7,482 research outputs found

    Modular Verification of Interrupt-Driven Software

    Full text link
    Interrupts have been widely used in safety-critical computer systems to handle outside stimuli and interact with the hardware, but reasoning about interrupt-driven software remains a difficult task. Although a number of static verification techniques have been proposed for interrupt-driven software, they often rely on constructing a monolithic verification model. Furthermore, they do not precisely capture the complete execution semantics of interrupts such as nested invocations of interrupt handlers. To overcome these limitations, we propose an abstract interpretation framework for static verification of interrupt-driven software that first analyzes each interrupt handler in isolation as if it were a sequential program, and then propagates the result to other interrupt handlers. This iterative process continues until results from all interrupt handlers reach a fixed point. Since our method never constructs the global model, it avoids the up-front blowup in model construction that hampers existing, non-modular, verification techniques. We have evaluated our method on 35 interrupt-driven applications with a total of 22,541 lines of code. Our results show the method is able to quickly and more accurately analyze the behavior of interrupts.Comment: preprint of the ASE 2017 pape

    Automatic Detection, Validation and Repair of Race Conditions in Interrupt-Driven Embedded Software

    Full text link
    Interrupt-driven programs are widely deployed in safety-critical embedded systems to perform hardware and resource dependent data operation tasks. The frequent use of interrupts in these systems can cause race conditions to occur due to interactions between application tasks and interrupt handlers (or two interrupt handlers). Numerous program analysis and testing techniques have been proposed to detect races in multithreaded programs. Little work, however, has addressed race condition problems related to hardware interrupts. In this paper, we present SDRacer, an automated framework that can detect, validate and repair race conditions in interrupt-driven embedded software. It uses a combination of static analysis and symbolic execution to generate input data for exercising the potential races. It then employs virtual platforms to dynamically validate these races by forcing the interrupts to occur at the potential racing points. Finally, it provides repair candidates to eliminate the detected races. We evaluate SDRacer on nine real-world embedded programs written in C language. The results show that SDRacer can precisely detect and successfully fix race conditions.Comment: This is a draft version of the published paper. Ke Wang provides suggestions for improving the paper and README of the GitHub rep

    Static Race Detection for RTOS Applications

    Get PDF
    We present a static analysis technique for detecting data races in Real-Time Operating System (RTOS) applications. These applications are often employed in safety-critical tasks and the presence of races may lead to erroneous behaviour with serious consequences. Analyzing these applications is challenging due to the variety of non-standard synchronization mechanisms they use. We propose a technique based on the notion of an "occurs-in-between" relation between statements. This notion enables us to capture the interplay of various synchronization mechanisms. We use a pre-analysis and a small set of not-occurs-in-between patterns to detect whether two statements may race with each other. Our experimental evaluation shows that the technique is efficient and effective in identifying races with high precision

    Dynamic Analysis of Embedded Software

    Get PDF
    abstract: Most embedded applications are constructed with multiple threads to handle concurrent events. For optimization and debugging of the programs, dynamic program analysis is widely used to collect execution information while the program is running. Unfortunately, the non-deterministic behavior of multithreaded embedded software makes the dynamic analysis difficult. In addition, instrumentation overhead for gathering execution information may change the execution of a program, and lead to distorted analysis results, i.e., probe effect. This thesis presents a framework that tackles the non-determinism and probe effect incurred in dynamic analysis of embedded software. The thesis largely consists of three parts. First of all, we discusses a deterministic replay framework to provide reproducible execution. Once a program execution is recorded, software instrumentation can be safely applied during replay without probe effect. Second, a discussion of probe effect is presented and a simulation-based analysis is proposed to detect execution changes of a program caused by instrumentation overhead. The simulation-based analysis examines if the recording instrumentation changes the original program execution. Lastly, the thesis discusses data race detection algorithms that help to remove data races for correctness of the replay and the simulation-based analysis. The focus is to make the detection efficient for C/C++ programs, and to increase scalability of the detection on multi-core machines.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Proceedings of the 4th field robot event 2006, Stuttgart/Hohenheim, Germany, 23-24th June 2006

    Get PDF
    Zeer uitgebreid verslag van het 4e Fieldrobotevent, dat gehouden werd op 23 en 24 juni 2006 in Stuttgart/Hohenhei

    A Safety-First Approach to Memory Models.

    Full text link
    Sequential consistency (SC) is arguably the most intuitive behavior for a shared-memory multithreaded program. It is widely accepted that language-level SC could significantly improve programmability of a multiprocessor system. However, efficiently supporting end-to-end SC remains a challenge as it requires that both compiler and hardware optimizations preserve SC semantics. Current concurrent languages support a relaxed memory model that requires programmers to explicitly annotate all memory accesses that can participate in a data-race ("unsafe" accesses). This requirement allows compiler and hardware to aggressively optimize unannotated accesses, which are assumed to be data-race-free ("safe" accesses), while still preserving SC semantics. However, unannotated data races are easy for programmers to accidentally introduce and are difficult to detect, and in such cases the safety and correctness of programs are significantly compromised. This dissertation argues instead for a safety-first approach, whereby every memory operation is treated as potentially unsafe by the compiler and hardware unless it is proven otherwise. The first solution, DRFx memory model, allows many common compiler and hardware optimizations (potentially SC-violating) on unsafe accesses and uses a runtime support to detect potential SC violations arising from reordering of unsafe accesses. On detecting a potential SC violation, execution is halted before the safety property is compromised. The second solution takes a different approach and preserves SC in both compiler and hardware. Both SC-preserving compiler and hardware are also built on the safety-first approach. All memory accesses are treated as potentially unsafe by the compiler and hardware. SC-preserving hardware relies on different static and dynamic techniques to identify safe accesses. Our results indicate that supporting SC at the language level is not expensive in terms of performance and hardware complexity. The dissertation also explores an extension of this safety-first approach for data-parallel accelerators such as Graphics Processing Units (GPUs). Significant microarchitectural differences between CPU and GPU require rethinking of efficient solutions for preserving SC in GPUs. The proposed solution based on our SC-preserving approach performs nearly on par with the baseline GPU that implements a data-race-free-0 memory model.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120794/1/ansingh_1.pd

    Behavioural analysis of an I2C Linux driver

    Get PDF
    We present an analysis of the behaviour of an I2C Linuxdriver, by means of model checking with the mCRL2 toolset and static analysis with UNO.We have reverse engineered the source code to obtain the structure and interactions of the driver. Based on these results, we have semi-automatically created an mCRL2 model of the behaviour of the driver, on which we have checked mutual exclusion properties. This revealed non-trivial potential errors, like unprotected usage of shared memory variables due to inconsistent locking and disabling/enabling of interrupts. We also applied UNO on the instrumented source code and were able to find the same errors. These defects were confirmed by the developers

    Eliminating stack overflow by abstract interpretation

    Get PDF
    ManuscriptAn important correctness criterion for software running on embedded microcontrollers is stack safety: a guarantee that the call stack does not overflow. Our first contribution is a method for statically guaranteeing stack safety of interrupt-driven embedded software using an approach based on context-sensitive dataflow analysis of object code. We have implemented a prototype stack analysis tool that targets software for Atmel AVR microcontrollers and tested it on embedded applications compiled from up to 30,000 lines of C. We experimentally validate the accuracy of the tool, which runs in under 10 sec on the largest programs that we tested. The second contribution of this paper is the development of two novel ways to reduce stack memory requirements of embedded software
    • …
    corecore