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Trends in parameterization, economics and host
behaviour in influenza pandemic modelling:
a review and reporting protocol
Luis R Carrasco1,2*, Mark Jit3, Mark I Chen4,5,6, Vernon J Lee4,7,8, George J Milne9 and Alex R Cook1,4,10

Abstract

Background: The volume of influenza pandemic modelling studies has increased dramatically in the last decade.
Many models incorporate now sophisticated parameterization and validation techniques, economic analyses and
the behaviour of individuals.

Methods: We reviewed trends in these aspects in models for influenza pandemic preparedness that aimed to
generate policy insights for epidemic management and were published from 2000 to September 2011, i.e. before
and after the 2009 pandemic.

Results: We find that many influenza pandemics models rely on parameters from previous modelling studies,
models are rarely validated using observed data and are seldom applied to low-income countries. Mechanisms for
international data sharing would be necessary to facilitate a wider adoption of model validation. The variety of
modelling decisions makes it difficult to compare and evaluate models systematically.

Conclusions: We propose a model Characteristics, Construction, Parameterization and Validation aspects protocol
(CCPV protocol) to contribute to the systematisation of the reporting of models with an emphasis on the
incorporation of economic aspects and host behaviour. Model reporting, as already exists in many other fields of
modelling, would increase confidence in model results, and transparency in their assessment and comparison.

Keywords: Bayesian inference, Behaviour, Economic analysis, Epistemology of simulation, Influenza, Pandemic modelling

Introduction
Influenza pandemics are overwhelmingly large scale phe-
nomena that may result in high morbidity, mortality and
large economic impacts worldwide. The influenza pan-
demic of 1918–9 is believed to have caused excess mor-
tality of 20–40 million people [1]. Influenza pandemics
have occurred during the 20th century and beginning of
the 21st century at intervals of between 10 and 40 years,
with the latest pandemics occurring in 1918–9, 1957–8,
1968–9 [2] and 2009–10 [3]. Pharmaceutical and public
health measures can help mitigate the impacts of pan-
demics [4,5] and were implemented by many govern-
ments during the last pandemic in 2009–10 [6,7].

Because empirical or field studies of population-level
strategies to control or mitigate influenza pandemics are
generally either infeasible (e.g. controlling movement of
people within a city) or unethical (e.g. withholding vaccin-
ation of subpopulations to assess the effect on transmis-
sion), modelling is one of the only suitable methodologies
to enable multiple hypothetical pandemic preparedness
and mitigation scenarios to be assessed. Epidemic models
are especially useful to address epidemiological, economic,
and individuals’ behavioural questions [8-10]. The useful-
ness of epidemic models in directing mitigation efforts has
been supported by empirical findings that have echoed
previous modelling predictions. For instance, models pre-
dicted that reduced international air travel would be un-
likely to stop an influenza pandemic [11], a finding later
verified empirically during the 2009 H1N1 pandemic
[12,13]; other models predicted the potential of antiviral
prophylaxis and contact tracing to control small outbreaks
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[5], a prediction also verified in real-life outbreaks in semi-
closed army camps [14].
For epidemic models to produce reasonable predic-

tions on the course of the epidemic and how it can be
controlled, we need to be confident that the model cap-
tures the essential mechanisms that drive the epidemic
dynamics [15]. It is therefore essential to parameterize
the model from available data [15,16] and validate the
model to increase its credibility [17]. One of the main
focuses of this review is to evaluate the trends in the
construction and validation of mechanistic models —
models that explicitly incorporate the mechanisms or
processes underlying the outcomes of the system — of
infection dynamics for influenza pandemic preparedness,
control and mitigation. Traditionally, the main approach
for mechanistic modelling of influenza pandemics
has been based on compartmental models (Table 1)
represented by systems of differential equations. Com-
partmental models represented the dynamics of a host-
disease system for which a tractable analytical solution
could in principle be derived through mathematical
methods [8,18]. It was not until the widespread availabil-
ity of modern computing power that more complex
compartmental models for which analytical solutions
could not be derived and agent-based models (ABMs,

Table 1) explored using computer simulation became an
attractive alternative. Recent modelling work, dealing
with the threat of an influenza pandemic of avian origin
(A-H5N1), with the severe acute respiratory syndrome
(SARS) crisis in 2003 and the H1N1 2009 pandemic, has
exemplified the use of both models solved analytically
and through simulation [3,5,19,20].
Pandemic preparedness, control and mitigation model-

ling has heretofore been reviewed [21-25]. These reviews
show a bewildering array of models that have been intro-
duced, especially since the 2009 pandemic, with different
purposes, outcomes and structures. Despite the useful-
ness of modelling, few public health practitioners or de-
cision makers undergo explicit training in modelling
techniques. When combined with the rapid growth in
modelling capabilities driven by increasing computing
power, and the multitude of different disciplines – e.g.
economics, psychology, genetics – that contribute to
modelling epidemics, this makes it daunting to keep
abreast of all that modelling is capable of. To facilitate
model understanding, this review focuses in three pan-
demic modelling aspects that are recently experimenting
substantial innovations: parameterization and validation,
economic aspects [26] and behaviour of the hosts [27].
Given the diversity of new techniques in these aspects of

Table 1 Definitions of model types

Compartmental epidemic models Models that divide the population according to states relevant to the disease studied and represent the rates at
which individuals change state. These models are widely used in epidemic modelling and can be represented
by systems of differential or difference equations or stochastic rates. For instance a SIR compartmental model
would divide the population according to whether the individuals are susceptible (S), infectious (I) or recovered
(R). Basic compartmental models assume perfect mixing between homogeneous individuals but can be
expanded to account for instance for different transmission rates between ages (age-structured compartmental
models), or other heterogeneities

Network or random graph models Network (graph) models are models that characterize the relationships between individuals. Infection occurs
only between individuals (nodes) that have a connection between them (arcs or edges).

Agent-based models These models simulate the actions and interactions of autonomous agents with the aim to observe patterns
of aggregation resulting from such interaction. Their relevance in epidemic modelling stems from their
capacity to represent interactions and decisions at the individual level.

Metapopulation models Metapopulation models originate from ecology and are used to represent distinct populations distributed in
separated and discrete habitat patches. The populations can interact through migration. These models are
useful in epidemic modelling by making the patches represent cities or other levels of spatial aggregation,
thus allowing for the consideration of spatial structure. Although in their original application in ecology they
did not consider the dynamics within patches, they are amenable of incorporating the epidemic dynamics
within each patch, e.g. using compartmental models.

Game theoretic models Models that study the decisions of an individual when the outcome of such decisions depends on the
decisions of other individuals. These models study when cooperation or defection would arise from the
interaction between individuals given certain circumstances. They can be useful in epidemic modelling to
explore the incentives that humans face regarding vaccination, wearing face masks or adopting other
preventative behaviour.

Optimal control and stochastic
programming models

These are dynamic optimization techniques that aim to find the optimal way to control a system over time.
In the case of epidemic modelling, they are useful to investigate for instance the optimal deployment of
vaccines or antivirals over time to minimize the disease burden or the overall costs generated by the
epidemic. These models are different to the other models that assume a level of control that is independent
of the state of the system. By contrast, these models allow control to very depending of the final outcome
or the state of the system.

Partial or general computable
equilibrium models

Partial equilibrium models are economic models based on the equilibrium of the supply and demand of a
market assuming that the prices and quantities traded in other markets do not vary. Computable
equilibrium models (CGE), by contrast, consider the interactions between the markets composing an
economy and study the price equilibrium in all the markets considered.
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modelling, a review of common traits would be very help-
ful for non-expert users to determine which modelling
techniques are most useful to address the decisions they
face. In addition, a protocol to guide the reporting of these
aspects together with model construction would help
modellers and policy makers compare and evaluate
models. To this end, we review and classify models for
influenza pandemic preparedness from January 2000 to
September 2011, and use the resulting analysis to develop
a simple guiding protocol for reporting modelling
decisions.

Methods
Search strategy and selection criteria
We searched Google Scholar, PubMed and ISI Web of
Knowledge to identify articles focusing on influenza
pandemic modelling to inform management strategies
(see Additional file 1: Figure S1 in the electronic supple-
mentary material (ESM) for a PRISMA flow diagram
[28]). Our search criterion was: contains pandemic AND
model* AND influenza AND policy OR policies. Our eli-
gibility criteria were articles that: (i) were published in
peer reviewed journals from January 2000 to September
2011; (ii) aimed to advise policy makers and made policy
recommendations about pandemic influenza prepared-
ness, mitigation or control; and (iii) employed mechanis-
tic models to derive those insights. We further excluded
cost-effectiveness and decision tree studies that did not
incorporate disease transmission dynamics. The search
in PubMed retrieved 72 articles, ISI Web of Knowledge
128, and Google Scholar 19,200 results. After an
additional query refinement in Google Scholar (adding
to the previous query the terms: AND preparedness OR
strateg* AND simulation OR compartment*), screening
of articles and further full-text assessment for their eligi-
bility (Additional file 1: Figure S1 in ESM), 91 articles
were selected for the analysis.

Classification and evaluation of modelling traits
We classify models into several major groups: compart-
mental epidemic models, network models, agent-based
models, metapopulation models, game theoretic models,
optimal control models and partial or general comput-
able equilibrium models (definitions of the models can
be found in Table 1). In some instances models can con-
form to several categories: e.g. compartmental models
combined with metapopulation models.
In addition to classifying the models, we evaluated traits

common to several taxa consistent with the focus of the
review on evaluating the trends in parameterization and
validation, incorporation of economic aspects and host be-
haviour (Table 2). We evaluated capacity of the models to
answer (i) epidemiological questions: for instance, how
many people and which age groups were expected to

become infected, hospitalized and die as a result of infec-
tion during the pandemic? To what extent would control
and treatment interventions mitigate this impact?; (ii)
health economic questions: what would be the economic
impacts of the pandemic and which interventions would
represent better value for money to reduce the health and
economic impacts?; (iii) behavioural questions: would
changes in the behaviour of the individuals during the
pandemic influence the effectiveness of the interventions?
To classify models by their construction and validation

techniques, we evaluated whether they (i) incorporated an
assessment of the sensitivity of their results to model pa-
rameters and assumptions, (ii) were parameterized using
parameters directly from other models, and (iii) were vali-
dated from empirical data. To that end, the articles were
categorized according to the type of model used (Table 1),
population heterogeneity level considered, parameteri-
zation procedure, consideration of economic impacts,
inclusion of human behaviour and performance of valid-
ation or sensitivity analysis (see the ESM for a full list of
the models and their characteristics).

Standard reporting protocol
To facilitate the systematization and comparison of
models we develop a guiding protocol for reporting model
general Characteristics, Construction, Parameterization
and Validation aspects (CCPV protocol), derived from the
results of the review. The protocol builds upon previous
protocols to describe ABMs [31] and retains the descrip-
tion of technical aspects of the models that facilitate its
understanding and reproduction, for instance describing
the aim of the model, scale, structure, model type, dy-
namic aspects, initialization, data inputs, the way individ-
uals and their interactions are considered or the inclusion
of stochasticity (Table 3). The protocol was then exten-
sively expanded to include aspects relative to models
construction, parameterization, sensitivity analysis, verifi-
cation and validation, incorporation of economics and
host behaviour.

Review of influenza pandemic modelling
The prevalence of modelling for pandemic influenza has
increased dramatically since 2000 (Figure 1B). Out of
the 91 articles included in the review, more than half of
the models were compartmental (58/91, 64%). Compart-
mental models were in some instances combined with a
dynamic optimization framework (7/58, 12%) or game
theory (2/58, 3%). Metapopulation models were
employed in combination with both compartmental
models and ABMs (9 and 3 models respectively). The
second most common modelling approach were ABMs
(22/91, 24%). The rest of the models were computable
general equilibrium models (CGE) (3/91, 3%), network
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models (4/91, 4%) and household models (3/91, 3%)
(Figure 1A).
Most models that were applied to a specific geographic

region focused on high-income countries. Very scarce
were studies not focusing on high-income economies (5/
91, 6% applied to upper-middle income countries like
Thailand or Mexico and none applied exclusively to
low-income or lower-middle income countries), despite
the higher case fatality rate expected in those countries
[32]. The majority of studies were not intended to study
impact in specific, localised settings such as schools or
hospitals and represented instead the national or inter-
national level. A few exceptions did, on the other hand,
concentrate on the effects of school closures [4,6,33-37]
and on hospitals or hospital staff [38-40].

Parameterization
In reality many models utilized multiple parameterization
strategies. For instance, combining estimates from the
literature, censuses and maximum likelihood. For simpli-
city, models were categorized by the less common and
most sophisticated technique used. For instance, a model
using literature estimates and Bayesian inference was

categorized as using Bayesian methods for paramete-
rization. Among all models, the dominant parameteri-
zation strategy (used by 47% of the models) was to adopt
parameters from previous studies, especially from other
modelling studies perpetuating the use of parameters
chosen by other modellers (Figure 1A “parameterization”).
25% of the studies utilized information or parameters de-
rived from epidemiological, laboratory (e.g. viral shedding
duration, cohort studies) or case data (e.g. epidemic
curves, attack rates) from other sources to parameterize
the model. It was common (60%, Figure 1C) to use some
sort of sensitivity analysis and this was more frequent in
models that did not directly adopt parameters from previ-
ous models, suggesting that sensitivity analysis was not
used as a complement to reusing parameters from previ-
ous models. ABMs were more frequently built using
parameters chosen by modellers in previous studies (70%
Figure 1C) and constructed from population demographic
data, for instance from decennial censuses, rather than
using empirical data or parameters obtained from epi-
demiological or laboratory studies.
Although the most common approach was to param-

eterise models using parameter values chosen by

Table 2 Processes for model construction and validation

Parameterization The process of selecting the values or distributions of the model parameters based on empirical data, usually with a
random component. Rigorous parameterization is fundamental since the value of the parameters largely determines
the behaviour and predictions of the model.

Sensitivity and uncertainty
analysis

The study of the influence of the parameter values of the models on the model outcomes. Sensitivity analysis can vary
one parameter at a time (univariate) or multiple (multivariate). The comparison of the model predictions with the
baseline parameter values and the modified values gives an idea of how sensitive the model is to a certain parameter.
Sensitivity analysis is useful because enhances the communication of the model, tests the robustness of the results
allowing the evaluation of our confidence in the predictions, increases our understanding of the system and allows
detection of implementation errors.Uncertainty analysis evaluates the model response for the plausible range of the
parameters. Uncertainty analysis provides information on what variable generates more uncertainty in the model and
can help to direct data collection efforts.

Validation The process of investigating whether model predictions are likely to be accurate. Two main types of validation can be
distinguished: structural and predictive validation [29]. Structural validity requires that the model reproduces the
observed system behaviour and is constructed in accordance with the way the real system operates, i.e. is consistent
and based on theory. Predictive validation requires that the model predicts accurately data that were not used in its
construction. It has also been argued that the credibility of a model might be provided by the credentials of the model
building techniques, that sometimes involve contrary-to-fact principles that increase the reliability of the results [30].

Least squares Standard data fitting procedure that consists on the minimization of the squares of the difference between the
observed data points and the fitted value provided by the model.

Maximum likelihood
estimation

Method to estimate the parameters of a model based on data. This method chooses values for which the probability
of generating the observed data is highest, given the model.

Bayesian inference Method of statistical inference to estimate the parameters of a model combining prior belief and the evidence
observed. As more evidence is gathered the prior distribution is modified into the posterior distribution that represents
the uncertainty over the parameters value.

Markov chain Monte Carlo
(MCMC)

MCMC are algorithms that can be used to sample the posterior distribution for Bayesian inference and are useful
because they allow to sample from multi-dimensional distributions of observations.

Particle filtering Particle filtering is a parameterization technique based on the simulation and sequential weighting of a sample of
parameter values according to their consistency with the observed data. Particle filters are normally used to
parameterize Bayesian models in which variables that cannot be observed are inferred by the model through
connection in a Markov chain.

Calibration Here we define calibration as an iterative comparison between model predictions and observed data (e.g. attack rates,
R0) without the use of standard statistical inference methods. After comparison, simulation of the model for different
parameter values is performed and compared with the former predictions to see if an improvement in their agreement
is obtained.
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Table 3 Characteristics, construction, parameterization and validation aspects protocol (CCPV protocol) for influenza
pandemic model reporting

Categories Questions

General characteristics Aim of the model What questions is the model trying to address? Is the model based on past influenza pandemics?

Is the model aimed at generating predictions for future pandemics used to inform policy
making? Are the predictions intended to generate quantitative or qualitative policy insights?

Theoretical basis What are the underlying assumptions that support the construction of the model or parts of the
model? E.g. the law of mass action, rational choice theory.

Scale, structure and
model type.

What are the geographical and temporal scales of the model? What are the state and control
variables and the parameters? Is the model solved analytically through mathematical methods or
simulated? What type of model is it?

Dynamic aspects Is time modelled as discrete or continuous?

What variables and processes occur or are updated at each time step?

Construction aspects Initialization How is the model initialized? E.g. what proportion of individuals is initially infected?

Data Is the model informed by data from previous pandemics? If so, what are the main sources of
data in the model?

Space Is the model spatially explicit or implicit? What is the spatial structure of the model?

Are the expected heterogeneities of transmission reflected by this structure?

Stochasticity Is the model stochastic or deterministic? How is stochasticity modelled?

Interventions What interventions are modelled (e.g. antivirals, vaccination or isolation)? How do the
interventions modify epidemiological or clinical parameters in the model?

Individuals Are individuals modelled as discrete or continuous entities?

Are individuals grouped by some characteristic? (e.g. age, risk of infection).

Interactions leading to
transmission

How is interaction between individuals modelled? Are interactions heterogeneous among
individuals or locations?

Economic aspects Does the model consider the cost of the intervention and/or the economic impact of the
disease?

Does the model seek to guide decision making that will optimise net benefit? Are there groups
whose infection would lead to higher economic impacts? Was this distinction considered? Are
costs per reduction of disease burden provided?

Behaviour Are changes in the behaviour of individuals as a result of pandemic processes being modelled?
What are the assumptions made regarding behaviour? Has the model been run without
assumptions about pandemic-related changes to behaviour? How do results differ from the
model considering such changes?

Complexity Have model results been compared with simplified versions of the model? How did results differ?

To what extent has the increase in complexity in the model hindered its interpretability?

Parameterization and
Validation aspects

Sensitivity and
uncertainty analysis

Have sensitivity and uncertainty analyses been undertaken? What types of analyses were done,
what were the outputs and parameter ranges considered? Were there sensitive or uncertain
parameters that were taken directly from previous modelling studies and that might entail a risk
of bias to the predictions? Are there alternative data sets to obtain those parameters? Have
alternative scenarios for values of those parameters been considered?

Model
parameterization

Describe which parameters were parameterized from: (i) previous parameters used in other
pandemic models in the literature; (ii) data published in the literature, e.g. clinical trials, cohort
studies; and (iii) pandemic data, e.g. time series of number of cases, attack rates.

For parameters taken directly from previous pandemic modelling studies, how were these
derived? Do they apply to the case being studied? Is there a risk of model overfitting, e.g. by
using epidemic case data to fit both transmission and infectious rate parameters?

Model verification Has the model undergone standard simulation verification tests? How are results from the
model observed to evaluate its functioning? E.g. production of dynamic maps of spread during
the simulation.

Model validation Has the model been tested for structural and/or predictive validity?

What type of data independent of model parameterization was used to test its predictive
validity? If data were not available for the specific strain of study, did alternative strains or
diseases were considered? E.g. seasonal instead of pandemic influenza.

Was the model able to reproduce the validation data set? If not, what changes to the structure
of the model were considered? Did the updated model obtain an improved prediction?

Was this model developed in parallel with other independent research teams?
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previous modelling studies, there were several excep-
tions that used alternative parameterization methods
(Figure 1B shows the distribution of parameterization
methods and Table 2 defines the methods) ranging from
calibration through simulation [33,41,42], maximum
likelihood [12,36], least squares [1,11] and Bayesian
computational methods such as Markov chain Monte
Carlo (MCMC) [4] (Figure 1A).
Several real-time pandemic modelling articles involved

sophisticated methods of parameterization employing on-

going observed case data, such as maximum likelihood es-
timation [9] or sequential particle filtering within a Bayes-
ian framework [43]. Their real-time nature enabled the
possibility of continuous open validation regarding the
prediction of pandemic characteristics such as the timing
and height of the peak, and indeed Ong et al. [43] report
posting real-time predictions on the internet.
There were several non-real-time examples of model-

ling papers that parameterized compartmental models
using disaggregated epidemic data such as: questionnaire
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or survey results [44,45]; serological data [36,46]; epi-
demic cases or mortality time series [1,47-49]; and ob-
served time of pandemic peaks [11,12]. Examples of
parameterization from historical epidemic data in ABMs
included calibration to reproduce attack or serological in-
fection rates from previous pandemics [33,41,42,50].
Parameterization from case data can be used to investigate
policy effectiveness. For instance, Cauchemez et al. [4] eval-
uated the effectiveness of school closures for pandemic
control in France and showed that prolonged school
closures would potentially reduce the attack rate of a
pandemic by 13–17% by using MCMC Bayesian computa-
tional methods to fit an age-structured household-based
compartmental model to influenza surveillance data.
Most of the reviewed models reproduced parameter

choices from previous studies. This is to be expected as
deriving parameters from outbreak data is complex. As a
result, some articles specialize in the statistical analysis
that leads to parameter derivation and others specialize in
the analysis of broad policy questions. There is however
the risk that this approach may perpetuate faulty parame-
terisations from previous studies, or applies a valid param-
eter value to an inappropriate setting. On the other hand,
informing too many parameters in the model by fitting to
epidemic time series may run the risk of overfitting or
non-identifiability. It may be most credible to inform
model parameters using a combination of field or labora-
tory studies data (e.g. to fit or even directly inform param-
eters such as recovery rates) and epidemic case data (e.g.
to fit transmission related parameters), and then compare
fitted parameter values to those obtained from previous
studies. One of the possible explanations why this combin-
ation of data sources is not common is data paucity, ren-
dering the use of parameters chosen from other modelling
studies as one of the few alternatives. One way to increase
the pool of available data for model parameterization is to
establish international data sharing mechanisms among
governments and researchers, especially regarding disease
transmission between individuals and surveys of popula-
tion contact patterns [51], to facilitate the construction of
robust models.
Even if epidemic data are available, the small number of

models parameterized from such data might also reflect
statistical difficulties brought about by censorship in the
data—some processes cannot be observed, and many in-
fluenza infections are not virologically confirmed, have
indistinguishable symptoms, or are asymptomatic. Such
censoring combines with non-independence between ob-
servations to prevent the use of standard statistical tech-
niques. While such difficulties can be overcome, for
instance using maximum likelihood estimation methods
[9], particle filtering [43] or other likelihood-based compu-
tational methods [4] (Table 3), these require at least some
mastery of modern statistical techniques and may be

computationally intensive. For instance, Bayesian methods
that use MCMC algorithms or approximate Bayesian
computation methods can be particularly powerful and
flexible tools (Table 2) [52]. These methods allow the mer-
ging of prior knowledge on the epidemic parameters—
such as those derived from datasets described in the litera-
ture—with observed data from the outbreak in question.
In addition they allow rigorous parameterisation of models
of the processes underlying highly censored data [44].
Bayesian computational methods can thus be used as a
flexible and powerful way to perform inference on unob-
served parameters. Software such as openBUGS [53] and
JAGS [54] are making the use of MCMC algorithms for
model fitting accessible to non-specialists.
Parameterization becomes more difficult for large-

scale simulation models like ABMs not only because
ABMs present many more parameters to be fitted but
also because they make it harder to derive an explicit
likelihood function making impossible the use of MCMC
in Bayesian computational methods or maximum likeli-
hood estimation methods. One promising techniques
that does not require full, explicit likelihood functions,
and that is used in statistical ecology and DNA sequen-
cing, is one potential solution: sequential importance
sampling [55]. Sequential importance sampling, particle
filtering or the sequential Monte Carlo method can be
performed using the R package POMP [56].

Implications for CCPV protocol
Reporting the combination of data used for parame-
terization would allow model users to evaluate the reliabil-
ity of the models, reduce the risk of model overfitting and
allow assessing the adequacy of the parameter for a specific
setting (Table 3 “model parameterization”). Sensitivity and
uncertainty analysis are other ways to evaluate the influ-
ence of individual parameters and their uncertainty range
on model predictions (Table 2). They can be used to direct
data collection efforts and should ideally be reported
(Table 3 “sensitivity and uncertainty analysis”).

Validation
The review demonstrated the rarity of model validation
(only 16% of compartmental models and 22% of ABMs,
Figure 1C), despite the importance of two types of valid-
ation – structural and predictive (Table 2) – in develop-
ing model credibility. Structural validity, which concerns
the consistency of a model with theory, may be easier to
establish for compartmental models as they are (usually)
based on epidemic theory for which results have been
derived analytically, as long as they are not oversimpli-
fied and unable to capture the salient features of the
pandemic. In some instances, modellers may use these
analytically soluble models to generate qualitative in-
sights rather than quantitative predictions to inform
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policy. Structural validity will thus be more relevant for
these models rather than comparisons with observed
quantitative data.
Predictive validity, on the other hand, is established by

comparing model predictions to independently observed
outcomes during a pandemic to help assess whether the
model appropriately reflects reality, i.e. is capable of cap-
turing the salient mechanisms governing the dynamics of
the pandemic. If the agreement with validation data is
poor, structural or parametric changes to the model might
be needed until adequate validation can be obtained
(Table 3). Compartmental models, by aggregating individ-
uals in homogeneous compartments, are amenable to
structural changes, accounting, for instance, for spatial
and host structure by adding further compartments (e.g.
only 64% of the models reviewed were exclusively com-
partmental with extensions including a metapopulation
approach (15%), dynamic optimization (10%) and game
theory (3%) (Figure 1A)).
When making structural changes, modellers have to deal

with a fundamental trade-off between realism and inter-
pretability, with additional complexity increasing the opa-
city of the model at the same time it adds realism,
potentially up to a point where the model becomes a black
box. An example of a structural change is the need to cap-
ture spatial hierarchies, such as cities and countries, if
space is expected to influence transmission dynamics or
the roll out or effectiveness of an intervention. Often such
structure is captured using ABMs that represent individ-
uals in different countries, provinces, cities and even dis-
tricts within a city, but such finely grained structure
makes analytical interpretation of model operation virtu-
ally impossible. One possible compromise between ease of
interpretation and complexity of spatial structure — e.g.
between compartmental and ABMs — for populations
clustered in cities or countries is the metapopulation
model [11,57].
As part of the assessment of predictive validity, it

might also be useful to compare models with analogous
simplified or extended versions [e.g. 58]. For example,
the predictions of a spatially explicit ABM can be com-
pared to those of its “equivalent” spatially implicit com-
partmental model. Because complex models, such as
ABMs, will only be more realistic than compartmental
models provided there are data to support their added
realism, comparisons of ABMs with their simplified
compartmental ‘analogue’ will demonstrate whether the
added realism of the ABM is justified by improved pre-
dictive power and whether the complexity brought about
by the ABM leads to substantial losses in model inter-
pretability (“complexity” in the CCPV protocol, Table 3).
Comparison between models developed by different

groups is another interesting alternative to investigate
model validity. Parallel model development – by

different groups working on the same problem – allows
identifying inconsistencies between model results, thus
highlighting aspects of the system that are insufficiently
understood or outcomes that are not robust to the deci-
sions made in model construction. Parallel model devel-
opment has been applied for instance to malaria
eradication [59], rheumatoid arthritis [60] and HIV anti-
retroviral treatment effectiveness [61].
If data for validation are non-existent, reporting of the

alternative verification techniques used would enhance
credibility. These might involve simulation-based observa-
tion techniques such as animation (e.g. reproducing maps
of model predictions to identify malfunctions), degener-
ation tests (deactivate model functions to evaluate changes
in predictions), extreme-conditions tests (checking that
model predictions are logical even under unusually
extreme inputs) or face validation (showing results to
experts) and can be very useful to detect anomalies in the
models [62] (“model verification”, Table 3).

Implications for CCPV protocol
Reporting the underlying assumptions governing the
model, as well as their justification, would help model
users evaluate the structural validity of the model
(Table 3 “characteristics, theoretical basis”). Validation
processes will show if the models are oversimplified and
do not capture the salient features of the pandemic. In
addition, reporting structural and predictive validity to-
gether with subsequent structural changes (e.g. spatial
explicitness) to models would allow policy makers to
assess the reliability of model predictions, and other ana-
lysts to assess the robustness of model construction and
parameterisation (Table 3 “construction aspects, space”
and “model validation”). Further assistance in evaluating
the validity of the model can be obtained through
reporting model verification techniques, whether the
model has been compared with simpler versions or with
other models developed in parallel (Table 3 “model veri-
fication” and “complexity”).

Economic aspects
Very few pandemic preparedness models integrate trans-
mission dynamics and economic analysis [63]. Most
models reviewed could quantify the time course of an
outbreak and the associated disease and health care end-
points. Metrics such as the reduction in the number
infected or dying were commonly used to evaluate the
effectiveness of any interventions considered. However,
only a minority of studies (17% and 26% of compart-
mental and ABMs respectively, Figure 1C) sought to
address economic questions, either related to the eco-
nomic impacts of the pandemic or the value for money
of the control or mitigation measures in question. In
some cases, this may be because epidemiological
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modellers lack the expertise to identify and model eco-
nomic aspects. Collaboration between epidemiological
modellers and health economists may thus be mutually
beneficial to explore new interdisciplinary modelling
approaches.
While evaluation of the effectiveness of interventions

such as social distancing or antiviral prophylaxis is useful
in itself, and may be enough to rule an intervention out or
guide policy when costs are uncertain, in many circum-
stances being able to integrate effectiveness with economic
concerns in critical in deciding whether to support the
intervention. One possible way to elucidate whether eco-
nomic aspects would enhance the usefulness of the model
for policy makers is to ask whether the relative costs of
the intervention would condition its selection. For ins-
tance, school closures—identified as effective strategies
[4,34,64,65]—of more than four weeks have been shown to
burden the economy and even treble the costs arising from
an influenza pandemic [66]. In addition, individuals who
are economically active will involve a much higher eco-
nomic burden by job absenteeism due to illness or care
giving [67]. Considering the economic impacts of such het-
erogeneities at a social and individual level may change
the optimal implementation of an intervention from
what would be recommended based on epidemiological
considerations alone (i.e. minimising disease burden). The
inclusion of a cost-effectiveness outcome (e.g. cost per
quality-adjusted life years (QALY) gained or per case
averted) is a common approach which allows comparison
of the value for money of different interventions for the
same health problem (or even with other health problems
when generic measures such as QALYs are used as the
denominator).
Few of the reviewed studies incorporated economic as-

pects but, of those that did, several novel approaches
were taken. One such approach was to couple estimates
of the cost-effectiveness of vaccinating specific age and
risk groups to real-time predictions [9]. These types of
real-time outputs of the model, refined as the pandemic
progressed, are helpful for decision makers who need to
decide the number of vaccine doses to purchase and dis-
tribute, and to whom they will be allocated, based on the
latest country-specific data.
Novel insights on the optimal allocation of economic

resources were also obtained from approaches embed-
ding compartmental models into optimization frame-
works such as optimal control theory or dynamic
programming [39,45,68-71]. For instance Lee et al. [40],
using optimal control theory, identified the optimal way
to dynamically allocate control measures such as anti-
viral allocation and isolation, subject to the dynamics of
the pandemic and the effects of the control measures on
those dynamics. Their analysis identified aggressive allo-
cation of antivirals at the beginning of the pandemic as

an optimal strategy. Accounting for the dynamic nature
of the pandemic and allowing control efforts to vary pro-
duces new dynamic insights for interventions, a funda-
mental difference from epidemic models that keep
control efforts constant (Table 1).
Few compartmental models were used to perform

cost-effectiveness analysis. On those that did, models were
integrated in a cost-effectiveness analysis of antiviral
prophylaxis and vaccination [72,73]. Cost-effectiveness
analyses were also incorporated into ABMs [6,7,74-76]. For
instance, Sander et al. [77] estimated the number of QALYs
lost and economic costs due to pandemic influenza using a
detailed ABM structured by age and infection risk. This
model represented people interacting in known contact
groups such as households, neighbourhoods, communities,
schools and work groups. QALYs were obtained from clin-
ical trial data. Direct costs such as visits to physicians and
indirect costs such as job absenteeism were also computed.
As a result the cost-effectiveness of different antiviral,
school closure and pre-vaccination strategies could be esti-
mated and compared to inform policy making.
The integration of economic and epidemic models for

pandemic preparedness does not yet appear to have ex-
plored all possible model combinations, with a large
scope for modelling innovation. For instance, although
advanced economic models such as CGE models have
been applied to influenza pandemics and were able to
capture the effects of job absenteeism or deaths on the
affected sectors of various economies [66,78,79], our re-
view did not identify any study that combined such
models with dynamic epidemic models in a way that
both models feedback on to each other. Not allowing
feedback is reasonable if job absenteeism can be approx-
imated as a sudden shock to the production systems—
though in reality the shock might be progressive or
present several peaks—or if feedback from the economy
into the epidemic is not expected. Examples of such
feedback could be changes in individuals’ commuting
patterns or behaviour as the economy is affected or a
potential loss of the financial capacity to mitigate the
epidemic at the individual and government levels.

Implications for CCPV protocol
Reporting the economic aspects considered in the model,
the type of analysis employed, heterogeneity of impacts in
different groups and disease burden metrics employed,
would facilitate model users understanding the capabilities
of the model and the adequacy of the economic analysis
undertaken (Table 3, “model construction, economic
aspects”).

Individual behaviour
Behavioural aspects of infection transmission have been
studied in the context of the control of other diseases
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[a general review is provided by 27]. The inclusion of
the behaviour of the individuals during an influenza pan-
demic has heretofore been uncommon among compart-
mental models and has only recently started to receive
attention [10,44,80,81]. Although most pandemic models
represent individuals as entities whose behaviour re-
mains invariant, in reality, human behaviour might hin-
der or foster pandemic mitigation efforts, especially for
severe pandemics like that of 1918. Very few compart-
mental models reviewed considered the effect of changes
in behaviour on the impact of the pandemic (7%). New
insights have been obtained by integrating compartmen-
tal models with game theory [44,80]. For instance,
Galvani et al [44] parameterized an epidemiological
game-theoretic model from questionnaires on percep-
tions on influenza. The model was employed to compare
self-interested behaviour from the elderly towards vac-
cination with the socially optimal behaviour that would
involve vaccinating children to reduce overall transmis-
sion. The model identified how the individual and social
equilibria differed more for seasonal influenza than for
pandemic influenza – because pandemic influenza might
also pose a substantial risk to the young. This study il-
lustrates how, as a result of including human behaviour
in the model, the need to incentivize individuals to re-
duce overall influenza transmission can be identified.
In our review, the inclusion of individuals’ behaviour

was more common among simulation models although,
instead of basing behaviour representation on game or
microeconomic theory, it was usually based on simple
rules and assumptions. Different kinds of behaviours were
considered in several models, including voluntary isola-
tion, increased social distancing once infected, and pre-
ventive behaviour [33,42,66,74,79,82-85]. The inclusion of
behaviour can lead to substantially different conclusions.
For instance, if individuals perceive an epidemic as life-
threatening, they might change their commuting patterns,
wear masks and take more extreme precautions [86] and
as a result, a model not considering these behavioural
changes would overestimate the attack rate and the num-
ber of fatalities that eventually would result from the epi-
demic. In a similar fashion, if individuals perceive an
epidemic to be benign, vaccination rates and adoption of
precautions may drop, undermining the effectiveness of
control measures (evidence of both kinds of responses has
been observed during the H1N1 2009 pandemic [81]).
The extent to which human behaviour can affect model

predictions is, however, poorly understood and further
research is necessary to gauge when behaviour should be
included in models. A useful practice would be to report
behavioural assumptions, including homogeneity, in the
model systematically and how the incorporation of indi-
viduals’ behaviour affects model predictions with respect
to the model without behaviour (Table 3). Data availability

is also a major obstacle for the incorporation of human
behaviour to models and again sharing mechanisms would
facilitate model development.

Implications for CCPV protocol
Reporting of the assumptions on how behaviour is mod-
elled would help model users interpreting model results.
Reporting of comparisons of model results with and
without behaviour would further facility the understand-
ing of behaviour in the model (Table 3, “construction as-
pects, behaviour”).

Discussion
Influenza pandemic models have, over the last decade,
proliferated dramatically. In parallel to the rapid increase
in the number of models, many now incorporate sop-
histicated parameterization and validation techniques,
economic analyses and the behaviour of individuals. Tech-
niques such as Bayesian inference, agent-based modelling
and the application of game theory are being newly ap-
plied to influenza, answering a more diverse set of public
health questions.
This increase in modelling diversity stems from an in-

crease in diversity of research questions and policy strat-
egies. Ultimately, however, the choices made in model
construction will depend critically on the data available,
the research question and the consideration of the
trade-off between realism and interpretability of the
model. Even though models need to be fit for purpose, it
is noteworthy that many influenza pandemics models
rely on parameters from previous modelling studies and
are rarely validated using observed data.
Although model validation is not expected in influenza

pandemic modelling, it is considered a basic prerequisite
for publication in other fields, such as the related discip-
line of ecological modelling. For instance, the editorial
policy of the journal Ecological Modelling states: “Papers
that only present a model without support of ecological
data for calibration and hopefully also validation of the
model will not be accepted because a model has in most
cases no interest before it has been held up to ecological
reality” [87], and a standardised ODD protocol (over-
view, design concepts, and details) for documenting
ABMs more generally in that field has been published in
the same journal [31,88]. Guidelines also exist in the
fields of health economics. Examples are guidelines from
the National Institute for Clinical Excellence (NICE) in
the UK [89], the Drummond Checklist that is required
for economic submissions by the British Medical Journal
[90], guidelines for cost-effectiveness analysis [91] and
modelling guidelines from the International Society for
Pharmacoeconomics and Outcomes Research [92].
Given the large variety in modelling approaches for

influenza pandemic management and to facilitate

Carrasco et al. Emerging Themes in Epidemiology 2013, 10:3 Page 10 of 13
http://www.ete-online.com/content/10/1/3



comparison between models, we developed a simple
general modelling Characteristics, Construction, Para-
meterization and Validation aspects (CCPV) reporting
protocol (Table 3). The use of the protocol together with
international data sharing mechanisms would facilitate
comparability between models, transparency in decisions
about the kinds of models to use, and ultimately increase
the confidence in the use of modelling in formulating in-
fluenza pandemic policies.

Additional file

Additional file 1: Figure S1. PRISMA 2009 study flow diagram.
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