759 research outputs found

    Optimal processor assignment for pipeline computations

    Get PDF
    The availability of large scale multitasked parallel architectures introduces the following processor assignment problem for pipelined computations. Given a set of tasks and their precedence constraints, along with their experimentally determined individual responses times for different processor sizes, find an assignment of processor to tasks. Two objectives are of interest: minimal response given a throughput requirement, and maximal throughput given a response time requirement. These assignment problems differ considerably from the classical mapping problem in which several tasks share a processor; instead, it is assumed that a large number of processors are to be assigned to a relatively small number of tasks. Efficient assignment algorithms were developed for different classes of task structures. For a p processor system and a series parallel precedence graph with n constituent tasks, an O(np2) algorithm is provided that finds the optimal assignment for the response time optimization problem; it was found that the assignment optimizing the constrained throughput in O(np2log p) time. Special cases of linear, independent, and tree graphs are also considered

    Spatio-temporal Edge Service Placement: A Bandit Learning Approach

    Full text link
    Shared edge computing platforms deployed at the radio access network are expected to significantly improve quality of service delivered by Application Service Providers (ASPs) in a flexible and economic way. However, placing edge service in every possible edge site by an ASP is practically infeasible due to the ASP's prohibitive budget requirement. In this paper, we investigate the edge service placement problem of an ASP under a limited budget, where the ASP dynamically rents computing/storage resources in edge sites to host its applications in close proximity to end users. Since the benefit of placing edge service in a specific site is usually unknown to the ASP a priori, optimal placement decisions must be made while learning this benefit. We pose this problem as a novel combinatorial contextual bandit learning problem. It is "combinatorial" because only a limited number of edge sites can be rented to provide the edge service given the ASP's budget. It is "contextual" because we utilize user context information to enable finer-grained learning and decision making. To solve this problem and optimize the edge computing performance, we propose SEEN, a Spatial-temporal Edge sErvice placemeNt algorithm. Furthermore, SEEN is extended to scenarios with overlapping service coverage by incorporating a disjunctively constrained knapsack problem. In both cases, we prove that our algorithm achieves a sublinear regret bound when it is compared to an oracle algorithm that knows the exact benefit information. Simulations are carried out on a real-world dataset, whose results show that SEEN significantly outperforms benchmark solutions

    Edge Computing in the Dark: Leveraging Contextual-Combinatorial Bandit and Coded Computing

    Full text link
    With recent advancements in edge computing capabilities, there has been a significant increase in utilizing the edge cloud for event-driven and time-sensitive computations. However, large-scale edge computing networks can suffer substantially from unpredictable and unreliable computing resources which can result in high variability of service quality. Thus, it is crucial to design efficient task scheduling policies that guarantee quality of service and the timeliness of computation queries. In this paper, we study the problem of computation offloading over unknown edge cloud networks with a sequence of timely computation jobs. Motivated by the MapReduce computation paradigm, we assume each computation job can be partitioned to smaller Map functions that are processed at the edge, and the Reduce function is computed at the user after the Map results are collected from the edge nodes. We model the service quality (success probability of returning result back to the user within deadline) of each edge device as function of context (collection of factors that affect edge devices). The user decides the computations to offload to each device with the goal of receiving a recoverable set of computation results in the given deadline. Our goal is to design an efficient edge computing policy in the dark without the knowledge of the context or computation capabilities of each device. By leveraging the \emph{coded computing} framework in order to tackle failures or stragglers in computation, we formulate this problem using contextual-combinatorial multi-armed bandits (CC-MAB), and aim to maximize the cumulative expected reward. We propose an online learning policy called \emph{online coded edge computing policy}, which provably achieves asymptotically-optimal performance in terms of regret loss compared with the optimal offline policy for the proposed CC-MAB problem

    Quasirandom Load Balancing

    Full text link
    We propose a simple distributed algorithm for balancing indivisible tokens on graphs. The algorithm is completely deterministic, though it tries to imitate (and enhance) a random algorithm by keeping the accumulated rounding errors as small as possible. Our new algorithm surprisingly closely approximates the idealized process (where the tokens are divisible) on important network topologies. On d-dimensional torus graphs with n nodes it deviates from the idealized process only by an additive constant. In contrast to that, the randomized rounding approach of Friedrich and Sauerwald (2009) can deviate up to Omega(polylog(n)) and the deterministic algorithm of Rabani, Sinclair and Wanka (1998) has a deviation of Omega(n^{1/d}). This makes our quasirandom algorithm the first known algorithm for this setting which is optimal both in time and achieved smoothness. We further show that also on the hypercube our algorithm has a smaller deviation from the idealized process than the previous algorithms.Comment: 25 page
    • …
    corecore