3,719 research outputs found

    Optimal treatment allocations in space and time for on-line control of an emerging infectious disease

    Get PDF
    A key component in controlling the spread of an epidemic is deciding where, whenand to whom to apply an intervention.We develop a framework for using data to informthese decisionsin realtime.We formalize a treatment allocation strategy as a sequence of functions, oneper treatment period, that map up-to-date information on the spread of an infectious diseaseto a subset of locations where treatment should be allocated. An optimal allocation strategyoptimizes some cumulative outcome, e.g. the number of uninfected locations, the geographicfootprint of the disease or the cost of the epidemic. Estimation of an optimal allocation strategyfor an emerging infectious disease is challenging because spatial proximity induces interferencebetween locations, the number of possible allocations is exponential in the number oflocations, and because disease dynamics and intervention effectiveness are unknown at outbreak.We derive a Bayesian on-line estimator of the optimal allocation strategy that combinessimulation–optimization with Thompson sampling.The estimator proposed performs favourablyin simulation experiments. This work is motivated by and illustrated using data on the spread ofwhite nose syndrome, which is a highly fatal infectious disease devastating bat populations inNorth America

    Applications Of Operations Research/Statistics In Infection Outbreak Management

    Get PDF
    Operations Research (OR) can be identified as the discipline that uses statistics, mathematics, computer-modelling and similar science methodology for decision making (Luss, Rosenwein, 1997). OR, powered with statistics and models, is a high potential engine for use in many areas that require evidence-based or model-based decision making. One of the most promising areas is specifically the infection outbreak management. Surprisingly, very little OR/statistics research has been aimed at infection outbreak management; usually, other general epidemiology issues were tackled in models. However, OR/statistics models for use in the infection outbreak management exist and can be effectively used in public policy and outbreak management practice. Probably, key reasons for that little involvement of OR/statistics in the infection outbreaks management is low awareness among the specialist community of OR/statistics use and benefits for their decision making. Up to the moment, there is lack of contemporary review of OR/statistics-applied models used for the infection outbreak management decision making. The present paper aimed at filling that gap and providing two benefits to involved health care managers and academics: first, developing awareness on the use and benefits of OR/statistics models for the infection outbreak management decision making, and second, for plotting the current state of affairs to highlight research opportunities for developing the field by academics and epidemic control professionals

    Challenges and Future Directions in Pandemic Control

    Get PDF
    In this letter, we describe some of the most important objectives and needs in pandemic control. We identify the main open problems in the different stages of the decision making process, as well as the most significant challenges to overcome them, leading to promising future research di rections. We provide a concise review of the most recent literature describing such challenges, highlighting the main results, achievements and methodologies that can be employed to address them. In particular, we discuss some promising recent techniques that have been successfully applied to the Covid-19 pandemic and could be very valuable in the design of novel methodologies to face future pandemic

    Building Early Warning Systems for Public Health Concerns Using AI-assisted Electrical Modelling for Epidemic Pattern Recognition

    Get PDF
    A rapid recognition and handling of new threats to public health is crucial for reducing large-scale epidemic outbreaks as well as related consequences. However, this study is relevant because it could enhance the surveillance capabilities that can be used to respond swiftly and effectively to major outbreaks. While there are numerous challenges facing the use of artificial intelligence (AI) in epidemiological research, such technology has a lot of promise. Some of these include integration of complex data sources, validating data, managing computational requirements, and identifying and addressing privacy and security concerns No one doubts that Surveillance Predictive Modeling System-Based Healthcare Framework (SPMS-HF) will overcome these setbacks. SPMS-HF works by using potent AI algorithms to analyze electrical data and hence predict outbreak conditions. This allows for more accurate predictions and early warnings of potential public health risks. There could be different uses for SPMS-HF including real-time disease surveillance, resource efficiency, and public health. Implementation of this program enables healthcare givers alongside police officers to boost community health outcomes while improving their counter-response attitudes. To illustrate the applicability of SPMS-HF simulation analysis was carried out on historical epidemiological data. The results suggest that the model can identify possible health hazards as well as predict future outbreaks with accuracy These findings illustrate how e-images with AI can produce credible warning systems for public health

    Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach

    Get PDF
    Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics

    Trends in parameterization, economics and host behaviour in influenza pandemic modelling: a review and reporting protocol.

    Get PDF
    BACKGROUND: The volume of influenza pandemic modelling studies has increased dramatically in the last decade. Many models incorporate now sophisticated parameterization and validation techniques, economic analyses and the behaviour of individuals. METHODS: We reviewed trends in these aspects in models for influenza pandemic preparedness that aimed to generate policy insights for epidemic management and were published from 2000 to September 2011, i.e. before and after the 2009 pandemic. RESULTS: We find that many influenza pandemics models rely on parameters from previous modelling studies, models are rarely validated using observed data and are seldom applied to low-income countries. Mechanisms for international data sharing would be necessary to facilitate a wider adoption of model validation. The variety of modelling decisions makes it difficult to compare and evaluate models systematically. CONCLUSIONS: We propose a model Characteristics, Construction, Parameterization and Validation aspects protocol (CCPV protocol) to contribute to the systematisation of the reporting of models with an emphasis on the incorporation of economic aspects and host behaviour. Model reporting, as already exists in many other fields of modelling, would increase confidence in model results, and transparency in their assessment and comparison

    Predictive Modeling of Cholera Outbreaks in Bangladesh

    Full text link
    Despite seasonal cholera outbreaks in Bangladesh, little is known about the relationship between environmental conditions and cholera cases. We seek to develop a predictive model for cholera outbreaks in Bangladesh based on environmental predictors. To do this, we estimate the contribution of environmental variables, such as water depth and water temperature, to cholera outbreaks in the context of a disease transmission model. We implement a method which simultaneously accounts for disease dynamics and environmental variables in a Susceptible-Infected-Recovered-Susceptible (SIRS) model. The entire system is treated as a continuous-time hidden Markov model, where the hidden Markov states are the numbers of people who are susceptible, infected, or recovered at each time point, and the observed states are the numbers of cholera cases reported. We use a Bayesian framework to fit this hidden SIRS model, implementing particle Markov chain Monte Carlo methods to sample from the posterior distribution of the environmental and transmission parameters given the observed data. We test this method using both simulation and data from Mathbaria, Bangladesh. Parameter estimates are used to make short-term predictions that capture the formation and decline of epidemic peaks. We demonstrate that our model can successfully predict an increase in the number of infected individuals in the population weeks before the observed number of cholera cases increases, which could allow for early notification of an epidemic and timely allocation of resources.Comment: 43 pages, including appendices, 5 figures, 1 table in the main tex

    Assessing the performance of real-time epidemic forecasts: A case study of Ebola in the Western Area Region of Sierra Leone, 2014–15

    Get PDF
    AbstractReal-time forecasts based on mathematical models can inform critical decision-making during infectious disease outbreaks. Yet, epidemic forecasts are rarely evaluated during or after the event, and there is little guidance on the best metrics for assessment. Here, we propose an evaluation approach that disentangles different components of forecasting ability using metrics that separately assess the calibration, sharpness and unbiasedness of forecasts. This makes it possible to assess not just how close a forecast was to reality but also how well uncertainty has been quantified. We used this approach to analyse the performance of weekly forecasts we generated in real time in Western Area, Sierra Leone, during the 2013–16 Ebola epidemic in West Africa. We investigated a range of forecast model variants based on the model fits generated at the time with a semi-mechanistic model, and found that good probabilistic calibration was achievable at short time horizons of one or two weeks ahead but models were increasingly inaccurate at longer forecasting horizons. This suggests that forecasts may have been of good enough quality to inform decision making requiring predictions a few weeks ahead of time but not longer, reflecting the high level of uncertainty in the processes driving the trajectory of the epidemic. Comparing forecasts based on the semi-mechanistic model to simpler null models showed that the best semi-mechanistic model variant performed better than the null models with respect to probabilistic calibration, and that this would have been identified from the earliest stages of the outbreak. As forecasts become a routine part of the toolkit in public health, standards for evaluation of performance will be important for assessing quality and improving credibility of mathematical models, and for elucidating difficulties and trade-offs when aiming to make the most useful and reliable forecasts.</jats:p
    corecore