564 research outputs found

    Automation and Robotics: Latest Achievements, Challenges and Prospects

    Get PDF
    This SI presents the latest achievements, challenges and prospects for drives, actuators, sensors, controls and robot navigation with reverse validation and applications in the field of industrial automation and robotics. Automation, supported by robotics, can effectively speed up and improve production. The industrialization of complex mechatronic components, especially robots, requires a large number of special processes already in the pre-production stage provided by modelling and simulation. This area of research from the very beginning includes drives, process technology, actuators, sensors, control systems and all connections in mechatronic systems. Automation and robotics form broad-spectrum areas of research, which are tightly interconnected. To reduce costs in the pre-production stage and to reduce production preparation time, it is necessary to solve complex tasks in the form of simulation with the use of standard software products and new technologies that allow, for example, machine vision and other imaging tools to examine new physical contexts, dependencies and connections

    DEVELOPMENT OF AN AUTONOMOUS NAVIGATION SYSTEM FOR THE SHUTTLE CAR IN UNDERGROUND ROOM & PILLAR COAL MINES

    Get PDF
    In recent years, autonomous solutions in the multi-disciplinary field of the mining engineering have been an extremely popular applied research topic. The growing demand for mineral supplies combined with the steady decline in the available surface reserves has driven the mining industry to mine deeper underground deposits. These deposits are difficult to access, and the environment may be hazardous to mine personnel (e.g., increased heat, difficult ventilation conditions, etc.). Moreover, current mining methods expose the miners to numerous occupational hazards such as working in the proximity of heavy mining equipment, possible roof falls, as well as noise and dust. As a result, the mining industry, in its efforts to modernize and advance its methods and techniques, is one of the many industries that has turned to autonomous systems. Vehicle automation in such complex working environments can play a critical role in improving worker safety and mine productivity. One of the most time-consuming tasks of the mining cycle is the transportation of the extracted ore from the face to the main haulage facility or to surface processing facilities. Although conveyor belts have long been the autonomous transportation means of choice, there are still many cases where a discrete transportation system is needed to transport materials from the face to the main haulage system. The current dissertation presents the development of a navigation system for an autonomous shuttle car (ASC) in underground room and pillar coal mines. By introducing autonomous shuttle cars, the operator can be relocated from the dusty, noisy, and potentially dangerous environment of the underground mine to the safer location of a control room. This dissertation focuses on the development and testing of an autonomous navigation system for an underground room and pillar coal mine. A simplified relative localization system which determines the location of the vehicle relatively to salient features derived from on-board 2D LiDAR scans was developed for a semi-autonomous laboratory-scale shuttle car prototype. This simplified relative localization system is heavily dependent on and at the same time leverages the room and pillar geometry. Instead of keeping track of a global position of the vehicle relatively to a fixed coordinates frame, the proposed custom localization technique requires information regarding only the immediate surroundings. The followed approach enables the prototype to navigate around the pillars in real-time using a deterministic Finite-State Machine which models the behavior of the vehicle in the room and pillar mine with only a few states. Also, a user centered GUI has been developed that allows for a human user to control and monitor the autonomous vehicle by implementing the proposed navigation system. Experimental tests have been conducted in a mock mine in order to evaluate the performance of the developed system. A number of different scenarios simulating common missions that a shuttle car needs to undertake in a room and pillar mine. The results show a minimum success ratio of 70%

    Design and control of components-based integrated servo pneumatic drives

    Get PDF
    On-off traditional pneumatic drives are most widely used in industry offering low-cost, simple but flexible mechanical operation and relatively high power to weight ratio. For a period of decade from mid 1980's to 1990's, some initiatives were made to develop servo pneumatic drives for most sophisticated applications, employing purpose-designed control valves for pneumatic drives and low friction cylinders. However, it is found that the high cost and complex installation have discouraged the manufacturer from applying servo pneumatic drives to industrial usage, making them less favourable in comparison to their electric counterpart. This research aims to develop low-cost servo pneumatic drives which are capable of point-to-point positioning tasks, suitable for applications requiring intermediate performance characteristics. In achieving this objective, a strategy that involves the use of traditional on-off valve, simple control algorithm and distributed field-bus control networks has been adopted, namely, the design and control of Components-based Integrated Pneumatic Drives (CIPDs). Firstly, a new pneumatic actuator servo motion control strategy has been developed. With the new motion control strategy, the processes of positioning a payload can be achieved by opening the control valve only once. Hence, lowspeed on-off pneumatic control valves can be employed in keeping the cost low, a key attraction for employing pneumatic drives. The new servo motion control strategy also provides a way of controlling the load motion speed mechanically. Meanwhile, a new PD-based three-state closed-loop control algorithm also has been developed for the new control scheme. This control algorithm provides a way of adapting traditional PID (Proportional Integral Derivative) control theories for regulating pneumatic drives. Moreover, a deceleration control strategy has been developed so that both high-speed and accurate positioning control can be realised with low cost pneumatic drives. Secondly, the effects of system parameters on the transient response are studied. In assisting the analysis, a second order model is developed to encapsulate the velocity response characteristics of pneumatic drives to a step input signal. Stability analyses for both open loop and closed-loop control have also been carried out for the CIPDs with the newly developed motion control strategy. Thirdly, a distributed control strategy employing Lon Works has been devised and implemented, offering desirable attributes, high re-configurability, low cost and easy in installation and maintenance, etc to keep with the traditional strength for using pneumatic drives. By applying this technology, the CIPDs become standard components in "real" and "virtual" design environments. A remote service strategy for CIPDs using TCP/IP communication protocol has also been developed. Subsequently a range of experimental verifications has been carried out in the research. The experimental study of high-speed motion control indicates that the deceleration control strategy developed in the research can be an effective method in improving the behaviour of high speed CIPDs. The verification of open loop system behaviour of CIPDs shows that the model derived is largely indicative of the likely behaviour for the system considered, and the steady state velocity can be estimated using the Velocity Gain Kv. The evaluation made on a pneumatically driven pick-and-place machine has also confirmed that the system setup, including wiring, tuning, and system reconfiguration can be achieved in relative ease. This pilot study reveals the potential for employing CIPDs in building highly flexible cost effective manufacturing machines. It can thus be concluded that this research has developed successfully a new dimension and knowledge in both theoretical and practical terms in building low-cost servo pneumatic drives, which are capable of point-to-point positioning through employing traditional on-off pneumatic valves and actuators and through their integration with distributed control technology (LonWorks) by adopting a component-based design paradigm

    Real-time surface formation using a network of interconnected programmable actuators

    Full text link
    This research has explored methods for developing a large interactive dynamic 3D surface using an array of interconnected pneumatically actuated cylinders. People can control the surface using body movement, sound or pre-programmed sequences. The main contribution is a method for accurately positioning cylinders without the need for position feedback

    Air Force Institute of Technology Research Report 2007

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    A Smart Products Lifecycle Management (sPLM) Framework - Modeling for Conceptualization, Interoperability, and Modularity

    Get PDF
    Autonomy and intelligence have been built into many of today’s mechatronic products, taking advantage of low-cost sensors and advanced data analytics technologies. Design of product intelligence (enabled by analytics capabilities) is no longer a trivial or additional option for the product development. The objective of this research is aimed at addressing the challenges raised by the new data-driven design paradigm for smart products development, in which the product itself and the smartness require to be carefully co-constructed. A smart product can be seen as specific compositions and configurations of its physical components to form the body, its analytics models to implement the intelligence, evolving along its lifecycle stages. Based on this view, the contribution of this research is to expand the “Product Lifecycle Management (PLM)” concept traditionally for physical products to data-based products. As a result, a Smart Products Lifecycle Management (sPLM) framework is conceptualized based on a high-dimensional Smart Product Hypercube (sPH) representation and decomposition. First, the sPLM addresses the interoperability issues by developing a Smart Component data model to uniformly represent and compose physical component models created by engineers and analytics models created by data scientists. Second, the sPLM implements an NPD3 process model that incorporates formal data analytics process into the new product development (NPD) process model, in order to support the transdisciplinary information flows and team interactions between engineers and data scientists. Third, the sPLM addresses the issues related to product definition, modular design, product configuration, and lifecycle management of analytics models, by adapting the theoretical frameworks and methods for traditional product design and development. An sPLM proof-of-concept platform had been implemented for validation of the concepts and methodologies developed throughout the research work. The sPLM platform provides a shared data repository to manage the product-, process-, and configuration-related knowledge for smart products development. It also provides a collaborative environment to facilitate transdisciplinary collaboration between product engineers and data scientists

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics

    Get PDF
    This Open Access proceedings present a good overview of the current research landscape of industrial robots. The objective of MHI Colloquium is a successful networking at academic and management level. Thereby the colloquium is focussing on a high level academic exchange to distribute the obtained research results, determine synergetic effects and trends, connect the actors personally and in conclusion strengthen the research field as well as the MHI community. Additionally there is the possibility to become acquainted with the organizing institute. Primary audience are members of the scientific association for assembly, handling and industrial robots (WG MHI)

    REMOVING VEHICLE SPEED FROM APPARENT WIND VELOCITY

    Get PDF
    Variable-rate technologies for sprayer applications stand to increase efficacy by ensuring the right amount of chemical is applied at the right location. However, external environmental factors such as droplet drift caused by variable ambient condition, are not yet integrated into modern sprayer systems. Real-time wind velocity measurements can be used to control droplet spectra for reducing spray drift by actuating a variable-orifice nozzle. This work aimed to develop data processing methods needed to filter noise and remove vehicle speed from wind velocity measurements collected with an ultrasonic anemometer aboard a moving platform. Using a global navigation satellite system (GNSS), vehicle speed was calculated in the field and subtracted from apparent wind velocity for comparison to static measurements. Experiments under stationary and dynamic sensor deployments were used to develop an algorithm to provide instantaneous local wind velocity and to better understand the local spatiotemporal variability of wind under field conditions
    • …
    corecore