality states that

λi+j−1 (P1 + P2) ≤ λi (P1) +λj (P2) ,

where λi (P1) denotes the i-th eigenvalue of matrix P1 and 1 ≤ i, j, i + j − 1 ≤ r .
Now, setting j =m+1, P1 =H −Hm, and P2 =Hm into the Weyl’s inequality we obtain

λi+m (H) ≤ λi (H −Hm) +λm+1 (Hm) = λi (H −Hm) . (4.6)

From the latter inequality it follows that

‖H −Hm‖pp =
n∑
i=1

λi (H −Hm)p ≥
n−m∑
i=1

λi (H −Hm)p ≥
n∑

i=m+1

λi (H)p =
∥∥∥H − H̃ ∗∥∥∥p

p
,

where 1 ≤ p <∞ and the latter inequality follows by applying the Weyl’s inequality from
Eq. (4.6) for 1 ≤ i ≤ n−m.
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4.2 K-means Clustering

As our landmark selection strategy for the Nyström low-rank approximation of a kernel
matrix is based on K-means clustering (Lloyd, 1982), we �rst provide a brief review of that
algorithm from the perspective of low-rank approximation of Gram matrices and then discuss
its relation to Proposition 4.2. In particular, we express the optimization problem for K-means
clustering as a constrained low-rank approximation problem (Section 4.2.1) and then give
a result which relates the subspace spanned by the top (K − 1) left singular vectors of the
data matrix and that spanned by optimal K-means centroids (Section 4.2.2). This result
(formulated in Proposition 4.5) is the �rst complete proof of a claim �rst considered by Ding
and He (2004) and one of the main contributions of this chapter.

4.2.1 Optimization Problem

Let the instance spaceX ⊂ Rd and letK denote the number of clusters. InK-means clustering
the goal is to choose a set of centroids C = {c1, · · · , cK } minimizing the clustering potential

φ(C) =
∑
x∈X

min
c∈C
‖x − c‖2 =

K∑
k=1

∑
x∈Pk
‖x − ck‖2 ,

where Pk = {x ∈ X | P (x) = ck} is a clustering cell and P : X → C denotes the centroid
assignment function. For a clustering cell Pk the centroid is computed as 1

|Pk |
∑
x∈Pk x. In the

remainder of the section, we denote with P ∈ Rn×K the cluster indicator matrix of clustering
C such that pij = 1/√nj when instance xi is assigned to centroid cj , and pij = 0 otherwise.
Here nj denotes the number of instances assigned to centroid cj .

Without loss of generality, we can assume that the columns of data matrix X ∈ Rd×n are
centered instances (i.e.,

∑n
i=1 xi/n = 0). Now, using the introduced notation we can write the

clustering potential as (Ding and He, 2004; Boutsidis et al., 2009)

φ (C) =
∥∥∥X −XP P >∥∥∥2

2
.

Denoting with pi the i-th column in P we have that it holds p>i pj = δij , where δij = 1 if
i = j and otherwise δij = 0. Hence, it holds that P >P = IK and P is an orthogonal projection
matrix with rank K . Let C denote the family of all possible clustering indicator matrices of
rank K . Then, the K-means optimization problem is equivalent to the constrained low-rank
approximation problem

P ∗ = argmin
P ∈C

∥∥∥X −XP P >∥∥∥2
2
.

From here, using the relation between the Schatten 2-norm and the matrix trace we obtain

P ∗ = argmin
P ∈C

tr
(
X>X

)
− tr

(
P >X>XP

)
= argmax

P ∈C
tr

(
P >X>XP

)
. (4.7)

In the remainder of the section, we refer to the constrained optimization objective from
Eq. (4.7) as the discrete problem. For this problem, Ding and He (2004) observe that the set of
vectors {p1, · · · ,pK ,e/√n} is linearly dependent (e is a vector of ones) and that the rank of the
optimization problem can be reduced. As

∑K
i=1
√
nipi = e, there exists a linear orthonormal

transformation of the subspace basis given by the columns of P such that one of the vectors
in the new basis of the subspace spanned by P is e/

√
n. Such transformations are equivalent to
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a rotation of the subspace. Let R ∈ RK×K denote an orthonormal transformation matrix such
that the vectors {pi}Ki=1 map to {qi}Ki=1 with qK = 1√

n
e. This is equivalent to requiring that

the K-th column in R is rK =
(√

n1/n, · · · ,√nK/n
)>

and q>i e = 0 for 1 ≤ i ≤ K − 1. Moreover,
from Q = P R and R>R = IK it follows that

Q>Q = R>P >P R = R>R = IK .

Hence, if we denote with QK−1 the matrix-block with the �rst (K −1) columns of Q then the
problem from Eq. (4.7) can be written as (Ding and He, 2004; Xu et al., 2015)

Q∗K−1 = argmax
QK−1∈Rn×(K−1)

tr
(
Q>K−1X

>XQK−1
)

s.t. Q>K−1QK−1 = IK−1

Q = P R ∧ qK =
1√
n
e .

(4.8)

While P is an orthonormal indicator/sparse matrix of rank K , Q is a piecewise constant
and in general non-sparse orthonormal matrix of the same rank. The latter optimization
problem can be relaxed by not adding the structural constraints Q = P R and qK = e/

√
n. The

resulting optimization problem is known as the Rayleigh–Ritz quotient (e.g., see Lütkepohl,
1997) and in the remainder of the section we refer to it as the continuous problem. The
optimal solution to the continuous problem is (up to a rotation of the basis) de�ned by the
top (K − 1) eigenvectors from the eigendecomposition of the positive de�nite matrix X>X
and the optimal value of the relaxed optimization objective is the sum of the eigenvalues
corresponding to this solution. As the continuous solution is (in general) not sparse, the
discrete problem can be better described with the non-sparse piecewise constant matrix Q
than with the sparse indicator matrix P .

4.2.2 Relation to Optimal Low-Rank Approximation of Kernel Matrices

Ding and He (2004) and Xu et al. (2015) have formulated a theorem which claims that the
subspace spanned by optimal K-means centroids is in fact the subspace spanned by the top
(K −1) left singular vectors of X . The proofs provided in these works are, however, restricted
to the case when the discrete and continuous/relaxed version of the optimization problem
match. We address here this claim without that restriction and amend their formulation
accordingly. For this purpose, let C∗ = {c1, · · · , cK } be K centroids specifying an optimal
K-means clustering (i.e., minimizing the potential). The between cluster scatter matrix
S =

∑K
i=1nicic

>
i projects any vector x ∈ X to a subspace spanned by the centroid vectors,

i.e., Sx =
∑K
i=1ni

(
c>i x

)
ci ∈ span({c1, · · · , cK }). Let also λK denote the K-th eigenvalue of

H = X>X and assume the eigenvalues are listed in descending order.

Proposition 4.3. Suppose that the subspace spanned by optimal K-means centroids has a basis
that consists of left singular vectors of X. If the gap between the eigenvalues λK−1 and λK is
su�ciently large (see the proof for explicit de�nition), then the optimal K-means centroids and
the top (K − 1) left singular vectors of X span the same subspace.

In our proof of the latter proposition, we will need an auxiliary result that allows us to
express the clustering potential in terms of the squared norms of centroids. Let us now give
this auxiliary claim before we proceed with a proof of Proposition 4.3.
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Lemma 4.4. (Kanungo et al., 2002) Let c be the centroid of a set C with n instances and let z
be an arbitrary point from Rd . Then, it holds∑

x∈C
‖x − z‖2 −

∑
x∈C
‖x − c‖2 = n‖c − z‖2 .

Proof. After expanding the sums we obtain∑
x∈C
‖x‖2 +n‖z‖2 − 2

∑
x∈C
〈x,z〉 −

∑
x∈C
‖x‖2 −n‖c‖2 +2

∑
x∈C
〈c,x〉 = n‖c‖2 +n‖z‖2 − 2n〈c,z〉 .

We can now rewrite the latter equation as

−2n〈c,z〉 −n‖c‖2 +2n‖c‖2 = n‖c‖2 − 2n〈c,z〉 ,
and the claim follows from here.

Having provided a proof for Lemma 4.4, we are now ready to prove Proposition 4.3.

Proof of Proposition 4.3. Let M ∈ Rd×K be a matrix with centroids {c1, c2, . . . , cK } as columns
and let N = diag {n1,n2, · · · ,nK }, where ni denotes the number of instances assigned to
centroid ci . Now, observe that M = XPN−1/2 and that we can write the non-constant term
from Eq. (4.7) as

tr
(
P >X>XP

)
= tr

(
N

1
2M>MN

1
2
)
= tr

(
MNM>

)
= tr

 K∑
i=1

nicic
>
i

 . (4.9)

An optimal solution to K-means clustering places centroids to maximize this objective. From
the relaxed version of the problem, de�ned in Eq. (4.8), we know that it holds

tr

 K∑
i=1

nicic
>
i

 ≤ K−1∑
i=1

λi , (4.10)

where {λi}K−1i=1 are the top eigenvalues of the eigendecomposition XX> = UΛU> with
λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. Moreover, from the singular value decomposition, X = UΣV >,
it follows that X =

∑r
i=1σiuiv

>
i , where r is the rank of X and r ≤ min(d − 1,n − 1). The

latter follows from the assumption that X is a centered data matrix. Hence, U ∈ Rd×r is an
orthonormal basis of the data span and we can express the centroids in this basis as M =UΓ ,
where Γ = [γ·1 · · ·γ·K ] and γ·i ∈ Rr for i = 1, . . . ,K .

Having expressed the centroids in the U -basis it is now possible to rewrite the optimiza-
tion objective in this basis, as well. In particular, it holds

tr
(
MNM>

)
= tr

(
UΓN Γ>U>

)
= tr

(
ΓN Γ>

)
= tr

 K∑
i=1

niγiγ
>
i


=

K∑
i=1

ni

r∑
j=1

γ2
ji =

r∑
j=1

K∑
i=1

niγ
2
ji .

(4.11)

From the singular value decomposition of X it is possible to compute the projections
of instances onto the left singular vectors, and thus retrieve the coe�cient matrix Γ . For
instance, projecting the data over a left singular vector uj we get

u>j X = σjv
>
j ,
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where vj ∈ Rn is the j-th right singular vector of X. The centroid ci of a cluster cell Pi can
be expressed in the U -basis by setting

γji =
σj
ni

∑
l∈Pi

vlj .

From here, we then have that

niγ
2
ji = λjni

(∑
l∈Pi vlj
ni

)2
= λjniδ

2
ji ,

where δji =
∑
l∈Pi vlj/ni . The latter equation, on the other hand, allows us to write Eq. (4.11) as

tr
(
MNM>

)
=

r∑
j=1

λj

K∑
i=1

niδ
2
ji . (4.12)

From the Cauchy–Schwartz inequality and the fact that right singular vectors of X are
orthonormal vectors it follows that

niδ
2
ji ≤

∑
l∈Pi

v2lj ≤ 1 . (4.13)

On the one hand, from this inequality we can conclude that δji ≤ 1/√ni . On the other hand,
summing the �rst part of the inequality over 1 ≤ i ≤ K we obtain

K∑
i=1

niδ
2
ji ≤

K∑
i=1

∑
l∈Pi

v2lj =
∥∥∥vj∥∥∥2 = 1 .

As the data matrix X is centered, i.e., 1
n

∑n
i=1 xi = 0, it follows that the columns of the

matrix M are linearly dependent. In particular, we have that it holds

K∑
i=1

ni
n
ci =

1
n

n∑
i=1

xi = 0 .

From here it then follows that we can express one column (e.g., the centroid cK ) as a linear
combination of the others. Thus, the rank of M is at most K − 1 ≤ r . As the rank of
span {c1, c2, · · · , cK } is at most K − 1, then by the assumption of the proposition there are
at least r −K + 1 columns of U that are orthogonal to the span. Consequently, in matrix
Γ ∈ Rr×K there are at least (r −K +1) rows with all entries equal to zero.

Now, the problem of minimizing the objective in Eq. (4.7) is equivalent to that of maximiz-
ing the objective in Eq. (4.11). By the assumption of the proposition, the latter is equivalent
to setting the rows in Γ corresponding to low value terms in Eq. (4.12) to zero vectors. As

λj

K∑
i=1

niδ
2
ji ≤ λj ,

the optimization with respect to upper bounds on terms in Eq. (4.12) is equivalent to setting
to zero the rows in Γ that correspond to eigenvalues λj with j ≥ K , i.e., γji = δji = 0 for
K ≤ j ≤ r and 1 ≤ i ≤ K . Let us now check whether and under what conditions the optimal
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value of the relaxed objective,
∑K−1
j=1 λj , is attained for this choice of centroids. By applying

Lemma 4.4 with z = 0 to Eq. (4.12) we obtain

r∑
j=1

λj

K∑
i=1

niδ
2
ji =

r∑
j=1

λj

K∑
i=1

∑
l∈Pi

v2lj −
(
vlj − δji

)2
=

r∑
j=1

λj

1− K∑
i=1

∑
l∈Pi

(
vlj − δji

)2 .
The maximal value of this objective is attained if the top (K − 1) right singular vectors V
are piecewise constant over clusters. In particular, for vlj = δji with l ∈ Pi , 1 ≤ i ≤ K , and
1 ≤ j ≤ K − 1, the expression attains the maximal value of the continuous version of the
problem,

∑K−1
j=1 λj . Thus, if the top (K − 1) right singular vectors are piecewise constant the

solutions to the discrete and continuous version of the K-means optimization problem match.
However, right singular vectors ofX are not necessarily piecewise constant and a solution

based on the optimization with respect to upper bounds on terms in Eq. (4.12) might not
be optimal. To establish under what conditions the subspace spanned by the top (K − 1)
left singular vectors is identical to that spanned by optimal K-means centroids, we consider
two clusterings C(1)

K and C(2)
K . According to the assumption of the proposition, the subspace

spanned by optimalK-means centroids has a basis consisting of left singular vectors. Thus, we
assume that {u1, · · · ,uK−2,uK−1} and {u1, · · · ,uK−2,uK } are subspaces spanned by centroids
in C(1)

K and C(2)
K , respectively. Let us also denote with VK−1 the matrix with top (K − 1) right

singular vectors of X and let Ṽ1 and Ṽ2 be the piecewise constant approximations to right
singular vectors corresponding to the subspaces spanned by sets of centroids C(1)

K and C(2)
K .

Taking ṽj to be a column vector given by ṽlj = δji with l ∈ Pi and 1 ≤ i ≤ K , we can
write Eq. (4.11) as

tr
(
MNM>

)
=

r∑
j=1

λj

(
1−

∥∥∥vj − ṽj∥∥∥2) .
Now, if Ṽ1 , VK−1 and the gap between eigenvalues λK−1 and λK is su�ciently large then
the choice of coe�cients γji , 0 with 1 ≤ j ≤ K − 1 corresponds to an optimal K-means
clustering and the corresponding centroid subspace is spanned by the top (K −1) left singular
vectors of X. More speci�cally, the latter claim holds if the gap between the eigenvalues
λK−1 and λK satis�es

λK−1(1− ‖vK−1 − ṽ(1)K−1‖2) > λK (1− ‖vK − ṽ
(2)
K ‖2) ,

where vj and ṽ(·)j denote corresponding columns in matrices VK−1 and Ṽ· , respectively. If∥∥∥∥vK − ṽ(2)K ∥∥∥∥ < 1, the latter inequality is equivalent to

λK−1 −λK
λK−1

>

∥∥∥∥vK−1 − ṽ(1)K−1∥∥∥∥2 − ∥∥∥∥vK − ṽ(2)K ∥∥∥∥2
1−

∥∥∥∥vK − ṽ(2)K ∥∥∥∥2 .

To see that the condition
∥∥∥∥vK − ṽ(2)K ∥∥∥∥ < 1 is satis�ed note that

0 <
K∑
i=1

niδ
2
ji =

K∑
i=1

∑
l∈Pi

v2lj −
(
vlj − δji

)2
= 1−

∥∥∥∥vK − ṽ(2)K ∥∥∥∥2 .
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Having established a condition on the gap between the eigenvalues λK−1 and λK , let us
now check whether the upper bound from Eq. (4.10) is attained in cases when right singular
vectors are not piecewise constant. From the Cauchy-Schwarz inequality in Eq. (4.13), it
follows that the equality is attained when vlj = const. for all l ∈ Pi and 1 ≤ i ≤ K . However,
we have assumed that right singular vectors are not piecewise constant and this implies that
the strict inequality holds in Eq. (4.13). Consequently, for non-constant right singular vectors
we have that the optimal value of the relaxed problem is not attained, i.e.,

tr
(
MNM>

)
=
K−1∑
j=1

λj

K∑
i=1

niδ
2
ji <

K−1∑
j=1

λj .

Let us now relate Proposition 4.3 to the Eckart–Young–Mirsky theorem, reviewed in
Section 4.1. The theorem implies that an optimal set of landmarks for the Nyström approxi-
mation of a kernel matrix spans the subspace of the kernel feature space which preserves
most of the variation present in the dataset (e.g., see Chapter 2). Assuming that the conditions
from Proposition 4.3 are satis�ed, then the Nyström approximation using optimal kernel
K-means centroids as landmarks projects the data to a subspace which preserves the maximal
possible amount of variation in the dataset. Hence, under these conditions optimal kernel
K-means landmarks provide an optimal rank (K − 1) reconstruction of the kernel matrix.

Having established this relation, we now proceed to a general case for which the assump-
tion on the basis of the subspace spanned by optimal K-means centroids does not hold. In
this more realistic case, we show that the claim by Ding and He (2004) and Xu et al. (2015) on
the relation between the subspace spanned by the top (K − 1) left singular vectors of X and
that spanned by optimal K-means centroids does not hold for all data matrices.

Proposition 4.5. In contrast to the claim by Ding and He (2004) and Xu et al. (2015), it is
possible that no basis of the subspace spanned by optimal K-means centroids consists of left
singular vectors of X . In that case, the subspace spanned by the top (K − 1) left singular vectors
is di�erent from that spanned by optimal K-means centroids.

Proof. If no basis of span {c1, c2, . . . , cK } is given by a subset of left singular vectors, then
(using the notation from the proof of Proposition 4.3) there are at least K rows with non-zero
entries in matrix Γ . Let us now show that this is indeed possible. The fact that a left singular
vector ui is orthogonal to the span is equivalent to

(
∀β ∈ RK

)
: 0 = u>i

 K∑
j=1

βjcj

 = u>i
 K∑
j=1

r∑
l=1

βjδljσlul

 = K∑
j=1

βjσiδij =
K∑
j=1

βjσi
1
nj

∑
l∈Pj

vli ,

where vi is the i-th right singular vector. As the latter equation holds for all vectors β =
(β1, . . . ,βK ) ∈ RK , the claim ui ⊥ span {c1, . . . , cK } is equivalent to∑

l∈Pj
vli = 0 (∀j = 1, . . . ,K) . (4.14)

Moreover, as the data matrix is centered the vector vi also satis�es v>i e = 0.
To construct a problem instance where no basis of the subspace spanned by optimal

K-means centroids consists of left singular vectors, we take a unit vector vr such that, for
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any cluster in any clustering, none of the conditions from Eq. (4.14) is satis�ed. Then, we
can construct a basis of right singular vectors using the Gram–Schmidt orthogonalization
method. For instance, we can take ṽ with ṽi = −2i for 1 ≤ i < n and ṽn = 2n − 2, and then
set vr = ṽ/‖ṽ‖, where r is the rank of the problem. Once we have constructed a right singular
basis that contains the vector vr , we pick a small positive real value as the singular value
corresponding to the vector vr and select the remaining singular values so that there are
su�ciently large gaps between them (e.g., see the proof of Proposition 4.3). By choosing a
left singular basis of rank r , we form a data matrix X and the subspace spanned by optimal
K-means centroids in this problem instance is not the one spanned by the top (K − 1) left
singular vectors. To see this, note that from Eq. (4.14) and the de�nition of vr it follows that
ur 6⊥ span {c1, . . . , cK }.

Having shown that an optimal centroid subspace of data matrix X is not the one spanned
by the top (K − 1) left singular vectors, let us now show that there is no basis for this
subspace consisting of left singular vectors. For simplicity, let us take K = 2. According
to our assumption σ1 � σ2 � σr−1 � σr . Now, from Eq. (4.12) it follows that the largest
reduction in the clustering potential is obtained by partitioning data so that the centroids for
the top components are far away from the zero-vector. As the basis of span {c1, c2} consists of
one vector and as ur 6⊥ span {c1, c2} it then follows that the basis vector is given by

∑r
j=1βjuj

with βj ∈ R and at least β1,βr , 0. Hence, for K = 2 and data matrix X there is no basis of
span {c1, c2} that consists of a left singular vector.

Thus, there are K-means clustering problems where optimal K-means centroids span a
subspace di�erent from the one spanned by the top (K−1) left singular vectors. In such cases,
similar to Proposition 4.3, an optimal clustering partitions the data so that the components of
the centroids on the top left singular vectors are not zero. For some data distributions, the
latter amounts to selecting optimal centroids so that the corresponding centroid subspace is
close to that spanned by the top (K − 1) left singular vectors.

4.3 Nyström Method with Kernel K-means++ Landmarks

In Section 4.2.2, we have seen that instances which map to optimal kernel K-means centroids
can be e�ective landmarks for the Nyström low-rank approximation of a kernel matrix.
However, for a kernel K-means centroid there does not necessarily exist a point in the
instance space that maps to it (Burges, 1999). To account for this and the hardness of
the kernel K-means clustering problem (Aloise et al., 2009), as well as the computational
complexity of the Lloyd re�nements (Lloyd, 1982), we propose to approximate the centroids
with kernel K-means++ samples (Arthur and Vassilvitskii, 2007). We start with a brief
overview of the K-means++ sampling scheme (Arthur and Vassilvitskii, 2007) for seeding
of centroids in K-means clustering (Section 4.3.1). Following this, we give a pseudo-code
description of a kernelized version of this sampling scheme together with an analysis of its
computational and space complexities (Section 4.3.2). The section concludes with a bound
on the relative approximation error of the Nyström method for low-rank approximation of
kernel matrices with kernel K-means++ samples as landmarks (Section 4.3.3).

4.3.1 K-means++ Sampling Scheme

In this section, we review the K-means++ sampling scheme (Arthur and Vassilvitskii, 2007)
proposed for seeding of initial clusters in the Lloyd’s algorithm forK-means clustering (Lloyd,
1982). The main idea behind the sampling scheme is to approximate an optimal clustering
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with a randomized greedy algorithm that in each iteration selects an instance with probability
proportional to its contribution to the clustering potential in which previously selected
instances act as cluster centroids. We describe this sampling scheme below and review a
relative error bound on its clustering potential given by Arthur and Vassilvitskii (2007).

Let us begin by denoting the intermediate clustering solution constructed using the
K-means++ sampling scheme at step t with Ct = {c1, . . . , ct}, where 1 ≤ t ≤ K and K is the
desired number of clusters. For an instance x ∈ X , the contribution to the clustering potential
at the step t > 1 is given by

Dt (x) = min
c∈Ct−1

‖x − c‖2 . (4.15)

Thus, the centroid ct with t > 1 is selected by sampling an instance x ∈ X with probability

pt (x) =
Dt (x)
φ (Ct−1)

.

In the step t = 1, there are no previously selected instances that act as centroids and the
centroid c1 is selected by sampling an instance x ∈ X using the uniform distribution

p1 (x) =
1
n
.

Hence, the probability of selecting a set of centroids CK = {c1, . . . , cK } is then given by

p (CK ) = p (cK | CK−1)p (CK−1) = pK (cK )p (CK−1) =
K∏
i=1

pi (ci) .

Having reviewed the K-means++ sampling scheme, we now provide a bound on the
relative error for the approximation of the optimal clustering using this sampling scheme.

Theorem 4.6. (Arthur and Vassilvitskii, 2007) If a clustering C is constructed using the K-
means++ sampling scheme then the corresponding clustering potential φ (C) satis�es

EC∼p(·)
[
φ (C)
φ (C∗)

]
≤ 8(lnK +2) ,

where C∗ is an optimal clustering with K centroids.

The computation complexity of the sampling scheme is O (Knd), where K denotes the
number of clusters and d is the dimension of the problem. To see this, �rst observe that in
each iteration the K-means++ sampling scheme computes the contribution of each instance
to the current clustering potential. An e�cient implementation of the scheme stores this
vector with individual contributions to the clustering potential in the memory and updates
the vector in each iteration to account for a newly added centroid (i.e., the instance sampled
at that iteration). In this way, the computational complexity of an iteration is O (nd), where
n arises from the number of instances and d from the computation of the squared distance
to the selected centroid. As there are in total K such iterations, the algorithm constructs a
clustering with K centroids in time O (Knd).
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Algorithm 4.1 Kernel K-means++ Sampling Scheme
Input: sample X = {x1, . . . ,xn}, kernel function h : X ×X → R, number of clusters K ∈ N
Output: cluster centroids {c1, . . . , cK }

1: Di ←∞ for i = 1, . . . ,n
2: i1 ∼ U[1,...,n] and c1← xi1
3: for k = 2, . . . ,K do
4: φ← 0
5: for i = 1, . . . ,n do
6: di ← h (xi ,xi) + h (ck−1, ck−1)− 2h (xi , ck−1)
7: if Di > di then Di ← di end if
8: φ← φ+Di
9: end for

10: p (i)← Di/φ for i = 1, . . . ,n
11: ik ∼ p (·) and ck ← xik
12: end for

4.3.2 Kernel K-means++ Landmarks

Algorithm 4.1 provides a pseudo-code description of the kernel K-means++ sampling scheme
for landmark selection in the Nyström method for low-rank approximation of kernel matrices.
The algorithm takes as input a set of n instances sampled independently from a Borel
probability measure de�ned on the instance space X , together with a Mercer kernel function
h : X ×X → R and a number of clusters K ∈ N with 1 < K < n.

The constructive process starts by initializing the contributions of instances to the clus-
tering potential to a very large number (line 1). Then, an instance is sampled uniformly at
random from the set of available instances as the �rst centroid (line 2). Following this, the
algorithm starts iterating until the speci�ed number of centroids is selected (lines 3–12). In
the �rst step of each iteration, the clustering potential φ is set to zero (line 4). Then, for each
instance the algorithm computes the squared distance to the centroid selected in the previous
iteration (line 6). If the computed distance is smaller than the current contribution of the
instance to the clustering potential, the algorithm updates the corresponding contribution to
the clustering potential (lines 7). To account for the updates in the contributions of instances
to the clustering potential, the algorithm recomputes the clustering potential in each iteration
(line 8). Having updated the clustering potential and individual contributions of instances
to it, the algorithm de�nes a discrete distribution over the set of available instances so that
the probability of selecting an instance is proportional to its contribution to the clustering
potential (line 10). At the last step of each iteration, the algorithm samples a new centroid
from the set of available instances using the previously de�ned discrete distribution (line 11).

From the pseudo-code description, we can observe that the algorithm does not need to
store the whole matrix in order to sample the centroids. More speci�cally, if the diagonal
entries of the kernel matrix required for the computation of the squared distances in line 6
are precomputed/cached, then in each iteration of the algorithm only one row of the kernel
matrix needs to be computed (i.e., the row corresponding to the instance ck−1). Thus, the
space complexity of the approach is O (nd), where d is the dimension of the data and it
originates from storing the instances that are given as input to the algorithm.

From the computational perspective, the most time-consuming step is the computation
of the squared distances (line 6). This step depends on the provided kernel function and it
can be typically computed in O (d) time. As this computation is repeated for each instance,
the computational complexity of that sequence of steps is O (nd). Thus, the computational
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complexity of selectingK centroids using the kernelK-means++ sampling scheme isO (Knd).
To further improve the estimate of optimal centroids, it is possible to implement the kernel

K-means++ scheme with local restarts. What this means is that in line 11 instead of sampling
a single index, the algorithm samples q candidate indices (not necessarily unique). Then,
for each of the corresponding candidate instances the algorithm computes the reduction
in the current clustering potential that comes as a result of adding a new centroid. A
candidate instance corresponding to the largest reduction in the clustering potential is then
selected as the new centroid (ties are broken arbitrarily). Local restarts add a computational
overhead of O (qnd) to each iteration of the kernel K-means++ sampling scheme. Thus,
by following Arthur and Vassilvitskii (2007) and setting q = 2 + lnK the computational
complexity of the kernel K-means++ sampling scheme with local restarts is O (ndK lnK).

4.3.3 Theoretical Analysis

Let us begin by relating the optimal clustering potential to the optimal low-rank approxima-
tion error of the Nyström method. For that, we perform a singular value decomposition of
the data matrix, X =UΣV >, and denote with UK the top K left singular vectors from that
decomposition. Let also U⊥K denote the dual matrix of UK and φ (C∗ |UK ) the clustering
potential given by the projections of X and C∗ onto the subspace UK (see the proof of Propo-
sition 4.7 for the explicit de�nition). The following proposition gives an upper and lower
bound on the optimal clustering potential in terms of the optimal low-rank approximation
error of the Nyström method, expressed in the Schatten 1-norm.

Proposition 4.7. Let HK denote the optimal rank K approximation of the Gram matrix
H = X>X and let C∗ be an optimal K-means clustering of X. Then, it holds

‖H −HK−1‖1 ≤ φ (C∗) ≤ ‖H −HK−1‖1 +φ (C∗ |UK−1) .

Proof. We �rst prove the left-hand side inequality. For that, let us consider the optimization
problem in Eq. (4.8). The clustering potential attains its minimal value φ (C∗) when the
optimization objective from Eq. (4.8) is maximized. The upper bound on the maximal value in
that optimization problem is given by the optimal value of the corresponding relaxed version
of the problem. As already stated in Section 4.2.1, the relaxed version of that optimization
problem is known as the Rayleigh–Ritz quotient and its maximal value is

∑K−1
j=1 λj . Thus, we

have that it holds

φ (C∗) ≥ tr
(
X>X

)
−
K−1∑
j=1

λj =
r∑

j=K

λj = ‖H −HK−1‖1 .

Having shown the left-hand side inequality, let us now turn our attention to proving the
inequality on the right-hand side. From the proof of Proposition 4.3, we have that

φ (C∗) =
r∑
j=1

λj −
r∑
j=1

λj

1− K∑
i=1

∑
l∈Pi

(
vlj − δji

)2 = r∑
j=1

λj

K∑
i=1

∑
l∈Pi

(
vlj − δji

)2
.

Now, observe that

0 ≤ δ2ji ⇐⇒ niδ
2
ji ≤ 2δji

∑
l∈Pi

vlj ⇐⇒
∑
l∈Pi

(
vlj − δji

)2 ≤∑
l∈Pi

v2lj .
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Thus, we have that it holds

φ
(
C∗ |U⊥K−1

)
=

r∑
j=K

λj

K∑
i=1

∑
l∈Pi

(
vlj − δji

)2 ≤ r∑
j=K

λj

K∑
i=1

∑
l∈Pi

v2lj =
r∑

j=K

λj = ‖H −HK−1‖1 .

The claim follows by combining the latter inequality with the fact that

φ (C∗ |UK−1) =
K−1∑
j=1

λj

K∑
i=1

∑
l∈Pi

(
vlj − δji

)2
.

Having presented all the relevant results, we now give a bound on the approximation
error of the Nyström method with kernel K-means++ samples as landmarks.

Theorem 4.8. LetH be a kernel matrix with a �nite rank factorizationH = Φ (X)>Φ (X). De-
note withHK the optimal rank K approximation ofH and let H̃K be the Nyström approximation
of the same rank obtained using kernel K-means++ samples as landmarks. Then,

E
[‖H − H̃K‖2
‖H −HK‖2

]
≤ 8(ln(K +1) + 2)(

√
n−K +ΘK ),

where ΘK = φ(C∗|UK )/‖H−HK‖2, UK denotes the top K left singular vectors of Φ (X), and C∗
optimal kernel K-means clustering with (K +1) clusters.

Proof. Let us assume that (K+1) landmarks, Z ⊂ X , are selected using the kernelK-means++
sampling scheme. Then, for the clustering potential de�ned with Z we have that it holds

φ (Z) =
n∑
i=1

min
z∈Z ‖Φ (xi)−Φ (z)‖2 ≥ min

α∈R(K+1)×n

n∑
i=1

∥∥∥∥∥∥∥∥Φ (xi)−
K+1∑
j=1

αjiΦ
(
zj
)∥∥∥∥∥∥∥∥

2

=
∥∥∥H − H̃K∥∥∥1 ,

where H̃K is the Nyström approximation matrix (e.g., see Section 4.1.3) of rank K de�ned
with landmarks Z = {z1, . . . , zK+1} and Φ (x) is the image of instance x in the factorization
space. The latter inequality follows from the fact that the distance of a point to its orthogonal
projection onto span {Φ (z1) , . . . ,Φ (zK+1)} is not greater than the distance between that point
and the closest landmark from {Φ (z1) , . . . ,Φ (zK+1)}.

Now, combining this result with Theorem 4.6 and Proposition 4.7 we deduce

E
[
‖H − H̃K‖1

]
≤ E [φ (Z)] ≤ 8(ln(K +1) + 2)(‖H −HK‖1 +φ (C∗ |UK )) .

From this and the Schatten p-norm inequalities (Weidmann, 1980),

‖H −HK‖1 ≤
√
n−K ‖H −HK‖2 ∧ ‖H‖2 ≤ ‖H‖1 ,

we obtain the following bound

E
[
‖H − H̃K‖2

]
≤ 8(ln(K +1) + 2)

(√
n−K ‖H −HK‖2 +φ(C∗ |UK )

)
.

The result follows after division by ‖H −HK‖2.
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Corollary 4.9. If φ (C∗ |UK ) ≤
√
n−K ‖H −HK‖2, then the additive termΘK ≤

√
n−K and

E
[‖H − H̃K‖2
‖H −HK‖2

]
∈ O

(
lnK
√
n−K

)
. (4.16)

The given bound for low-rank approximation of symmetric and positive de�nite matri-
ces holds for the Nyström method with kernel K-means++ samples as landmarks without
any Lloyd iterations (Lloyd, 1982). To obtain even better landmarks, it is possible to �rst
sample candidates using the kernel K-means++ sampling scheme and then attempt a Lloyd
re�nement in the instance space (motivation for this is provided in Section 4.4.3). If the
clustering potential is decreased as a result of this, the iteration is considered successful and
the landmarks are updated. Otherwise, the re�nement is rejected and current candidates are
selected as landmarks. This is one of the landmark selection strategies we analyze in our
experiments (e.g., see Section 4.6).

We conclude the section with an insight into the properties of our bound with respect to
the rank of the approximation. From Corollary 4.9 it follows that the bound on the relative
approximation error increases initially (for small K) with lnK and then decreases as K
approaches n. This is to be expected as a larger K means we are trying to �nd a higher
dimensional subspace and initially this results in having to solve a more di�cult problem. The
bound on the low-rank approximation error is, on the other hand, obtained by multiplying
with ‖H −HK‖2 which depends on the spectrum of the kernel matrix and decreases with K .
In order to be able to generalize at all, one has to assume that the spectrum falls rather sharply
and typical assumptions are λi ∈ O (i−a) with a > 1 or λi ∈ O(e−bi) with b > 0 (e.g., see
Section 4.3, Bach, 2013). The following corollary shows that for a ≥ 2, K > 1, and λi ∈ O (i−a)
such falls are sharper than lnK .

Corollary 4.10. Assume that the eigenvalues of the kernel matrix H satisfy λi ∈ O (i−a) with
a ≥ 2. The low-rank approximation error in the Frobenius norm of the Nyström method with
kernel K-means++ samples as landmarks decreases with K > 1 as

O
(√
n−K (ln(K +1) + 1)

(K +1)a−1

)
.

Proof. First observe that
n∑
l=K

1
l2a

=
1
K2a

n∑
l=K

1

(l/K)2a
=

1
K2a

n−K∑
l=0

1

(1+ l/K)2a
<

1
K2a

n−K∑
l=0

1

(1+ l/K)2

<
1

K2(a−1)

n−K∑
l=0

1

(1+ l)2
<

1
K2(a−1)

∑
l≥0

1

(1+ l)2
∈ O

( 1
K2(a−1)

)
.

Hence, we deduce that the approximation error in the Frobenius norm of the optimal rank K
subspace satis�es

‖H −HK‖2 ∈ O
(

1

(K +1)a−1

)
.

From here it then follows that the low-rank approximation error in Frobenius norm of the
Nyström method with kernel K-means++ samples as landmarks satis�es∥∥∥H − H̃K∥∥∥2 ∈ O (√

n−K (ln(K +1) + 1)

(K +1)a−1

)
.
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The claim follows by observing that for a ≥ 2 the function ln(K+1)
(K+1)a−1

decreases with K > 1.

We note here that a similar state-of-the-art bound (discussed subsequently) on the relative
approximation error by Li et al. (2016) exhibits worse behavior and grows linearly with K .

4.4 Discussion

We start with a brief overview of alternative approaches to landmark selection in the Nyström
method for low-rank approximation of kernel matrices. Following this, we focus on a bound
that is the most similar to ours, that of K-dpp-Nyström (Li et al., 2016). Then, for the
frequently used Gaussian kernel, we provide a theoretically sound motivation for performing
the Lloyd re�nements of kernel K-means++ landmarks in the instance space instead of the
kernel feature space. These re�nements are computationally cheaper than the ones performed
in the kernel feature space and can only improve the positioning of the landmarks.

4.4.1 Related Approaches

As pointed in Section 4.1.4, the choice of landmarks is crucial for the quality of the Nyström
low-rank approximations. For this reason, the existing work on the Nyström method has
focused mainly on landmark selection techniques with theoretical guarantees. These ap-
proaches can be divided into four groups: i) random sampling, ii) greedy methods, iii) methods
based on the Cholesky decomposition, iv) vector quantization (e.g., K-means clustering).

The simplest strategy for choosing the landmarks is by uniformly sampling them from a
given set of instances. This was the strategy that was proposed by Williams and Seeger (2001)
in the �rst paper on the Nyström method for low-rank approximation of kernel matrices.
Following this, more sophisticated non-uniform sampling schemes were proposed. The
schemes that received a lot of attention over the past years are the selection of landmarks by
sampling proportional to column norms of the kernel matrix (Drineas et al., 2006), diagonal
entries of the kernel matrix (Drineas and Mahoney, 2005), approximate leverage scores (Alaoui
and Mahoney, 2015; Gittens and Mahoney, 2016), and submatrix determinants (Belabbas and
Wolfe, 2009; Li et al., 2016). From this group of methods, the approximate leverage score
sampling and the K-dpp Nyström method (see Section 4.4.2) are considered state-of-the-art
methods in low-rank approximation of kernel matrices.

The second group of landmark selection techniques are greedy methods. A well-performing
representative from this group is a method for sparse approximations proposed by Smola
and Schölkopf (2000) for which it was later independently established (Kumar et al., 2012)
that it performs very well in practice—second only to K-means clustering.

The third group of methods relies on the incomplete Cholesky decomposition to construct
a low-rank approximation of a kernel matrix (Fine and Scheinberg, 2002; Bach and Jordan,
2005; Kulis et al., 2006). An interesting aspect of the work by Bach and Jordan (2005) and
that of Kulis et al. (2006) is the incorporation of side information/labels into the process of
�nding a good low-rank approximations of a given kernel matrix.

Beside these approaches, an in�uential ensemble method for low-rank approximation of
kernel matrices was proposed by Kumar et al. (2012). This work also contains an empirical
study with a number of approaches to landmark selection. Kumar et al. (2012) also note that
the landmarks obtained using instance space K-means clustering perform the best among
non-ensemble methods.
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4.4.2 K-DPP Nyström Method

The �rst bound on the Nyström approximation with landmarks sampled proportional to
submatrix determinants was given by Belabbas and Wolfe (2009). Li et al. (2016) recognize
this sampling scheme as a determinantal point process and extend the bound to account for
the case when l landmarks are selected to make an approximation of rank K ≤ l. That bound
can be formally speci�ed as (Li et al., 2016)

E
[‖H − H̃K‖2
‖H −HK‖2

]
≤ l +1
l +1−K

√
n−K . (4.17)

For l = K , the bound can be derived from that of Belabbas and Wolfe (Theorem 1, 2009) by
applying the inequalities between the corresponding Schatten p-norms.

The bounds obtained by Belabbas and Wolfe (2009) and Li et al. (2016) can be directly
compared to the bound from Corollary 4.9. From Eq. (4.17), for l = K + 1, we get that the
expected relative approximation error of theK-dpp Nyström method scales likeO

(
K
√
n−K

)
.

For a good worst case guarantee on the generalization error of learning with the Nyström
approximations (see, e.g., Yang et al., 2012), the parameter K scales as

√
n. Plugging this

estimate into Eq. (4.16), we see that the upper bound on the expected error with kernel
K-means++ landmarks scales like O

(√
n lnn

)
and that with K-dpp landmarks as O (n).

Having compared our bound to that of the K-dpp landmark selection, we now discuss
some speci�cs of the empirical study performed by Li et al. (2016). The crucial step of that
landmark selection strategy is the ability to e�ciently sample from a K-dpp. To achieve this,
the authors have proposed to use a Markov chain with a worst case mixing time linear in the
number of instances. The mixing bound holds provided that a data-dependent parameter
satis�es a condition which is computationally di�cult to verify (Section 5, Li et al., 2016).
Moreover, there are cases when this condition is not satis�ed and for which the mixing
bound does not hold. In their empirical evaluation of the K-dpp Nyström method, Li et al.
(2016) have chosen the initial state of the Markov chain by sampling it using the K-means++
scheme and then run the chain for 100-300 iterations. While the choice of the initial state
is not discussed by the authors, one reason that this could be a good choice is because it
starts the chain from a high density region. To verify this hypothesis, we simulate the K-dpp
Nyström method by choosing the initial state uniformly at random and run the chain for
1 000 and 10 000 steps (Section 4.5). Our empirical results indicate that starting the K-dpp
chain with K-means++ samples is instrumental for performing well with this method in
terms of runtime and accuracy (Figure 6, Li et al., 2016). Moreover, for the case when the
initial state is sampled uniformly at random, our study indicates that the chain might need
at least one pass through the data to reach a region with good landmarks. The latter is
computationally ine�cient already on datasets with more than 10 000 instances.

4.4.3 Instance Space K-means Centroids as Landmarks

We �rst address the approach to landmark selection based on K-means clustering in the
instance space (Zhang et al., 2008) and then give a theoretically sound motivation for why
these landmarks work well with the frequently used Gaussian kernel. The outlined reasoning
motivates the instance space Lloyd re�nements of kernel K-means++ samples and it can be
extended to other kernel feature spaces by following the derivations from Burges (1999).

The only existing bound for the instance space K-means landmarks was provided
by Zhang et al. (2008). However, this bound only works for kernel functions that satisfy

(h (a,b)− h (c,d))2 ≤ η (h,X )
(
‖a− c‖2 − ‖b − d‖2

)
,
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for all a,b,c,d ∈ X and a data- and kernel-dependent constant η (h,X ). In contrast to this,
our bound holds for all positive de�nite kernels. The bound given by Zhang et al. (2008) is
also a worst case bound, while ours is a bound in the expectation. The type of the error itself
is also di�erent, as we bound the relative error and Zhang et al. (2008) bound the error in
the Frobenius norm. The disadvantage of the latter is in the sensitivity to scaling and such
bounds become loose even if a single entry of the matrix is large (Li et al., 2016). Having
established the di�erence in the type of the bounds, it cannot be claimed that one is sharper
than the other. However, it is important to note that the bound by Zhang et al. (Proposition
3, 2008) contains the full clustering potential φ (C∗) multiplied by n

√
n/K as a term and this is

signi�cantly larger than the rank dependent term from our bound (e.g., see Theorem 4.8).
Burges (1999) has investigated the geometry of kernel feature spaces and a part of that

work refers to the Gaussian kernel. We review the results related to this kernel feature space
and give an intuition for why K-means clustering in the instance space provides a good set
of landmarks for the Nyström approximation of the Gaussian kernel matrix. The reasoning
can be extended to other kernel feature spaces as long as the manifold onto which the data is
projected in the kernel feature space is a �at Riemannian manifold with the geodesic distance
between the points expressed in terms of the Euclidean distance between instances (e.g., see
Riemmannian metric tensors in Burges, 1999).

The frequently used Gaussian kernel is given by

h (x,y) =
〈
Φ (x),Φ (y)

〉
= exp

(‖x−y‖2/2σ2
)
,

where the feature map Φ (x) is in�nite dimensional and for a subset X of the instance space
X ∈ Rd also in�nitely continuously di�erentiable on X. As in Burges (1999), we denote
with S the image of X in the reproducing kernel Hilbert space of h. The image S is a
r ≤ d dimensional surface in this Hilbert space. As noted by Burges (1999), the image S is
a Hausdor� space (Hilbert space is a metric space and, thus, a Hausdor� space) and has a
countable basis of open sets (the reproducing kernel Hilbert space of the Gaussian kernel is
separable). So, for S to be a di�erentiable manifold (Boothby, 1986) the image S needs to
be locally Euclidean of dimension r ≤ d. We assume that our set of instances X is mapped
to a di�erentiable manifold in the reproducing kernel Hilbert spaceH. On this manifold a
Riemannian metric can be de�ned and, thus, the set X is mapped to a Riemannian manifold S .
Burges (1999) has showed that the Riemannian metric tensor induced by this kernel feature
map is approximately gij =

δij
σ2 , where δij = 1 if i = j and zero otherwise (1 ≤ i, j ≤ d). This

form of the tensor implies that the manifold is �at.
From the obtained metric tensor, it follows that the squared geodesic distance between

two points Φ (x) and Φ (y) on S is equal to the σ -scaled Euclidean distance between x and y
in the instance space, i.e., dS (Φ (x) ,Φ (y))2 = ‖x−y‖2/σ2. For a cluster Pk , the geodesic centroid
is a point on S that minimizes the distance to other cluster points (centroid in the K-means
sense). For our instance space, we have that

c∗k = argmin
c∈Rd

∑
x∈Pk
‖x − c‖2 ⇒ c∗k =

1
|Pk |

∑
x∈Pk

x .

Thus, by doing K-means clustering in the instance space we are performing approximate
geodesic clustering on the manifold onto which the data is embedded in the Gaussian kernel
feature space. It is important to note here that a centroid from the instance space is only
an approximation to the geodesic centroid from the kernel feature space—the preimage of
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Figure 4.1: The �gure shows the lift of the approximation error in the Frobenius norm as the bandwidth parameter
of the Gaussian kernel varies and the approximation rank is �xed to K = 100. The lift of a landmark selection
strategy indicates how much better it is to approximate the kernel matrix with landmarks obtained using that
strategy compared to the uniformly sampled ones.

the kernel feature space centroid does not necessarily exist. As the manifold is �at, geodesic
centroids are ‘good’ approximations to kernel K-means centroids. Hence, by selecting
centroids obtained using K-means clustering in the instance space we are making a good
estimate of the kernel K-means centroids. For the latter centroids, we know that under the
conditions of Proposition 4.3 they span the same subspace as the top (K − 1) left singular
vectors of a �nite rank factorization of the kernel matrix and, thus, de�ne a good low-rank
approximation of the kernel matrix.

4.5 Experiments

Having reviewed the state-of-the-art methods in selecting landmarks for the Nyström low-
rank approximation of kernel matrices, we perform a series of experiments to demonstrate
the e�ectiveness of the proposed approach and substantiate our claims from Sections 4.3
and 4.4. We achieve this by comparing our approach to the state-of-the-art in landmark
selection – approximate leverage score sampling (Gittens and Mahoney, 2016) and the K-dpp
Nyström method (Belabbas and Wolfe, 2009; Li et al., 2016).

Before we present and discuss our empirical results, we provide a brief summary of the
experimental setup. The experiments were performed on 13 real-world datasets available at
the uci and liacc repositories. Each of the selected datasets consists of more than 5 000
instances. Prior to running the experiments, the datasets were standardized to have zero mean
and unit variance. We measure the goodness of a landmark selection strategy with the lift of
the approximation error in the Frobenius norm and the time needed to select the landmarks.
The lift of the approximation error of a given strategy is computed by dividing the error
obtained by sampling landmarks uniformly without replacement (Williams and Seeger, 2001)
with the error of the given strategy. In contrast to the empirical study by Li et al. (2016), we do
not perform any sub-sampling of the datasets with less than 25 000 instances and compute
the Frobenius norm error using full kernel matrices. On one larger dataset with more than
25 000 instances the memory requirements were hindering our parallel implementation and
we, therefore, subsampled it to 25 000 instances (ct-slice dataset, Section 4.6). By performing
our empirical study on full datasets, we are avoiding a potentially negative in�uence of the sub-
sampling on the e�ectiveness of the compared landmark selection strategies, time consumed,
and the accuracy of the approximation error. Following previous empirical studies (Drineas
and Mahoney, 2005; Kumar et al., 2012; Li et al., 2016), we evaluate the goodness of landmark
selection strategies using the Gaussian kernel and repeat all experiments 10 times to account
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Figure 4.2: The �gure shows the time it takes to select landmarks via di�erent schemes together with the corre-
sponding error in the Frobenius norm while the bandwidth of the Gaussian kernel varies and the approximation
rank is �xed to K = 100.

for their non-deterministic nature. We refer to γ = 1/σ2 as the bandwidth of the Gaussian
kernel and in order to determine the bandwidth interval we sample 5 000 instances and
compute their squared pairwise distances. From these distances we take the inverse of 1 and
99 percentile values as the right and left endpoints. To force the kernel matrix to have a large
number of signi�cant spectral components (i.e., the Gaussian kernel matrix approaches to the
identity matrix), we require the right bandwidth endpoint to be at least 1. From the logspace
of the determined interval we choose 10 evenly spaced values as bandwidth parameters. In
the remainder of the section, we summarize our �ndings with 5 datasets and provide the
complete empirical study in Section 4.6.

In the �rst set of experiments, we �x the approximation rank and evaluate the performance
of the landmark selection strategies while varying the bandwidth of the Gaussian kernel.
Similar to Kumar et al. (2012), we observe that for most datasets at a standard choice of
bandwidth – inverse median squared pairwise distance between instances – the principal part
of the spectral mass is concentrated at the top 100 eigenvalues and we set the approximation
rank K = 100. Figure 4.1 demonstrates the e�ectiveness of evaluated selection strategies as
the bandwidth varies. More precisely, as the log value of the bandwidth parameter approaches
to zero the kernel matrix is close to being the identity matrix, thus, hindering low-rank
approximations. In contrast to this, as the log-bandwidth value gets smaller the spectrum
mass becomes concentrated in a small number of eigenvalues and low-rank approximations
are more accurate. Overall, the kernel K-means++ sampling scheme performs the best across
all 13 datasets. It is the best performing method on 10 of the considered datasets and a
competitive alternative on the remaining ones. The improvement over alternative approaches
is especially evident on datasets ailerons and elevators. The approximate leverage score
sampling is on most datasets competitive and achieves a signi�cantly better approximation
than alternatives on the dataset cal-housing. The approximations for the K-dpp Nyström
method with 10 000 mc steps are more accurate than the ones with 1 000 steps. The low
lift values for that method seem to indicate that the approach moves rather slowly away
from the initial state sampled uniformly at random. This choice of the initial state is the
main di�erence in the experimental setup compared to the study by Li et al. (2016) where the
K-dpp chain was initialized with K-means++ sampling scheme.

Figure 4.2 depicts the runtime costs incurred by each of the sampling schemes. It is evident
that compared to other methods the cost of running the K-dpp chain with uniformly chosen
initial state for more than 1 000 steps results in a huge runtime cost without an appropriate
reward in the accuracy. From this �gure it is also evident that the approximate leverage score
and kernel K-means++ sampling are e�cient and run in approximately the same time apart
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Figure 4.3: The �gure shows the improvement in the lift of the approximation error measured in the Frobenius
norm that comes as a result of the increase in the rank of the approximation. The bandwidth parameter of the
Gaussian kernel is set to the inverse of the squared median pairwise distance between the samples.

from the dataset ujil (see also ct-slice, Section 4.6). This dataset has more than 500 attributes
and it is time consuming for the kernel K-means++ sampling scheme (our implementation
does not cache/pre-compute the kernel matrix). While on such large dimensional datasets
the kernel K-means++ sampling scheme is not as fast as the approximate leverage score
sampling, it is still the best performing landmark selection technique in terms of the accuracy.

In Figure 4.3 we summarize the results of the second experiment where we compare
the improvement in the approximation achieved by each of the methods as the rank of the
approximation is increased from 5 to 100. The results indicate that the kernel K-means++
sampling achieves the best increase in the lift of the approximation error. On most of the
datasets the approximate leverage score sampling is competitive. That method also performs
much better than the K-dpp Nyström approach initialized via uniform sampling.

As the landmark subspace captured by our approach depends on the gap between the
eigenvalues and that of the approximate leverage score sampling on the size of the sketch
matrix, we also evaluate the strategies in a setting where l landmarks are selected in order to
make a rank K < l approximation of the kernel matrix. Similar to the �rst experiment, we �x
the rank to K = 100 and in addition to the already discussed case with l = K we consider
cases with l = K lnn and l = K lnK . The detailed results of this experiment are provided in
Section 4.6 and indicate that there is barely any di�erence between the lift curves for the
kernel K-means++ sampling with l = K lnK and l = K lnn landmarks. In their empirical
study, Gittens and Mahoney (2016) have observed that for uniformly selected landmarks,
ε ∈ [0,1], and l ∈ O (K lnn), the average rank K approximation errors are within (1 + ε) of
the optimal rank K approximation errors. Thus, based on that and our empirical results it
seems su�cient to take K lnK landmarks for an accurate rank K approximation of the kernel
matrix. Moreover, the gain in the accuracy for our approach with l = K lnK landmarks
comes with only a slight increase in the time taken to select the landmarks. Across all the
datasets, the proposed sampling scheme is the best performing landmark selection technique.
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4.6 Appendix: Additional Figures

In this appendix, we provide the detailed results of our empirical study. The appendix is
organized such that the results are presented by datasets that are listed in ascending order
with respect to the number of instances and dimension. The empirical study provided below
compares the following approaches:

i) uniform sampling of landmarks,

ii) approximate leverage score sampling with uniform sketch matrix,

iii) approximate leverage score sampling with the sketch matrix selected by sampling
instances proportional to the diagonal entries in the kernel matrix,

iv) K-dpp Nyström with 1 000 and 10 000 mc steps and the initial state chosen by
sampling landmarks uniformly at random,

v) K-means clustering in the input space (Lloyd ⊕ K-means++),

vi) kernel K-means++ sampling,

vii) kernel K-means++ sampling with local restarts,

viii) kernel K-means++ sampling with local restarts and the Lloyd re�nements in the
instance space (Lloyd ⊕ kernel K-means++).
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4.6.1 Parkinsons

The number of instances in this dataset is n = 5 875 and the dimension is d = 21.

-16 -12 -8 -4 0
-0.5

0.6

1.7

2.8

3.9

log γ

lo
g
lif
t

(a) l = k logn

kernel K-means++ leverage scores (uniform sketch) K-dpp (1 000 mc steps) Lloyd ⊕ K-means++
kernel K-means++ (with restarts) leverage scores (K-diagonal sketch) K-dpp (10 000 mc steps) Lloyd ⊕ kernel K-means++

-16 -12 -8 -4 0
-0.5

0.6

1.7

2.8

3.9

log γ

(b) l = k logk

-16 -12 -8 -4 0
-0.5

0.6

1.7

2.8

3.9

log γ

(c) l = k

Figure 4.4: Parkinsons Dataset. The �gure shows the lift of the approximation error in the Frobenius
norm as the bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to K = 100.
The lift of a landmark selection strategy indicates how much better it is to approximate the kernel matrix with
landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 4.5: Parkinsons Dataset. The �gure shows the time it takes to select landmarks via di�erent schemes
together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian kernel varies
and the approximation rank is �xed to K = 100.
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4.6.2 Delta-Ailerons

The number of instances in this dataset is n = 7 129 and the dimension is d = 5.
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Figure 4.6: Delta-Ailerons Dataset. The �gure shows the lift of the approximation error in the Frobenius
norm as the bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to K = 100.
The lift of a landmark selection strategy indicates how much better it is to approximate the kernel matrix with
landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 4.7: Delta-Ailerons Dataset. The �gure shows the time it takes to select landmarks via di�erent
schemes together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian
kernel varies and the approximation rank is �xed to K = 100.



114 Nyström Method with Kernel K-means++ Landmarks

4.6.3 Kinematics

The number of instances in this dataset is n = 8 192 and the dimension is d = 8.
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Figure 4.8: Kinematics Dataset. The �gure shows the lift of the approximation error in the Frobenius
norm as the bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to K = 100.
The lift of a landmark selection strategy indicates how much better it is to approximate the kernel matrix with
landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 4.9: Kinematics Dataset. The �gure shows the time it takes to select landmarks via di�erent schemes
together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian kernel varies
and the approximation rank is �xed to K = 100.
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4.6.4 CPU-Activity

The number of instances in this dataset is n = 8 192 and the dimension is d = 21.
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Figure 4.10: CP U-Activity Dataset. The �gure shows the lift of the approximation error in the Frobenius
norm as the bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to K = 100.
The lift of a landmark selection strategy indicates how much better it is to approximate the kernel matrix with
landmarks obtained using this strategy compared to the uniformly sampled ones.

-7.6 -3.8 0. 3.8 7.6
-20.

-13.5

-7.

-0.5

6.

log time

lo
g
Fr
ob

en
iu
se

rr
or

(a) l = k logn

kernel K-means++ leverage scores (uniform sketch) K-dpp (1 000 mc steps) Lloyd ⊕ K-means++ uniform
kernel K-means++ (with restarts) leverage scores (K-diagonal sketch) K-dpp (10 000 mc steps) Lloyd ⊕ kernel K-means++

-7.6 -3.8 0. 3.8 7.6
-20.

-13.5

-7.

-0.5

6.

log time

(b) l = k logk

-7.6 -3.8 0. 3.8 7.6
-20.

-13.5

-7.

-0.5

6.

log time

(c) l = k

Figure 4.11: CP U-Activity Dataset. The �gure shows the time it takes to select landmarks via di�erent
schemes together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian
kernel varies and the approximation rank is �xed to K = 100.
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4.6.5 Bank

The number of instances in this dataset is n = 8 192 and the dimension is d = 32.
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Figure 4.12: Bank Dataset. The �gure shows the lift of the approximation error in the Frobenius norm as the
bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to K = 100. The lift of a
landmark selection strategy indicates how much better it is to approximate the kernel matrix with landmarks
obtained using this strategy compared to the uniformly sampled ones.
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Figure 4.13: Bank Dataset. The �gure shows the time it takes to select landmarks via di�erent schemes
together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian kernel varies
and the approximation rank is �xed to K = 100.
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4.6.6 Pumadyn

The number of instances in this dataset is n = 8 192 and the dimension is d = 32.
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Figure 4.14: Pumadyn Dataset. The �gure shows the lift of the approximation error in the Frobenius norm as
the bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to K = 100. The lift
of a landmark selection strategy indicates how much better it is to approximate the kernel matrix with landmarks
obtained using this strategy compared to the uniformly sampled ones.
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Figure 4.15: Pumadyn Dataset. The �gure shows the time it takes to select landmarks via di�erent schemes
together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian kernel varies
and the approximation rank is �xed to K = 100.
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4.6.7 Delta-Elevators

The number of instances in this dataset is n = 9 517 and the dimension is d = 6.
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Figure 4.16: Delta-Elevators Dataset. The �gure shows the lift of the approximation error in the
Frobenius norm as the bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to
K = 100. The lift of a landmark selection strategy indicates how much better it is to approximate the kernel
matrix with landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 4.17: Delta-Elevators Dataset. The �gure shows the time it takes to select landmarks via di�erent
schemes together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian
kernel varies and the approximation rank is �xed to K = 100.
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4.6.8 Ailerons

The number of instances in this dataset is n = 13 750 and the dimension is d = 40.
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Figure 4.18: Ailerons Dataset. The �gure shows the lift of the approximation error in the Frobenius norm as
the bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to K = 100. The lift
of a landmark selection strategy indicates how much better it is to approximate the kernel matrix with landmarks
obtained using this strategy compared to the uniformly sampled ones.
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Figure 4.19: Ailerons Dataset. The �gure shows the time it takes to select landmarks via di�erent schemes
together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian kernel varies
and the approximation rank is �xed to K = 100.
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4.6.9 Pole-Telecom

The number of instances in this dataset is n = 15 000 and the dimension is d = 26.
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Figure 4.20: Pole-Telecom Dataset. The �gure shows the lift of the approximation error in the Frobenius
norm as the bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to K = 100.
The lift of a landmark selection strategy indicates how much better it is to approximate the kernel matrix with
landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 4.21: Pole-Telecom Dataset. The �gure shows the time it takes to select landmarks via di�erent
schemes together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian
kernel varies and the approximation rank is �xed to K = 100.
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4.6.10 Elevators

The number of instances in this dataset is n = 16 599 and the dimension is d = 18.
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Figure 4.22: Elevators Dataset. The �gure shows the lift of the approximation error in the Frobenius
norm as the bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to K = 100.
The lift of a landmark selection strategy indicates how much better it is to approximate the kernel matrix with
landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 4.23: Elevators Dataset. The �gure shows the time it takes to select landmarks via di�erent schemes
together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian kernel varies
and the approximation rank is �xed to K = 100.
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4.6.11 Cal-Housing

The number of instances in this dataset is n = 20 640 and the dimension is d = 8.
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Figure 4.24: Cal-Housing Dataset. The �gure shows the lift of the approximation error in the Frobenius
norm as the bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to K = 100.
The lift of a landmark selection strategy indicates how much better it is to approximate the kernel matrix with
landmarks obtained using this strategy compared to the uniformly sampled ones.
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Figure 4.25: Cal-Housing Dataset. The �gure shows the time it takes to select landmarks via di�erent
schemes together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian
kernel varies and the approximation rank is �xed to K = 100.
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4.6.12 UJIL

The number of instances in this dataset is n = 21 048 and the dimension is d = 527.
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Figure 4.26: UJIL Dataset. The �gure shows the lift of the approximation error in the Frobenius norm as the
bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to K = 100. The lift of a
landmark selection strategy indicates how much better it is to approximate the kernel matrix with landmarks
obtained using this strategy compared to the uniformly sampled ones.
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Figure 4.27: UJIL Dataset. The �gure shows the time it takes to select landmarks via di�erent schemes
together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian kernel varies
and the approximation rank is �xed to K = 100.
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4.6.13 CT-Slice

The number of instances in this dataset is n = 53 500 and the dimension is d = 380. Due
to the memory requirements imposed onto our parallel implementation this dataset was
sub-sampled to n = 25 000 instances.
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Figure 4.28: CT-Slice Dataset. The �gure shows the lift of the approximation error in the Frobenius norm as
the bandwidth parameter of the Gaussian kernel varies and the approximation rank is �xed to K = 100. The lift
of a landmark selection strategy indicates how much better it is to approximate the kernel matrix with landmarks
obtained using this strategy compared to the uniformly sampled ones.
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Figure 4.29: CT-Slice Dataset. The �gure shows the time it takes to select landmarks via di�erent schemes
together with the corresponding error in the Frobenius norm while the bandwidth of the Gaussian kernel varies
and the approximation rank is �xed to K = 100.
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Active Search for Computer-Aided Cyclic Discovery Processes

We consider the class of cyclic discovery processes in which the aim is to discover novel
representatives of a �xed but unknown target concept de�ned over a structured space.
Examples where such discovery processes are aided by computer programs include the
design of aircrafts (Woltosz, 2012), pharmaceutical drugs (Schneider and Fechner, 2005), and
cooking recipes (Varshney et al., 2013). Typically, there are four phases characterizing such
a process (Andersson et al., 2009): design, make, test, and analyze. While in aircraft design,
for instance, algorithmic support is mainly by means of simulated make and test phases, in
other discovery processes from this class the underlying systems, such as the biochemistry of
human body, are often too complex and not yet well enough understood to merit su�ciently
precise simulation. In these cases, the make and test phases are implemented in a lab (in vitro
or in vivo) and algorithmic support is mainly focused on the design and analysis phases.

Taking drug discovery as our main motivating example, several problems (Scannell et al.,
2012; Schneider and Schneider, 2016) have been identi�ed as the cause for the huge cost
associated with attrition (i.e., drug candidates failing later stages of the development process)
and increased use of algorithmic support has been proposed as a remedy (Woltosz, 2012).
In particular, (i) the chemspace (i.e., the space of potentially synthesizable compounds) is
huge—estimates are often larger than 1060; (ii) there are many activity cli�s (i.e., small
changes in structure can have large e�ects on pharmaceutical activity), and (iii) existing
compound libraries focus on a very restricted area of the chemspace. De novo design ap-
proaches (Schneider and Fechner, 2005) have a potential to overcome these problems by
�nding desired molecular structures from an intensionally speci�ed chemical space of interest.
An intensional description speci�es a set of structures with necessary and su�cient condi-
tions for any structure to be in that set. This is in contrast to an extensional de�nition which
simply lists all elements of the set. The intensional speci�cation is often much smaller than
the extensional one. The di�erence in the size of speci�cation is important when considering
the runtime and space complexities of algorithms. In particular, extensional de�nitions of
signi�cant parts of the chemspace cannot be stored on disk nor enumerated in feasible time.
Sampling from intensionally de�ned parts, on the other hand, is by no means impossible. In
drug discovery, a chemical space of interest is speci�ed only implicitly by the binding a�nity
to a target protein site or an in silico proxy of it. More speci�cally, a molecule is considered
interesting if an expensive to evaluate black-box function (e.g., binding a�nity) assigns a
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design
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inherently domain speci�c

Figure 5.1: Schematic of a hypothesis-driven cyclic discovery process.

su�ciently high value to it. Faced with such an implicit speci�cation, medicinal chemists
hope/expect to devise an intensional description which either covers the whole chemical
space of interest or a part of it. Access to any such speci�cation can be provided by a proposal
generator, which randomly samples compounds from the intensional speci�cation.

In the past 20 years, several Monte Carlo search heuristics have been developed for de
novo design of drug-like molecules (Schneider and Fechner, 2005). A common property of
these heuristics is the generation of molecular structures using Markov chains. Several search
heuristics incorporate an additional scoring step in which the generated structures are ac-
cepted/rejected with a probability based on a hand-crafted energy-based scoring function (e.g.,
see Nishibata and Itai, 1991). The whole process can be seen as Metropolis–Hastings sampling
from an expert-designed distribution. Throughout the constructive process this designed
distribution is either kept static or manually updated as the process evolves. Motivated
by these hand-crafted search heuristics, we propose a data-driven approach that adapts its
hypothesis on the target class of structures as it observes the results of new experiments.
Figure 5.1 illustrates a hypothesis-driven discovery cycle characteristic to our approach. To
deal with the intensionally speci�ed search space, we assume that a proposal generator can
be constructed which can be speci�c to a representation of structures (e.g., a space of graphs,
strings, sparse vectors etc.) and has support on (all) parts of the space that contain targets.
Similar to the described Monte Carlo search heuristics, we model this proposal generator
with a Markov chain given by its transition kernel. As the target structures are typically rare
and expensive to evaluate, the cost per discovered structure would be prohibitively high for
plain Monte Carlo search performed by evaluating each proposed structure. In particular,
proposal generators are typically designed using a small sample of active compounds and
are not very good at approximating the binding a�nity to a target protein site. Moreover,
these samplers are kept static throughout the constructive process and do not exploit the
information from the evaluation of the previously designed compounds. To overcome this,
our approach relies on a max-entropy conditional model that acts as a probabilistic surrogate
for the evaluations in the test phase. This conditional model is updated in each iteration after
the evaluation of a selected structure and by that the distribution of the Metropolis–Hastings
sampler changes in the following design step. As a result of this, we cannot assume that the
sampled structures are drawn independently from identical distribution. A formal description
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of the problem setting and a pseudo-code description of our approach are provided in Sec-
tion 5.1. Following this, we review conditional exponential family models and adapt a result
by Altun and Smola (2006) to demonstrate that the maximum a posteriori estimator from this
family is a conditional density function which maximizes the conditional entropy subject
to constraints on the �rst moments of the sample (Section 5.2). In Section 5.3, we provide
a review of Markov chains and the Metropolis–Hastings algorithm which is used in the
design phase of our approach to draw samples from the posterior distribution of structures
conditioned on them having the target property. The theoretical properties of the proposed
algorithm are analyzed in Section 5.4 where we show the consistency of the approach and
bound the mixing time of the Metropolis–Hastings chain with an independent proposal
generator. Having presented and analyzed our approach, we describe means to adapt it to
di�erent cyclic discovery processes (Section 5.5). In particular, we devise adaptations for a
focused drug design problem and discovery of novel cocktails with desired �avors. To study
the empirical performance in silico, i.e., without conducting lab experiments, we also design
synthetic testbeds that share many characteristics with drug design. In particular, instead of
the chemspace, we consider the space of all graphs of a given size and aim at constructing
graphs with rare and structurally non-smooth properties such as having a Hamiltonian cycle
or being connected and planar. We then compare our approach to relevant active learning
baselines (described in Section 5.6.1) on these synthetic testbeds and the problem of cocktail
discovery. In these experiments, the approach achieves a large structural variety of designed
targets compared to the baselines (Section 5.6.2). Following this comparison, we apply a
variant of our approach to a focused drug design problem in which as an in silico proxy of the
binding a�nity we use the molecular docking score to an experimentally determined αvβ6
protein structure (Section 5.6.3). The approach again achieves a large structural variety of
designed molecular structures for which the docking score is better than the desired threshold.
Some novel molecules, suggested to be active by the surrogate model, provoke a signi�cant
interest from the perspective of medicinal chemistry and warrant prioritization for synthesis.
Moreover, the approach discovered 19 out of the 24 active compounds which are known to
be active from previous biological assays (e.g., see Adams et al., 2014). The chapter concludes
with a discussion (Section 5.7) where we contrast our method to related approaches.

5.1 Problem Setting and Algorithm

Active learning is broadly de�ned as the learning setting in which a learning algorithm is
allowed to select instances from an instance space and ask for the properties/labels of any of
these objects (Cohn et al., 1994; Settles, 2012). The goal of active learning is to generate an
accurate hypothesis with as few such queries as possible. This learning setting is di�erent
from the standard passive model of supervised learning where the algorithm only receives
a set of labeled instances. The typical success measure for active learning is the quality
of the found hypotheses. In drug design and several other applications of active learning
the goal is, however, to discover objects with desired properties and the algorithms should,
therefore, be rewarded for the quality of the discovered objects, rather than the quality of the
formed hypotheses. Several extensions of active learning have been developed to address this
disparity, active search and active optimization being the most relevant to our work. Active
search (Garnett et al., 2012) is a variant of active learning with binary feedback where the
goal is to discover as many objects as possible from an unknown property class that can be
expensive to evaluate, given a (small) budget of such evaluations. Active optimization (e.g.,
see Shahriari et al., 2016) focuses on �nding a single high-quality item from an instance
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space rather than a (diverse) set of objects exhibiting a desired property. Active optimization
has been investigated extensively in the context of learning with real-valued and binary
feedback (Shahriari et al., 2016; Tesch et al., 2013). The real-valued case (Shahriari et al., 2016)
can often be cast as global optimization of a black-box function that is expensive to evaluate.
The binary case (Tesch et al., 2013) is a variant of active classi�cation where the goal is to
discover an item with the highest conditional probability of being a target. Thus, while active
search does not discriminate between targets with respect to the corresponding conditional
probabilities and focuses on discovering such objects from the whole search space, active
optimization with binary feedback focuses on potentially small regions of the design space
consisting of objects with high conditional probability of being a target.

We investigate a variant of active search in structured spaces where the goal is to discover
as many diverse targets as possible as early as possible, given a �xed budget of potentially
expensive black-box property evaluations. In the applications we consider, the search space
is speci�ed only intensionally and its cardinality is (at least) exponential in the size of its
combinatorial objects (e.g., number of edges in a graph). Thus, the extension of the search
space can neither be completely stored on disk nor enumerated in feasible time. The structures
we aim to discover can typically be characterized by a target property that is a priori not
known for any structure and is expensive to evaluate on each structure. The evaluation
process can be noisy and it is simulated with an oracle. The structures exhibiting the target
property are typically rare and not concentrated in a small region of the search space. We
are thus interested in �nding a diverse set of candidates that spans the whole space and is
likely to exhibit the target property. Typically, the e�ectiveness of an active search approach
is evaluated using its correct-construction curve and the cumulative number of discovered
targets as a function of budget expended (Garnett et al., 2012). More formally, for an instance
spaceX , an evaluation oracleO, a target property y∗ ∈ Y , and a budget of B oracle evaluations
the correct-construction curve of a query strategy q : X 7→ {x1, . . . ,xB} ⊂ X is given by

C (q,y∗) =
{
(i, ci) | 1 ≤ i ≤ B ∧ ci =

∣∣∣∣{xj | 1 ≤ j ≤ i ∧ y∗ = O (
xj

)}∣∣∣∣} .
While this de�nition of e�ectiveness captures the number of successful discoveries made
by an active search algorithm within a given budget, it does not re�ect the diversity of the
discovered items exhibiting a target property. For problems in which the goal is to discover a
diverse set of targets, the de�nition of correct-construction curve can be modi�ed to account
for the dispersion of discovered targets. Assuming that oracle queries are not too expensive
(e.g., in synthetic testbeds), it is possible to �rst extract a set of targets T from a sample of
instances from the proposal generator. Then, we can circumscribe a ball of radius κ around
each of the extracted targets and de�ne the diversity based correct-construction curve as

C (q,y∗,T , r) =
{
(i, ci) | 1 ≤ i ≤ B ∧ ci =

∣∣∣∣{t ∈ T | 1 ≤ j ≤ i ∧ ∥∥∥xj − t∥∥∥ < κ}∣∣∣∣} .
In preliminary experiments, the average pairwise distance between targets in the observed
sample from the proposal generator emerged as an informative choice of the radius κ. In
particular, for such a radius the rate of increase in the number of hits t ∈ T such that∥∥∥xj − t∥∥∥ < κ proved to be a good indicator of sample dispersion (see Section 5.6).

Algorithm 5.1 gives a pseudo-code description of our approach. To model the evaluation
of the target property, our algorithm takes as input an oracle which outputs a label for a
given structure. To re�ect the expensiveness of these evaluations, the oracle can be accessed
a number of times that is limited by a budget. Other parameters of the algorithm are the
proposal generator, target property, and parameters specifying a set of models from the
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Algorithm 5.1 de-novo-design
Input: target property y∗ ∈ Y , conditional exponential family model p (y | x,θ) with a regularization

parameter λ > 0, proposal generator G, evaluation oracle O, and budget B ∈ N
Output: list of structures x1,x2, . . . ,xB ∈ X B

1: θ1← 0
2: for t = 1,2, . . . ,B do
3: xt ∼ G
4: repeat
5: x ∼ G and u ∼ U [0,1]
6: if u < p(y∗ | x, θt)

p(y∗ | xt , θt) then xt← x end if
7: until chain mixed
8: yt←O(xt) and wt← 1/p(y∗ |xt ,θt)
9: θt+1← argminθ −1

t

∑t
i=1wi lnp (yi | xi ,θ) +λ‖θ‖2H

10: end for

conditional exponential family (reviewed in Section 5.2). In Section 5.2.2, we show that for
this choice of a conditional model the probabilistic surrogate for the oracle evaluations is
a max-entropy model subject to constraints on the �rst moments of the sample. Denote
the space of candidate structures X , the space of properties Y , and a Hilbert spaceH with
inner product 〈·, ·〉. The parameter set Θ ⊆ H is usually a compact subset of the Hilbert
space and together with the su�cient statistics φ : X ×Y →H of y | x speci�es the family of
conditional exponential models (Altun et al., 2004)

p (y | x,θ) = exp
(〈
φ (x,y),θ

〉−A (θ | x)
)
, (5.1)

where A (θ | x) = ln
∑
y∈Y exp(

〈
φ (x,y),θ

〉
) is the log-partition function and θ ∈ Θ. In

practice, we do not directly specify the parameter set Θ but instead simply regularize the im-
portance weighted negative log-likelihood of the sample by adding the term ‖θ‖2H. To account
for this, the algorithm takes as input a hyperparameter which controls the regularization.

The constructive process is initialized by setting the parameter vector of the conditional
exponential family to zero (line 1). This implies that the �rst sample is unbiased and unin-
formed. Then, the algorithm starts iterating until we deplete the oracle budget B (line 2). In
the initial steps of each iteration (lines 3–7), the Metropolis–Hastings algorithm (e.g., see
Section 5.3.2 or Metropolis et al., 1953) is used to sample from the posterior

p (x | y∗,θt) =
p (y∗ | x,θt)ρ (x)

p (y∗)
,

where p (y∗) is the marginal probability of y∗ ∈ Y and ρ (x) is the stationary distribution of
the proposal generator G de�ned with a transition kernel g satisfying the detailed balance
condition (e.g., see Section 5.3 or Andrieu et al., 2003). Thus, to obtain samples from the
posterior p (x | y∗,θt), the Metropolis–Hastings acceptance criterion is

p (y∗ | x′ ,θt)
p (y∗ | xt ,θt)

· ρ (x
′) · g (x′→ xt)

ρ (xt) · g (xt→ x′)
=
p (y∗ | x′ ,θt)
p (y∗ | xt ,θt)

, (5.2)

where x′ is the proposed candidate, xt is the last accepted state, θt is the parameter vector of
the conditional exponential family model, and g (xt→ x′) denotes the probability that the
proposal generator transitions from state xt to state x′ . After the Metropolis–Hastings chain
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has mixed (line 7), the algorithm outputs its last accepted state xt as a candidate structure and
presents it to an evaluation oracle (line 8). The oracle evaluates it providing feedback yt to the
algorithm. The labeled pair (xt , yt) is then added to the training sample and an importance
weight is assigned to it (line 8). The importance weighting is needed for the consistency of
the algorithm because the samples are neither independent nor identically distributed. Finally,
the conditional exponential family model is updated by optimizing the weighted negative-log
likelihood of the sample (line 9). This model is then used by the algorithm to sample a
candidate structure in the next iteration. The optimization problem in line 9 is convex in
θ and the representer theorem (Wahba, 1990) guarantees that it is possible to express the
solution θt+1 as a linear combination of su�cient statistics, i.e., θt+1 =

∑t
i=1

∑
c∈Y αicφ (xi , c)

for some αic ∈ R. Hence, a globally optimal solution can be found and a set of conditional
exponential family models can be speci�ed using only a joint input–output kernel and a
regularization parameter.

5.2 Conditional Exponential Family Models

In this section, we review conditional exponential family models that act as a probabilistic
surrogate for the oracle evaluations in the active search approach presented in Section 5.1.
The review follows closely the expositions by Altun et al. (2004) and Altun and Smola (2007;
2006). The conditional exponential family is a family of parameterized conditional density
functions which de�nes a hypothesis class for learning a probabilistic conditional dependence
between instances from an instance space X and properties from a property space Y using a
set of examples z = {(xi , yi)}ni=1 from the space X ×Y . We assume that there is an unknown
Borel probability measure ρ de�ned on the space X ×Y and that the observed examples
are independent samples from ρ. For such a sample of examples we want to estimate the
conditional density function of y | x such that, for all (x,y) ∈ z, the expectation of the features
of y | x with respect to the estimated density closely matches an empirical expectation of
the features with respect to samples from ρ. As outlined by Altun and Smola (2006), this
estimation problem can be posed as a linearly constrained max-entropy problem and an
optimal solution to its dual can be represented as a conditional exponential family model.
Consequently, conditional exponential family models are also called conditional max-entropy
models. In the remainder of the section, we formally introduce the conditional exponential
family of models (Section 5.2.1) and relate the maximum likelihood and maximum a posteriori
estimation with these models to the maximization of conditional entropy subject to constraints
on the �rst moments of the sample (Section 5.2.2). This result is a minor adaptation of the
work by Altun and Smola (2006). The section concludes with an overview relating conditional
exponential family models to Gaussian processes (Section 5.2.3).

5.2.1 Basic Notions

LetH be a Hilbert space with inner product 〈·, ·〉 and φ : X ×Y →H a su�cient statistics (i.e.,
feature vector) of y | x. A parameter set Θ ⊆H and the su�cient statistics of y | x specify a
conditional exponential family of models as (Altun et al., 2004)

p (y | x,θ) = exp
(〈
φ (x,y),θ

〉−A (θ | x)
)
, (5.3)

where A (θ | x) = ln
∫
Y exp(

〈
φ (x,y),θ

〉
)dυ is the log-partition function, υ is a base measure

on Y (the counting measure for discrete Y ), θ ∈Θ is a parameter vector, and (x,y) ∈ X ×Y
is an example. Beside being the normalization constant of the conditional exponential family
model, the log-partition function A (θ | x) also gives the moments of that density function.
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Proposition 5.1. (Jaynes, 1957; Altun et al., 2004) The log-partition function, A (θ | x), is a
convex and in�nitely continuously di�erentiable function. Moreover, the derivatives of A satisfy

∇θA (θ | x) = Ep(y|x,θ) [φ (x,y) | x] ∧ ∇2θA (θ | x) = Varp(y|x,θ) [φ (x,y) | x] . (5.4)

For a prior distribution p (θ) and a conditional exponential family model as the likelihood
function, the posterior distribution of the parameter vector θ given an independent and
identically distributed sample {(xi , yi)}ni=1 satis�es

p
(
θ | {(xi , yi)}ni=1

)
∝

n∏
i=1

p (yi | xi ,θ)p (θ) .

The maximum a posteriori estimator of the parameter θ is then given as

θ∗ = argmax
θ∈Θ

1
n

n∑
i=1

lnp (yi | xi ,θ) + lnp (θ) .

Having formally introduced conditional exponential family of models, we now proceed
to relate the maximum likelihood and maximum a posteriori estimation using these models
to the estimation of conditional models via maximization of conditional entropy subject to a
linear constraint on the �rst moment of the sample.

5.2.2 Relation to Conditional Max-Entropy Models

A max-entropy model is an element of a hypothesis class of probability density functions
which satis�es a linear constraint on the �rst moment of the sample with the maximal
entropy. The aim of such an estimation procedure is to objectively encode the information
from the sample into the model. Jaynes (1957) showed that exponential family models are
max-entropy models subject to a linear constraint on the �rst moment of the sample. This
result was extended to conditional exponential family models and generalized to support
di�erent ‚divergence measures’ (Altun and Smola, 2006). We present here an instance of the
latter work adapted to the maximization of conditional entropy subject to a constrain on the
�rst moment of the sample. For that, let P denote the set of all conditional distributions that
have square integrable densities with respect to some base measure µ de�ned on X ×Y and
support on the entire domain of a su�cient statistics φ (x,y). More formally, P ⊂ L2µ (X ×Y )
where L2µ (X ×Y ) is the Hilbert space of square integrable functions de�ned on X ×Y . Thus,
the inner product between f ,g ∈ P can be de�ned as 〈f ,g〉L2µ =

∫
X×Y f (y | x)g (y | x)dµ. In

the remainder of the chapter, we will use supp(·) to denote the support of a probability
distribution and µX to denote the marginal distribution of a measure µ de�ned on X ×Y .

De�nition 5.1. The conditional entropy of a conditional density function p ∈ P with respect
to a marginal probability density function q de�ned on supp(µX ) ⊆ X is de�ned as

H (p | q) = −
∫
X
q (x)

∫
Y
p (y | x) lnp (y | x)dµ . (5.5)

Denote the empirical expectation of a feature vector φ (x,y) with respect to an inde-
pendent sample z = {(xi , yi)}ni=1 from the probability distribution ρ by φ = 1

n

∑n
i=1φ (xi , yi).
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Then, a max-entropy distribution from P satisfying a linear constraint on the �rst moment
of the sample is a solution of the following optimization problem

argmax
p∈P

H (p | ρX )

s.t.
∥∥∥EρXEp [φ (x,y) | x]−φ

∥∥∥H ≤ ε , (5.6)

where ε ≥ 0 is a hyperparameter chosen such that there exists a non-empty subset of P
satisfying the linear constraint. The hyperparameter also controls the quality of the matching
between the �rst moment of the sample and that of the conditional probability density
function p. As the following proposition will show, if the optimal solution to this problem
exists then it can be represented as a conditional exponential family model. If the solution
exists for ε = 0, then it is su�cient to �nd the maximum likelihood estimator from the
conditional exponential family. On the other hand, if the optimal solution exists for ε > 0
then it can be found by performing the maximum a posteriori estimation with a zero-mean
Laplace prior on the parameter vector of the model. Before formally stating these results, we
review the required terminology from convex analysis.

De�nition 5.2. Let V be a Hilbert space. The convex conjugate of a function f : V → R is
f ∗ : V → R, where f ∗ is de�ned as

f ∗ (ξ) = sup
v∈V
〈ξ,v〉V − f (v) .

The e�ective domain of f is the set dom(f ) = {v ∈ V | f (v) <∞}. The epigraph of f
is the set of points above its graph, epi(f ) = {(v,r) ∈ V ×R | f (v) ≤ r}. If the epigraph of
a function is a convex/closed set (with respect to the Hilbert topology on V ×R) then the
function is called convex/closed. A convex function f is called proper if there exists v ∈ V such
that f (v) <∞. A proper convex function is closed if and only if it is lower-semicontinuous,
i.e., liminfv′→v f (v′) ≥ f (v). The algebraic interior of a set A ⊆ V is de�ned as

core(A) = {a ∈ A | (∀v ∈ V ) (∃tv > 0) : ∀t ∈ [0, tv] a+ tv ∈ A} .

If A is a convex set with non-empty interior then core(A) = int(A), where int (A) is the set
of all interior points of A. Having reviewed the relevant terminology from convex analysis,
we now state a variant of Fenchel’s duality theorem that relates a convex minimization
problem to the concave maximization using conjugates. Fenchel’s theorem will then be used
to relate the optimization problem in Eq. (5.6) to the maximum a posteriori estimation with a
conditional exponential family model as the likelihood function. While the following variant
of the theorem is for clarity reasons restricted to Hilbert spaces, the general result holds for
Banach spaces (e.g., see Rockafellar, 1966).

Theorem 5.2. (Fenchel’s Duality Theorem, Rockafellar, 1966; Altun and Smola, 2006) Let
L : V1 → V2 be a bounded linear operator between Hilbert spaces V1 and V2. Suppose that
f : V1→ R and g : V2→ R are proper convex functions. Denote with

m = inf
v∈V1

f (v) + g (Lv) ∧ M = sup
ξ∈V2
−f ∗ (L∗ξ)− g∗ (−ξ) .

Assume that f , g , and L satisfy one of the following two conditions:

i) 0 ∈ core(dom(g)−L dom(f )) and both, f and g , are lower-semicontinuous,
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ii) L dom(f )∩ cont(g) , ∅,
where cont(g) denotes the subset of the domain where g is continuous. Then, it holds that
m =M , where the dual solutionM is attainable if it is �nite.

Having reviewed Fenchel’s duality theorem, we are now ready to formally state a result
relating the max-entropy estimation subject to empirical constrains on the �rst moments of
the sample to the maximum a posteriori estimation using a conditional exponential family
model as the likelihood function. The following proposition is a minor adaptation of a result
by Altun and Smola (2006) that shows the equivalence of the two estimation problems.

Theorem 5.3. Suppose there exists a constant r > 0 such that
∥∥∥φ (x,y)

∥∥∥H < r for all (x,y) ∈X ×Y and let ε ≥ 0 be a hyperparameter such that there exists an optimal solution in the interior
of P for the optimization problem in Eq. (5.6). Then, we have{

min
p∈P
−H

(
p | ρemp

)
subject to

∥∥∥∥Eρemp
Ep [φ (x,y) | x]−φ

∥∥∥∥H ≤ ε} ={
max
θ∈H

1
n

n∑
i=1

〈
φ (xi , yi),θ

〉− ln∫
Y
exp(

〈
φ (xi , y),θ

〉
)dν − ε ‖θ‖H

} (5.7)

where ρemp = 1
n

∑n
i=1 Ix=xi and Ix=xi is one when x = xi and zero otherwise.

Proof. The proof follows along the lines of the work by Altun and Smola (2006) with the main
di�erence being the use of conditional entropy instead of the Kullback–Leibler divergence.
Beside this, the theorem de�nes the �rst moment constraints slightly di�erently compared
to Altun and Smola (2006), where the expectation is not taken over a density function on X .

Denote with B =
{
h ∈ H | ‖h‖H ≤ 1

}
the unit ball centered at the origin of H and let

Lφ : L2µ (X ×Y ) → H with Lφ (p) = EρXEp [φ (x,y) | x] be an operator mapping P to the
Hilbert spaceH. This operator is linear because the expectation operator is linear and it is
bounded because

∥∥∥φ (x,y)
∥∥∥ < r for all (x,y) ∈ X ×Y . For all ε ≥ 0 let

φ+ εB =
{
h ∈ H | h = φ+ εb ∧ ‖b‖H ≤ 1

}
.

Then, we have that{
Lφ (p) ∈ H |

∥∥∥Lφ (p)−φ∥∥∥H ≤ ε ∧ p ∈ P } = {
Lφ (p) ∈ H | Lφ (p) ∈ φ+ εB ∧ p ∈ P

}
.

Now, in order to shift the hard constraint from the max-entropy optimization problem
(see Eq. 5.6) into the objective let us introduce a characteristic function g : H→ R such that

g (h) =

0 if h ∈ φ+ εB
∞ otherwise .

On the one hand, functions f = −H (· | ρX ) and g are proper closed convex functions (e.g., see
Boyd and Vandenberghe, 2004; Dudík and Schapire, 2006) and, thus, lower-semicontinuous.
On the other hand, we have that dom(g) = φ + εB, where ε ≥ 0 is chosen so that 0 ∈
core

(
dom(g)−Lφ (dom(f ))

)
. Hence, the �rst condition from Theorem 5.2 is satis�ed and

we have that the primal and dual solutions are identical.
To complete the proof, we need to derive the convex conjugates for functions f and g .

The convex conjugate of function g is given by

g∗ (θ) = sup
ĥ

{〈
θ, ĥ

〉
H | ĥ ∈ φ+ εB

}
=

〈
θ,φ

〉
H + ε sup

‖h‖H≤1
〈h,θ〉H =

〈
θ,φ

〉
H + ε ‖θ‖H .
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Now, observe that for all h ∈ H and all p ∈ L2µ (X ×Y ) we have that

〈
h,Lφp

〉
H =

∫
X
ρ (x)

∫
Y
〈
h,φ (x,y)

〉
Hp (y | x)dµ =

〈
L∗φh,p

〉
L2µ ,

where L∗φh = ρ (x)
〈
h,φ (x,y)

〉
H and L∗φ is the adjoint of the linear operator Lφ. Denote with

f̂ (θ) = f
(
L∗φθ

)
, where θ ∈ H and L∗φθ ∈ P . Then, the convex conjugate of f̂ is de�ned as

f̂ ∗ (θ) = sup
p∈P

〈
θ,Lφp

〉
H −

∫
X
ρ (x)

∫
Y
p (y | x) lnp (y | x)dµ .

To solve this linearly constrained optimization problem over the Hilbert space L2µ (X ×Y )
and compute f̂ ∗ in closed form, we �rst form the Lagrange function

L (p,λ) = −
〈
θ,Lφp

〉
H +

∫
X
ρ (x)

∫
Y
p (y | x) lnp (y | x)dµ+

∫
X
λ (x)

∫
Y
(p (y | x)− 1)dµ ,

where λ (x) ≥ 0 for all x ∈ supp(µX ). As the optimal solution to the primal problem exists,
we can compute the functional gradient of this Lagrange functional and �nd its optimal
solution by setting the gradient to zero. Before we proceed with this, let us introduce the
notion of functional gradient in Hilbert spaces.

For a functional F de�ned on a Hilbert space and an element p from that space, the
functional gradient ∇F (p) is the principal linear part of a change in F after it is perturbed in
the direction of q, i.e.,

F (p+ ηq) = F (p) + η 〈∇F,q〉+
(
η2

)
,

where η→ 0 (e.g., see Secton 3.2 in Gelfand and Fomin, 1963). Applying the de�nition of
functional gradient to L we obtain that

∇pL = −ρ (x)
(〈
θ,φ (x,y)

〉
H − lnp (y | x)− 1

)
+λ (x) .

From here it then follows that

∇pL = 0 =⇒ p∗ (y | x) =
exp

(〈
θ,φ (x,y)

〉
H
)

exp(λ(x)/ρ(x)+1)
.

Now, taking λ (x) = ρ (x)
(
ln

∫
Y exp

(〈
θ,φ (x,y′)

〉
H
)
dν − 1

)
the constraint p∗ ∈ P is satis�ed

and the convex conjugate of f̂ is given by

f̂ ∗ (θ) = EρX [A (θ | x)] .

Plugging the two convex conjugates into the dual problem from Theorem 5.2 and setting
ρ (x) = ρemp (x) we obtain

M =max
θ∈H

1
n

n∑
i=1

〈
φ (xi , yi),θ

〉
H −A (θ | xi)− ε ‖θ‖H .
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Theorem 5.3 guarantees that conditional exponential family models are objectively en-
coding the information from the sample into the model. In fact, any other choice of the
conditional model makes additional assumptions about the samples that reduce the entropy
and introduces a potentially undesirable bias into the process. As already pointed out, the
theorem shows that if a solution exists for ε = 0 then �tting of a max-entropy model is
equivalent to the maximum likelihood estimation using conditional exponential family of
models. Moreover, if a solution exists for ε > 0 then the max-entropy estimation is equivalent
to the maximum a posteriori estimation with a conditional exponential family model as the
likelihood function and the Laplace prior on the parameter vector. As the following corollary
shows, the latter is equivalent to the maximum a posteriori estimation with the zero-mean
Gaussian prior on the parameter vector.

Corollary 5.4. (Altun and Smola, 2007) Let ε > 0 be a hyperparameter value such that there
exists a solution to the problem in Eq. (5.6). Then, there exists λ > 0 such that

argmax
θ∈H

1
n

n∑
i=1

〈
φ (xi , yi),θ

〉
H −A (θ | xi)− ε ‖θ‖H

= argmax
θ∈H

1
n

n∑
i=1

〈
φ (xi , yi),θ

〉
H −A (θ | xi)−λ‖θ‖2H .

Corollary 5.4 allows us to relate conditional exponential family models and max-entropy
estimation to Gaussian processes (Mackay, 1997; Rasmussen and Williams, 2005). The follow-
ing section reviews this connection �rst observed by Altun et al. (2004).

5.2.3 Relation to Gaussian Processes

This section reviews the relationship between estimation using Gaussian processes and con-
ditional exponential family models on classi�cation and heteroscedastic regression tasks. We
start with an overview of Gaussian processes and then provide su�cient statistics specifying a
conditional exponential family of models such that the posterior distribution of the parameter
vector given examples is identical for these two estimators. The exposition in this section
follows the materials by Altun and Smola (2007) and Rasmussen and Williams (2005).

Gaussian processes are non-parametric Bayesian methods initially developed for regres-
sion and later adapted for classi�cation tasks. This class of approaches works by taking a
Gaussian prior over a function space and combining that prior with a likelihood function
to de�ne a posterior distribution over the space of functions. The inference of the posterior
distribution is tractable when the likelihood function is Gaussian. While the latter is true for
standard regression tasks with independent and identically distributed Gaussian noise, it does
not hold for classi�cation tasks where it is often assumed that the likelihood of observing a
label y ∈ Y = {1,−1} given an instance x ∈ X follows the logistic distribution given by

π (y = 1 | x) = 1
1+ exp(−〈θ,ψ (x)

〉
)
,

with θ denoting a parameter vector and ψ a map from X to a Hilbert space. The latter
likelihood function can be expressed using a conditional exponential family model with the
su�cient statistics given by φ (x,y) = yψ(x)

2 .
A Gaussian process can be speci�ed with its mean and covariance function. More

speci�cally, denoting a mean function with m (x) and covariance function with k (x,x′), the
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Gaussian process can be written as

f (x) ∼ GP (m (x) , k (x,x′)) .

Let Z = X ×Y be a space of examples and let φ : Z →H be a mapping from that space to the
reproducing kernel Hilbert space given by a positive de�nite kernel k (z,z′) =

〈
φ (z),φ (z′)

〉
H.

Denote with f (z) =
〈
θ,φ (z)

〉
H, where z ∈ Z and θ ∼N (0,Σ). Then,

Eθ [f (z)] = 0 ∧ Eθ
[
f (z)f (z′)

]
= φ (z)>Σφ (z′) = k̂ (z,z′) .

Thus, we have that f (z) ∼ GP
(
0, k̂ (z,z′)

)
for z,z′ ∈ Z. Denoting the identity matrix with I

and letting Σ = σ2I we obtain f (z) ∼ GP
(
0,σ2k (z,z′)

)
. Taking the latter GP -prior over the

dual spaceH∗ in combination with the su�cient statistics φ (x,y) = yψ(x)/2 and a conditional
exponential family model as the likelihood function, the posterior distribution of the GP -
classi�er satis�es

p (f | z) ∝ p (y | f)p (f) , (5.8)

where z = {zi}ni=1 with zi = (xi , yi) denoting an independent sample from ρ, y = {yi}ni=1, and
p (f) ∼ N

(
0,σ2K

)
with K denoting the kernel matrix given by the tuple kernel function

k (z,z′) for z,z′ ∈ {(xi , y) | i = 1, . . . ,n∧ y = ±1}. The mode of the posterior distribution (5.8)
is the maximum a posteriori estimator and for this particular model the estimator is given by

θ∗ = argmin
θ∈H

−1
n

n∑
i=1

〈
φ (xi , yi),θ

〉
+ ln

∑
y∈Y

exp(
〈
φ (xi , y),θ

〉
) +

σ2

2
θ>Kθ . (5.9)

Now, from Corollary 5.4 it follows that the maximum a posteriori estimator for the conditional
exponential family model with su�cient statistics φ (x,y) = yψ(x)/2 and the Gaussian prior on
the parameter vector is equivalent to the maximum a posteriori estimator of the GP -classi�er
with the logistic likelihood function. While the two classi�ers, the conditional exponential
family model and the GP -classier, are related they are not equivalent. In particular, the two
models di�er in the way they predict a label for a given instance. More speci�cally, the
conditional exponential family model, for a given instance x ∈ X , predicts the label

y∗ = argmax
y∈Y

p (y | x,θ∗) ,

where θ∗ ∈ H de�nes the maximum a posteriori estimator. In contrast, the GP -classi�er with
the Laplace approximation of the posterior �rst de�nes the distribution of y | x as

π∗ (y = 1 | x′) =
∫
f′
π (y = 1 | f′)

∫
f
p (f′ | f,z,x′) p̂ (f | z)dfdf′ .

In the latter equation, p̂ (f | z) = N (f∗,H) is the Laplace approximation of the posterior
distribution p (f | z), H is the Hessian of the posterior at the maximum a posteriori estimator
f∗ given by θ∗, and π (y = 1 | f′) is the logistic likelihood function with

f′ = vec(〈θ,ψ(x′)/2〉 ,〈θ,−ψ(x′)/2〉) .
The conditional distribution p (f′ | f,z,x′) can be obtained by marginalizing z from the GP -
prior. Thus, the integral with respect to f can be computed in a closed form because it
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is a product of two Gaussian distributions. Having computed the relevant terms for the
conditional label distribution, the GP -classi�er, for a given instance x ∈ X , predicts the label

y∗ = argmax
y∈Y

π∗ (y | x) .

For su�cient statistics φ (x,y) = vec
(
vec

(
y,y2

)>
ψ (x)

)
, with a derivation similar to that

of GP -classi�cation, it is possible to relate the heteroscedastic GP -regression (Le et al., 2005)
and the maximum a posteriori estimation using conditional exponential family models.

5.3 Markov Chains and the Metropolis–Hastings Algorithm

The Metropolis–Hastings approach (Metropolis et al., 1953) is a Markov chain Monte Carlo
method for the simulation of a probability distribution. The approach is used in Algorithm 5.1
to draw samples from the posterior distribution of structures p (x | y∗,θt), conditioned on
them having the target property y∗ ∈ Y . This section introduces terminology required for the
theoretical analysis of that random process, analyzed in Section 5.4.2. We start by providing
a brief overview of Markov chains and the properties characterizing the sensitivity of these
random processes to initial conditions such as irreducibility, aperiodicity, ergodicity, and
detailed balance condition. Following this, we review the Metropolis–Hastings algorithm
that can be used for simulation of any distribution speci�ed up to a normalization constant.
The review is based on the surveys of Markov chain Monte Carlo methods by Robert and
Casella (2005) and Andrieu et al. (2003).

5.3.1 Markov Chains

For clarity reasons, we restrict our review to Markov chains on �nite discrete spaces. A more
general introduction to this class of algorithms can be found in Robert and Casella (2005).
This restriction is also in line with the problem investigated in this chapter—discovery of
combinatorial objects with desired properties. Thus, throughout this section we assume that
the state-space X is a discrete set with �nitely many combinatorial objects.

The stochastic process, {xt}t∈N, is called a Markov chain if, for all t ≥ 1, the conditional
distribution of xt given xt−1, . . . ,x0 is the same as the distribution of xt given xt−1, i.e.,

p (xt | xt−1, . . . ,x0) = p (xt | xt−1) .

If the initial state of the chain x0 is known, then the construction of the chain is completely
determined by its transition probabilities, i.e., the conditional density function p (xt | xt−1).
This density function is also known as the transition kernel of the chain and in the remainder
of the chapter we will denote this kernel with T (xt−1→ xt)B p (xt | xt−1).

A σ -�nite probability measure π de�ned on the state-space X is invariant for a transition
kernel T (· → ·) and the corresponding Markov chain if, for all x′ ∈ X , it holds

π (x′) =
∑
x∈X

T (x→ x′)π (x) .

A Markov chain with an invariant probability measure is stationary in distribution. To see
this, observe that x0 ∼ π implies xt ∼ π for all t ≥ 1. As a result of this, the invariant
probability measure π is also called the stationary distribution of the chain. The existence of
the stationary distribution is an important stability property of a Markov chain and one of
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the main reasons for the popularity of Markov chain Monte Carlo methods. More speci�cally,
for distributions that are di�cult to simulate (e.g., not analytically tractable) the property
enables their simulation via a corresponding Markov chain, subject to additional stability
properties such as ergodicity which is discussed subsequently.

Having introduced the notion of a stationary chain, we proceed to review the stability
properties of the chain required for the existence of a unique stationary distribution. For that,
let A ⊂ X and denote the �rst time step t in which the chain enters the set A with

τA =min {t ≥ 1 | t ∈ N ∧ xt ∈ A} . (5.10)

The time step τA is called the stopping time in A and τA =∞ if xt < A for all t ≥ 1. For the
set A denote the number of visits of the chain to A with

ηA =
∞∑
t=1

IA (xt) . (5.11)

This quantity allows us to de�ne the stability property measuring the expected number
of visits to A given an initial state of the chain x ∈ X , denoted with E [ηA | x0 = x]. This
stability measure is needed to ensure that the trajectory of the chain will visit each state
often enough. To further formalize this stability property, we need to introduce the notion
of state recurrence. A state x ∈ X is called recurrent if the expected number of returns to x
is in�nite, i.e., E [ηx | x0 = x] =∞, and transient otherwise. Thus, for chains with discrete
state-spaces the recurrence property of a state is equivalent to the guarantee of return to that
state. In other words, the recurrence of a state can be characterized with the probability of
return to x in a �nite number of steps given an initial state of the chain x ∈ X , denoted with
P (τx <∞ | x0 = x). More speci�cally, a state x ∈ X is recurrent if P (τx <∞ | x0 = x) = 1. To
see that these two de�nitions are equivalent note that for P (τx <∞ | x0 = x) > 0 we have

E [ηx | x0 = x] =
∞∑
t=1

P (xt = x | x0 = x) =

∞∑
t=1

P (τx = t | x0 = x) +
t−1∑
k=1

P (τx = k | x0 = x)P (xt−k = x | x0 = x) =

P (τx <∞ | x0 = x) +
∞∑
t=2

t−1∑
k=1

P (τx = k | x0 = x)P (xt−k = x | x0 = x) =

P (τx <∞ | x0 = x)
1− P (τx <∞ | x0 = x)

.

Now, the claim follows by setting P (τx <∞ | x0 = x) = 1 or E [ηx | x0 = x] =∞.
Having introduced the notion of a recurrent state, we now turn our attention to a stability

property that quanti�es the sensitivity of the chain to initial conditions. This property will
turn out te be crucial for the existence of the stationary distribution of a chain with discrete
state-space. A Markov chain is irreducible if starting from any state it is possible to reach
all states from the state-space in a �nite number of steps with positive probability. More
formally, a chain is irreducible if, for all x,x′ ∈ X , it holds that

P (τx′ <∞ | x0 = x) > 0 . (5.12)

An equivalent de�nition of the irreducibility requires that the chain satis�es E [ηx′ | x0 = x] >
0 for all x,x′ ∈ X . For a given measure ψ on the state-space X , the Markov chain is ψ-
irreducible if, for all x′ ∈ X with ψ (x′) > 0 and all x ∈ X , P (τx′ <∞ | x0 = x) > 0.
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A Markov chain is called recurrent if there exists a measure ψ on X such that the chain
is ψ-irreducible and if all the states from the support of ψ are recurrent. An irreducible
Markov chain on a discrete state-space is guaranteed to have at least one recurrent state (the
cardinality of the state-space is �nite and there are in�nitely many states in the chain). The
following proposition establishes the connection between irreducibility and recurrence of a
chain on a discrete state-space.

Proposition 5.5. (Robert and Casella, 2005) An irreducible Markov chain de�ned on a discrete
state-space X is recurrent.

Proof. As the chain has at least one recurrent state x∗ ∈ X we have that P (τx∗ <∞ | x0 =
x∗) = 1. Assume now there is a transient state z ∈ X with P (τz <∞ | x0 = z) < 1. From the
irreducibility of the chain we have that there exist m1,m2 ∈ N such that P (τx∗ =m1 | x0 =
z) > 0 and P (τz =m2 | x0 = x∗) > 0. Thus, we have that it holds

P
(
xm1+m2+n = z | x0 = z

)
=

∑
x∈X

P
(
xm1

= x | x0 = z
)
P (xn = x | x0 = x)P

(
xm2

= z | x0 = x
)
≥

P
(
xm1

= x∗ | x0 = z
)
P (xn = x

∗ | x0 = x∗)P
(
xm2

= z | x0 = x∗
)
.

Now, summing the last inequality over n ∈ N we deduce

∞∑
n=0

P
(
xm1+m2+n = z | x0 = z

)
≥ P

(
xm1

= x∗ | x0 = z
)
P
(
xm2

= z | x0 = x∗
)
E [ηx∗ | x0 = x∗] .

As the state x∗ is recurrent it must hold that E [ηx∗ | x0 = x∗] =∞. The latter inequality then
implies that E [ηz | x0 = z] =∞. As all the states from the state-space X are recurrent the
chain is also recurrent.

We can now relate the properties of irreducibility and recurrence of a chain to the existence
of the unique stationary probability measure. In particular, as the following theorem will
show, for any recurrent chain there exists a unique stationary probability measure. Thus,
Proposition 5.5 together with the following theorem implies that an irreducible Markov chain
de�ned on a �nite discrete state-space has a unique stationary probability measure.

Theorem 5.6. (Meyn and Tweedie, 2009; Robert and Casella, 2005) If a Markov chain is recurrent
then there exists an invariant σ -�nite measure which is unique up to a multiplicative factor.

An alternative constraint can also be imposed on the transition kernel of a chain to ensure
the existence of a stationary probability measure. More speci�cally, detailed balance condition,
formally de�ned below, is a su�cient but not necessary condition for the existence of a
unique stationary probability measure of a Markov chain. Moreover, when designing chains
the condition is often easier to impose than the recurrence or irreducibility.

De�nition 5.3. A Markov chain with transition kernel T (· → ·) satis�es the detailed balance
condition if there exists a function π satisfying

T (x→ x′)π (x) = T (x′→ x)π (x′) . (5.13)

The following theorem provides a guarantee that a unique stationary probability density
function corresponds to a Markov chain satisfying the detailed balance condition.
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Theorem 5.7. (Robert and Casella, 2005, Theorem 6.46) Suppose that the transition kernel of
a Markov chain satis�es the detailed balance condition with a probability density function π.
Then, the density function π is the invariant density of the chain.

Having presented the standard constraints imposed on a chain for the existence of a
unique stationary probability measure, we now review the convergence properties of discrete
state-space Markov chains. For that, we need to introduce another stability property of the
chain ensuring that the chain does not get trapped in cycles as a result of the constraints
imposed by the transition kernel. The period of a state x ∈ X is de�ned as

d (x) = gcd ({m ≥ 1 | P (xm = x | x0 = x) > 0}) ,

where gcd (S) denotes the greatest common divisor of a set of positive integers S . A Markov
chain is aperiodic if d (x) = 1 for all x ∈ X . As we will demonstrate shortly, this is an important
stability property for the convergence of the chain.

Let us denote the probability of being at time t in the state x with p (xt = x) and the
corresponding probability distribution over the state-space with a row-vector pt . A transition
kernel de�ned on a discrete state-space can be represented with a non-negative matrix T
such that Tij = T

(
xi → xj

)
for 1 ≤ i, j ≤ |X |. Then, for n ≥ 1 the chain evolves as

pn = pn−1T = p0T
n . (5.14)

Now, if the transition matrix T is irreducible (i.e., the corresponding Markov chain is aperiodic)
then the Perron–Frobenius theorem (Frobenius, 1912) guarantees the existence of the limit of
the matrix power, i.e., limn→∞T n <∞. The latter is an important condition for the ergodicity
property of the chain, formally de�ned as follows.

De�nition 5.4. Let {xt}t∈N be a Markov chain on a discrete state-space X and let π be the
corresponding stationary distribution. The chain is uniformly ergodic if

lim
t→∞supx∈X

‖P (xt | x0 = x)−π‖T V = 0 ,

where ‖·‖T V is the total variation norm.

De�nition 5.4 introduces a strong notion of convergence for Markov chains. In particular,
the uniform ergodicity property implies that the chain is independent of the initial conditions
and that a sample from the chain, xt , is asymptotically distributed according to the corre-
sponding stationary distribution. The following theorem formally speci�es conditions for
the uniform ergodicity of a Markov chain de�ned on a discrete state-space.

Theorem5.8. (Meyn and Tweedie, 2009; Robert and Casella, 2005) For any starting point x0 ∈ X ,
the Markov chain with a transition kernel de�ned on a discrete state-spaceX is uniformly ergodic
if the transition kernel is irreducible and aperiodic.

5.3.2 The Metropolis–Hastings Algorithm

The Metropolis–Hastings algorithm (Metropolis et al., 1953) has been listed as one of the top
10 algorithms with the greatest in�uence on the development and practice of science and
engineering in the 20th century (Cipra, 2000; Andrieu et al., 2003). The algorithm belongs
to the class of Markov Chain Monte Carlo approaches for the simulation of a probability
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Algorithm 5.2 Metropolis–Hastings
Input: target density function π, transition kernel T , initial state x0, number of steps n
Output: sample x from π

1: x← x0
2: for t = 1,2, . . . ,n do
3: xt ∼ T (xt−1→ ·) and u ∼ U [0,1]
4: if u <min

{
π(xt)
π(xt−1)

· T (xt→xt−1)T (xt−1→xt) ,1
}
then x← xt end if

5: end for

distribution. The approach developed in this chapter relies on the Metropolis–Hastings
algorithm to perform the sampling from a distribution of structures conditioned on their
label being equal to that of the target property.

Algorithm 5.2 is a pseudo-code description of the approach. The algorithm takes as input
a target density function π speci�ed up to a normalization constant, the proposal generator
given by a transition kernel T , an instance x0 from the state-space X as the initial state, and
the number of Markov chain steps n. In the �rst step of each iteration, the transition kernel
is used to sample a candidate state from the corresponding conditional density function,
conditioned on the current state of the chain (i.e., either the initial state which is provided
as input to the algorithm or the state visited in the previous iteration). Following this,
the chain makes a transition to the sampled candidate state with the acceptance probability
min

{
π(x)
π(xt−1)

· T (x→xt−1)T (xt−1→x) ,1
}
. The chain iterates for n steps and the last accepted state is returned

as an approximate sample from the target density function π. To ensure that the sample
indeed follows the target distribution, the number of steps needs to be su�ciently large so
that the chain forgets the initial state and moves away from the stationary distribution of the
proposal generator to the target density function π.

Having described the Metropolis–Hastings algorithm, we proceed to review the theo-
retical properties of the corresponding chain such as ergodicity and convergence. These
properties are mainly determined by the choice of the transition kernel de�ning a proposal
generator. For instance, if there exists a subset A ⊂ X such that π (A) > 0 together with
T (x→ x′) = 0 for all x ∈ X and any x′ ∈ A, then the target density π is not the stationary
distribution of the Markov chain generated using the Metropolis–Hastings algorithm. The
latter can be seen by observing that the chain never visits the setA. Thus, a minimal necessary
condition for convergence is that

supp(π) ⊆ ∪x∈XT (x→ ·) .
Assuming that this condition is satis�ed, it can be shown that the transition kernel of the
Metropolis–Hastings chain satis�es the detailed balance condition with the density function
π. The following proposition is a formal statement of the result.

Proposition 5.9. (Robert and Casella, 2005, Theorem 7.2) Suppose that T is a transition kernel
whose support contains that of a target density function π. Let {xt}t∈N be a Markov chain
generated using the Metropolis–Hastings algorithm with π as the target density function and T
as the transition kernel of the proposal generator. The transition kernel of the Metropolis–Hastings
chain satis�es the detailed balance condition with the target density function π.

Proof. Let M be the transition kernel of the Metropolis–Hastings chain. Then, it holds that

M (x→ x′) = a (x,x′)T (x→ x′) + δx (x′)r (x) ,



142 Active Search for Computer-Aided Cyclic Discovery Processes

where a (x,x′) is the acceptance probability of a transition from state x to x′ , δx is the Dirac
mass in x, and r (x) =

∑
z∈X T (x→ z) (1− a (x,z)). The �rst term in this transition kernel

can be transformed as

a (x,x′)T (x→ x′) = min
{
T (x→ x′) ,

π (x′)T (x′→ x)
π (x)

}
=
π (x′)
π (x)

T (x′→ x)a (x′ ,x) .

Thus, we have that the detailed balance condition holds for all x,x′ ∈ X , i.e.,

π (x)M (x→ x′) = π (x′)T (x′→ x)a (x′ ,x) +π (x′)δx′ (x)r (x′) = π (x′)M (x′→ x) .

Now, from Theorem 5.8 it follows that the Metropolis–Hastings chain is uniformly ergodic
if the transition kernel of the chain is aperiodic and π-irreducible. A su�cient condition for
the chain to be aperiodic is that the transition kernel allows events {xt+1 = xt} with positive
probability. More speci�cally, the Metropolis–Hastings chain is aperiodic if the acceptance
probability, a (x,x′), satis�es

P
(
a (x,x′) ≥ 1

)
< 1 .

This condition implies that the transition kernel T corresponding to the proposal generator is
not the transition kernel of a Markov chain with the stationary density function π. The latter
is reasonable in the sense that if we have a transition kernel that corresponds to a stationary
distribution then there is no point in perturbing it with the Metropolis–Hastings algorithm.
A su�cient condition for the π-irreducibility of the Metropolis–Hastings chain is that the
transition kernel of the proposal generator is positive on the support of π, i.e.,

T (x→ x′) > 0 for all x,x′ ∈ supp(π) .
Proposition 5.10. (Robert and Casella, 2005, Theorem 7.4) Suppose that a transition kernel T
de�ned on a discrete state-space is positive on the support of a target density function π. Assume
also that π is not the stationary distribution of the Markov chain corresponding to T . Then, the
Markov chain generated using the Metropolis–Hastings algorithm with π as the target density
function and T as the transition kernel of the proposal generator is uniformly ergodic.

Of particular interest to the algorithm proposed in this chapter is an instance of the
Metropolis–Hastings algorithm where the transition kernel of a proposal generator is in-
dependent of the previous states, i.e., T (x→ x′) = T (x′). This instance of the algorithm is
called the independent Metropolis–Hastings algorithm and the following theorem provides a
su�cient condition for the algorithm to produce a uniformly ergodic Markov chain.

Theorem 5.11. (Mengersen and Tweedie, 1996; Robert and Casella, 2005) The independent
Metropolis–Hastings algorithm produces a uniformly ergodic Markov chain if there exists a
constant c > 1 such that π (x) < cT (x) for all x ∈ supp(π). In this case, for all x ∈ X

‖P (xn | x0 = x)−π‖T V ≤ 2
(
1− 1

c

)n
,

where ‖·‖T V denotes the total variation norm.

Having reviewed the Metropolis–Hastings algorithm, we proceed to investigate the
properties of two random processes characteristic to Algorithm 5.1, the consistency of the
approach and the Metropolis–Hastings algorithm for drawing samples from p (x | y∗,θ).
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5.4 Theoretical Analysis

In this section, we �rst show that Algorithm 5.1 is consistent and then analyze the mixing time
of an independent Metropolis–Hastings chain for sampling from the posterior p (x | y∗,θ).
The section concludes with a method for handling large importance weights that can occur
in Algorithm 5.1 while performing the weighted maximum a posteriori estimation.

5.4.1 Consistency

Let Θ be a compact subset of a Euclidean space and suppose there exist constants R,r > 0
such that ‖θ‖ ≤ R for all θ ∈Θ and∥∥∥φ (x,y)

∥∥∥H =
√
k
(
(x,y) , (x,y)

)
≤ r

for all (x,y) ∈ X × Y . In �nite dimensional Euclidean spaces closed spheres are compact
sets and, in line with our previous assumption, we can take Θ to be the sphere of radius R
centered at the origin. In in�nite dimensional spaces closed spheres are not compact sets and
in this case it is possible to �nd an approximate �nite dimensional basis of the kernel feature
space using the Cholesky decomposition of the kernel matrix (Fine and Scheinberg, 2002)
and de�ne Θ as in the �nite dimensional case. We note that this is a standard step for many
kernel based approaches in machine learning (Bach, 2007).

Given the stationary distribution ρ (x) of the proposal generator and the conditional
label distribution of the evaluation oracle ρ (y | x), the latent data-generating distribution is
ρ (x,y) = ρ (y | x)ρ (x). We use the Kullback–Leibler divergence (Akaike, 1973; White, 1982)
to measure the di�erence between this data-generating distribution and the one given by
a conditional exponential family model in place of ρ (y | x). Eliminating the parameter-free
terms from this divergence measure, we obtain the loss function of θ,

L (θ) = −
∫
X×Y

lnp (y | x,θ)dρ .

We assume that there exists a unique minimizer of the loss function L (θ) in the interior of the
parameter set Θ and denote this minimizer with θ∗. If, for all x ∈ X , the optimal parameter
vector θ∗ ∈Θ satis�es

Eρ(y|x) [φ (x,y)] = Ep(y|x,θ∗) [φ (x,y)] ,

it is said that the model is well-speci�ed.
In our case, sample points are obtained from a query distribution that depends on previous

samples, i.e., xi ∼ q (x | x1, . . . ,xi−1), but labels are still obtained from the conditional label
distribution yi ∼ ρ (y | xi) independent of xj (j < i). The main di�culty in proving the
consistency of the approach in the general case where the queried structures are neither
independent nor identically distributed comes from the fact that standard concentration
bounds do not hold for this setting. A workaround frequently encountered in the literature is
to assume that the model is well-speci�ed as in this case the sampling process is consistent
irrespective of the query distribution. Before proving convergence in the general case, we
�rst brie�y consider the cases of independent samples and well-speci�ed models.

For the common case in which the training sample is drawn independently from a distri-
bution q (x), let

θ̂n = argmax
θ∈Θ

1
n

n∑
i=1

ρ (xi)
q (xi)

lnp (yi | xi ,θ) . (5.15)
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The sequence of optimizers {θ̂n}n∈N converges to the optimal parameter vector θ∗ (White,
1982; Shimodaira, 2000). For q (x) = ρ (x), θ̂n is the maximum likelihood estimate of θ∗ over
an i.i.d. sample {(xi , yi)}ni=1. Moreover, for Θ = {θ | ‖θ‖ ≤ R} the latter optimization problem
is equivalent to �nding the maximum a posteriori estimator with a zero-mean Gaussian prior
on the parameter vector θ (e.g., see Section 5.2.2 or Altun et al., 2004).

In the case of a well-speci�ed model, for all x ∈ X , it holds

Eρ(y|x) [φ (x,y)] = Ep(y|x,θ∗) [φ (x,y)] .

Thus, for all query distributions q (x), the gradient of the loss is zero at θ∗, i.e.,

∇L(θ∗) =
∫
X
q (x)

∫
Y
φ (x,y) (p (y | x,θ∗)− ρ (y | x))dµ = 0 .

In other words, if the model is well-speci�ed, the maximum likelihood estimator is consistent
for all query distributions (not necessarily independent from previous samples) and, in
particular, for the marginal probability measure ρ (x).

We now proceed to the general case for which we do not make the assumption that
the model is well-speci�ed and again show that the optimizer θt converges to the optimal
parameter vector θ∗. At iteration t of Algorithm 5.1 an instance is selected by sampling
from the query distribution q (x | Dt−1) = p (x | y∗,θt), where θt denotes a parameter vector
from Θ which is completely determined by the previously seen data Dt−1. Thus, a candidate
sampled at iteration t depends on previous samples through the parameter vector and the
independence between input–output pairs within the sample is lost. As a result of this, the
convergence of the sequence {θt}t∈N to θ∗ for the general case of misspeci�ed model cannot
be guaranteed by the previous results relying on the independence assumption (Shimodaira,
2000). To show the consistency in this general case, we �rst rewrite the objective which is
optimized at iteration t of Algorithm 5.1. For a �xed target property y∗, the parameter vector
θt+1 is obtained by solving the following problem

θt+1 = argmin
θ

1
t

t∑
i=1

A (θ | xi)−
〈
φ (xi , yi),θ

〉
p (y∗ | xi ,θi)

+λ‖θ‖2 . (5.16)

Assuming the parameter set is well behaved (Theorem 5.12), the objective in Eq. (5.16) is
convex and can be optimized using standard optimization techniques. Before we show that
the sequence of optimizers θt converges to the optimal parameter vector θ∗, let us formally
de�ne the empirical loss of a parameter vector θ given the data Dt available at iteration t,

L (θ | Dt) = 1
t

t∑
i=1

p (y∗)
(
A (θ | xi)−

〈
φ (xi , yi),θ

〉)
p (y∗ | xi ,θi)

. (5.17)

The following theorem and corollary show that Algorithm 5.1 is consistent in the general
case for misspeci�ed models and a sample of structures which are neither independent nor
identically distributed.

Theorem 5.12. Let p (y | x,θ) denote the conditional exponential family distribution param-
eterized with a vector θ ∈ Θ, where Θ is a compact subset of a d dimensional Euclidean
space Rd . Let ρ (x,y) denote a latent data generating distribution such that, for all x ∈ X ,
the support of the likelihood function ρ (y | x) is contained in the support of p (y | x,θ) for all
θ ∈ Θ. Let

∣∣∣lnp (y | x,θ)∣∣∣ ≤ h (x,y) for all θ ∈ Θ and some function h (x,y) : X × Y → R
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which is Lebesque integrable in the measure ρ (x,y). Then for all 0 < ε,δ < 1 there exists
N (ε,δ) ∈Ω

(
1
ε2

(
d ln 1

ε + ln 1
δ

))
such that for all t ≥N (ε,δ) we have

P

(
sup
θ∈Θ
|L (θ)−L (θ | Dt)| ≤ ε

)
≥ 1− δ .

Before we proceed with the proof of Theorem 5.12, let us introduce three auxiliary claims
required for our proof and discuss some implications of the assumptions. More speci�cally,
the assumption that the parameter set Θ is a compact subset of a �nite dimensional Euclidean
space together with p (y | x,θ) being a conditional density function that is bounded away from
zero (for all x ∈ X , for all y ∈ Y , and for all θ ∈Θ) implies that there exists a constant pmin > 0
such that p (y | x,θ) ≥ pmin. Let Λ =maxθ∈Θ λ1 (θ), whereλ1 denotes the largest eigenvalue
of the Hessian matrix of the importance-weighted negative log-likelihood objective function
(Eq. 5.16). As Θ is a compact set and the likelihood function is continuous for all x ∈ X , the
eigenvalues of the Hessian matrix are bounded and, thus, there exists a �nite maximizer Λ.

Lemma 5.13. For all 0 < ε < 1 and θ1,θ2 ∈Θ such that ‖θ1 −θ2‖ < 2pminε

r+
√
r2+2Λpminε

, it holds

|L (θ1)−L (θ2)| < ε and |L (θ1 | Dt)−L (θ2 | Dt)| < ε.
Proof. Performing the Taylor expansion of the log-likelihood around θ1 we get

lnp (y | x,θ2) ≤ lnp (y | x,θ1) +Ey∼p(y|x,θ1)
[
φ (x,y)> (θ2 −θ1)

]
+
Λ

2
‖θ2 −θ1‖2 .

Now, applying the Cauchy-Schwartz inequality to the right hand-side and using the condition
‖θ1 −θ2‖ < 2pminεΛ

r+
√
r2+2Λpminε

the claim follows, i.e.,

|L (θ1)−L (θ2)| ≤ ‖θ1 −θ2‖
(
r +

Λ

2
‖θ1 −θ2‖

)
< ε,

|L (θ1 | Dt)−L (θ2 | Dt)| ≤
‖θ1 −θ2‖

(
r + Λ

2 ‖θ1 −θ2‖
)

pmin
< ε .

Lemma 5.14. Denote with ν = pminε(
2r+
√
4r2+2Λpminε

) and let B1, . . . ,BN (Θ,ν) be a ν-cover of the

parameter set Θ. Then,

P

(
sup
θ∈Θ
|L (θ)−L (θ | Dt)| ≤ ε

)
> 1−N (Θ,ν) sup

s=1,...,N (Θ,ν)
P
(
|L (θs)−L (θs | Dt)| > ε2

)
,

where θs denotes the center of the ball Bs.

Proof. From the assumptions of the lemma it follows that supθ∈Θ |L (θ)−L (θ | Dt)| > ε if
and only if there exists 1 ≤ s ≤N (Θ,ν) such that supθ∈Bs |L (θ)−L (θ | Dt)| > ε. Applying
the union bound we get

P

(
sup
θ∈Θ
|L (θ)−L (θ | Dt)| > ε

)
≤
N (Θ,ν)∑
s=1

P

sup
θ∈Bs
|L (θ)−L (θ | Dt)| > ε

 . (5.18)
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On the other hand, we have

|L (θi)−L (θi | Dt)−L (θ) +L (θ | Dt)| < |L (θi)−L (θ)|+ |L (θi | Dt)−L (θ | Dt)| .
From the last equation and Lemma 5.13 for θi center of Bi and all θ ∈ Bi we get

|L (θ)−L (θ | Dt)| − |L (θi)−L (θi | Dt)| < ε2 .

As this holds for all 0 < ε < 1 and θ ∈ Bi we get that supθ∈Bi |L (θ)−L (θ | Dt)| > ε implies
|L (θi)−L (θi | Dt)| > ε

2 . From here it follows that

P

sup
θ∈Bs
|L (θ)−L (θ | Dt)| > ε

 < P (
|L (θs)−L (θs | Dt)| > ε2

)
. (5.19)

Combining the results from Eq. (5.18) and (5.19) the claim follows.

Proposition 5.15. (Carl and Stephani, 1990) Let B be a �nite dimensional Banach space and
let BR be the ball of radius R centered at the origin. Then, for d = dim(B), it holds

N (BR, ε,‖·‖) ≤
(4R
ε

)d
.

Having introduced all the relevant results, we are now ready to prove Theorem 5.12.

Proof of Theorem 5.12. We de�ne all random variables with respect to a probability space
(Ω,D,P), where Ω is a state space, D is a σ -algebra of Ω, and P a probability measure of
D. The sampling process is performed using an external source of randomness which we
model with an i.i.d. sequence of random variables {Ut}t∈N. We �x the �ltration {Dt}t∈N where
Dt ⊂ D is the σ -algebra generated by {(U1,θ1,x1, y1) , . . . , (Ut ,θt ,xt , yt)}. The input-output
pair (xt+1, yt+1) is measurable with respect to the σ -algebra generated by (Dt ,Ut+1). In other
words, given the history of observations the pair is random only with respect to Ut+1.

Having de�ned our random variables, we proceed with the proof. In a part of the proof
we use some of the standard techniques from the theory of martingales and follow the same
principle as the proof of the importance weighted active learning (Beygelzimer et al., 2009).
In the �rst step, we show that EDt [L (θ | Dt)] = L (θ). In particular, it holds

E [L (θ | Dt)] = 1
t

t∑
i=1

∫
p (y∗)

p (y∗ | xi ,θi)
l (xi , yi ,θ)P (Dt) =

1
t

t∑
i=1

∫
p (y∗)

p (y∗ | xi ,θi)
p (xi | y∗,θi)ρ (yi | xi) l (xi , yi ,θ)

∫
P (Dt−1 | xi , yi ,θi)︸                   ︷︷                   ︸

=1

=

1
t

t∑
i=1

∫
l (xi , yi ,θ)ρ (xi , yi) = L (θ) ,

where ` (x,y,θ) = A (θ | x)− 〈φ (x,y),θ
〉
.

In the second step of the proof, we bound the discrepancy between the empirical and the
expected loss. As there is a dependence within the sample, we cannot rely on the concentration
bounds requiring the independence assumption. Therefore, we introduce a sequence for
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which we prove it is a martingale and then proceed with bounding the discrepancy using a
martingale concentration inequality.

Let Wj , j = 1, . . . , t, be a sequence of random variables such that

Wj = −wj lnp
(
yj | xj ,θ

)
−L (θ) , (5.20)

where wj =
p(y∗)

p(y∗|xj ,θj) . According to the assumptions, p (y | x,θ) is bounded away from zero
for all x ∈ X , for all y ∈ Y , and for all θ ∈Θ. Thus, it holds

sup
θ∈Θ,x∈X ,y∈Y

∣∣∣lnp (y | x,θ)∣∣∣ < − lnpmin .

From here it implies that
∣∣∣Wj

∣∣∣ ≤ − lnpmin
pmin

<∞ and E
[∣∣∣Wj

∣∣∣] <∞.
We now show that the sequenceZt =

∑t
j=0Wj , withW0 = 0, is a martingale. In particular,

E [Zt | Zt−1, . . . ,Z0] = Zt−1 +Ext ,yt |Dt−1 [wtl (xt , yt ,θ)]−L (θ) = Zt−1 .

On the other hand, it holds |Zt −Zt−1| = |Wt | ≤ − lnpmin
pmin

. From here using the inequality for
martingales by Azuma (1967) we deduce

P
(
|L (θ | Dt)−L (θ)| > ε2

)
= P

(
|Zt | > tε2

)
< 2exp

(
− tε2p2min

8(lnpmin)
2

)
. (5.21)

As this holds for all θ ∈Θ, applying Lemma 5.14 for ν = pminε

2r+
√
4r2+2Λpminε

we get

P

(
sup
θ∈Θ
|L (θ)−L (θ | Dt)| > ε

)
< 2N

Θ, pminε

2r +
√
4r2 +2Λpminε

exp(
− tε2p2min

8(lnpmin)
2

)
.

From the last equation and Proposition 5.15 we get

ln
δ
2
≥ d ln

4R
(
2r +

√
4r2 +2Λpminε

)
pminε

− tε2p2min

8(lnpmin)
2 =⇒

t

(
pmin

lnpmin

)2
ε2 ∈Ω

(
d ln

1
ε
+ ln

1
δ

)
=⇒ t ∈Ω

( lnpmin

pmin

)2 1
ε2

(
d ln

1
ε
+ ln

1
δ

) .
Hence, we have shown that there exists a positive integer N ∈Ω

(
1
ε2

(
d ln 1

ε + ln 1
δ

))
such

that for all 0 < ε,δ < 1, and all t > N the claim holds.

Corollary 5.16. The sequence of estimators {θt}t≥1 converges in probability to θ∗ ∈Θ.

Proof. First note that from the compactness of Θ, it follows that the Hessian of the negative
log-likelihood is strictly positive de�nite and, therefore, there exist unique minimizers of the
loss functions L (θ) and L (θ | Dt). From Theorem 5.12, we have that for su�ciently large t
with probability 1−δ it holds that L (θ∗ | Dt) ≤ L (θ∗)+ε and L (θt) ≤ L (θt | Dt)+ε. From the
strict convexity of the optimization objective L (· | Dt) it follows that L (θt | Dt) ≤ L (θ∗ | Dt).
Hence, with probability 1− δ
L (θt)−L (θ∗) ≤ |L (θt)−L (θt | Dt)|+L (θt | Dt)−L (θ∗ | Dt) + |L (θ∗ | Dt)−L (θ∗)| ≤ 2ε.

From here it follows that the sequence of estimators {θt}t≥0 converges in probability to the
optimal parameter θ∗.
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5.4.2 Mixing Time Analysis

Having shown the consistency of Algorithm 5.1, we proceed to bound the mixing time of the
Metropolis–Hastings chain. For that, we consider an independent proposal generator G and
provide a simple coupling analysis (Vembu et al., 2009) to bound the worst case mixing time
of an independent Metropolis–Hastings chain for sampling from the posterior p(x | y∗,θt).
We start by formally de�ning the coupling of two random processes and then provide a result
by Aldous (1983) that relates the coupling and worst case mixing time of a Markov chain.

De�nition 5.5. LetM be a �nite, ergodic Markov chain de�ned on a state space Ω with
transition probabilities p(x→ x′). A coupling is a joint process (A,B) = (At ,Bt) on Ω ×Ω
such that each of processes A, B, considered marginally, is a faithful copy ofM.

The following result by Aldous (1983) allows us to utilize perfect sampling algorithms such
as coupling from the past (Propp and Wilson, 1996) to draw samples from the posterior. In
particular, suppose |X | parallel and identical chains are started from all possible states x ∈ X
and an identical random bit sequence is used to simulate all the chains. Thus, whenever two
chains move to a common state, all the future transitions of the two chains are the same. From
that point on it is su�cient to track only one of the chains. This is called a coalescence (Huber,
1998). Propp and Wilson (1996) have shown that if all the chains were started at time −T
and have coalesced to a single chain at step −T with T > T > 0, then samples drawn at time
0 are exact samples from the stationary distribution. The following lemma embodies this
principle and it is crucial for our bound on the worst case mixing time for sampling from the
posterior distribution of structures using an independent Metropolis–Hastings chain.

Lemma 5.17. (Aldous, 1983) LetM be a �nite, ergodic Markov chain, and let (At ,Bt) be a
coupling forM. Suppose that P (At(ε) , Bt(ε)) ≤ ε, uniformly over the choice of initial state
(A0,B0). Then the mixing time τ(ε) ofM (starting at any state) is bounded from above by t(ε).

The following proposition gives a worst case bound on the mixing time of an independent
Metropolis–Hastings chain for sampling from the posterior distribution p(x | y∗,θt).
Proposition 5.18. For all 0 < ε < 1, the mixing time τ(ε) of an independent Metropolis–
Hastings chain for sampling from the posterior distribution p(x | y∗,θt) is bounded from above
by

⌈
lnε/ ln

(
1− exp(−4r ‖θt‖

)⌉
.

Proof. As minx∈X p (y∗ | x,θt) ≤maxx∈X p (y∗ | x,θt), the lower bound on the Metropolis–
Hastings acceptance criterion is never greater than 1. Then, from Eq. (5.2) and (5.1) it follows
that, for a �nite space Y , the transition probability from a state x to a state x′ satis�es

p(x→ x′) ≥
exp

(〈
φ(x′ , y∗),θt

〉
−A(θt | x′)

)
exp

(〈
φ(x,y∗),θt

〉
−A(θt | x)

) =

∑
y∈Y exp

(
〈φ (x′ , y∗) +φ (x,y) ,θt〉

)
∑
y∈Y exp

(
〈φ (x,y∗) +φ (x′ , y) ,θt〉

) .
Now, we can lower bound the transition probability by

p(x→ x′) ≥
|Y|exp

(
2 · 〈φ

(
x↓, y↓

)
,θt〉

)
|Y |exp

(
2 · 〈φ

(
x↑, y↑

)
,θt〉

) ≥ exp
(
−2 ·

∣∣∣〈φ(x↓, y↓)−φ(x↑, y↑),θt〉∣∣∣), (5.22)

where 〈φ
(
x↓, y↓

)
,θt〉 and 〈φ

(
x↑, y↑

)
,θt〉 are the minimum and maximum values of the dot

products appearing in the numerator and denominator of p(x→ x′), respectively.
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Then, using the Cauchy–Schwarz inequality, we derive

p(x→ x′) ≥ exp
(
−2

∥∥∥φ(x↓, y↓)−φ(x↑, y↑)∥∥∥‖θt‖).
From our assumptions we have that ‖θ‖ ≤ R and ‖φ(x,y)‖ ≤ r . Thus, it holds that

p(x→ x′) ≥ exp(−4r‖θt‖) ≥ exp(−4Rr). (5.23)

From Eq. (5.23) it follows that the probability of not coalescing for T steps is upper bounded
by

(
1− exp(−4r‖θt‖)

)T
. Then for t(ε) =

⌈
lnε/ ln

(
1− exp(−4r‖θt‖)

)⌉
, we have

P (At(ε) , Bt(ε)) ≤
(
1− exp(−4r‖θt‖)

)t(ε) ≤ ε,
and the result follows from the coupling lemma (e.g., see Lemma 5.17 or Aldous, 1983).

The bound from Proposition 5.18 does not exploit the fact that the posterior distribution
can be related to the stationary distribution of the proposal generator used in the Metropolis–
Hastings sampler. The following bound uses this information and gives a signi�cantly better
estimate of the worst case mixing of an independent Metropolis–Hastings chain for sampling
from p (x | y∗,θt). In fact, the chain mixes in sublinear time expressed as a function of the
approximation quality ε > 0.

Proposition 5.19. The mixing time τ (ε) of an independent Metropolis–Hastings chain for
sampling from the posterior distribution p(x | y∗,θt) is bounded from above by

⌈
ln2/ε
ln c/c−1

⌉
, where

c = maxx∈X p(y∗|x,θt)/p(y∗).

Proof. First observe that for all x ∈ X it holds that

p (x | y∗,θt) =
p (y∗ | x,θt)ρ (x)

p (y∗)
≤ cρ (x) ,

with c ≥ 1. The result then follows from Theorem 5.11.

Any bound on the worst case mixing time of the Metropolis–Hastings chain with a
proposal generator de�ned with a conditional transition kernel depends on the speci�cs
of that kernel. Such studies of the mixing time are beyond the scope of this thesis and
will be deferred to future work with speci�c instantiations of Algorithm 5.1. However, we
note here that a simple condition can be imposed on the proposal generator such that the
corresponding Metropolis–Hastings chain is uniformly ergodic. The following theorem gives
a su�cient condition for the uniform ergodicity of the Metropolis–Hastings chain with a
proposal generator de�ned with a conditional transition kernel.

Proposition 5.20. The Metropolis–Hastings chain is uniformly ergodic if G(x→ x′) > 0 for
all x,x′ ∈ supp

(
p (x | y∗,θt)

)
.

For conditional exponential family models p (y | x,θ) > 0, the lower bound can be con-
trolled with the regularization parameter. Thus, there will always be a path with non-zero
probability between any two target structures. As it is the case with other Metropolis algo-
rithms, for di�cult problems where clusters of targets are far apart in the search space, the
mixing will be slower as the model becomes more con�dent.
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5.4.3 Handling Large Importance Weights

In this section, we address an issue that can occur when Algorithm 5.1 samples instances
corresponding to large importance weights. The issue can slow down the convergence of
Algorithm 5.1 and potentially reduce the number of generated targets. We start the section by
describing the problem with large importance weights and then review a simple reweighting
scheme that can address the issue (Cortes et al., 2010).

In Section 5.4.1, we have shown that under reasonable assumptions importance weights
w (x) = 1/p(y∗|x,θ) are bounded for all x ∈ X and θ ∈ Θ. This property is crucial for the
consistency of the approach, demonstrated in Theorem 5.12. However, while the importance
weights are bounded the approach can still select an instance with a large importance weight.
Moreover, the latter can happen at initial stages of the algorithm when the sample is small.
Such choice can then a�ect the estimation of the conditional exponential family model in
that and the following iterations. In fact, it might take a number of rounds for the algorithm
to �x the bias caused by one such importance weight. Such instability can be introduced
into the described random process for di�erent reasons. For example, it is possible that the
approach over-�ts while estimating the model based on a small sample. Alternatively, the
issue can be caused by a random bit sequence that just corresponds to taking a sample from
a low-density region of the currently estimated model.

To address the problems with model estimation caused by large importance weights,
we propose to combine the importance-weighted cross-validation (Sugiyama et al., 2007)
with weight capping (Cortes et al., 2010). This type of cross-validation is required because
samples selected by Algorithm 5.1 are coming from di�erent distributions and standard
cross-validation with such samples would be biased. As shown by Sugiyama et al. (2007), the
importance weighting of the samples from validation fold results in almost unbiased estimate
of the loss function (in our case, negative log-likelihood). While the importance-weighted
cross-validation resolves the issue with a bias introduced into the random process by sam-
ples originating from di�erent distributions, it does not eliminate the problem with large
importance weights. To address the latter issue, Cortes et al. (2010) have analyzed several
reweighting strategies. Among the described reweighting schemes for addressing this issue,
empirically the most e�cient strategy is based on quantile importance weighting. More
speci�cally, after splitting the sample into groups using quantiles an identical importance
weight is assigned to all the samples from the same quantile range. The importance weight
corresponding to a quantile range is given by the mean of the importance weights corre-
sponding to samples from that range. While empirically very e�cient, the strategy requires
cross-validation to determine the best number of quantile ranges. As our approach repeatedly
�ts models, such cross-validation would be time-consuming. For this reason, we have opted
to address the issue with large importance weights with another, much simpler strategy, also
described in Cortes et al. (2010). This strategy caps importance weights using a pre-speci�ed
threshold value. More formally, for a constant η > 0, the reweighted importance weights are,
for an x ∈ X and a θ ∈Θ, given by

w̃ (x) = min
{
w (x) ,η

}
= 1/max

{
p(y∗|x,θ), 1η

}
.

5.5 Adaptations to Exemplary Cyclic Discovery Processes

An adaptation of Algorithm 5.1 to a cyclic discovery process can be characterized by three
components: i) a proposal generator that provides access to an intensionally speci�ed de-
sign/search space of interest, ii) an evaluation oracle capable of determining or approximating
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the properties of candidate structures, and iii) a kernel function that de�nes a family of condi-
tional density functions (see Section 5.2) from which the algorithm selects a model that acts
as a probabilistic surrogate of a target property evaluated by the oracle. In the remainder of
the section, we describe adaptations of the proposed algorithm for three di�erent examples
of cyclic discovery processes: i) discovery of �avorful cocktail recipes (Section 5.5.1), ii) a
focused drug design problem in which we search for a molecule e�ective against a chronic
lung disease of signi�cant pharmaceutical interest (Section 5.5.2), and iii) synthetic testbeds
with properties that share many characteristics with drug design (Section 5.5.3).

Before we proceed with details speci�c to di�erent discovery processes, we review the
standard factorization of a tuple kernel which factors it into the product of domain kernels,
k ((x,y) , (x′ , y′)) = kX (x,x′)kY (y,y′), where kX and kY are kernel functions over spaces X
and Y . In all considered adaptations of Algorithm 5.1, the property space Y is binary and
equipped with the identity kernel. Such property spaces require the simplest feedback and
the least e�ort from an evaluation oracle. In more complex experiments such as drug design,
the evaluation oracle could output a structured label such as binary vector re�ecting di�erent
aspects of designed molecular structures—binding a�nity, toxicity, absorption etc. In these
cases, one could take the property space Y to be the power set of elementary properties and
use the intersection kernel kY (yi , yj ) = |yi ∩ yj |.

5.5.1 Discovery of Flavorful Cocktail Recipes

For a customer that repeatedly orders cocktails and asks for recommendations in a bar, a
creative bartender is able to suggest novel cocktails based on the feedback from the customer.
A good bartender can serve �avorful cocktails without ever relying on a particular database
of cocktails. Instead, he can rely on his knowledge and his observations. This cyclic discovery
process can be realized through an ai-agent that mimics a creative bartender and one such
agent can be created by adapting Algorithm 5.1 to personalized cocktail design. In the
remainder of the section, we describe an in silico evaluation oracle for this discovery process,
together with a kernel function and a proposal generator.

A cocktail recipe can be represented as a sparse real-valued vector with non-negative
entries that sum to one. Each component in such a vector corresponds to an ingredient and
the non-zero values in one such vector express the proportions of the respective ingredients.
For the space of cocktail recipes, we have devised evaluation oracles using a small dataset
of cocktails collected from www.webtender.com. The dataset was labeled by a human
expert and based on such a labeling we have trained decision trees to distinguish two �avor
pro�les (see Appendix 5.8): dry and creamy cocktails.

To apply Algorithm 5.1 to the space of sparse real-valued vectors, we use the Gaussian
kernel with diagonal relevance scale matrixM , i.e., kX (x,x′) = exp

(
−1/2(x − x′)>M2(x − x′)

)
.

For each coordinate, we set the relevance scale as

mjj =
2
√
n/nnz(

maxni=1 xij −minni=1 xij
) ,

where n denotes the number of instances, nnz the total number of non-zero entries in the
data set, d dimension of the instances, and 1 ≤ j ≤ d.

Having described the evaluation oracle and kernel function, we describe a method for
sampling sparse vectors based on a small set of such instances. This exemplary set of instances
serves as side knowledge facilitating the design of a proposal generator. We use this method
in Section 5.6 to propose cocktail recipes which are represented as sparse real-valued vectors.

www.webtender.com
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Algorithm 5.3 Sparse Vector Sampler

Input: moment-matched parameters η, {τi}di=0, {ui}di=1, {vi}di=1,
{
µi

}d
i=1

Output: sparse d-dimensional vector x
1: x← 0
2: repeat n ∼ Poisson(η) until n > 1
3: c1 ∼Discrete(τ0) and xc1 ∼ Triangular

(
µc1 | uc1 ,vc1

)
4: for k = 2, . . . ,n do
5: π←∑k−1

i=1 τci and πci ← 0 with 1 ≤ i < k
6: ck ∼Discrete(π) and xck ∼ Triangular

(
µck | uck ,vck

)
7: end for

Algorithm 5.3 is a pseudo-code description of the sparse vector sampler. The inputs to
the algorithm are parameters de�ning the sampling process. In the �rst step of the sampling
process, the algorithm sets all the components of a d-dimensional vector to zero (line 1).
Following this, the approach selects the number of components in the initialized vector with
non-zero values (line 2). This is achieved by sampling the Poisson distribution with mean
parameter η, provided as input to the algorithm, until the sampled number of non-zero
components is greater than one. Having selected the number of non-zero components, the
algorithm proceeds to sample their positions within the vector and corresponding values.
The �rst non-zero component is obtained by sampling from a discrete distribution given
by the parameter vector τ0 such that each component in that parameter vector quanti�es
its frequency of appearance in the exemplary set of instances (line 3). In this way, the
algorithm ensures that components with high appearance frequency in the exemplary set of
instances are more likely to be sampled than other components. Having sampled the �rst
non-zero component c1, the algorithm sets its value by sampling the Triangular distribution
given by its mode parameter µc1 and having support on the interval [uc1 ,vc1]. Following
this, the algorithm proceeds to sample the remaining non-zero components and their values
(lines 4− 7). While sampling the remaining components, the algorithm needs to ensure that
combinations of frequently co-occurring components from the exemplary set of instances are
sampled more often. This is achieved with the help of parameters specifying a component
graph such that each component is assigned to a vertex in the graph and the edges between
components co-occurring in the exemplary set of instances are weighted according to their
co-occurrence frequency. Thus, having sampled the �rst non-zero component in vector x, the
algorithm samples the next one from a discrete distribution given by the row-vector from the
adjacency matrix of the component graph that corresponds to the �rst sampled component.
The procedure is repeated for the following component with the di�erence being that the
sum of the row-vectors of the already sampled components de�nes the discrete distribution
of the available components (i.e., not sampled in the previous steps).

The parameter values, given as input to Algorithm 5.3, are estimated from exemplary
instances by moment-matching them from data. A pseudo-code description of the parameter
estimation is given in Algorithm 5.4. The input to the algorithm is a sample of d-dimensional
sparse vectors. In the �rst step of parameter initialization, the algorithm sets the number
of non-zero components in each of the exemplary instances (line 1). Following this, the
parameter specifying the Poisson distribution of the number of components in Algorithm 5.3
is initialized with the average number of non-zero components in the exemplary set of
instances (line 2). Then, the procedure initializes the parameter vector quantifying the
occurrence frequency of each component in the set of exemplary instances (line 5) and the
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Algorithm 5.4 Initialization of Sparse Vector Sampler
Input: sample of sparse d-dimensional vectors {xi}ni=1
Output: moment-matched parameters η, {τi}di=0, {ui}di=1, {vi}di=1,

{
µi

}d
i=1

1: ni ← |{k | 1 ≤ k ≤ d ∧ xik , 0}|, where 1 ≤ i ≤ n
2: N ←∑n

i=1ni and η← N/n
3: τkk ← 0, where 1 ≤ k ≤ d
4: for j = 1,2, . . . ,d do
5: τ0j ← 1

N

∑n
i=1 Ixij,0

6: τkj ←
∑n
i=1 Ixij,0 ∧ xik,0∑
i : xik,0

(nk−1) + 1
d , where k , j and 1 ≤ k ≤ d

7: µj ←
∑
i : xij,0

xij∑n
i=1 Ixij,0

and σj ←
√∑

i : xij,0(xij−µj)
2∑n

i=1 Ixij,0

8: uj ←max
{
0,µj − 2σj

}
and vj ←min

{
1,µj +2σj

}
9: end for

adjacency matrix of the component graph weighted with co-occurrence frequencies of pairs
of components (line 6). The remaining parameters specify the triangular distributions of
values for each of the components. The triangular distribution of a component is given by
the mode which is set to the mean value computed over the instances with non-zero values at
that component and interval endpoints specifying the support of the distribution (lines 7-8).
To allow sampling of sparse vectors with combinations of non-zero components which are
not appearing together in the exemplary set of instances, we perform the Laplace smoothing
of parameter vectors {τi}di=1 by adding 1/d to each of its components.

As the described proposal generator almost always samples recipes with 2-10 ingredients,
for n possible ingredients the number of di�erent ingredient combinations is

∑10
k=2

(n
k

)
(ap-

proximately n10). As the sampler is developed based on a set of cocktails with 335 ingredients
there are approximately 1024 di�erent combinations of ingredients in this search space. Thus,
this is a huge search space that can provide an insight into the properties of the discovery
process on large scale problems.

5.5.2 Focused Drug Design Problem

In this section, we propose an adaptation of Algorithm 5.1 to a focused drug design problem
aimed at designing pharmaceuticals that are e�ective against idiopathic pulmonary �brosis.
This is a chronic lung disease with an urgent need for new medicines. The disease is
characterized by scar tissue which forms in the lungs with increasing severity and it is
often caused by micro-injuries from tobacco smoking, inhalation of micro particles, such
as wood and metal dust, or by viral infection (Liu et al., 2017). In the United States, about
100 000 people have idiopathic pulmonary �brosis, and a similar number in Europe. Each year
approximately 35 000 new patients are diagnosed in Europe. The best current treatment, lung
transplantation, is available to only 5% of patients. The recently approved drugs, Pirfenidone
and Nintedanib, slow the disease but have side e�ects and do not reverse it (Liu et al., 2017).

Integrins are relatively large proteins that act as transmembrane receptors. They link the
extracellular matrix with the cytoskeleton of cells. The general structure of an integrin is
a heterodimer, consisting of an α and a β subunit. The group of rgd integrins recognizes
an arginine-glycine-aspartate sequence in the endogenous ligands that bind at the interface
of the two subunits. The rgd integrin receptors are thought to play a key role in �brosis
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(and many other diseases, including cancer) and are likely to be druggable targets (Ley et al.,
2016; Hatley et al., 2017; Reed et al., 2015). Antagonism of αvβ6 is one promising avenue of
inquiry and some success has been reported (Adams et al., 2014) in discovering compounds
with signi�cant activity against αvβ6 that have physico-chemical properties commensurate
with oral bioavailability. Moreover, molecular dynamics simulations of peptides binding to
αvβ6 have been conducted (Maltsev et al., 2016), but there are only few published studies on
docking of small molecules to this integrin. Motivated by these considerations, we search for
an antagonist of an αvβ6 protein structure. As an in silico proxy of the binding a�nity, we
use a molecular docking score to an experimentally determined αvβ6 protein structure.

The docking program takes as input a molecular structure and outputs a real-valued
score that quanti�es the quality of the docking of that molecule to the αvβ6 receptor site.
To obtain a discrete/binary label for the activity of a designed structure, we threshold the
docking score. To determine a suitable threshold value, we have performed a series of
preliminary experiments and de�ned a binary labeling oracle that assigns label 1 to molecular
structures with a docking score below −11.75. Whilst it is recognized that there are many
conformational changes of αv integrins during their activation and signaling, we have elected
to base our modeling on a published crystal structure. The structure (Dong et al., 2014) was
taken from the Protein Data Bank (pdb code: 4um9). The zwitterionic forms of the ligands
were considered, with the negatively charged carboxylate moiety at one end (coordinating to
a metal in the midas site) and the naphthyridine protonated (having a pKa of ≈ 7.8), making
the aromatic nitrogen atom positively charged (Cacciari et al., 2009). This is important for a
bidentate hydrogen bond interaction with Asp218. Molecular docking was performed using
OpenEye fred (McGann, 2011), which uses a rigid ligand approach, where a large number
of conformations are generated and each of those are docked successively. The chemgauss3
scoring function was used in an initial docking, and the highest scoring positions were
evaluated using the more sophisticated (and more computationally expensive) chemgauss4
scoring function, which includes improved terms for ligand-receptor hydrogen bonds and
metal-chelator interactions. The latter is particularly pertinent, considering the importance
of binding with the divalent metal cations within the active site (Millard et al., 2011). Both
enantiomers were sampled separately, while individual conformers were deemed identical
(and removed) if the root mean squared di�erence in the atomic positions was less than 0.5 Å.
A maximum of 10 000 conformers was allowed per enantiomer and typically there were
between 2 500 to 5 000 conformers per enantiomer. To allow more extended sampling of
the conformational space, a truncated form of the mmff94s force�eld (Halgren, 1999) was
used to calculate individual conformer energy and the maximum range between the global
minimum and any conformer was limited to 20 kcal/mol. This truncated form of the force�eld
excludes both Coulomb and the attractive part of van der Waals interactions. The binding
box used for the docking was centered on the Thr221 residue, in the middle of the active site.
The edges were extended past important features, namely Asp218 and the Mg+2 ion, such
that the �nal size was 27.0 by 29.7 by 21.3 Å, giving a total search volume of 17,010 Å3.
The binding site was further restricted by enforcing an interaction with the divalent metal
cation as well as a hydrogen bond with the Asp218 residue; a single hydrogen bond was
required in order not to restrict the search space unduly. The grid point spacing was 1 Å
with a second pass grid point spacing of 0.5 Å.

We represent molecular structures as vertex labeled graphs and use the Weisfeiler–
Lehman graph kernel (Shervashidze et al., 2011) to embed these structures to a reproducing
kernel Hilbert space. This graph kernel has been shown to be highly expressive on predic-
tion tasks involving molecules (Shervashidze et al., 2011) and it is related to the molecular
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(a) (b) (c)
Figure 5.2: An illustration of the Weisfeiler–Lehman transformation for generating feature vectors from molecules.
(a) An example molecular structure (Methyl anthranilate). (b) An undirected vertex labeled graph is formed from
the molecule (notice that bond type is ignored). (c) Features are generated according to the appearance frequency
of subtree patterns rooted at any of the vertices from the labeled graph. The height of any such subtree pattern
needs to be less than a pre-speci�ed parameter value (e.g., all subtree patterns of height less than 10). In this
feature vector, additional components would be present for other subtree patterns such as P (here 0), N: CHH
(here 1), C: COO (here 1), H: CHN (here 2) etc.

�ngerprint called ecfp (Rogers and Hahn, 2010). In contrast to the Weisfeiler–Lehman
graph kernel, that �ngerprint: i) ignores hydrogen atoms, ii) uses binary features instead
of counts to express occurrences of vertex centered subtree patterns in molecular graphs,
and iii) incorporates more information than atomic number into the initial labels. Figure 5.2
provides an illustration of the Weisfeiler–Lehman embedding of a molecular structure.

A typical approach to candidate generation in drug design is to make alterations to a
parent compound having a moderate binding a�nity to a target protein site. Changes to
the parent compound can include modi�cations to its functional groups and attachment
of di�erent fragments in the place of hydrogen atoms or small fragments contained in the
parent molecule. Motivated by these approaches, we develop a proposal generator for �nding
candidate molecules of which some are likely to dock well to the receptor site. In particular,
we start with an integrin antagonist compound as the parent and consider substitutions at �ve
possible points on the aryl ring (Figure 5.3), which based on structure activity relationships,
are known to profoundly in�uence potency and selectivity (Adams et al., 2014). Based on the
integrin medicinal chemistry literature, we consider a variety of possible substituents: H, F, Cl,
Br, methyl, ethyl, propyl, iso-propyl, cyclopropyl, methoxy, hydroxyl, CF3, OCF3, SO2Me,
nitrile and several heterocycles, imidazole, pyrazole and triazole (with possible substituents
of H, methyl or ethyl). After a preliminary calculation, we elected to impose a couple of
restraints on the molecules that could be generated, so that they would be more drug-like and
more amenable to synthesis. Thus, catechols (where there are neighboring hydroxyls on the
aryl ring) were precluded, as they are prone to autoxidation and, therefore, di�cult to work
with experimentally. The total number of hydrogen bond donors that could be present in a
molecule was capped at �ve. A maximum of 500 was set for the molecular weight. Clearly,
more of the Lipinski’s rules (Lipinski et al., 2001) or other in silico restrictions (e.g., polar
surface area) could be readily implemented, but the above restraints proved to be su�cient.

Algorithm 5.5 is a pseudo-code description of the proposal generator. The algorithm
takes as input a parent compound, together with a set of fragments and a set of attachment
points onto which the fragments can be substituted instead of hydrogen atoms. As described
above, the Lipinski constraints are enforced with a maximum allowed molecular weight
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Figure 5.3: The parent compound considered in this focused drug design problem; green circles denote points
where substituents could be attached.

and a maximum allowed number of hydrogen bond donors in the resulting compound. The
sampling process is initialized by setting the total molecular mass to that of the parent
compound and the total attached fragment mass to zero. Also, the set of attachment points
of fragments with hydrogen bond donors is initialized with the empty set. The algorithm
then starts to iterate until: i) there are no available attachment points, ii) there are no feasible
fragments to be substituted at the available attachment points, iii) a random interruption
event occurs, which is de�ned to happen with probability given by the ratio of the attached
molecular mass and the total available attachment mass. This probabilistic constraint is
introduced so that it is more likely to sample lighter compounds. The alterations to the parent
compound are achieved through two steps: i) sampling uniformly at random an attachment
point from the available ones, and ii) sampling a fragment uniformly at random from the set
of feasible fragments for the sampled attachment point. For the constraints that were applied,
there are approximately 185 000 di�erent compounds that de�ne our search space.

Algorithm 5.5 Molecular Structure Sampler
Input: parent compound B, set of fragments F , set of attachment points A, maximum molecular

weight m, maximum number of hydrogen bond donors h
Output: molecular structure

1: H← ∅, mtotal ←m (B), mattached ← 0, u ∼ U [0,1]
2: repeat
3: a ∼ U (A)
4: if hydrogen bond donor neighbor of a then F ′← {f ∈ F | h (f ) = 0} else F ′←F end if
5: f ∼ U (F ′)
6: B [a]← f
7: if hydrogen bond donor in f thenH←H∪{a} end if
8: mtotal ←mtotal +m (f ) and mattached ←mattached +m (f )
9: F ← {f ∈ F |m (f ) +mtotal ≤m∧ h (f ) + h (B) + |H| ≤ h}

10: A←A\ {a}
11: u ∼ U [0,1]
12: until u > mattached

m−m(B) and F , ∅ and A , ∅

5.5.3 Synthetic Testbeds

The main objective of our synthetic testbeds is to demonstrate that our approach can discover
a diverse set of target-structures in non-smooth problems which act as in silico proxies for
drug discovery. In particular, in the construction of Hamiltonian graphs and complements
of these, there are numerous Hamiltonian graphs which become non-Hamiltonian with a
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removal of a single edge. Such graphs are structurally very similar and close in the design
space. Thus, these testbeds can mimic well the activity cli�s speci�c to drug design where
very similar structures have di�erent binding a�nities. To apply our algorithm to the space
of graphs we use the random walk kernel (Gärtner et al., 2003). The kernel performs random
walks on both graphs and counts the number of matching walks. It can be computed as

kX (G1,G2) =
|V×|∑
i,j=1

∞∑
n=0

[λnE
n×]ij , (5.24)

where E× denotes the adjacency matrix of the product graph G1 ×G2 and {λn} is a sequence
of hyperparameters that needs to be set such that the sum in (5.24) converges for any pair
of graphs G1 and G2. We apply the kernel with λn = λn to unlabelled graphs, and for this
particular case E× = E1 ⊗E2. The kernel can be computed e�ciently using the �xed-point
method described by Borgwardt (2007).

As the set of graphs is a complicated, combinatorial object, it can be di�cult to design an
e�cient proposal generator. In general, to sample a random unlabelled graph it is common to
use the Erdős–Rényi model with p = 1/2. This approach, however, samples some graphs too
often and does not provide su�cient diversity to the constructive process (e.g., the probability
of sampling an unlabelled path with n vertices is n!

2 times higher than the probability of
sampling the complete graph with the same number of vertices). Instead, one could try to
�rst sample the parameter p uniformly at random and then to sample a graph with edge
probability p. The last method does not generate unlabelled graphs u.a.r., but it can be used to
e�ciently sample some graph concepts (e.g., acyclic graphs). In our simulations (Section 5.6),
we take the safest route and choose to propose graphs with n vertices using the uniform
sampler. In the remainder of the section, we provide a brief review of this sampler.

Let Gn denote the set of all canonically labelled graphs with n vertices. A left action
of a group S on a set X is a function µ : S × X → X with the following two properties:
(i) (∀x ∈ X)(∀s, t ∈ S) : µ(t,µ(s,x)) = µ(ts,x); (ii) (∀x ∈ X) : µ(e,x) = x (where e is the
identity element of the group S). If no confusion arises we write µ(s,x) = sx. A group action
de�nes the equivalence relation ∼ on a set X , i.e., a ∼ b⇔ sa = b for some s ∈ S and a,b ∈ X .
The equivalence classes determined by this relation are called orbits of S in X. The number
of orbits of a group S in a set X can be computed using the Frobenius–Burnside theorem.

Theorem 5.21. (Frobenius–Burnside Theorem, Cameron, 1998) Let X be a �nite non-empty set
and let S be a �nite group. If X is an S-set, then the number of orbits of S in X is equal to

1
|S |

∑
s∈S

∣∣∣∣{x ∈ X | sx = x}∣∣∣∣ .
To sample unlabelled graphs uniformly at random, Wormald (1987) proposed a rejection

sampling method based on Theorem 5.21. The idea is to consider the action of a symmetric
group Sn over the set Gn. Then, the orbits of Sn in the set Gn are non-isomorphic unlabelled
graphs and to sample unlabelled graphs uniformly it su�ces to uniformly sample the or-
bits (Dixon and Wilf, 1983). Moreover, it is possible to show (Dixon and Wilf, 1983; Wormald,
1987) that uniform orbit sampling is equivalent to uniform sampling from the set

Γ =
{
(π,g) | π ∈ Sn ∧ g ∈ Fix(π)

}
,

where Fix(π) = {g ∈ Gn | πg = g}. According to Theorem 5.21, an element (π,g) ∈ Γ can be
sampled u.a.r. by choosing a permutation π with probability proportional to |Fix(π)| and
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then choosing g ∈ Fix(π) uniformly at random. Dixon and Wilf (1983) proposed a more
e�cient sampling algorithm by partitioning the symmetric group into conjugacy classes
[πi] (1 ≤ i ≤ l) and sampling: (i) [πi] ∼ |[πi ]||Fix(πi )|/on|Sn|, (ii) g ∈ Fix(πi) u.a.r.; where on
denotes the number of non-isomorphic unlabelled graphs and πi is a class representative
for the class [πi]. As it holds |Fix(π)| = |Fix(π′)| and |Fix(π) ∩ [g]| = |Fix(π′) ∩ [g]| for
π,π′ ∈ [πi] then (e.g., see Wormald, 1987, for a more detailed proof)

P
(
[g]

)
=

l∑
i=1

P
(
[g], [πi]

)
=

l∑
i=1

P
(
[πi]

)
P
(
[g] | [πi]

)
=

l∑
i=1

∣∣∣[πi]∣∣∣∣∣∣Fix(πi)∣∣∣
on|Sn|

∣∣∣Fix(πi)∩ [g]∣∣∣∣∣∣Fix(πi)∣∣∣ =
1
on
.

The problem with the approach is the fact that we need to know the exact number of
non-isomorphic graphs with n vertices on to apply the algorithm and this number is not
computable in polynomial time. To overcome this, Wormald (1987) partitions the elements
of the group Sn into classes [ck] = {π ∈ Sn | support(π) = k}, 0 ≤ k ≤ n, and upper bounds∣∣∣[ci]∣∣∣∣∣∣Fix(πi)∣∣∣ ≤ Bi . The algorithm then samples an unlabelled graph u.a.r. as follows: (i)
[ci] ∼ Bi/∑j Bj , (ii) πi ∈ [ci] u.a.r., (iii) g ∈ Fix(πi) u.a.r., and (iv) accept the sampled graph g
with probability B−1i

∣∣∣[ci]∣∣∣∣∣∣Fix(πi)∣∣∣; otherwise, restart. On average, the method generates an
unlabelled graph in time polynomial in the number of vertices.

5.6 Experiments

Having provided theoretical justi�cation for our approach and means to adapt it to di�erent
cyclic discovery processes, here we evaluate its e�ectiveness with a series of experiments
that are designed to mimic the discovery of cocktail recipes, pharmaceuticals, and graphs
with desired properties. We �rst describe the baselines (Section 5.6.1) used to assess the
e�ectiveness of the approach and then present the results of our empirical evaluation. In the
�rst part of the empirical evaluation (Section 5.6.2), we focus on evaluating the e�ectiveness
of the approach in relation to the baselines on synthetic testbeds and discovery of �avorful
cocktails. For these cyclic discovery processes, the properties evaluated by the oracle are not
computationally intensive and allow for a comparison from di�erent perspectives. Having
established that the proposed approach can discover a diverse set of structures with desired
properties, we apply it to a focused drug design problem described in Section 5.5.2. The
preliminary results (presented in Section 5.6.3) augur well for the future, more extensive
work, which will include more extended search and exploration of signi�cantly larger spaces.

5.6.1 Baselines

Our �rst baseline is k-NN active search proposed by Garnett et al. (2012). While the approach
represents a good baseline from the perspective of our success measure (i.e., generate as
many targets as possible), it is not designed for search in intensionally speci�ed structured
spaces. In particular, the algorithm requires a �xed set of instances to be provided as input.
To account for this limitation of k-NN active search we have simulated the approach with
a pool of 50 000 instances sampled from a proposal generator. For the number of nearest
neighbors in the k-NN probabilistic model acting as a surrogate of the target property, we
have selected k = 50 (ties are not possible due to the choice of the hyperparameters). In
order to apply this approach to large sets of structures with a di�erent probabilistic model
an e�cient pruning strategy needs to be devised. In the original paper, the authors gave
pruning rules only for the k-NN probabilistic model. As it is non-trivial to come up with
pruning rules for conditional exponential family models, a search with these models would
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be ine�cient. For example, for the investigated case of Hamiltonian graphs with 10 vertices
and an extensional description in the form of a sample with less than 1% of all structures
from this space k-NN active search with 2-step look-ahead (Garnett et al., 2012) and a budget
of 500 oracle evaluations requires more than 50 million parameter �ttings for the search
modeled with a conditional exponential family. The latter is clearly ine�cient and the reason
for simulating this approach only with the k-NN probabilistic model.

Our second baseline is deterministic greedy argmax search that �rst takes a sample
of instances from a proposal generator and then picks an instance from this sample with
the highest conditional probability of having a target property. The selected instance is
then evaluated by the oracle and the conditional model is updated to account for this new
observation. This method is designed to compensate for the fact that k-NN active search
with 1-step look-ahead (Garnett et al., 2012) requires a �nite sample of instances. For
graphs, the approach is combined with the uniform proposal generator, the most exploratory
proposal generator for this type of greedy search. The approach is simulated with conditional
exponential family model and kernels described in Section 5.5.

All the reported results were obtained by averaging over 5 runs of the respective algo-
rithms. In Algorithm 5.1, the Metropolis–Hastings sampling was performed with a burn-in
sample of 50000 proposals and sampling was done for 50 rounds/batches. In each round
we take 10 i.i.d. samples by running 10 Metropolis–Hastings chains in parallel (note that
samples from di�erent rounds are dependent). To allow for models of varying complexity, we
have estimated the conditional exponential family regularization parameter in each round
using 5-fold strati�ed cross-validation. As the competing approaches are not designed to
search for targets without an a priori provided labeled structures, we have made a minor
modi�cation to our problem setting and warm-started each method with a random sample
of 5 target and the same number of non-target structures. For graphs these were chosen
uniformly from the search space and for cocktails uniformly from the available sample of
cocktails. Note that without this warm-start the argmax search estimates the distribution
of target structures with a single peak around the �rst discovered target. Moreover, k-NN
probabilistic model cannot learn a property until it sees more than k labeled structures and it
is unlikely to observe a target in k successive samples from a proposal generator.

5.6.2 Comparison against Baselines

In the �rst set of experiments, we design cocktails of di�erent �avors (see Section 5.5.1),
Hamiltonian and connected planar graphs (see Section 5.5.3), as well as the respective com-
plements of these classes. As we can not expect to be able to perfectly distinguish each of the
graph concepts from its complement due to the hardness of complete graph kernels Gärtner
et al. (2003), we can not expect to learn to perfectly generate these concepts. The main
objective of these experiments is to demonstrate that our approach can discover a diverse set
of target-structures in non-smooth problems which act as in silico proxies for drug design.

As described in Section 5.6.1, we compare Algorithm 5.1 to k-NN active search with
1- and 2-step look-ahead (Garnett et al., 2012) and a deterministic greedy approach which
discovers structures by repeatedly performing argmax search over samples from a proposal
generator using the learned conditional label distribution (selected structures are labeled
by an oracle and the model is updated in each iteration). In the �rst step of this evaluation,
we measure the improvement of each of the considered approaches over plain Monte Carlo
search performed with a proposal generator. We assess the performance of the approaches
with correct-construction curves which show the cumulative number of distinct target
structures discovered as a function of the budget expended (see Section 5.1). To quantify the
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Figure 5.4: The �gure shows the lift of correct-construction curves for graph and cocktail concepts, which
indicates how much more likely it is to see a target compared to Monte Carlo search.

improvement of the approaches over plain Monte Carlo search, we measure the lift of the
correct-construction curves. In particular, for sampling from the minority class of a proposal
generator the lift is computed as the ratio between the number of distinct structures from
this class generated by an algorithm and the number of such structures observed in a sample
(of the same size) from the distribution of the proposal generator. In the second step of our
empirical evaluation, we assess the structural diversity between the targets discovered by
an algorithm. We do this by incorporating diversity into the correct-construction curves
(see Section 5.1). In particular, we take a sample of 50000 structures from the proposal
generator and �lter out targets. We consider these as undiscovered targets and compute
the average distance between an undiscovered structure and a subsample of budget size
from this set of structures. With this average distance as radius we circumscribe a sphere
around each of the undiscovered targets. Then, instead of construction-curves de�ned with
the number of discovered targets, we use the construction-curves de�ned with the number
of the spheres having a target structure within them. To quantify the e�ectiveness of the
considered algorithms in discovering structurally diverse targets, we normalize these sphere
based construction-curves with one such curve corresponding to an ideal algorithm that
only generates targets – the output of this algorithm can be represented with a subsample of
budget size from the undiscovered target structures.

In Figure 5.4, we show the lift of the correct-construction curves for all the considered
approaches. We have de�ned these correct-construction curves by considering isomorphic
graphs and cocktails with equal sets of ingredients (ignoring portions of each ingredient) as
identical structures. The plots indicate that our approach and k-NN active search are able to
emphasize the target class in all the domains for all the considered properties. Moreover, for
our approach the magnitude of this emphasis is increasing over time and it is more likely to
generate a target as the process evolves. In all domains and for all properties, k-NN active
search discovers more target structures than our approach. For graph properties, we see
that argmax search also discovers more targets than our approach. For cocktails, argmax
search discovers many cocktails with identical sets of ingredients and di�erent portions of
these (such cocktails are considered identical in the correct-construction curves). Thus, if we
are only interested in discovering target structures without considering structural diversity
between them, our empirical evaluation indicates that it is better to use k-NN active search
than Algorithm 5.1.

In Figure 5.5, we show the dispersion of target structures discovered by each of the
considered approaches. The plots indicate that our approach achieves a large structural
variety of discovered targets. In all domains and for all properties, our approach outperforms
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Figure 5.5: The �gure shows the dispersion of discovered targets relative to an algorithm with the identical
proposal generator that outputs only targets. The reported curves can be seen as the percentage of discovered
target class partitions given a budget.

both k-NN active and greedy argmax search. These experiments also indicate that k-NN
active search explores more than argmax search. In some of the plots, a dip can be observed
in the curves for k-NN active and argmax search. This can be explained by the exploitative
nature of these algorithms and the fact that the search is focused to a small region of the
space until all the targets from it are discovered. In contrast to this, our approach discovers
targets from the whole search space and can cover a large number of spheres centered at
undiscovered samples with a relatively small number of targets. Thus, if we are interested in
discovering diverse target structures, our results indicate that it is better to use Algorithm 5.1
than k-NN active or argmax search.

Graphs, v = 7 Graphs, v = 10 Cocktails

Hamiltonian Connected Planar Hamiltonian Connected Planar dry creamy

36.68% (±0.24) 65.01% (±0.20) 77.45% (±0.28) 8.68% (±0.15) 11.27% (±0.14) 16.83% (±0.14)

Table 5.1: The table shows the fraction of target structures observed within 50 000 samples from proposal
generators. The sampling was performed 5 times and the reported values are mean and standard deviation of the
fractions computed for these runs.

5.6.3 Drug Discovery

Having established the e�ectiveness of our approach on synthetic testbeds and in silico
discovery of �avorful cocktails, we proceed to evaluate its e�ectiveness on a focused drug
design problem where we search for pharmaceuticals e�ective against idiopathic pulmonary
�brosis (see Section 5.5.2). We assess the performance of the algorithm from several di�erent
perspectives. First, we con�rm that the approach represents a signi�cant improvement over
plain Monte Carlo search performed with the proposal generator. Following this, we quantify
the learning rate of our approach by measuring how much more likely the approach is to
generate desired molecular structures compared to the proposal generator as a function of the
budget expended. Having assessed the algorithmic performance of the approach, we proceed
to analyze the designed molecules from the perspective of medicinal chemistry. In particular,
we discuss some of the designed molecular structures in the context of compounds (Adams
et al., 2014) already reported in the literature.

Similar to Section 5.6.2, we evaluate the e�ectiveness of the approach using the correct-
construction curve that shows the cumulative number of discovered molecules exhibiting
the target property, i.e., a docking score lower than −11.75, as a function of the budget
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Figure 5.6: Panel (a) shows the cumulative numbers of hits as a function of the budget expended. The blue curve
is the correct-construction curve of our approach (with corresponding con�dence interval colored in light blue)
and the red curve is the correct-construction curve of the proposal generator. Panel (b) indicates how much more
likely it is to see a hit compared to a standard Monte Carlo search performed with the proposal generator.

expended. Figure 5.6, which shows correct-construction curves for our approach (blue curve)
and the described proposal generator (red curve), con�rms that our approach generates
more hits than Monte Carlo search with the proposal generator. Moreover, the correct-
construction curve of the proposal generator is, apart from a few initial rounds, always below
the lower endpoint of the con�dence interval for the curve of our approach. The lift of
the correct-construction curve for our approach (showed in Figure 5.6, Panel b) indicates
that the approach is approximately 2.8 times more likely to output a hit than the proposal
generator after 50 rounds of model calibration. The results presented in this study have been
generated using simulations consuming approximately 28 hours of cpu time and running
on 10 processors in parallel. This o�ers signi�cant speed up over an exhaustive exploration
of the search space speci�ed by the proposal generator that would take more than 8 months
of cpu time using the same number of processors. Moreover, while the simulations were
relatively short (with a budget of 500 evaluations), the approach managed to discover a
number of interesting compounds from the perspective of medicinal chemists.

The experimental knowledge provided to the algorithm was limited to the X-ray crystal
structure of the receptor and some basic constraints on the mode of binding applied to the
molecular docking. The parent compound and the possible fragments were informed, in
a broad sense, by expert knowledge from medicinal chemistry, but no explicit data on the
experimental activities of any compounds were used. Previous work (Adams et al., 2014)
presented the synthesis and experimental assay (reported as pIC50 values, i.e., the negative
logarithm of the concentration required for 50% inhibition) of 30 derivatives of the parent
compound shown in Figure 5.3. A pIC50 = 6.0 corresponds to a 1µM potency, and the
compound might be considered active or worth further investigation. From Table 5.2, we
can see that the parent compound has a pIC50 of 5.7 and would, therefore, be considered
inactive. Encouragingly, 19 out of the 26 reported active compounds were found by the
algorithm. Several of the compounds reported as active were not found, but two of these
were not discoverable by the algorithm, because the substitution pattern (forming new ring
structures) was not part of the proposal generator. There were two compounds for which
the docking score was not su�ciently low, which indicates that there is an opportunity
to improve the docking protocol. In total, 20 of the 30 compounds known from previous
work (Adams et al., 2014) were discovered.

The described cyclic discovery process (see Section 5.5.2) is a proof of concept and still
requires considerable re�nement but nonetheless, from a medicinal chemistry and drug dis-
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covery perspective, the molecules suggested for synthesis are promising for several reasons.
First, many of the molecules suggested align with the structure activity relationships (An-
derson et al., 2016a,b) which were not part of the input to the algorithm, either in terms of
parameters or design. An example is the algorithm predominantly suggests substitutions at
the meta position, which indeed appears to be crucial for αvβ6 activity. Suggested substitu-
tions also often feature heterocycles which are known to deliver αvβ6 activity (Anderson
et al., 2016a,b). Secondly, most of the molecules are drug-like: that is, they resemble both the
structures and physico-chemical properties of oral drugs. Thirdly and particularly promising
is the speed at which new molecules can be evaluated computationally allowing several
iterations to be easily carried out to improve the design quality of the molecules (as detailed
earlier). Moving forward, it will be straightforward to incorporate additional constraints,
such as scoring molecules against αvβ3, which should improve the selectivity window for
αvβ6 over αvβ3, including polar surface area cut-o�s (which correlate with several important
drug-like properties) and simple synthetic chemistry considerations.

No. Fragments Docking Score pIC50 No. Hits
Compounds independently identi�ed as hits

[4] 3-F −12.16 6.1 25
[22] 3-MeO −11.79 6.5 8
[25] 4-Me −11.96 6.1 7
[32] 3-CN −11.94 6.6 23

Compounds not discovered by the algorithm
[31] 4-Ph −11.92 6.4 -
[38] 3,4-Me2 −12.18 6.7 0
[39] 3,4,-CH2CH2CH2 −11.93 6.8 -

Compounds with pIC50 ≥ 7.0, but with
a docking score above the threshold (−11.75)

[33] 3-CF3 −11.54 7.0 10
[43] 3-CF3-4-Cl −11.39 7.0 1

Parent compound
[15] H −10.26 5.7 0

Table 5.2: Comparison of hits identi�ed by the approach with compounds that have been experimentally
assayed (Adams et al., 2014).

5.7 Discussion

In this section, we place our work in the context of machine learning approaches closely
related to ours (Section 5.7.1) and discuss some directions for future development of the cyclic
discovery process characteristic to drug design (Section 5.7.2).

5.7.1 Machine Learning Perspective

Active search with k-NN probabilistic model (Garnett et al., 2012) is a related approach with the
problem setting similar to that of de novo design. A key distinction between the investigated
problem setting and k-NN active search is in the requirement to discover structures from the
whole domain. Garnett et al. (2012) assume that an extensional description in the form of
a �nite subset of the domain is explicitly given as input to the algorithm. In this work we
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require only an intensional description of the domain. For instance, for the domain of graphs
with n ∈ N vertices, the intensional description is just that of the number of vertices, while
the extensional one consists of a list of all graphs with n vertices. In many cases, considering
intensional descriptions is much more promising because an algorithm with an extensional
description of an exponentially large or uncountable search space can only consider small and
often arbitrary subsets of this space. The second key distinction between k-NN active search
and de novo design is in the assessment of their outcomes. In particular, both approaches
try to �nd, as soon as possible, as many as possible target structures. However, k-NN active
search is designed to only discover members of a target class and Algorithm 5.1 is designed to
�nd members of distinct structural partitions of a target class. This is very useful in domains
where there are numerous isofunctional structures and in which k-NN active search outputs
structures from small number of structural partitions of a target class.

Recently, active search has been applied to a problem related to our cocktail construction
task—interactive exploration of patterns in a cocktail dataset (Paurat et al., 2014). The
di�erence between our setting and that of Paurat et al. (2014) is in the requirement to
generate novel and previously unseen cocktails exhibiting a target property rather than
searching for patterns in an existing dataset. In addition to this, active search has been
applied to real-world problems where the search space is given by a single combinatorial
graph, and a subset of its nodes is interesting (Wang et al., 2013). This is di�erent from
applications considered here for which the search space consists of all graphs of a given size.

As the investigated problem setting can be seen as a search in structured spaces, our
approach is, with certain distinctions, closely related to structured output prediction (Tsochan-
taridis et al., 2004; Daumé III et al., 2009). In structured output prediction the goal is to �nd a
mapping from an instance space to a ‘structured’ output space. A common approach is to
�nd a joint scoring function, from the space of input–output pairs to the set of reals, and
to predict the output structure which maximizes the scoring function for each test input.
Finding a good scoring function can often be cast as a convex optimization problem with
exponentially many constraints. It can be solved e�ciently if the so-called separation and/or
decoding sub-problems can be solved e�ciently. One di�erence between the investigated
setting and structured output prediction is in the assumption how input–output pairs are
created. In particular, structured output prediction assumes that the provided outputs are
optimal for the given inputs. In many de novo design problems, it is infeasible to �nd the best
possible output for a given input. For de novo drug design this assumption implies that we
would need to know the best molecule—from the space of all synthesizable molecules—with
respect to di�erent properties, such as binding a�nity to speci�c protein sites. Moreover,
as the decoding problem is designed assuming that the input–output pairs are optimal the
greedy argmax approach to solving this problem does not incorporate exploration. As a
result of this, similar to argmax search these methods generate structures from a very small
number of structural partitions of the target class. Other di�erences are in the iterative nature
of de novo design and in the hardness of the separation or decoding sub-problems that most
structured output prediction approaches need to solve. Another related sub-problem is that
of �nding preimages (Weston et al., 2004) which is typically hard in the context of structured
domains except for some special cases such as strings (Cortes et al., 2005; Giguère et al., 2015).

Related to the proposed approach are also methods for interactive learning and opti-
mization as well as Bayesian optimization. Interactive learning and optimization methods
implement a two-step iterative process in which an agent interacts with a user until a satisfac-
tory solution is obtained. Some well-known interactive learning and optimization methods
tackle problems in information retrieval (Yue and Joachims, 2009; Shivaswamy and Joachims,
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2012) and reinforcement learning (Wilson et al., 2012; Jain et al., 2013). However, these meth-
ods are only designed to construct a single output from the domain of real-valued vectors and
can not be directly applied to structured domains. Bayesian optimization (Brochu et al., 2010;
Shahriari et al., 2015), on the other hand, is an approach to sequential optimization of an
expensive, black-box, real-valued objective. Rather than seeking a set of high-quality items,
Bayesian optimization focuses on �nding the single highest-scoring point in the domain. We,
in contrast, consider discrete labels and wish to maximize the number of diverse targets found
in an intensionally speci�ed structured space. In drug design, this emphasis on exploring all
parts of the search space is known as sca�old-hopping (Schneider and Fechner, 2005) and it
is related to the problem of attrition (Schneider and Schneider, 2016). Namely, in order to
address this problem it is not su�cient to search for a molecule with the highest activity level
as it can be toxic or bind to an undesired protein in addition to the target protein. If attrition
is to be reduced an algorithm needs to �nd a number of structurally di�erent molecules
binding to a target protein. As our approach achieves a large structural variety of discovered
targets, it has a potential to tackle this di�cult problem.

5.7.2 De Novo Drug Design Perspective

In drug discovery, de novo design refers to a family of approaches for �nding novel molecules
with desired properties from an intensionally speci�ed chemical space of interest (Schneider
and Fechner, 2005; Schneider, 2013). An algorithm from this family can be characterized
by three core components: i) (adaptive) proposal generator, ii) scoring function, and iii)
adaptation scheme that adapts/shrinks the search space by modifying the proposal generator
using scores assigned to the previously generated compounds. A de novo design approach
is assessed by the quality of the designed compounds, which depends on the ability of
the algorithm to cope with the combinatorial complexity of the search space (Schneider
and Fechner, 2005). This ability and, thus, the outcome of any de novo design approach,
crucially depends on the adaptation scheme. As described earlier, our approach copes with
the combinatorial complexity of the search space by focusing the search with a probabilistic
surrogate of the binding a�nity. Moreover, the focused search is iteratively re�ned by
updating the surrogate model as we observe the binding a�nity of the previously selected
designs. The whole process is consistent and guaranteed not to perform arbitrarily bad. In
particular, after at most polynomially many oracle queries our approach is guaranteed to
sample from the posterior distribution over molecular structures that is de�ned by the best
conditional model of the binding a�nity from a family of such models provided as input
to the algorithm. In contrast to the presented approach, adaptation schemes in de novo
design are typically not driven by adaptive models/hypotheses and the achieved reductions
in the search space do not come with any type of guarantee. More speci�cally, de novo
design methods are stochastic processes that usually discover good candidates but there is
no guarantee that any of these random processes will not become arbitrarily bad (i.e., fail to
discover satisfactory lead candidates after at most polynomially many queries). Moreover,
our empirical results (e.g., see Figure 5.6) indicate that our approach exhibits a fast learning
rate and after several hundred oracle queries samples a model that approximates fairly well
the in silico proxy of the binding a�nity to the selected protein binding site.

Most in silico scoring functions used in de novo design are developed to approximate pri-
mary target constraints, that is, the binding a�nity of a ligand to a target protein site (Schnei-
der and Fechner, 2005; Schneider, 2013). In silico evaluation of any compound can be a
challenging and computationally intensive task. For example, the docking oracle employed
in this chapter takes approximately 20-25 cpu minutes to dock an individual molecule and
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typically involves the explicit docking of 3 000 to 7 000 conformations per molecule. This
number of conformations is somewhat larger than that usually considered due to the pres-
ence of stereo-centers as well as exploring extended, slightly higher energy conformations.
Receptor-based scoring functions typically employed in de novo design can be divided into
three groups (Perola et al., 2004; Schneider and Fechner, 2005; Schneider, 2013): i) explicit
force-�eld methods, ii) empirical scoring functions, and iii) knowledge-based scoring func-
tions. The approaches with force-�eld scoring functions can be computationally expensive
and discovered compounds are evaluated by approximating the binding energy (Nishibata
and Itai, 1993; Rotstein and Murcko, 1993; Liu et al., 1999; Zhu et al., 2001; Pearlman and
Murcko, 1993). The empirical scoring functions rely on a small set of known actives to train
a regression model that weights individual ligand-receptor interactions types (Böhm, 1992;
Clark et al., 1995; Murray et al., 1997; Wang et al., 2000). However, as only a small set of
known actives is available beforehand such oracles tend to bias the discovery process toward
structural components present in the set of known actives (Schneider and Fechner, 2005;
Schneider, 2013). Knowledge-based evaluation oracles are based on statistical properties of
ligand-receptor structures, that is, frequencies of interactions between all possible pairs of
atoms (DeWitte and Shakhnovich, 1996; Ishchenko and Shakhnovich, 2002). Such oracles
require only structural information to derive the interaction frequencies for all pairs of atoms
and are known to be less biased than the empirical ones.

Access to compounds from an intensionally speci�ed chemical space of interest is typically
provided through proposal generators (also known as structure samplers). The existing
compound generation procedures can be classi�ed into two groups (Schneider and Fechner,
2005; Schneider, 2013): receptor and ligand based structure samplers. Proposal generators
based on a particular receptor structure can provide additional information characteristic
to a protein binding site. Several such approaches have been developed over the years with
the prominent ones being: i) linking of fragments placed at key interaction sites of the
receptor structure (Böhm, 1992; Clark et al., 1995; Wang et al., 2000), ii) growing of a fragment
randomly selected from a set of possible initial fragments which have all been placed at
interaction sites of the receptor using expert knowledge (Nishibata and Itai, 1993; DeWitte
and Shakhnovich, 1996; Ishchenko and Shakhnovich, 2002), and iii) structure sampling
where randomly selected fragments are assembled at the receptor with the help of molecular
dynamics simulations (Liu et al., 1999; Zhu et al., 2001; Pearlman and Murcko, 1993; Goodford,
1985). Ligand based proposal generators are independent of the receptor structure and
work by sampling atoms/fragments and connecting them using valence rules (Schneider and
Fechner, 2005; Schneider, 2013). Atom-based samplers (Nishibata and Itai, 1991; Pearlman
and Murcko, 1993; Todorov and Dean, 1997) are known to generate diverse compounds and
span a large chemical space. This then increases the combinatorial complexity of the search
space and makes the search for active compounds more di�cult. Contrary to this, fragment
based approaches (Pellegrini and Field, 2003; Böhm, 1992; Clark et al., 1995; Brown et al.,
2004; Pierce et al., 2004; Gillet et al., 1993) can signi�cantly reduce the size of the search space.
The reduction is deemed meaningful (Schneider and Fechner, 2005; Schneider, 2013) when
the used fragments are common structures found in a variety of known drug-like compounds.
In our simulations, we take the latter approach and investigate a local neighborhood of a
parent compound with relatively moderate activity level (Adams et al., 2014).

While the binding a�nity is of primary concern for de novo design, equally important are
secondary target constraints (Schneider and Fechner, 2005; Schneider, 2013; Vangrevelinghe
and Ruedisser, 2007): absorption, distribution, metabolism, excretion, and toxicity (admet
properties). Similar to binding a�nity, admet properties can also be approximated in
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silico (Vangrevelinghe and Ruedisser, 2007; van de Waterbeemd and Gi�ord, 2003; van de
Waterbeemd and Rose, 2008). Previous attempts to approximate secondary target constraints
in silico include approaches based on qsar analysis (Vangrevelinghe and Ruedisser, 2007;
van de Waterbeemd and Rose, 2008) and/or protein modelling (Vangrevelinghe and Ruedisser,
2007). Thus, any e�ective drug design algorithm needs to be successful across multiple
di�erent criteria. While the proof of concept presented in this chapter focuses on binding
a�nity only, our approach can be easily adapted to multiple objectives. More speci�cally,
instead of oracles with binary feedback we could employ an oracle providing binary vectors
as feedback. Such vectors could, for example, have a component for each of the admet
properties and the kernel function on such space of properties can be given by a simple dot
product between the binary vectors. The desired property class from which the algorithm
would aim at sampling from is given by the vector of all ones. We consider this to be a
promising avenue for future work.

Wider application of de novo design algorithms has been hindered by two main shortcom-
ings (Vangrevelinghe and Ruedisser, 2007): synthetic accessibility of the designed compounds
and the insu�cient reliability of the a�nity approximations. In particular, proposal genera-
tors that only consider valence rules while proposing candidate compounds are not su�cient
to ensure generation of stable and synthetically accessible molecules (Schneider and Fech-
ner, 2005; Schneider, 2013). Several di�erent approaches have been developed for tackling
the problem of synthetic accessibility of compounds (Schneider, 2013; Vangrevelinghe and
Ruedisser, 2007). In Section 5.5.2, we have taken one such approach by substituting fragments
consisting of functional groups in place of hydrogen atoms at speci�c attachment points of
the parent compound. As the parent compound is synthetically accessible, it is expected that
the substitutions mimicking chemical reactions would yield synthetically accessible designs,
as well. In addition to this, we have incorporated �lters into our proposal generator to
increase the drug-likeness of the proposals and their synthetic accessibility. The �lters consist
of some of Lipinski’s rules (Lipinski et al., 2001) and a constraint preventing undesirable
(from the perspective of synthetic accessibility) placements of hydroxyl groups. Moreover, as
lead compounds with large molecular mass are likely to reduce the chance of drug reaching
the market (Vangrevelinghe and Ruedisser, 2007), we enhance the Lipinski’s constraint on
molecular mass by incorporating a stochastic stopping criterion into our proposal generator
that favors lighter compounds (e.g., see the mass-dependent stopping criterion in line 12 of
Algorithm 5.5). Further improvements to structure sampling are possible with the addition of
information from available sets of actual chemical reactions (Murray et al., 1997; Schneider
et al., 2000; Lewell et al., 1998; Vinkers et al., 2003). This type of additional information has
the potential to generate a viable synthesis path together with a novel compound (i.e., recipe
for derivation of any designed compound) and will be considered in future work.
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5.8 Appendix

Dry
[1 | jagermeister ≥ 0.225 ? Dry : go to 2]
[2 | gin ≥ 0.465639 ? Dry : go to 3]
[3 | jackdaniels ≥ 0.138889 ? Dry : go to 4]
[4 | 151 proof rum ≥ 0.291666 ? Dry : go to 5]
[5 | vodka ≥ 0.437037 ? Dry : Not Dry]

Creamy
[1 | bailey′s irish cream ≥ 0.03324 ? Creamy : go to 2]
[2 | creme de cacao ≥ 0.0059365 ? Creamy : go to 3]
[3 |milk ≥ 0.21495 ? Creamy : go to 4]
[4 | irish cream ≥ 0.006375 ? Creamy : go to 5]
[5 | cream ≥ 0.014754 ? Creamy : Not Creamy]
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Notation

Chapter 2

X instance space
Y space of labels
ρ Borel probability measure de�ned on Z = X ×Y
ρX marginal probability measure de�ned on X
X data matrix with instances as columns
n number of instances
d dimension of the instance space
H reproducing kernel Hilbert space with kernel k : X ×X → R
HX span of evaluation functions fromH, i.e.,HX = span({k (x, ·) | x ∈ X})
K kernel matrix
As set of control points’ placements along the s-th knowledge-based

kernel principal component (p. 21)
Bs set of must-link and cannot-link constraints imposed along the s-th

knowledge-based kernel principal component (p. 21)
Cs set of classi�cation constraints imposed along the s-th

knowledge-based kernel principal component (p. 21)
Υ linear operator expressing hard knowledge-based constraints (p. 23)
A diagonal matrix with Aii = 1 when a coordinate placement is provided

for instance xi and Aii = 0 otherwise (p. 23)
B Laplacian matrix given by must-link and cannot-link constraints (p. 24)
C diagonal matrix with Cii = 1 when a label is provided for instance xi

and Cii = 0 otherwise (p. 24)
H matrix expressing the soft orthogonality constraint (p. 24)

Chapter 3

X compact subset of a �nite dimensional Euclidean space
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Y subset of the set of real numbers with labels in its interior
n number of instances
m number of greedy features
d dimension of the instance space
ρ Borel probability measure de�ned on a Euclidean space Z = X ×Y
ρX marginal probability measure de�ned on X
z sample of n examples drawn independently from ρ (p. 52)
fρ regression function of a measure ρ de�ned on Z (p. 53)
Eρ expected squared error in the measure ρ de�ned on Z (p. 53)
Ez mean squared error given by a sample z (p. 53)
L2ρ (X) Hilbert space of square integrable functions in a measure ρ
C (X) Banach space of continuous functions on X with the uniform norm
φ ridge-wave basis function (p. 54)
co(S) convex hull of elements from a set S
S closure of a set S
FΘ set of ridge-wave functions de�ned on X (p. 54)
F hypothesis space de�ned as F = co(FΘ) (p. 56)
Nε (A; ‖·‖) ε-covering number of a set A in the metric space given by ‖·‖ (p. 57)

Chapter 4

X instance space
ρ Borel probability measure de�ned on X
X data matrix with independent samples from ρ as columns
n number of instances
d dimension of the instance space
l,m number of landmarks
H reproducing kernel Hilbert space with a Mercer kernel h : X ×X → R
H kernel matrix
Z set of landmarks de�ning the Nyström approximation of H
HX×Z block in the kernel matrix H corresponding to kernel values de�ned

by instances in X and Z
‖·‖p Schatten p-norm of a symmetric and positive de�nite matrix (p. 91)
K number of clusters in an instance of K-means clustering
φ (·) K-means clustering potential (p. 93)
P centroid assignment function in K-means clustering (p. 93)
P cluster indicator matrix (p. 93)
U⊥ the dual matrix of a matrix U
C∗ optimal set of K-means centroids
HK optimal rank K approximation of a kernel matrix H (p. 92,102)
φ (C∗ |U ) clustering potential de�ned by the projections of X and C∗ onto
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the subspace spanned by the columns of U (p. 102)

Chapter 5

X instance space
Y space of properties/labels
O evaluation oracle
y∗ ∈ Y target property
B number of oracle evaluations
G proposal generator
φ (x,y) su�cient statistics de�ned on X ×Y
A (θ | x) log-partition function of a conditional exponential family model

(p. 129,130)
H reproducing kernel Hilbert space with a tuple kernel k : Z ×Z → R

and Z = X ×Y
Θ ⊆H parameter set specifying a family of conditional exponential family models

(p. 130,143)
ρ Borel probability measure de�ned on Z = X ×Y (p. 129,130,143)
ρX marginal probability measure de�ned on X
g transition kernel of a Markov chain with stationary distribution ρX (p. 129)
supp(·) support of a probability distribution
L2µ (X ×Y ) Hilbert space of square integrable functions in a measure µ
H (p | q) conditional entropy of a conditional probability density function p with

respect to a marginal probability density function q (p. 131)
L (θ) log-loss function of a parameter vector θ ∈Θ (p. 143)
Dt data available at iteration t (p. 144)
L (θ | Dt) empirical loss of a parameter vector given observed data Dt (p. 144)
k kernel function de�ned on X ×Y (p. 151)
kX kernel function de�ned on X (p. 151)
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