1,045 research outputs found

    A Linear Hybrid Sound Generation of Musical Instruments using Temporal and Spectral Shape Features

    Get PDF
    The generation of a hybrid musical instrument sound using morphing has always been an area of great interest to the music world. The proposed method exploits the temporal and spectral shape features of the sound for this purpose. For an effective morphing the temporal and spectral features are found as they can capture the most perceptually salient dimensions of timbre perception, namely, the attack time and the distribution of spectral energy. A wide variety of sound synthesis algorithms is currently available. Sound synthesis methods have become more computationally efficient. Wave table synthesis is widely adopted by digital sampling instruments or samplers. The Over Lap Add method (OLA) refers to a family of algorithms that produce a signal by properly assembling a number of signal segments. In granular synthesis sound is considered as a sequence with overlaps of elementary acoustic elements called grains. The simplest morph is a cross-fade of amplitudes in the time domain which can be obtained through cross synthesis. A hybrid sound is generated with all these methods to find out which method gives the most linear morph. The result will be evaluated as an error measure which is the difference between the calculated and interpolated features. The extraction of morph in a perceptually pleasant manner is the ultimate requirement of the work. DOI: 10.17762/ijritcc2321-8169.16045

    A flexible bio-inspired hierarchical model for analyzing musical timbre

    Get PDF
    A flexible and multipurpose bio-inspired hierarchical model for analyzing musical timbre is presented in this paper. Inspired by findings in the fields of neuroscience, computational neuroscience, and psychoacoustics, not only does the model extract spectral and temporal characteristics of a signal, but it also analyzes amplitude modulations on different timescales. It uses a cochlear filter bank to resolve the spectral components of a sound, lateral inhibition to enhance spectral resolution, and a modulation filter bank to extract the global temporal envelope and roughness of the sound from amplitude modulations. The model was evaluated in three applications. First, it was used to simulate subjective data from two roughness experiments. Second, it was used for musical instrument classification using the k-NN algorithm and a Bayesian network. Third, it was applied to find the features that characterize sounds whose timbres were labeled in an audiovisual experiment. The successful application of the proposed model in these diverse tasks revealed its potential in capturing timbral information

    Beyond (the cave of) pitch/loudness-equalization: A Commentary on Reymore (2021)

    Get PDF
    Traditional approaches in timbre research have often equalized sounds according to pitch, loudness, duration in order to study timbral differences across instruments. In a compact case study of the semantic qualities of the oboe and French horn, Reymore (2021) takes a different approach and considers timbral differences within musical instruments, which arise due to the covariation of timbre with the musical parameters of fundamental frequency (pitch) and playing effort (dynamic level). The study constitutes a timely contribution to a growing body of work on the covariation between timbre, pitch, and loudness. After providing a background and summary of important aspects of the target article, I elaborate on results from a recent complementary study that analyzed acoustical signal properties regarding that matter. Finally, I address three important issues in this context that appear to be worthy of future research

    Sound morphing by feature interpolation

    Full text link

    Timbre from Sound Synthesis and High-level Control Perspectives

    Get PDF
    International audienceExploring the many surprising facets of timbre through sound manipulations has been a common practice among composers and instrument makers of all times. The digital era radically changed the approach to sounds thanks to the unlimited possibilities offered by computers that made it possible to investigate sounds without physical constraints. In this chapter we describe investigations on timbre based on the analysis by synthesis approach that consists in using digital synthesis algorithms to reproduce sounds and further modify the parameters of the algorithms to investigate their perceptual relevance. In the first part of the chapter timbre is investigated in a musical context. An examination of the sound quality of different wood species for xylophone making is first presented. Then the influence of instrumental control on timbre is described in the case of clarinet and cello performances. In the second part of the chapter, we mainly focus on the identification of sound morphologies, so called invariant sound structures responsible for the evocations induced by environmental sounds by relating basic signal descriptors and timbre descriptors to evocations in the case of car door noises, motor noises, solid objects, and their interactions

    Musical timbre: bridging perception with semantics

    Get PDF
    Musical timbre is a complex and multidimensional entity which provides information regarding the properties of a sound source (size, material, etc.). When it comes to music, however, timbre does not merely carry environmental information, but it also conveys aesthetic meaning. In this sense, semantic description of musical tones is used to express perceptual concepts related to artistic intention. Recent advances in sound processing and synthesis technology have enabled the production of unique timbral qualities which cannot be easily associated with a familiar musical instrument. Therefore, verbal description of these qualities facilitates communication between musicians, composers, producers, audio engineers etc. The development of a common semantic framework for musical timbre description could be exploited by intuitive sound synthesis and processing systems and could even influence the way in which music is being consumed. This work investigates the relationship between musical timbre perception and its semantics. A set of listening experiments in which participants from two different language groups (Greek and English) rated isolated musical tones on semantic scales has tested semantic universality of musical timbre. The results suggested that the salient semantic dimensions of timbre, namely: luminance, texture and mass, are indeed largely common between these two languages. The relationship between semantics and perception was further examined by comparing the previously identified semantic space with a perceptual timbre space (resulting from pairwise dissimilarity rating of the same stimuli). The two spaces featured a substantial amount of common variance suggesting that semantic description can largely capture timbre perception. Additionally, the acoustic correlates of the semantic and perceptual dimensions were investigated. This work concludes by introducing the concept of partial timbre through a listening experiment that demonstrates the influence of background white noise on the perception of musical tones. The results show that timbre is a relative percept which is influenced by the auditory environment

    Real-time segmentation of the temporal evolution of musical sounds

    Get PDF
    Since the studies of Helmholtz, it has been known that the temporal evolution of musical sounds plays an important role in our perception of timbre. The accurate temporal segmentation of musical sounds into regions with distinct characteristics is therefore of interest to researchers in the field of timbre perception as well as to those working with different forms of sound modelling and manipulation. Following recent work by Hajda (1996), Peeters (2004) and Caetano et al (2010), this paper presents a new method for the automatic segmentation of the temporal evolution of isolated musical sounds in real-time. We define attack, sustain and release segments using cues from a combination of the amplitude envelope, the spectro- temporal evolution and a measurement of the stability of the sound that is derived from the onset detection function. We conclude with an evaluation of the method
    corecore