
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Biosystems and
Agricultural Engineering Biosystems and Agricultural Engineering

2019

REMOVING VEHICLE SPEED FROM APPARENT WIND VELOCITY REMOVING VEHICLE SPEED FROM APPARENT WIND VELOCITY

Austin M. Weiss
University of Kentucky, austin.weiss@uky.edu
Author ORCID Identifier:

https://orcid.org/0000-0002-6767-0039
Digital Object Identifier: https://doi.org/10.13023/etd.2019.323

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Weiss, Austin M., "REMOVING VEHICLE SPEED FROM APPARENT WIND VELOCITY" (2019). Theses and
Dissertations--Biosystems and Agricultural Engineering. 67.
https://uknowledge.uky.edu/bae_etds/67

This Master's Thesis is brought to you for free and open access by the Biosystems and Agricultural Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biosystems and Agricultural
Engineering by an authorized administrator of UKnowledge. For more information, please contact
UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/bae_etds
https://uknowledge.uky.edu/bae_etds
https://uknowledge.uky.edu/bae
https://orcid.org/0000-0002-6767-0039
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Austin M. Weiss, Student

Dr. Michael P. Sama, Major Professor

Dr. Donald G. Colliver, Director of Graduate Studies

REMOVING VEHICLE SPEED FROM APPARENT WIND VELOCITY

__

THESIS
__

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in Biosystems and Agricultural
Engineering in the Colleges of Agriculture and Engineering at the University of

Kentucky

By

Austin Meade Weiss

Lexington, Kentucky

Director: Dr. Michael Sama, Associate Professor of Biosystems and Agricultural
Engineering

Lexington, Kentucky

2019

Copyright © Austin Meade Weiss 2019
https://orcid.org/0000-0002-6767-0039

ABSTRACT OF THESIS

REMOVING VEHICLE SPEED FROM APPARENT WIND VELOCITY

Variable-rate technologies for sprayer applications stand to increase efficacy by
ensuring the right amount of chemical is applied at the right location. However, external
environmental factors such as droplet drift caused by variable ambient condition, are not
yet integrated into modern sprayer systems. Real-time wind velocity measurements can be
used to control droplet spectra for reducing spray drift by actuating a variable-orifice
nozzle. This work aimed to develop data processing methods needed to filter noise and
remove vehicle speed from wind velocity measurements collected with an ultrasonic
anemometer aboard a moving platform. Using a global navigation satellite system (GNSS),
vehicle speed was calculated in the field and subtracted from apparent wind velocity for
comparison to static measurements. Experiments under stationary and dynamic sensor
deployments were used to develop an algorithm to provide instantaneous local wind
velocity and to better understand the local spatiotemporal variability of wind under field
conditions.

KEYWORDS: Wind measurement, Ultrasonic Anemometer, Correlation, Sprayer drift,
Variable-rate technology

Austin Meade Weiss
(Name of Student)

06/06/2019

 Date

REMOVING VEHICLE SPEED FROM APPARENT WIND VELOCITY

By
Austin Meade Weiss

Michael P. Sama
Director of Thesis

Donald G. Colliver

Director of Graduate Studies

06/06/2019
 Date

iii

ACKNOWLEDGMENTS

This work was the result of much support at the University of Kentucky. First, I

am deeply grateful to my advisor Dr. Michael Sama for providing me guidance and

mentorship throughout my time at UK. Aside from his many technical contributions

throughout the project, his flexibility, support, and optimism made my graduate

experience enjoyable. Also, thank you to my committee members Dr. Michael Montross

and Dr. Ole Wendroth for their support throughout my graduate program. I’d also like to

give credit to Matt Miller for his work designing the printed circuit boards, Shawn O’Neal

for his utility vehicle preparations, and Amanda Williams for assisting with field trials.

Additionally, thanks to Luis Felipe Pampolini for assistance on several tasks and for his

friendship. Thanks to the USDA for funding this research as a collaboration with the

University of Nebraska-Lincoln.

I thank the University of Kentucky’s Department of Biosystems & Agricultural

Engineering for setting me on my career path. I have grown tremendously in my time at

BAE, and I greatly appreciate the many dedicated faculty that I’ve learned from in my

college years. Finally, I’d like to express gratitude to my mom and brother, who continue

to support me unconditionally in all of my endeavors.

iv

Table of Contents

ACKNOWLEDGMENTS ... iii

List of Tables ... viii

List of Figures .. ix

CHAPTER 1. PROJECT MOTIVATION AND LITERATURE REVIEW 1

 Introduction: ... 1

 Objectives: .. 3

 Causes and Effects of Spray Drift on Efficacy of Liquid Application................. 3

 The Variable Orifice Nozzle .. 4

 Anemometers for Quantifying Wind Velocity ... 5

1.5.1 Uncertainties Surrounding Ultrasonic Anemometers for Agricultural

Applications ...6

1.5.2 Timestamping Wind Velocity Measurements ...9

 Statistical Analysis for Similitude of Wind Data ... 11

 Previous Spray Drift Characterization Methods and Modeling 12

CHAPTER 2. CORRELATION TESTING BETWEEN TWO STATIONARY

ULTRASONIC ANEMOMETERS .. 14

 Methods and Materials: .. 14

2.1.1 Ultrasonic Anemometer Interfacing: ...15

2.1.2 Hardware Timestamping of Serial Data from Ultrasonic Anemometers20

v

2.1.3 Test Fixture Design and Assembly ..22

2.1.4 Preliminary Data Collection and Setup Procedure24

2.1.5 Field Testing ..27

2.1.6 Processing Procedures ...31

2.1.7 Assumptions and Validity of Correlation Analysis32

2.1.8 Quantifying Uncertainty in Processed Wind Velocities34

 Results: ... 36

2.2.1 Visualizing Data and Filter Uncertainties ..36

2.2.2 Correlation Results: ...38

2.2.3 Distribution of measurement differences between the two anemometers: ..43

2.2.4 A Note on Filtering Uncertainty Analysis by Probability Distribution47

2.2.5 Conclusions from Static Testing ..48

CHAPTER 3. CORRELATION TESTING BETWEEN ONE DYNAMIC AND ONE

STATIONARY ANEMOMETER .. 50

 Methods and Materials: .. 50

3.1.1 Equipment Setup and Vehicle Mounting ...53

3.1.2 Methods for Calculation of Weather Station Velocity53

3.1.3 Method 1: Successive Coordinates ..55

3.1.4 Method 2: Relative Velocity to GNSS...62

vi

3.1.5 Calculating Velocity at Weather Station’s Location relative to GNSS

Location ...63

3.1.6 Method 3: Calculating Haversine velocity at GNSS location and using the

relative velocity method to transform velocity to the weather station’s location68

3.1.7 Adjustments and Limitations for Methods for A Circular Path68

3.1.8 Comparing Methods of Anemometer Velocity ..70

3.1.9 Removing Vehicle Velocity from Apparent Wind Data73

3.1.10 Quantifying Similitude Between Anemometer and Dynamic Weather

Station 78

 Results: ... 79

3.2.1 Vehicle Velocity and Course Comparisons ...79

3.2.2 Visualizing Filter Uncertainty..85

3.2.3 Validating Wind Gusts by Comparing Direction...87

3.2.4 Cross-correlation Results ...89

3.2.5 Special Cases in Cross-Correlation Analysis ...94

3.2.6 Distribution of Measurement Differences ...97

 Discussion: ... 100

3.3.1 Weather Station Velocity Transformation ...100

3.3.2 Feasibility at Varied Distances ..103

CHAPTER 4. CONCLUSIONS AND FUTURE WORK .. 104

vii

APPENDICES .. 105

 Schematics for Machined and 3D Printed Parts 105

 MATLAB Code for Stationary Testing ... 109

 MATLAB Code for Dynamic Testing ... 119

 R Script... 158

 Data Logging Code (VB.NET) .. 161

 Microcontroller Design and Code: ... 170

References: .. 186

VITA ... 188

viii

List of Tables

Table 2.1 Output data from sensors can be separated in MATLAB by their sensor

addresses. .. 19

Table 2.2: Completely randomized block design for stationary testing 28

Table 2.3: Completely randomized block design for stationary testing 30

Table 2.4: Unfiltered trials generally all had structured decay in cross-correlograms

except for one trial. ... 41

Table 3.1: The completely randomized block design is shown. The procedure moved

down each block in order, completing separations from top to bottom, and vehicle

velocities from left to right. Two of the 14.48 km/h trials were omitted because of

difficulty turning the vehicle at that speed. ... 51

Table 3.2: A summary of cross-correlogram structure for unfiltered dynamic trials.

“YES” indicates a symmetrical decay in cross-correlation coefficient, “NO” indicates no

structured decay. Descriptive notes are included for special cases. 92

Table 3.3: Ranking for each trial's cumulative probability data is shown. A rank equal to

1 indicates closer wind velocities between sensors, as a higher percent of velocity pairs

have smaller differences. .. 98

ix

List of Figures

Figure 1.1 The components of the variable orifice nozzle consist of a metering stem

moved by a linear actuator (D. Luck, A. Shearer, P. Sama, & K. Pitla, 2015) 5

Figure 2.1 Ultrasonic anemometers used in this study were manufactured by RM Young

(Young) ... 15

Figure 2.2 The Serial Communication Interface allows control of the data logging

procedure and provides graphical display of ultrasonic anemometer sensor parameters . 17

Figure 2.3: Data sentence format for the 92000 ResponseOne (Young) and 86000

(Young) ultrasonic anemometers from the user manuals. Each sentence is separated by a

carriage return <CR>. This is used to separate sentences from each other. The class

definition of carriage return in Visual Basic is "vbCr" ... 18

Figure 2.4 The assembled PCB allows a hardware method of timestamping 21

Figure 2.5: Assembly for Preliminary Test Fixture .. 23

Figure 2.6 The assembled PCB and case .. 24

Figure 2.7 A satellite image displays the location of the test site at 38.026924°, -

84.509623° (Google, n.d) ... 25

Figure 2.8 A cart was used as a surface for the computer, power supply, PCBs, and GPS

receivers .. 26

Figure 2.9: Static testing was completed at the University of Kentucky’s C. Oran Little

Research center in Versailles, KY on October 5th, 2018. ... 28

Figure 2.10: Static testing at the University of Kentucky’s North Farm was completed on

February 13th, 2019. .. 30

x

Figure 2.11: Wind velocity data is shown for the first 30 seconds of data at 20 ft

separation, block 1, filtered using a 3-point moving average ... 37

Figure 2.12: Wind direction is shown for the first 30 seconds of data at 20 ft separation,

block 1, filtered using a 3-point moving average ... 38

Figure 2.13: Autocorrelograms for 20ft separation, trial 1, show structured

autocorrelation warranting a cross-correlation analysis. .. 39

Figure 2.14: Cross-Correlogram for 20ft separation, trial 1, shows structured decay in

correlation with increasing lag .. 40

Figure 2.15: Cross-Correlogram for all separation distances in block 1 shows decreasing

correlation with increasing distance and flatter structure, suggesting less similarity in

wind velocity with increasing distance on the scale of spray boom size 42

Figure 2.16: Cross-correlogram for all separation distances in block 2 shows decreasing

correlation with increasing distance and flatter structure, suggesting less similarity in

wind velocity with increasing distance ... 42

Figure 2.17: Cross-correlogram for 60 ft separation, trial 3, shows similar trends as

Figure 2.17 and Figure 2.18, but displays the highly varied 40 ft trial. 43

Figure 2.18: Cumulative probability chart for 20ft separation distance, trial 1 44

Figure 2.19: Cumulative probability plot for all trials in block 1 45

Figure 2.20: Cumulative probability plot for all trials in block 2 46

Figure 2.21: Cumulative probability plot for all trials in block 3 46

Figure 2.22: Sample histogram of filtering uncertainties distribution for block 1, 20 ft

separation .. 48

Figure 3.1: Aerial photo visualizing the three radii for dynamic testing 52

xi

Figure 3.2: Diagram shows the definition of azimuth forward bearing θ, and bearing

facing the weather station 𝜃𝜃𝜃𝜃 → 𝑤𝑤 ... 56

Figure 3.3: Legend for equations 3.1-3.10 .. 58

Figure 3.4: The Haversine calculated form of method 1 yielded poor similitude when

using equations 4-6 for new coordinate calculation ... 59

Figure 3.5: Weather stations coordinates solved using Vincenty's formula were effective

at transforming at a set distance. ... 61

Figure 3.6 Distances between GNSS coordinates and transformed coordinates (coordinate

pairs) show better accuracy using the WGS-84 Earth model ... 62

Figure 3.7: Diagram displaying turn radii and velocity vectors at the GNSS and weather

station locations. The direction of the velocity vectors are pointing to the rear of the

vehicle for visibility. ... 65

Figure 3.8: Turn radius visualization at the GNSS location requires two velocity

measurements. Velocity vectors are pointing in the opposite direction for improved

visibility. ... 67

Figure 3.9: Legend for parameters in equations 16-18 ... 67

Figure 3.10: Flow chart visualizing Method 1 weather station velocity calculation 72

Figure 3.11: Flow chart visualizing Method 2 weather station velocity calculation for

known turn radii .. 72

Figure 3.12: Flow chart visualizing method 3 weather station velocity calculation 72

Figure 3.13: A diagram visualizing wind components and resultant vectors after

subtraction of vehicle velocity from the "Y" component. VWind Corrected is the

resultant vector of Y’ and X components. .. 75

xii

Figure 3.14: Visualization of wind direction calculation according to equations 21-24 .. 76

Figure 3.15: Diagram displays principle of correction of wind directions to be relative to

True North ... 78

Figure 3.16: Three methods of calculation for weather station velocity yield close results

for dynamic testing at 20 ft anemometer separation, approximately 3 mph vehicle speed,

trial 1. Method 1 (M1) results were noisier when unfiltered. ... 80

Figure 3.17:Three methods of calculation for weather station velocity yield close results

for dynamic testing at 20 ft anemometer separation, approximately 6 mph vehicle speed,

trial 1. .. 81

Figure 3.18: Three methods of calculation for weather station velocity yield close results

for dynamic testing at 20 ft anemometer separation, approximately 9 mph vehicle speed,

trial 1. .. 81

Figure 3.19: The data for block 3, at a 40 ft separation, 6 mph, no filter (top) and 7-point

moving average (bottom) show filtering’s effect of smoothing weather station dynamics

on method 1 for reducing noise before backing it out from wind data. 82

Figure 3.20: Course calculations for all three methods have good alignment with minimal

noise. This sampled data is from Block 1, with an anemometer separation distance of 20

ft and 3 mph vehicle velocity target. ... 83

Figure 3.21: Course calculations for all three methods from sampled data from Block 1,

with an anemometer separation distance of 20 ft and 6 mph vehicle velocity target. 84

Figure 3.22: Course calculations for all three methods from sampled data from Block 1,

with an anemometer separation distance of 20 ft and 9 mph vehicle velocity target. 85

xiii

Figure 3.23 Scatter plot with filter uncertainties defined as the standard deviation over the

filtering window. ... 86

Figure 3.24: Noise from calculating vehicle dynamics carry into wind calculations when

unfiltered. This data is from block 1, 40ft separation, 3 mph speed. 88

Figure 3.25: Noise in wind data were reduced using moving average filtering. This

dataset was from block 1, 40 ft separation, 3 mph, with a 7-point moving average applied.

... 88

Figure 3.26: Increasing filtering window size improves correlation Block 1, 60 ft, 9 mph

... 89

Figure 3.27: Increasing filter size results in method 1 having the highest cross-correlation

and similarity. Data from block 2, 20 ft separation distance, 3 mph is shown with no

filtering (a. top) and 7-point moving average (b. bottom) .. 90

Figure 3.28: Block 1, 20 ft, 3 mph (a. top), 6 mph (b. bottom) .. 93

Figure 3.29: Block 1, 40ft, 9 mph, 7-point moving average ... 94

Figure 3.30: The cross-correlogram for the trial in Block 2, 40ft separation, 6 mph target

vehicle velocity exhibits a flat shape even with a 7-point moving average applied,

suggesting more random variability among one of the time-series datasets 95

Figure 3.31: Plotted data for Block 2, 40 ft separation, 6 mph targeted vehicle velocity

still displays an abundance of noise after filtering with a 7-point moving average 96

Figure 3.32: Vehicle velocity calculations (Method 1) show minimal noise, eliminating it

as a source for irregularities in processed wind data .. 96

Figure 3.33: Cumulative probability distribution shows increasing the moving average

filtering window smooths velocity data and minimizes differences in values 99

xiv

Figure 3.34: Cumulative probability chart shows higher percent of small wind velocity

differences at slower vehicle speeds ... 99

1

CHAPTER 1. PROJECT MOTIVATION AND LITERATURE REVIEW

 Introduction:

 Sprayer drift is the phenomenon of misapplication of liquids on non-targeted

areas often caused by wind interference. Sprayer drift affects farm efficiency through the

introduction of off-target and off-rate application errors (Grover, Maybank, Caldwell, &

Wolf, 1997), has potential to negatively affect neighboring crops, and has potential to

harm the environment (de Snoo & van der Poll, 1999). A common solution to the

problem is to avoid application on windy days at all (Mekonnen & Agonafir, 2002),

while some producers could be tempted to increase application of water and crop

protection chemicals to compensate for losses displaced by wind. Much research has

indicated that over-application or drift of crop controlling chemicals such as pesticides,

herbicides, and fertilizers contribute to issues such as crop loss (Everitt & Keeling, 2009),

herbicide resistance in weeds (Duke, 2005), and damages to the environment (Gove,

Power, Buckley, & Ghazoul, 2007). Even non-occupational exposure has been shown to

cause risks to human health (Azaroff & Neas, 1999). Increases in some herbicide-

resistant weeds can be attributed to selection pressure against non-resistant weeds, and

herbicides subjected to drift can reduce natural fauna health and biodiversity in non-

targeted areas (Duke, 2005). In some woodland species fauna, drift from nearby

application of fertilizer has been shown to cause reduced fertility, while herbicide

reduced biomass and increased mortality rates (Gove et al., 2007). These chemicals can

contaminate nearby water sources and pose health risks to human health (Holt, 2000).

Under-application on targeted areas caused by drift can also fail to fulfill the desired

2

effects. Movement of a spray boom itself at different speeds also can cause variation in

longitudinal droplet distribution that affect drift (Ooms, Ruter, Lebeau, & Destain, 2003).

 To mitigate the effects of spray drift, a collaborative group was developed

comprising researchers from the University of Nebraska-Lincoln and the University of

Kentucky. The goal of the project was to develop a system in which a variable-orifice

nozzle, capable of adjusting the droplet spectrum (e.g. distribution of droplet sizes) of

applied liquids, could be actuated according to real-time wind velocity data from an on-

board weather station. By increasing droplet size during wind gusts, coverage of applied

products may be better assured as wind’s influence of droplet’s trajectories are reduced

while droplets that are too large may fail to stick to their targeted areas. A calibrated

system may ensure optimal coverage for weather conditions in real time. The goal for this

work is to design an interface that integrates real-time wind velocity data from an on-

board weather station for the control input of a variable-orifice nozzle. Additionally, the

project aims to test and determine the feasibility of sensor accuracy onboard a moving

platform, as well as determine appropriate sampling rates and filtering processes to

produce highly correlated, accurate results between stationary and dynamic wind velocity

measurements. The following specific objectives were developed in effort to achieve the

project goal.

3

 Objectives:

1. Interface two ultrasonic anemometers with global navigation satellite system

(GNSS) receivers to timestamp and record wind velocity data.

2. Determine the appropriate sampling rate and filtering process to produce highly

correlated wind velocity measurements between multiple sensors.

3. Remove vehicle speed from apparent wind velocity measurements.

 Causes and Effects of Spray Drift on Efficacy of Liquid Application

Many studies have been conducted investigating the causes of droplet drift during

liquid application using spray nozzles. Experiments show that nozzle height, droplet

speed in the direction of gravity, flow rate, pressure, wind speed, and air temperature are

significant variables contributing to droplet drift in a single sprayer system (B. Smith, E.

Bode, & D. Gerard, 2000). Nozzle height and droplet speed provide potential for drift by

affecting the time for droplets to reach the ground. Larger distances between a nozzle and

the ground allow greater opportunity for interference with droplet trajectories by wind

gusts. These observations on the causes of sprayer drift are valuable however – to

mitigate nozzle drift for boom applications – a means of collecting and filtering ambient

wind measurements near the ground must be developed and investigated if real-time

decisions on droplet spectra are to be made.

Variability of field wind velocity is consistently a source of uncertainty for

modeling spray drift (Butler Ellis et al., 2017). Wind tunnel testing has proven a viable

method for simulating these field conditions, in which Butler used a wind tunnel to

estimate spray drift in simulated environmental conditions for the purpose of minimizing

4

agricultural buffer zones (unused buffer space between crops and natural fauna for drift

particles to land). The tunnel data was compared to field data for analysis of the process’

similitude. They found that their method is successful for short distance drift in the field

up to 20 meters for simulating field conditions. Testing at the UNL Spray Application

Testing Lab and the UNL West Central Research and Extension Center Pesticide

Application Technology Laboratory will investigate drift estimation. Meanwhile, this

work aims to provide a mechanism for real-time quantification of wind conditions in the

field.

 The Variable Orifice Nozzle

Tests on a single electronically actuated variable-orifice nozzle found that

pressure affects droplet size or spectra more than flow rate (D. Luck, K. Pitla, P. Sama, &

A. Shearer, 2015). Higher pressures yielded finer liquid particles while lower pressures

create larger droplets. A metering stem was used to actuate the variable-orifice, and

analysis of data showed its position/nozzle flow rate had no significant trend on droplet

diameter. Using pressure as a means to actuate this variable-orifice technology stands to

reduce errors in application caused by pressure loss in fixed-orifice systems and will be

the preferred control response for adjusting droplet spectra according to instantaneous

wind velocity inputs. By adjusting to larger droplets during wind gusts, wind may have a

reduced impact on droplet trajectories.

5

Figure 1.1 The components of the variable orifice nozzle consist of a metering stem
moved by a linear actuator (D. Luck, A. Shearer, P. Sama, & K. Pitla, 2015)

 Anemometers for Quantifying Wind Velocity

 Cup anemometers are a relatively low-cost method for measuring wind speed.

However, they have inherent disadvantages stemming from their design. By calculating

wind speeds from the mechanical rotation of cups, many cup anemometers are limited by

starting thresholds of about 0.5 m/s with resolutions also equal to 0.5 m/s. Additionally

these sensors risk mechanical wear from long term continuous operation and by collision

or jamming from dust/debris that can affect the accuracy of measurements if not properly

maintained. They are also incapable of measuring direction without a separate wind vane.

Alternatively, ultrasonic anemometers use transducers to emit and detect sonic

pulses at desired intervals. When a sonic pulse is emitted from the sending transducer, the

time-of-flight to receiving ends are measured. As wind gusts on the sensor, the time-of-

flight of sonic pulses is changed by the physical contact of air on the sonic wave. The

device takes this difference of time-of-flight measurement from each receiving transducer

6

and calculates components of the wind’s magnitude and direction in either two or three

orthogonal dimensions depending on the sensor configuration. Ultrasonic anemometers

allow high frequency collection of wind velocity as vector components. Measurements

are more accurate compared to cup anemometers because the absence of moving parts

eliminates uncertainty caused by cup momentum and mechanical wear. Also, they aren’t

limited by a minimum threshold as cup anemometers are. Ultrasonic anemometers are

ideal for this project because of their higher accuracy and reliability.

1.5.1 Uncertainties Surrounding Ultrasonic Anemometers for Agricultural Applications

Typically for agricultural and meteorological applications, ultrasonic

anemometers are mounted on stationary platforms as a component in a weather station.

While these anemometers are used onboard vessels at sea, wind measurements seen by

the sensor are used to provide information about high-volume air collision on the side of

sea vessels (which contribute to yaw and rocking), or for estimating propulsion (for

sailboats). Although the vessel’s dynamics cause false wind velocities, this fact can be

disregarded because accuracy of wind gusts (especially at low speeds) aren’t used as

control inputs. Corrections for vessel tilt-induced airflow distortion for better agreement

with weather stations have been investigated in literature to some success (Landwehr,

O’Sullivan, & Ward, 2015) however aim to reduce much larger errors than expected on

land where large vehicle tilt is less likely.

Anemometers mounted aboard agricultural vehicles will produce a false apparent

wind velocity as the anemometer is moved through the ambient flow field. The close

proximity to the ground and the irregular shape of high-clearance self-propelled sprayers

(the target application of this work) will likely add turbulence that is readily detected by

7

an ultrasonic anemometer. Obstacles surrounding the device can also interfere with the

ambient flow field. Uncertainty in stationary ultrasonic anemometer data has been shown

to increase close to equipment or obstacles (Contini, Donateo, & Belosi, 2006). Contini

used paired anemometers at different mounting orientations, spacing, and in proximity

with other detectors to investigate uncertainties in measurements. The results showed that

uncertainty increased when the anemometers were mounted on separate masts, or

alongside other detectors or obstacles. Larger distances between two anemometers also

yielded larger inconsistency in measurements.

Uncertainty was calculated using time averaged measurements of the sensors and

comparing the results. To quantify these uncertainties, equations using uncertainty values

γ from Gaussian distributions with equal variances and systematic uncertainties ω were

derived for each anemometer as equation 1.1. The difference between these equations is

denoted in equation 1.2 (Contini et al., 2006), and was considered the prediction of

uncertainty for time-averaged datasets. The random differenced uncertainty component 𝜂𝜂

assumes identical wind velocity at both locations, meaning that the difference in recorded

wind velocities consisted only of systematic and random uncertainty. In Contini’s 2006

study, this generalization appears reasonable for quantifying uncertainties, because wind

velocity data were collected in very close proximity. In this work, wind velocities were

recorded at distances up to 60 feet and actual wind velocity 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 was expected to be

different. Systematic uncertainty refers to uncertainties present in both sensors and can be

attributed to sensor geometry and position. In this study, system uncertainty is well

quantified by manufacturer supplied measurement tolerances, since both anemometers

were positioned clear of obstacles and with the same transducer designs.

8

𝑉𝑉𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛾𝛾 + 𝜔𝜔 (1.1)

Where:

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = Actual measurement (m/s)

𝑉𝑉𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎 = Measurement output by anemometer (m/s)

𝛾𝛾 = Random uncertainty extracted from Gaussian distribution (m/s)

𝜔𝜔 = Systematic uncertainty (m/s)

𝐷𝐷𝑋𝑋 = 𝛾𝛾1 − 𝛾𝛾2 + 𝜔𝜔1 − 𝜔𝜔2 = 𝜂𝜂 + 𝛽𝛽 (1.2)

Where:

𝜂𝜂 = 𝛾𝛾1 − 𝛾𝛾2 = Random uncertainties (m/s) obtained from data values of Gaussian

distribution (mean=0 and equal standard deviation)

𝛽𝛽 = 𝜔𝜔1 − 𝜔𝜔2 = Difference in systematic uncertainties (m/s)

Contini et. al (2006) also found that uncertainty decreased with increasing

averaging time, yielding impressively small uncertainties as low as 0.01 m s-1 for an

averaging time of 30 minutes. These results indicate good performance for

meteorological applications – however, to provide control inputs in real-time, similitude

of data at much shorter intervals is needed. For an acceptable resolution to be obtained in

spraying applications corresponding to the fate of a spray droplet, filtering must occur

over a couple seconds or less. Regardless, averaging wind data is a proven correction for

9

smoothing problematic or noisy data and was used in this study. Additionally, a means of

evaluating the effects of filtering on measurement uncertainty needed to be addressed. A

modified interpretation of Contini’s uncertainty calculation was used for this evaluation

where random uncertainty originating from sensor orientation is replaced by uncertainty

derived from the filtering process. This is described in more detail in section 2.1.8.

A study in Oldenburg, Germany looked at sensor accuracy affected by transducer

shadowing, the effect of added turbulence by the obstruction of airflow from transducers,

and found a significant effect based on wind direction (Heinemann, Langner, Stabe, &

Waldl, 1997). These uncertainties are of minimal concern in this study since both

anemometers described in section 2.1.1 have the same transducer design and equal

uncertainties documented in their user manuals. Ultimately obtaining the exact wind

velocity is not of focus, but instead a calibrated response of nozzle orifice diameter to

wind fluctuations.

Previous literature has studied the effects of sensor tilt on the accuracy of wind

vector measurements, and correction methods for tilting have been studied as well

(Landwehr et al., 2015). Translational motion correction, however, is much less

researched. The dynamics of the anemometer on a moving platform needs to be

subtracted from the observed wind velocity to obtain accurate measurements.

1.5.2 Timestamping Wind Velocity Measurements

To test corrections on measurements from an ultrasonic anemometer in-motion, a

stationary anemometer is needed for reference. Before testing on-board a moving

platform, validation of correlation between two stationary anemometers at the same fixed

10

distances was necessary for comparison. If there were no significant differences between

wind velocities at a known spacing, then correlation of corrected measurements taken

while in motion at the same or similar spacing to a stationary reference anemometer

could help prove feasibility for sprayer applications. Before correlation testing for wind

data from the two anemometers can be completed, the addition of temporal measurement

data was needed for analysis and post-processing. Since the target application for the

interfaced anemometers is outdoors, a reliable source of timekeeping is needed that can

operate on DC power. A global navigation satellite-based system (GNSS) receiver is

ideal for these requirements because it allows accurate timekeeping while recording the

location of the moving platform if needed. A hardware method for capturing temporal

data and concatenating with serial data streams was developed by Sama et al. (2013) that

eliminates uncertainties caused by software latency, described as the delay between

measurement and timestamping. They utilized a pulse-per-second (PPS) signal output

from a GNSS as a reference to synchronize location readings from a tracking total station

(TTS) using a signal timing device. The resulting data from experimentation showed

acceptable precision in the timestamps for agricultural applications (devices moving 10

m/s or less). An input capture on the signal timing device’s microcontroller was used to

keep track of when the PSS occurred relative to a 3.75 MHz local clock source, which

allowed incoming serial data to be timestamped to universal coordinated time (UTC) with

an accuracy of less than 1 millisecond. A comparison between this hardware method to a

software method of timestamping utilizing a PC’s system clock was explored in this

project during experimentation with the two stationary ultrasonic anemometers. To

investigate similarity between measurements, a study of correlation between data from

11

two anemometers at temporal resolutions equal or close to droplet airtime from a sprayer

boom’s height needed to be studied.

 Statistical Analysis for Similitude of Wind Data

 Determining the feasibility of using weather data on-board a sprayer system

heavily relies on proving similitude among wind data from a stationary anemometer and

processed dynamic weather data. Correlation as a means of similitude for paired

measurement is widely used in literature (Contini et al., 2006, Imai et al., 2009, Reid &

Turner, 2001), however, these studies used filters over timespans of minutes or longer

and have a significant reduction in noise. If weather data is to be used for real-time

actuation of a variable-orifice nozzle, filtering must be completed at a much smaller

scales, with the cost of increased noise. These noisier datasets were destined to yield

poorer correlation for a classical pearson correlation test (See section 2.1.7), so alternate

indicators of similitude are needed. In literature, a study using multiple weather stations

to quantify the spatial structure of wind from a tower for wind power simulation purposes

used cross-correlation to characterize the relationship between lateral and vertical

components of wind gusts (Fujimura & Maeda, 2009). This approach took wind

velocities from two anemometers to test for structured decay over lag times or the time

difference between paired velocity measurements. In other words, multiple correlation

tests were run on data pairs separated by increasing time between measurements. If cross-

correlation was markedly improved with zero lag, then some degree of similitude can be

assured. This is because time-synchronized measurements with better correlation

12

compared to measurements out of phase imply that small scale fluctuations match and are

not spatially independent.

Contini et al. (2006) looked at differenced wind velocity values to quantify and

analyze the distribution of random uncertainties. This work looks to compare wind

velocities at two locations with much larger distances, and are not expected to be equal at

any time. With random uncertainty replaced with filtering uncertainty, and systematic

uncertainties added, a range of the potential wind velocity any time may be depicted

similarly as uncertainty was in Contini’s work. In this study, differenced wind velocities

and derived uncertainties were used as an additional means of comparing wind intensity

between two locations.

 Previous Spray Drift Characterization Methods and Modeling

 Some previous work and developed models were studied for considering wind

effects on droplet drift which were developed using ultrasonic anemometers for

quantifying drift per wind velocity. A few models for droplet trajectory simulate spray

drift under input sprayer configurations. RTDrift (Lebeau, Verstraete, Stainier, &

Destain, 2011) is a Gaussian plume model that allows input parameters for pressure,

movement, and height of a spray nozzle. Equations for spray drift were derived from

previous studies and used experimental wind data collected from ultrasonic anemometers

mounted on a spray nozzle. Droplet spectra data were collected using a Phase Doppler

Interferometer and were used to predict resulting drift and evaporation of liquids during

trajectory was also accounted for. A Computational Fluid Dynamics (CFD) model,

compared to experimental data, displayed success in predicting drift for varying fixed

13

nozzle diameters, wind velocity, height, and pressure of spray booms (Baetens et al.,

2009). This model was validated also by using ultrasonic anemometers at different

elevations. Important parameters for drift included the boom’s height, wind speed, and

nozzle-orifice size.

14

CHAPTER 2. CORRELATION TESTING BETWEEN TWO STATIONARY

ULTRASONIC ANEMOMETERS

 Methods and Materials:

 Determining correlation between readings from two stationary ultrasonic

anemometers was completed to help validate a claim that wind gust velocities measured

in close proximity to each other are statistically similar. The purpose of this experiment

was a feasibility study before moving forward with testing of the sensors onboard a

moving platform. The experiment involved the design of a rigid stationary test fixture to

mount both anemometers, a data acquisition Windows Form Application, a MATLAB

script for processing data and performing statistical analysis, and also a SAS script for

statistical analysis. Additional testing was completed using a GNSS receiver’s pulse-per-

second (PPS) signal in conjunction with output UTC time for improved precision of

timestamps at a millisecond scale. The receiver was interfaced to add timestamps to the

serial data stream output from the anemometers using a PCB board. A variety of weather

conditions were observed and tested for correlation while also using different filtering

techniques for noise reduction. A desired result for these tests was a successful filter that

could be implemented in the time-domain for developing control inputs to the variable-

orifice nozzle.

15

2.1.1 Ultrasonic Anemometer Interfacing:

Two ultrasonic anemometers (86000 and ResponseOne 92000, RM Young,

Traverse City, MI) were selected to collect weather data including temperature, relative

humidity, wind speed, direction, and air pressure as inputs for the system. A 13.8 V

nominal power supply (1680, BK Precision, Yorba Linda, CA) was connected to supply

the required power (10-30VDC) to both sensors, and output communication to a PC was

configured using RS-232-to-USB converters (Keyspan U209-000-R, Tripp Lite, Chicago,

IL). Using manufacturer provided configuration programs, the serial data output format

was set to ASCII with a 38,400 baud rate, 8 data bits, no parity, and 1 stop bit (38400-8-

N-1) for both anemometers and the units were set to metric.

Figure 2.1 Ultrasonic anemometers used in this study were manufactured by RM Young
(Young)

Microsoft Visual Studio was used to develop a user interface and the supporting

code writing in the Visual Basic language (VB.NET). Functions of the program included

setting the serial port baud rate for data retrieval, assigning the ports for serial data

collection, opening and closing the ports, a space to send commands if necessary,

16

automatic timestamping and parsing of data strings, display for incoming and parsed data,

and the ability to start and stop logging to a .csv file. The code is included as Appendix 5

and the graphical user interface is shown in Figure 2.2.

At the program’s startup, a Sub statement “Build_Interface” ran immediately to

set up the user interface and display available COM ports for assignment to the

anemometers. COM port names were automatically assigned by the RS-232-to-USB

converter driver and set accordingly in the program. The remaining COM port settings

were configured to match the anemometers’ settings (38400-8-N-1). Before data were

read and saved, a destination file was needed to store the information. The filename must

be input into a text box, and then a save location must be chosen. A

“FolderBrowserDialog” object was used to browse save locations and automatically

create a .csv file with the input name once a destination is chosen.

17

Figure 2.2 The Serial Communication Interface allows control of the data logging
procedure and provides graphical display of ultrasonic anemometer sensor parameters

To read data from the serial ports, an existing RS-232.vb class written by Dr.

Michael Sama was used to read available COM ports and list them in a ComboBox drop

down menu. A button was created to initiate opening the serial ports for reading after

being designated to each sensor. Once the ports were opened, data were received for each

anemometer using separate subfunctions, with handles that call the subfunction when a

full new message was received. A full message was defined in the RS-232 class as all

characters between carriage returns (Figure 2.3). The class was also modified to utilize a

Boolean logic variable to check for the arrival of a message, and subsequently call

DateTime.Now.ToString for local timestamping at the arrival of the next bits. Each data

18

sentence was then parsed after arrival using spaces as the delimiter within Sub statements

MessageReceived and MessageReceived2. These statements received and parsed

sentences from the 86000 and 92000 models, respectively.

Figure 2.3: Data sentence format for the 92000 ResponseOne (Young) and 86000
(Young) ultrasonic anemometers from the user manuals. Each sentence is separated by a

carriage return <CR>. This is used to separate sentences from each other. The class
definition of carriage return in Visual Basic is "vbCr"

A log button with two states was created to start recording data as it is received.

By default the button indicated that data were not being logged (inactive) and would

cycle between logging (active) and not logging each time it was pressed. When a

92000 ResponseOne ASCII Polar Format: 86000 ASCII Polar Format:

a www.ww ddd.d ttt.t hhh.h bbbb.b ppppp ss*cc<CR> a www.ww ddd.d ss*cc<CR>

a = Sensor address

www.ww = Wind speed (m/s)

ddd.d = Wind direction (degrees)

ttt.t = Temperature (°C)

hhh.h = Relative Humidity (%)

bbbb.b = Barometric Pressure (hPa)

ppppp = Tipping Bucket Count (optional)

ss = Status code

* = Asterisk (ASCII 42)

cc = Checksum

<CR> = Carriage Return

19

message was received by the program, the subfunctions MessageReceived and

MessageReceived2 executed, and the status of the logging button was checked. If active,

the messages were recorded to the file created by the folder browser subfunction. The

user interface was designed such that each functionality occurs independently. Opening

and closing the ports, initiating the file generator, “FolderBrowserDialog”, and data

recording were contained in separate sub statements so that each process’ success could

be verified. An advantage to this arrangement was having the capability to precisely

begin data logging at the press of the logging button rather than after the selection of the

save location and file generation.

 The output of this program was organized data from the 86000 and 92000 model

ultrasonic anemometers. The data were labeled by sensor model so it could be separated

and processed using MATLAB R2017a. Example data is shown in Table 2.1 from testing

the data logging functionality. The checksums were included to validate that data streams

transferred successfully. The timestamps are displayed on the right-most column.

Table 2.1 Output data from sensors can be separated in MATLAB by their sensor
addresses.

Sensor
Address

Wind
Speed
(m/s)

Wind
Direction

(°)

Temp-
erature

(°C)

Relative
Humidity

(%)

Barometric
Pressure

(hPa)

StatusCode
*CheckSum Time

86000 2.52 161 00*0F 12:07:59.810
92000 1.78 327.3 20.6 60.9 982 00*1D 12:07:59.920
86000 2.60 180 00*03 12:08:00.060
92000 1.75 235.5 20.5 60.9 982 00*17 12:08:00.170
86000 3.32 142 00*09 12:08:00.300
92000 2.11 235.3 20.6 61 982 00*1A 12:08:00.430
86000 2.57 161 00*0F 12:07:59.810

20

2.1.2 Hardware Timestamping of Serial Data from Ultrasonic Anemometers

 The PC timestamps recorded along with incoming data were subject to latency.

Data were output at regular intervals, whereas the PC timestamps indicated variability by

as much as 10 ms. For a more accurate measure of similitude between two distanced

stationary anemometers, precise timestamping was needed for collected wind data.

Initial testing utilized the Visual Studio VB.NET function

DateTime.Now.ToString(“HH:mm:ss.fff”) to timestamp using a computer’s clock

synchronized over the internet. This function was triggered by a Boolean variable

“TimeTrigger” that armed once a full message was identified. As characters were

received, the state of “TimeTrigger” was checked such that when the first character in the

next sentence was received, the time was recorded. While this method was effective for

timestamping at high baud rates, it is limited by software latency and application in the

field. Thus, a hardware method with improved mobility was explored.

A GPS receiver (GPS 18x LVC, Garmin) was used to append a UTC timestamp

to each anemometer serial data message. A custom printed circuit board was developed to

interface with the pulse-per-second (PPS) and serial data stream from the GPS, shown as

Figure 2.4. The PPS signal was connected to an input capture on a microcontroller

(dsPIC30F4013, Microchip) and provided the 1 second epoch within 1 microsecond. The

serial data stream transmitted the NEMA 0183 GPGGA string, which included a UTC

timestamp. PPS events recorded an internal timer value from a 58.58375 kHz clock

source that was used to keep track of other events between PPS events. The first start bit

of each anemometer serial data message triggered a second input capture to record the

local timer value. A UTC timestamp was computed from the local timer value and

21

appended to the end of each anemometer data string in the same format as used for the

previous software method of timestamping. The microcontroller program used to

timestamp anemometer serial data is included in Appendix 8.

Figure 2.4 The assembled PCB allows a hardware method of timestamping

 Adjustments were made to the Windows Form Application to handle hardware

timestamped serial data streams. The hardware timestamped serial data streams replaced

the carriage return with a carriage return line feed and contained a UTC timestamp

concatenated between it and the calculated checksum from the anemometer. A space was

maintained as the delimiter for separating data. Occasionally collected data would have a

timestamp with 1000 ms after the decimal place. These rare instances were incorrectly

read by processing scripts as 100 ms. Data with these incorrect timestamps were removed

from the data series to simplify processing.

22

2.1.3 Test Fixture Design and Assembly

 Important criteria for the test fixture included rigidity, durability, and ease of

assembly. The test fixture (Figure 2.5) consisted of 3 pieces of 2x1 inch t-slotted

aluminum extrusion framing, a custom machined aluminum tripod adapter, machined

slug mounts for the sensors to tighten onto, as well as brackets and screws to hold the

pieces together. The test fixture was designed to mount on a tripod using a standard 5/8”-

10 machine screw. Test fixture components were modeled using Autodesk Inventor

Professional 2018. The 2x1 inch framing was selected because of its relatively light

weight and ease to assemble/disassemble and transport. The custom tripod adapter and

support brackets were secured using t-slot fasteners. The frame provided reasonable

resistance to torsion caused by long lever arms in the form of the vertical extrusions. The

horizontal aluminum beam was 1.83 m long and each vertical beam holding the slug

mounts was 0.91 m long. The height at the top of each anemometer with the fixture fully

assembled was approximately 2 m. Slug mounts were each 15.24 cm long and 3.40 cm in

diameter, allowing the fastening of the anemometers using included brackets by the

manufacturer. The slug mounts and top end of the vertical extrusions were tapped to

1/4”-20 threads and secured with hex-head screws for consistency with the framing

23

brackets. Schematics of machined parts are displayed in Appendix 1.

Figure 2.5: Assembly for Preliminary Test Fixture

 The PCBs required an enclosure to protect components from inadvertent contact.

The design for a 3D printed enclosure needed to provide easy access to connections on

the PCB labeled in Figure 2.4 and also allow vision to the board’s status lights for

confirmation that the system was operating correctly. Aesthetics were also considered:

providing indentations for printed labels, rounded edges and walls, and engraving of a

University of Kentucky logo. The assembled PCB and case are shown as Figure 2.6. The

lid and base contained three holes that were tapped for 1-inch length #4-44 rounded head

24

machine screws. The screws fastened through the lid, the PCB mounting holes, and into

the base. Detailed drawings are presented in Appendix 1.

Figure 2.6 The assembled PCB and case

2.1.4 Preliminary Data Collection and Setup Procedure

 Data were collected for the static experiment on the roof of the University of

Kentucky’s Charles E. Barnhart building. Each test was conducted at the same location

on the roof at its edge at the coordinate 38.026924°, -84.509623°. A satellite image of the

test site is displayed as Figure 2.7. The 12 V DC power supply was used to provide

power to the sensors, while the data acquisition system was run on a Microsoft® Surface

25

3 tablet computer. Data were collected purposely on days with varying temperatures,

humidity, and average wind speeds because they are known factors to effect spray drift.

There was also no precipitation during any of the testing days and the usual test duration

lasted between 1 to 3 hours, determinant on the possibility of rain or snow. The test

fixture was installed at the determined testing location next to a cart (seen in Figure 2.8)

supporting the laptop, power supply, PCBs, and Trimble GNSS receivers. For the

hardware timestamping method, the housed PCBs were each connected to one ultrasonic

anemometer and to a Garmin GNSS receiver.

Figure 2.7 A satellite image displays the location of the test site at 38.026924°, -
84.509623° (Google, n.d)

26

Figure 2.8 A cart was used as a surface for the computer, power supply, PCBs, and GPS
receivers

 The 12V power supply was first turned on to power the ultrasonic anemometers,

custom PCBs, and GPS receivers. The status lights on the PCBs were observed to

confirm that the equipment was functioning properly prior to logging data.

27

2.1.5 Field Testing

 Experimentation at various separation distances between the two anemometers

was completed to validate dynamic testing. If sufficient correlation could be achieved for

both stationary and dynamic testing at a chosen distance, then a sprayer boom size equal

to twice that distance (from the center to edge on both sides added) may have potential

for drift mitigation based on weather data recorded at the boom’s center. First a pilot test

ranging from 3.66-7.32 meters (12-24 feet) was attempted. Due to data logging issues,

many points were lost during writing to the .csv file, so correlation analysis was not

pursued, however wind velocities appeared similar enough to continue at larger distances.

Testing was then conducted at 6.10, 12.20, and 18.29 meter (20, 40, and 60 feet)

separations. The maximum distance was chosen based on current spray boom widths of

high-clearance self-propelled sprayers and represented one half of the total boom width.

 The first field experiment was conducted at the University of Kentucky’s C. Oran

Little Research Center in Versailles, Kentucky (38.085714°, -84.734869°) on October 5th,

2018 from 14:16:00 to 20:07:00 UTC to examine correlation at various anemometer

separation distances. A photo of the equipment setup is shown as Figure 2.9. The

experiment was conducted as a completely randomized block design, in which 3

separation distances were tested with 3 replications each for a total of 9 trials. The order

of testing for each replication was determined randomly as shown in Table 2.2 to capture

wind variability throughout the day while distributing error from weather variability

across all trials. The height for both anemometers was set at 194.3 cm checked using a

tape measure. Despite dropped readings because of errors in data logging, the remaining

wind velocity pairs were close enough to warrant testing at larger separation distances.

28

Table 2.2: Completely randomized block design for stationary testing

Block 1 Block 2 Block 3

5.49 m 7.32 m 3.66 m

7.32 m 3.66 m 5.49 m

3.66 m 5.49 m 7.32 m

Figure 2.9: Static testing was completed at the University of Kentucky’s C. Oran Little
Research center in Versailles, KY on October 5th, 2018.

29

 Following this experiment, a second test of different separation distances between

the anemometers was conducted at 6.10, 12.20, and 18.29 meter (20, 40, and 60 feet) to

emulate larger commercial spray booms. The field experiment was conducted on

relatively flat ground at the University of Kentucky’s North Farm in Lexington,

Kentucky (38.130583°, -84.493944°) on February 13th, 2019 between 18:15:00 to

21:15:00 UTC to examine correlation at various anemometer separation distances. The

experiment was conducted as a completely randomized block design, in which 3

separation distances were tested with 3 replications each for a total of 9 trials. The order

of testing for each replication was determined randomly as shown in Table 2.3 to capture

wind variability throughout the day while distributing error from weather variability

across all trials. A photo of the experiment setup is shown as Figure 2.10. Between each

replication a digital level was used to check anemometer tilt to ensure they were

horizontally level with an error of ±0.2° the ground plane. Also, a digital compass was

used to align both anemometers facing North. This was completed by holding the

compass up to the Northern indicator on each anemometer and is expected to have an

error of roughly ±2° from North. The height for both anemometers was kept constant at

194.3 cm and was checked using a tape measure. The 6.10, 12.20, and 18.29 meter (20,

40, and 60 feet) trials were chosen to emulate larger commercial spray booms.

30

Table 2.3: Completely randomized block design for stationary testing

Block 1 Block 2 Block 3

12.2 m 18.29 m 12.2 m

18.29 m 12.2 m 6.10 m

6.10 m 6.10 m 18.29 m

Figure 2.10: Static testing at the University of Kentucky’s North Farm was completed on
February 13th, 2019.

31

2.1.6 Processing Procedures

 After data collection, a MATLAB® script (R2017a) was utilized to filter out data

with incorrect timestamps, separate data by sensor address, and interpolate data from the

86000 model to the time interval of the 92000 model anemometer. Interpolation of one

dataset onto the time interval of the other was necessary to perform correlation testing

because the anemometers were not temporally synchronized. Linear interpolation was

chosen due to simplicity. The decision to interpolate the 86000 model’s data onto the

92000 data was determined because the 92000 model was assumed to be a superior

sensor. This was also the motivation for mounting the 92000 on the moving vehicle later

in CHAPTER 3. Statistical analyses were completed using MATLAB, SAS 9.4, and

Microsoft Excel.

 Various moving-average filters were tested on the dataset to reduce noise, and

correlation testing was done to determine the optimal technique yielding acceptable

correlation while maintaining accuracy. The filters selected were 3, 5, and 7-point

moving averages. At a 200 ms sampling rate, the filtering windows involve data over the

time interval of 0.6 seconds to 1.4 seconds. The data were processed to create replications

for correlation testing. Replications were defined as a pair of velocity measurements, one

from each anemometer, at the same time instant. For example, a replication for testing

raw data would include the recorded value of the model 92000 weather station and the

interpolated value of the 86000 model for that instant. Additionally, data was arbitrarily

categorized by wind velocity as “low” if less than 3 m/s, “medium” if between 3 and 6

m/s, or “high” if higher than 6 m/s. This categorization was completed so that correlation

could be compared at different velocity ranges. It also allowed testing of replications of

32

mixed categories, or large differences in the paired data. Using these tests, the plan for

correlation results for each separation distance and filter was to calibrate the results as a

reference to a “worse case” result. With the minimal Pearson correlation coefficient

known for each separation distance, it could be used as a benchmark for comparison in

dynamic testing. After completing Pearson correlation testing, flaws in its

appropriateness at long distances were discovered which are discussed in section 2.1.7.

2.1.7 Assumptions and Validity of Correlation Analysis

The overlying assumptions for correlation analysis need to be carefully

considered. For short time intervals, stationarity of the weather data is assumed because

noticeable differences in weather are unlikely to occur. Through the assumption of

stationarity (no change in distribution over time), an assumption of homoscedasticity

(constant variance) is also made. This can be confirmed by scatterplot visualization of

wind speeds for both anemometers but is somewhat arbitrary since the range of wind

velocities is expected to be small with no trend over short timespans. The design of the

experiment served to better satisfy the concern of nonstationary by collecting data at

short time intervals of approximately 15-minutes. The correlation test assumes constant

variance for this timespan rather than for all collected data for each anemometer

separation distance. In summary, the analysis staves off concerns surrounding weather

variability changes throughout the day by a completely randomized block, which breaks

up this potential trend among all trials. Normality was tested for anemometer data using

R-Studio (Version 1.1.456) using installed packages (xlsx, gstat, sp, and lattice) and was

determined sufficient based on calculated residuals, skewness, and kurtosis.

33

A Pearson correlation test serves to test for linear dependence between two

variables. After testing for Pearson correlation, it was determined that further analysis

was needed to validate correlation as a means for determining similitude between the

anemometers, especially for longer physical separation distances. The reason for this

additional validation becoming necessary was because of small Pearson correlation

coefficients at increasing distances, even though differences in measurements were

generally not large and likely acceptable for making droplet spectrum decisions.

Considering velocity measurements are taken at separate locations, it is expected that

wind velocity will be different. If regression were to be calculated for each data series,

poor models (low r value) would be expected. Therefore, a perfect linear dependence

between them is not expected either. Alternatively, one strategy for determining

similitude is to compute covariance between wind velocities at both locations however,

the combined effects of unreduced noise and uncertain variability at different vehicle

velocities and distances could yield incomparable variance during dynamic testing. For

comparison purposes, the normalized cross-correlation coefficient between the two time-

series data was computed, and the resulting cross-correlograms examined. The advantage

to this correlation analysis is that focus is shifted towards detecting agreements in wind

fluctuation at both locations rather than whether the velocity was the same. An analysis

on the actual differences in wind velocities was carried out separately to the correlation

analysis.

For cross-correlation testing to be meaningful, there must be both an individual

structured auto-correlogram for each anemometer, and a structured cross-correlogram

representing both sensor’s data. Although the relationship between sequential

34

measurements is not of interest here, if there is a structured cross-correlation, and it is

strongest with both series in phase (lag=0) with decay into increasing lag times, then it

suggests merit in the cross-correlation analysis on paired measurements, because

comparisons at the same instant yield better similitude than with measurements separated

by short time lags. A high cross-correlation coefficient would suggest that wind velocity

at both locations fluctuate synchronously. Additionally, by observing the cross-

correlogram, the variability of wind velocity can also be observed by noting the rate of

correlation decay across lag times. A steeper drop in cross-correlation can suggest

distinct matching wind variability while a flatter slope suggests less similarity over the

time period tested.

2.1.8 Quantifying Uncertainty in Processed Wind Velocities

 Two sources of uncertainty were considered regarding wind velocity

measurements between the two sensors. The first source was systematic uncertainty,

defined in this work as the manufacturer provided 2% tolerance given by each

anemometer’s specification. The second was inspired by Contini et al. (2006). The study

looked at quantifying random uncertainties related to sensor orientation and prevalence of

obstacles. For this study, nozzle control per wind velocity data will require calibration to

translate velocity readings to appropriate droplet spectra. Therefore, predicting random

uncertainties to obtain statistically very precise estimates of true wind velocity

(subtracting error caused by obstacles) is not necessary because ultimately the data will

be used to make decisions at a different location. Instead, Contini’s random uncertainty

component γ was repurposed to encompass uncertainty derived by the filtering method.

35

Rather than using standard error, the standard deviation of measurements for each filtered

measurement was used for uncertainty because it is better suited for describing variability

amongst those measurements, as opposed to incorrectly describing results as a

statistically derived estimate. The modified form of equation 2.1, expressing actual wind

velocity as the sum of output data, filtering uncertainty, and systematic uncertainty is

shown as equation 2.2.

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎 ± (𝛾𝛾 + 𝜔𝜔) (2.1)

Where:

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = Actual measurement (m/s)

𝑉𝑉𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎 = Measurement output by anemometer (m/s)

𝛾𝛾 = Uncertainty in measurement derived from filtering (𝛾𝛾 = 𝜎𝜎 (m/s))

𝜔𝜔 = Systematic uncertainty (Manufacturer provided 2% of output wind velocity (m/s))

 Differences between measurements were calculated using equation 2.2 to evaluate

the accuracy and similitude between two anemometers at varying separation distances.

The filtering uncertainties for each sensor were added rather than subtracted to obtain

uncertainty limits for each data pair’s difference. For this portion of the analysis, the

manufacturer’s systematic uncertainty was excluded because it was the same for both

sensors, and we are more concerned with filtering effects on accuracy. The resulting

uncertainty equation is the spatial uncertainty (differences in velocity) added to the

filtering uncertainty (standard deviation over filter’s window). These differenced velocity

36

values α were placed into bins of 0.1 m/s in width, and cumulative probability plots were

generated for each trial to supplement the correlation analysis. Additionally, the filtering

uncertainty was organized into bins to compare filtering window size contribution to the

measurement uncertainty.

Uncertainty in Measurement = (𝛼𝛼1 − 𝛼𝛼2) ± (𝛾𝛾1 + 𝛾𝛾2) (2.2)

Where:

𝛼𝛼𝑖𝑖 = Measurement value for anemometer 𝑖𝑖 (m/s)

𝛾𝛾𝑖𝑖 = Filtering uncertainty for anemometer 𝑖𝑖 (m/s)

(𝛼𝛼1 − 𝛼𝛼2) = Spatial Uncertainty (m/s)

(𝛾𝛾1 + 𝛾𝛾2) = Filter Uncertainty (m/s)

 Results:

2.2.1 Visualizing Data and Filter Uncertainties

 The processed wind velocity and directional data was plotted in Excel with

uncertainty bars representing filtering uncertainty and systematic uncertainty. An

example dataset is visualized in Figure 2.11 and Figure 2.12, showing data from block 1,

20 ft separation filtered using a 3-point moving average. Filter uncertainty or standard

deviation for used points in the filtering window is shown as error bars in the velocity

37

data. Uncertainty for wind direction was not derived because it was used for comparison

and validation sake, and not for statistical analysis.

Figure 2.11: Wind velocity data is shown for the first 30 seconds of data at 20 ft
separation, block 1, filtered using a 3-point moving average

2

3

4

5

6

7

8

9

10

11

12

0 5 10 15 20 25 30

W
in

d
Ve

lo
ci

ty
 (m

/s
)

Time (seconds)

86000 Velocity 92000 Velocity

38

Figure 2.12: Wind direction is shown for the first 30 seconds of data at 20 ft separation,
block 1, filtered using a 3-point moving average

2.2.2 Correlation Results:

 The results of an initial Pearson correlation test using SAS 9.4 showed decreasing

correlation with increasing distance between anemometers. This result was expected

however R-values seemed mediocre averaging about 0.512 for 20ft, 0.353 for 40ft (the

3rd trial was 0.18 and very noisy), and 0.327 for 60ft. To examine whether these results

were indicative of the degree of similitude between the sensors, cross-correlation among

lag times were tested. Each lag step is equal to the sampling interval of 200 milliseconds,

and plots were generated to 50 lags (10 seconds). This time interval was chosen because

this work aims to examine feasibility of real-time adjustments of a nozzle, so timespans

longer than a few seconds are irrelevant for droplet control.

220

230

240

250

260

270

280

290

300

0 5 10 15 20 25 30

W
in

d
He

ad
in

g
(d

eg
re

es
)

Time (seconds)

86000 Direction 92000 Direction

39

 Auto-correlograms such as the example shown in Figure 2.13 were generated for

the 20ft, 40ft, and 60ft trials to validate structure before computing cross-correlograms

such as in Figure 2.14. The results of these tests indicate structured correlation between

the two anemometers that flatten with increasing lag times. The lag time is the offset

which the data is temporally shifted out of phase and tested for correlation. Correlation

decayed at different intensities depending on distance. These structures were examined

for each of the 3 separations distances with various moving average filters as well. As

expected, the correlogram structures are smoothed with increasing averaging time

because velocity measurements are smoothed while also improving correlation among lag

times. For all trials and filters, generated auto-correlograms showed structure that

warranted analysis by cross-correlation.

Figure 2.13: Autocorrelograms for 20ft separation, trial 1, show structured
autocorrelation warranting a cross-correlation analysis.

0.95

0.96

0.97

0.98

0.99

1

0 1 2 3 4 5 6 7 8 9 10

Au
to

co
rr

el
at

io
n

Co
ef

fic
ie

nt

Time Lags (seconds)

86000 Autocorr 92000 Autocorr

40

Figure 2.14: Cross-Correlogram for 20ft separation, trial 1, shows structured decay in
correlation with increasing lag

 Figure 2.14 displays the cross-correlogram for data collected with a 20ft

separation between anemometers for multiple filters. The figure shows a clear decay in

correlation with lag time, suggesting that both anemometers experienced fluctuations in

wind velocity in-phase. At larger separation distances this phenomenon diminished.

Table 2.4 displays a summary of cross-correlograms and a descriptor of their structure.

“YES” indicates structured decay, while “Flat” indicates small slop of decay. In Figure

2.15, cross-correlograms for block 1 trials is displayed. The cross-correlation coefficient

at zero lag decreases with growing distance, but also decays at slower rates. This is likely

explained by an increased occurrence of larger differences between the two sensors

overall, thus causing smaller slopes in correlation when the series are out of phase. These

0.96

0.965

0.97

0.975

0.98

0.985

0.99

-10 -8 -6 -4 -2 0 2 4 6 8 10

Cr
os

s-
co

rr
el

at
io

n
co

ef
fic

ie
nt

Time Lags (seconds)

20ft_1_NoFilter 20ft_1_3pt 20ft_1_5pt 20ft_1_7pt

41

trends were apparent among all blocks as shown in Figure 2.16 and Figure 2.17 however,

in the later it’s worth noting that the 40 ft trial is almost completely flat. When

considering the poor 0.18 Pearson coefficient for this trial mentioned at the beginning of

this section, this trial supports the methodology of identifying noisy or largely different

data series by their flat cross-correlograms. Such phenomenon was considered during

further analysis of velocity differences between the anemometers.

Table 2.4: Unfiltered trials generally all had structured decay in cross-correlograms
except for one trial.

Trial Structure?

20 ft, block 1 YES

20 ft, block 2 YES

20 ft, block 3 YES

40 ft, block 1 YES

40 ft, block 2 YES

40 ft, block 3 Flat

60 ft, block 1 YES

60 ft, block 2 YES

60 ft, block 3 YES

42

Figure 2.15: Cross-Correlogram for all separation distances in block 1 shows decreasing
correlation with increasing distance and flatter structure, suggesting less similarity in

wind velocity with increasing distance on the scale of spray boom size

Figure 2.16: Cross-correlogram for all separation distances in block 2 shows decreasing
correlation with increasing distance and flatter structure, suggesting less similarity in

wind velocity with increasing distance

0.96

0.962

0.964

0.966

0.968

0.97

0.972

0.974

0.976

0.978

0.98

-10 -8 -6 -4 -2 0 2 4 6 8 10

Cr
os

s-
co

rr
el

at
io

n
co

ef
fic

ie
nt

Time Lags (seconds)

20ft_1_NoFilter 40ft_1_NoFilter 60ft_1_NoFilter

0.95

0.955

0.96

0.965

0.97

0.975

0.98

-10 -8 -6 -4 -2 0 2 4 6 8 10

Cr
os

s-
co

rr
el

at
io

n
Co

ef
fic

ie
nt

Time Lags (seconds)

20ft_2_NoFilter 40ft_2_NoFilter 60ft_2_NoFilter

43

Figure 2.17: Cross-correlogram for 60 ft separation, trial 3, shows similar trends as
Figure 2.17 and Figure 2.18, but displays the highly varied 40 ft trial.

2.2.3 Distribution of measurement differences between the two anemometers:

To further quantify similitude between paired measurements, differences between

measurements at the same instant were calculated and categorized into bins for

cumulative probability analysis. Each bin was 0.1 m/s wide, and the frequency of velocity

differences were calculated for each bin. From this data, cumulative probability data was

calculated representing the percentage of values equal to or less than a given difference in

velocity. An example chart is displayed as Figure 2.18. In this example, approximately

90% of velocity pairs were less than or equal to 2 m/s. Increasing filtering size lessened

the differences between measurements for all trials, acting as a smoother over time. The

0.96

0.962

0.964

0.966

0.968

0.97

0.972

0.974

0.976

0.978

0.98

-10 -8 -6 -4 -2 0 2 4 6 8 10

Cr
os

s-
co

rr
el

at
io

n
co

ef
fic

ie
nt

Time Lags (seconds)

20ft_3_NoFilter 40ft_3_NoFilter 60ft_3_NoFilter

44

trend is easily recognizable by the positioning of each filter’s series relative to each other.

The filter with the steepest initial slope was a 7-point moving average, indicating that the

distribution of differenced values was more right-tailed and had a higher percentage of

small differences, and less large differences between wind velocity series compared to

smaller filtering windows.

Figure 2.18: Cumulative probability chart for 20ft separation distance, trial 1

 The cumulative probability plots for unfiltered data for all trials is displayed as

Figure 2.19, Figure 2.20, and Figure 2.21. Each of the three trial blocks had increasing

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2

Pe
rc

en
t o

f V
al

ue
s L

es
s T

ha
n

or
 E

qu
al

 D
iff

er
en

ce

Difference in Wind Velocity (m/s)
20ft_2_NoFilter 20ft_2_3pt 20ft_2_5pt 20ft_2_7pt

45

amounts of larger velocity differences with increasing distance between sensors, except

for block 3 where the before-mentioned noisy 40ft trial occurred. This trend of decreasing

similarity at larger distances between the anemometers was considered for comparison to

dynamic testing in Chapter 3.

Figure 2.19: Cumulative probability plot for all trials in block 1

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2Pe
rc

en
t o

f V
al

ue
s L

es
s T

ha
n

or
 E

qu
al

 D
iff

er
en

ce

Difference in Wind Velocity (m/s)

20ft_1_NoFilter 40ft_1_NoFilter 60ft_1_NoFilter

46

Figure 2.20: Cumulative probability plot for all trials in block 2

Figure 2.21: Cumulative probability plot for all trials in block 3

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2Pe
rc

en
t o

f V
al

ue
s L

es
s T

ha
n

or
 E

qu
al

 D
iff

er
en

ce

Difference in Wind Velocity (m/s)

20ft_2_NoFilter 40ft_2_NoFilter 60ft_2_NoFilter

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2Pe
rc

en
t o

f V
al

ue
s L

es
s T

ha
n

or
 E

qu
al

 D
iff

er
en

ce

Difference in Wind Velocity (m/s)

20ft_3_NoFilter 40ft_3_NoFilter 60ft_3_NoFilter

47

2.2.4 A Note on Filtering Uncertainty Analysis by Probability Distribution

An ideal filter is one that reduces noise while preserving the desired signal. Improved

cross-correlation results for increasing filter size was expected because each dataset is

smoothed by the filter, and noise reduction improves similitude. The calculated filtering

uncertainty or standard deviation of points included in each filter’s window was

organized into histograms for comparison among filters as shown by example in Figure

2.22. Generally, among the three filters as filter size increased, the uncertainty in each

processed result seemed to increase, but was determined too close, and with too many

inconsistencies to determine as a definite trend. This was not surprising because larger

windows allow more fluctuations to be included in the calculation of each filtered point,

but in less noisy datasets could deceptively not be present where the range of values in

the window were smaller. If replicated, this method of analysis should be completed with

caution and while consulting a visual of the dataset. It was not replicated in this work for

dynamic testing.

48

Figure 2.22: Sample histogram of filtering uncertainties distribution for block 1, 20 ft
separation

2.2.5 Conclusions from Static Testing

 The goal for static testing for similarity between to wind velocity at separate

locations was to determine feasibility for dynamic testing. Before a processing algorithm

for removing vehicle dynamics could be developed, and the resulting data compared to a

static anemometer, it was important to first check that wind velocities at the distances of

the same scale were similar. The resulting analysis of this chapter served as a form of

benchmarking for what was to be expected in the dynamic experiment’s results.

At the conclusion of the static data analysis, it was clear that a Pearson correlation

coefficient was insufficient alone for determining similitude, especially at larger

0

5

10

15

20

25

30

35

40

45

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Pe
rc

en
t o

f U
nc

er
ta

in
ty

 F
re

qu
en

cy

Bin Filter Uncertainty (m/s)

3 pt 5 pt 7 pt

49

separation distances. Intuition says that this measure becomes increasingly more

inappropriate because differences in wind velocity are expected at longer distances.

Instead, focus was shifted toward quantifying whether wind velocity fluctuated together,

as opposed to comparing precise values at each location. Cross-correlograms suggested

that filtering improved similarity between the two series, and an analysis of differenced

velocities confirmed it. Increasing distance between the anemometers resulted in smaller

cross-correlation at zero lags as the wind varied more. Flattening of cross-correlograms

was explained by both higher differences in wind velocities and increased prevalence of

non-matching fluctuations. Especially noisy datasets masked some matching fluctuations

between the two sensors.

50

CHAPTER 3. CORRELATION TESTING BETWEEN ONE DYNAMIC AND ONE

STATIONARY ANEMOMETER

 Methods and Materials:

 Once similitude between static sensors was confirmed, dynamic testing was

completed in comparison. The location of these tests was at the University of Kentucky’s

North Farm in Lexington, KY (38.130583°, -84.493944°) on an open parcel of land with

no trees or structures within several hundred meters. For three separation distances and

three ground speeds, a vehicle mounted weather station was driven in circles around a

stationary anemometer to test whether this work’s processing algorithm could

successfully back-out vehicle dynamics from the apparent wind velocity measurements

and obtain good agreement with the stationary data. The purpose for using multiple

vehicle velocities was to examine the feasibility and differences in the algorithm’s

performance in addition to varying separation distance. Since cruise control was not

available on the vehicle, vehicle speed was not constant for the duration of each trial. For

the remainder of this work, the intended velocity of vehicle is referred to as the target

velocity what was indicated by the vehicle’s speedometer and monitored by the driver in

effort to maintain the target velocity. The design was a completely randomized block, in

which the order of testing for the radii of the vehicles path were completely random for a

total of 3 trials each. Within each radius, targeted velocities were randomized as well.

The advantage to this design allowed any temporal weather variability throughout the

data to be distributed randomly among all trials. The tested radii for the vehicle’s path

were 6.10 m, 12.2 m, and 18.29 m, and the target velocities were 4.83 km/h, 9.66 km/h,

51

and 14.48 km/h. Two of the 6.10 m, 14.48 km/h trials were cancelled during

experimentation because of increasing difficulty driving at that speed without sliding and

digging ruts in the field. The order of testing is shown in Table 3.1, and an aerial photo of

the experiment captured with a drone is displayed as Figure 3.1.

Table 3.1: The completely randomized block design is shown. The procedure moved
down each block in order, completing separations from top to bottom, and vehicle
velocities from left to right. Two of the 14.48 km/h trials were omitted because of

difficulty turning the vehicle at that speed.

Block 1 Block 2 Block 3
6.10

m

4.83

km/h

14.48

km/h

9.66

km/h

18.29

m

9.66

km/h

4.83

km/h

14.48

km/h

12.19

m

4.83

km/h

14.48

km/h

9.66

km/h

18.29

m

14.48

km/h

9.66

km/h

4.83

km/h

12.19

m

4.83

km/h

9.66

km/h

14.48

km/h

6.10

m

9.66

km/h

4.83

km/h

14.48

km/h

12.19

m

4.83

km/h

14.48

km/h

9.66

km/h

6.10

m

14.48

km/h

9.66

km/h

4.83

km/h

18.29

m

14.48

km/h

4.83

km/h

9.66

km/h

52

Figure 3.1: Aerial photo visualizing the three radii for dynamic testing

A goal for this experiment was to remove components of the anemometer’s output

wind velocity caused by the motion of the sensor itself and quantify the degree of

similitude with a stationary anemometer. To accomplish this, the vehicle’s velocity and

heading were calculated using three methods for comparison, from the output of a survey

grade GNSS receiver operating in RTK mode. This calculated velocity was interpolated

to the sampling interval of the 92000 model anemometer and were subtracted from the

apparent wind velocity vector. The direction of wind data relative to the vehicle’s

heading was also recalculated using the newly solved wind vectors. The determined

53

vehicle heading was used to rotate the wind data relative to “True North” to match a

stationary anemometer for statistical analysis.

3.1.1 Equipment Setup and Vehicle Mounting

 A Trimble R10 GNSS receiver was used to record the vehicles position. NMEA

GPGGA and GPRMC were output at 20 Hz and included UTC time, UTC date, latitude,

longitude, velocity, and course over ground, among other parameters. The GNSS receiver

was mounted on the roof of a utility vehicle (XUV 855D, John Deere) using a bracket

mounted to a t-slotted aluminum framing cross member. The 92000 model ResponseOne

weather station was also mounted to the cross member. The forward and sideways offset

between the devices were measured for velocity transformation from the GNSS location

to the weather station’s location. To reduce potential effects of tilt or vibration on

measurement accuracy of the moving anemometer, testing was done on flat land. Applied

moving average filters also hoped to reduce noise that may be caused by noticeable

bumps on the vehicle’s path.

3.1.2 Methods for Calculation of Weather Station Velocity

Even though the GNSS receiver and weather station were mounted closely on the

vehicle used, efforts were made in this study to derive an algorithm to transform position

and velocity data from the GNSS location to the location of the weather station. At a

separation of a few inches, the difference in velocity between the GNSS receiver and

weather station may be considered negligible however, at larger distances or high turning

rates this would not be the case. The velocity of the vehicle compared to at the end of a

large spray boom however, may be notably different especially while turning. To provide

54

feasibility for estimating anemometer velocity located at larger distances from the GNSS

receiver (i.e.: at the end of a large spray boom) an algorithm for transforming GNSS

velocity to the position of the weather station was necessary to obtain the velocity of the

weather station.

 Three methods for calculating the velocity of the weather station were

investigated using GNSS data and compared to each other. The justification for this

approach was to provide alternative methods of velocity calculation that are dependent on

different GNSS parameters available in the GPGGA and GPRMC messages. The first

method, dependent on the GNSS fix precision, involved using GPS coordinates and the

known offset between devices to calculate new coordinates at the weather station’s

position. The Haversine distance formula (Robusto, 1957) was used to calculate the

distance between the two coordinates, and velocity was obtained by dividing by the

sampling interval of the GNSS receiver. Vincenty’s formula was also used to calculate

new coordinates at the 92000 model’s position and to calculate velocity for comparison.

The second method used the GNSS receiver’s “Speed Over Ground” and “Course Over

Ground” outputs. The velocity at the location of the weather station was determined by

modeling vehicle motion as a curved path and solving for weather station by multiplying

GNSS velocity by a scalar multiple equal to a ratio of turn radii at each location. The

third method utilizes the Haversine/Vincenty methods to calculate the GNSS velocity,

however, uses the relative motion algorithm in method 2 to transform velocity data to the

weather station’s location. A comparison of the three methods is discussed in section

3.1.8.

55

3.1.3 Method 1: Successive Coordinates

 Perhaps the most intuitive method of calculating velocity from GNSS data is to

calculate the distance between successive coordinates and divide by the known sampling

interval. It is important to recognize that GPS coordinates are spherical coordinates, and

that the coordinate system they are based on has a non-uniform grid size therefore,

Pythagorean distance is an incorrect estimator of distance unless coordinates are

transformed. Two methods of solving for the distance between coordinates were

explored.

The Haversine “Great Circle” distance was first solved instead. Before finding the

Haversine distance, new coordinates at the weather station’s position needed to be

calculated. The following equations represent a clockwise path, but the opposite direction

(used in this study) was easily derived geometrically. First, the azimuth forward bearing

was calculated according to equation 3.1. Next, the bearing facing the weather station

from the GNSS receiver is solved using trigonometry in Equations 3.2 and 3.3. A legend

defining the terms equations 3.1-3.10 is displayed as Figure 3.3, and the parameters are

visualized in Figure 3.2.

𝜃𝜃 = tan−1(sin(𝐾𝐾𝑖𝑖 − 𝐾𝐾𝑖𝑖−1) ∗ cos(𝐿𝐿𝑖𝑖) , cos(𝐿𝐿𝑖𝑖−1) ∗ sin(𝐿𝐿𝑖𝑖)

− sin(𝐿𝐿𝑖𝑖−1) ∗ cos(𝐿𝐿𝑖𝑖) ∗ cos(𝐾𝐾𝑖𝑖 − 𝐾𝐾𝑖𝑖−1)

(3.1)

𝜑𝜑 = tan−1 �
𝑌𝑌
𝑋𝑋
� (3.2)

𝜃𝜃𝐺𝐺→𝑤𝑤 = 𝜃𝜃 − (90 − 𝜑𝜑) (3.3)

56

Figure 3.2: Diagram shows the definition of azimuth forward bearing θ, and bearing
facing the weather station 𝜃𝜃𝐺𝐺→𝑤𝑤

Once the bearing facing the weather station was calculated, ("Calculate distance, bearing

and more between Latitude/Longitude points,") the angular distance 𝛿𝛿 from the GNSS to

weather station and was calculated, shown as equation 3.4. The new latitude and

longitude coordinates are solved using equations 3.5 and 3.6 respectively.

𝛿𝛿 =
Offset Distance

𝑟𝑟

(3.4)

57

𝐿𝐿𝑇𝑇 = sin−1(sin(𝐿𝐿𝑖𝑖) ∗ cos(𝛿𝛿) + cos(𝐿𝐿𝑖𝑖) ∗ sin(𝛿𝛿) ∗ cos(𝜃𝜃𝐺𝐺→𝑤𝑤)) (3.5)

𝐾𝐾𝑇𝑇 = 𝐾𝐾𝑖𝑖 + tan−1(sin(𝜃𝜃𝐺𝐺→𝑤𝑤) ∗ sin(𝛿𝛿) ∗ cos(𝐿𝐿𝑖𝑖) , cos(𝛿𝛿) − sin(𝐿𝐿𝑖𝑖) ∗ sin(𝐿𝐿𝑇𝑇)) (3.6)

The Haversine distance calculation is completed using equations 3.7, 3.8, and 3.9. The

resulting velocity at the weather station’s location is the Haversine distance divided by

the sampling interval t (equation 3.10). Finally, the heading at the weather station’s

location can be calculated using the same method as at the GNSS location using equation

1.

𝑎𝑎 = sin �
𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑖𝑖−1

2
�
2

+ cos(𝐿𝐿𝑖𝑖−1) ∗ cos(𝐿𝐿𝑖𝑖) ∗ sin �
𝐾𝐾𝑖𝑖 − 𝐾𝐾𝑖𝑖−1

2
�
2

(3.7)

𝑐𝑐 = 2 tan−1�√𝑎𝑎 , √1 − 𝑎𝑎� (3.8)

𝑑𝑑 = 𝑟𝑟 ∗ 𝑐𝑐 (3.9)

𝑣𝑣 =
𝑑𝑑
𝑡𝑡

(3.10)

58

Figure 3.3: Legend for equations 3.1-3.10

Although seemingly effective by comparison to other methods during preliminary testing,

the resulting Haversine velocity calculations were noisy and yielded poor similarity as

compared to other methods (Figure 3.4). This was because equations 3.1-3.10 assume a

spherical Earth model. An alternative method of solving for coordinates at the weather

station’s location involved using Thaddeus Vincenty’s formula for a WGS-84 geodetic

ellipsoid (Vincenty, 1975). A modified form of Vincenty’s formula was also used to

solve for distance between transformed points. This algorithm is significantly longer but,

claims higher accuracy up to a few millimeters.

Where:

𝛿𝛿 = angular distance

Offset Distance = �((31.25 ∗ .0254)2 + (0.5 ∗ 0.354)2 meters from GNSS receiver

𝑟𝑟 = Radius of the Earth (6361 ∗ 103 𝑚𝑚)

𝐿𝐿𝑇𝑇 = Transformed Latitude Coordinate in decimal degrees

𝐾𝐾𝑇𝑇 = Transformed Longitude Coordinate in decimal degrees

𝐿𝐿𝑖𝑖 = Latitude coordinate at position 𝑖𝑖 in decimal degrees

𝐾𝐾𝑖𝑖 = Longitude coordinate at position 𝑖𝑖 in decimal degrees

𝑑𝑑 = Haversine distance in meter

𝑣𝑣 = Average velocity between coordinates

𝑡𝑡 = Sampling interval of GNSS (0.05 seconds)

59

Figure 3.4: The Haversine calculated form of method 1 yielded poor similitude when
using equations 4-6 for new coordinate calculation

The accuracy of this method of calculation is determinant on the accuracy of the

GPS fix at the location of the GNSS receiver, which can vary greatly based on the current

satellite constellation, location on Earth, interference, and differential correction method.

For collected data in this study, the expected error of the fix is small because of the Real-

Time Kinematic RTK functionality included in the Trimble R10 model GNSS, which

received data from the Kentucky Transportation Cabinet virtual reference station (VRS).

Also, the Haversine distance formula assumes a spherical model of the Earth, and a

constant known Earth radius at all locations involved in the calculation, which has been

0

0.5

1

1.5

2

2.5

3

15:43:12.000 15:43:20.640 15:43:29.280 15:43:37.920 15:43:46.560 15:43:55.200 15:44:03.840

W
ea

th
er

 S
ta

tio
n

Ve
lo

ci
ty

 (m
/s

)

Time

M1 Haversine Recalculated Coordinate M2 Relative Velocity SOG M3 Relative Haversine

60

assumed equal to 6371 ∗ 103 meters. The Vincenty formula differs from this by

assuming a WGS-84 oblate ellipsoid. In both formulas, the transform headings were

calculated by averaging sequential GNSS courses so that the transform could be

completed relative to the course at each coordinate rather than courses in route towards

them. A sample plot of original GNSS coordinates and calculated coordinates at the

weather station’s location is shown as Figure 3.5.

Distances between the GNSS coordinates and the transformed coordinates using

equations 1-6 (spherical Earth model) and the Vincenty method (WGS-84 Earth model)

were calculated using Vincenty’s distance formula (vreckon.m in Appendix 5) to

compare accuracy between the methods of coordinate transform. The expected distance

was the measured 0.7939 meters between the GNSS receiver and the 92000 model

anemometer. The Vincenty WGS-84 method yielded better accuracy compared to the

spherical method however, the spherical method of transform was still accurate within

about ±0.06 meters. The distances are both displayed as Figure 3.6. To reduce noise in

the velocity calculations, filtering was applied to match the timespan of filtering for the

anemometers. These results are displayed and compared to other methods in section

3.2.1.

61

Figure 3.5: Weather stations coordinates solved using Vincenty's formula were effective
at transforming at a set distance.

38.13036

38.13038

38.1304

38.13042

38.13044

38.13046

38.13048

38.1305

84.49435 84.4944 84.49445 84.4945 84.49455

Lo
ng

itu
de

 (N
) (

de
ci

m
al

 d
eg

re
es

)

Latitude (W) (decimal degrees)

GNSS Coordinates Calculated Weather Station Coordinates

62

Figure 3.6 Distances between GNSS coordinates and transformed coordinates (coordinate
pairs) show better accuracy using the WGS-84 Earth model

3.1.4 Method 2: Relative Velocity to GNSS

 Higher-end GNSS receivers such as the Trimble RTK R10 may feature high

precision velocity tracking that can be used in substitute to the successive coordinate

method previously described. The featured GNSS receiver uses the Doppler effect to

calculate velocity relative to satellite motion, measuring the difference in a message’s

frequency at emission and arrival from multiple satellites to solve for velocity. The

principle of this calculation is explained in depth by an article from InsideGNSS

(Gaglione, 2015). Similar to the successive coordinate method, the velocity at the

location of the GNSS receiver is insufficient for large separation distances from the

weather station, thus a transform algorithm is described, relating the velocities at each

location by a scalar multiple equal to the ratio of the turn radii of both locations. This

0.78

0.785

0.79

0.795

0.8

0.805

0.81

0 500 1000 1500 2000 2500 3000

Tr
an

sf
or

m
ed

 D
ist

an
ce

 (m
)

Coordinate Pair

Spherical WGS-84

63

method 2 and the subsequent section’s method 3 were examined as a comparison to the

calculated weather station dynamics solved using method 1.

Before implementing this method, a few assumptions need considered. First, the

precision of the transformed velocity is dependent on the precision of the output GNSS

velocity. The precision of the GNSS velocity is dependent on the number of available

satellites involved in the Doppler effect calculations. Additionally, the principle of this

method relies on an assumption that angular velocity of the vehicle and attached bodies is

equal and acceleration is negligible between measurements. This is a reasonable

assumption at high sampling rates where accelerative force does not significantly change

velocity between sampled points.

3.1.5 Calculating Velocity at Weather Station’s Location relative to GNSS Location

The velocity transform from the GNSS receiver location to the location of the

weather station that was initially used was completed by computing a scalar multiple

equal to the ratio of turn radii at both locations (GNSS and weather station) that can be

applied to the output GNSS velocity. The principle of calculation is described in this

section.

Equations 3.11 and 3.12 express the velocities at the GNSS and weather station

locations as circular motion by relating them to an equal angular velocity ω multiplied by

their respective turn radii. Combining these two equations yield equation 3.13 for the

velocity at the location of the weather station. Figure 3.7 visualizes the geometry for

equations 3.14 and 3.15 solving for the turn radius at the weather station for right-hand

64

and left-hand turns respectively. Once this relation is derived, the turn radii of the GNSS

needs to be calculated.

𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝜔𝜔 ∗ 𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (3.11)

𝑉𝑉𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 = 𝜔𝜔 ∗ 𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 (3.12)

𝑉𝑉𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 = 𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∗ �
𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒

𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
� (3.13)

𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 = �(𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑋𝑋)2 + 𝑌𝑌2 (3.14)

𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 = �(𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑋𝑋)2 + 𝑌𝑌2 (3.15)

65

Figure 3.7: Diagram displaying turn radii and velocity vectors at the GNSS and weather
station locations. The direction of the velocity vectors are pointing to the rear of the

vehicle for visibility.

 To solve for the turn radius of the GNSS receiver, two velocity measurements

were used in an attempt to solve for GNSS turn radii without physical measurements. The

theoretical distance traveled between data samples was solved by averaging successive

velocities multiplied by the sampling time interval (equation 3.16). Equation 3.17

expresses the distance traveled as the arc length of the path traveled. By using these two

relations, the turn radius 𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 was solved using equation 3.18 and was used to solve for

the turn radii at the weather station location. With all required parameters solved, the

velocity at the weather station was attempted. A legend for the terms of equations 3.16-

66

3.18 is displayed as Figure 3.9, and a visualization of variables as Figure 3.8. This

method was unsuccessful however, because the calculated turn radii is better described as

the radius of curvature. The offset distance between the GNSS receiver positions was

consistently much larger than the calculated radius, which could not be scaled to the

actual turn radius of the receiver for transformation to the weather station’s position.

Instead, the known turn radii defined by the experiment’s plan was used. This is

described further in 3.1.7.

𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑎𝑎𝑑𝑑𝑐𝑐𝑑𝑑 = 𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∗ ∆𝑡𝑡 (3.16)

𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑎𝑎𝑑𝑑𝑐𝑐𝑑𝑑 = 2𝜋𝜋𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∗
𝑑𝑑𝜃𝜃

360

(3.17)

𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑡𝑡 ∗ 360

2𝜋𝜋 ∗ 𝑑𝑑𝜃𝜃
 (3.18)

67

Figure 3.8: Turn radius visualization at the GNSS location requires two velocity
measurements. Velocity vectors are pointing in the opposite direction for improved

visibility.

Figure 3.9: Legend for parameters in equations 16-18

Where:

𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = Turn radius of GNSS receiver

𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 = Turn radius of weather station

𝑋𝑋 = Sideways offset

𝑌𝑌 = Forward offset

𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = Recorded velocity of GNSS receiver

𝑉𝑉𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 = Calculated velocity of weather station

68

Finally, to obtain the heading of the weather station, first 𝜃𝜃 in Figure 3.7 can be

calculated using equation 3.19, and can be added to the GNSS “Course Over Ground”

output for left turns and subtracted for right turns.

𝜃𝜃 = sin−1 �
𝑌𝑌

𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒
� (3.19)

3.1.6 Method 3: Calculating Haversine velocity at GNSS location and using the relative

velocity method to transform velocity to the weather station’s location

 Alternative to the previous methods, a third method of calculating GNSS velocity

using successive coordinates and transforming them to the weather station’s location

using the relative velocity method was attempted. This could be a more elegant option for

using successive coordinates if using a GNSS receiver that does not output velocity,

because it yields a shorter algorithm that likely would solve faster compared to Method 1.

This is because it eliminates the need to calculate azimuth forward bearing and

coordinates at the location of the weather station. First, Vincenty or Haversine distance

and velocity can be calculated, and then transformation completed using the relative

velocity method.

3.1.7 Adjustments and Limitations for Methods for A Circular Path

 After collecting pilot GPS data to test vehicle velocity calculations, all methods

appeared to work well when driving along a straight path, but later testing revealed flaws

in the algorithm on a circular path. For method 1, the issue was identified by incorrectly

69

transformed coordinates caused by misalignment of the bearings in time with GPS

coordinate data. Initially the transform angle towards the weather station was calculated

locally as a constant (90 degrees added to the counter-clockwise form of equation 3),

which was relative to the front of the vehicle however, the course angles used were the

average course between points rather than at each coordinate. The course before and after

each location were averaged to represent the angle at the point. After calculating the

weather station’s velocity, filtering was conducted over the timespan of anemometer data

filtering.

For methods 2 and 3, flaws were discovered in the underlying equations for

calculating the scalar multiple for velocity transform. In equations 3.14 and 3.15, by

adding the physical offset dimension to the radius of curvature, the scalar was incorrectly

calculated. The mistake isn’t obvious for straight paths because the radius of curvature

approaches infinity, so small physical offsets make a negligible difference in the

calculation. To correct this, the physical offset between the weather station and GNSS

receiver needed to be scaled to match the radius of curvature by dividing by the offset by

the actual turn radius, to add to the GNSS radius of curvature (equation 3.20).

Alternatively, simply calculating the ratio of physical turn radii as the scalar multiple has

similar results and has the advantage of not needing the previous heading to calculate

GNSS turn radii. Applying this adjustment to these methods automatically limit their

application because the physical turn radius must be estimated. In this study, trials were

completed at known separation distance however, were not precise for the duration of

each trial because of inevitable human errors while driving. Implementing these methods

70

in an actual system would require knowing the turn radius and may be better suited for

center-pivot irrigation systems than self-propelled sprayers.

𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 = 𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 +
offset + separation

separation

(3.20)

3.1.8 Comparing Methods of Anemometer Velocity

 The methods of velocity calculations are compared. Calculation time from data

collection through the calculation of the weather station’s velocity were an important

consideration for processing the observed wind data. Here a discussion of the reaction

time is introduced as the time period in which data processing and nozzle orifice

actuation can be completed. This work focuses on the processing portion of this reaction

time and involves the time to collect and filter weather data, collect GNSS data, calculate

vehicle dynamics, and back out those vehicle dynamics from apparent wind velocities.

Since the three described methods of velocity calculation have different inputs and

principles of calculation, the following should be considered.

Flow diagrams displaying the number of steps for each of the three methods are

displayed as Figure 3.10, Figure 3.11, and Figure 3.12. Transforming position

coordinates to different coordinates were much more time consuming than velocity

calculations. All methods of calculating weather station velocity from GNSS

measurements require at least two data points. Using the successive coordinate method 1

requires three position coordinates for the Vincenty formulas. Two course bearings are

obtained from the 3 positions and are averaged to get the instantaneous bearing at the

71

middle coordinate. If a GNSS receiver that calculates velocity and “course over ground”

from the doppler effect is used, then only two position coordinates are needed (with

matching output bearings) to solve for velocity using Vincenty’s formula. Alternatively,

the relative velocity methods 2 and 3 using this output data require two GNSS velocity

measurements. As mentioned in the previous section, the latter two methods may

alternatively be calculated with one GNSS velocity measurement but still depend on a

known or estimated instantaneous turn radius with good precision. A disadvantage to

calculating velocity using successive GNSS coordinates (method 1) is an increased

calculation time, as GNSS velocity must be calculated after data collection, whereas

using a GNSS receiver utilizing doppler effect calculations (methods 2 and 3) provides

this information as an output. This is easily visible by the difference in calculation

lengths between the methods, where the successive coordinate method 1 requires several

computationally time expensive trigonometric functions for both Vincenty and Haversine

calculations. Method 3 requires the Haversine calculation, while method 2 only requires 1

trig function for the heading. Depending on the GNSS sampling interval, method 2 could

have a significant advantage in potential reaction time however its effectiveness and that

of method 3 effectiveness is again limited by the precision of the input turn radii.

72

Figure 3.10: Flow chart visualizing Method 1 weather station velocity calculation

Figure 3.11: Flow chart visualizing Method 2 weather station velocity calculation for
known turn radii

Figure 3.12: Flow chart visualizing method 3 weather station velocity calculation

GNSS
Velocity

Relative Motion
Transform

Weather
Station

Velocity

GNSS
Position

GNSS
Position

Vincenty
Transform

Vincenty
Transform

Weather
Station
Position

Weather
Station
Position

Vincenty
Velocity

Weather
Station
Velocity

GNSS
Position

GNSS
Position

Relative
Motion

Transform
Weather
Station
Velocity

Haversine
Velocity

GNSS
Velocity

73

Considering the weather station’s temporal sampling interval of 200 ms, and the

GNSS receiver sampling every 50 ms, whenever GNSS measured or sampled velocities

did not line up with weather data, all three methods could yield either three or four

velocity calculations between weather data samples. With perfect alignment, up to five

GPS coordinates can be recorded over 200 ms. The vehicle velocity data solved using

method 1 was filtered using a moving average matching the sampling interval/filtering

window of the weather station to reduce noise, simulating the amount of data available in

real-time. For example, if the weather data were to be filtered with a 3-point window

(600ms), then the GNSS velocity was filtered using a 12-point window (600ms). These

velocity calculations were linearly interpolated to the time interval of the weather data, so

a correction of weather data by subtracting vehicle dynamics can be achieved. Since

interpolation accuracy is dependent on the sampling interval, the correction of wind data

will be as well.

3.1.9 Removing Vehicle Velocity from Apparent Wind Data

 Once the determined vehicle dynamics have been linearly interpolated to the time

interval of collected weather data, a correction of the observed weather station can be

applied. First, wind data collected as polar vectors needed transformed into component

values before the correction could be applied. Alternatively the anemometer may be

configured to output wind vectors in polar format. Conditional statements for

decomposing the 360-degree compass coordinates were used before applying

trigonometric functions to calculate wind velocity components. Once wind vectors were

decomposed into “X” and “Y” components, the interpolated dynamics at the weather

74

station’s location were subtracted from the forward “Y” component of the wind data as

shown in Figure 3.13. Again, a conditional statement was required to handle negative Y

component values corresponding to gusts blowing from the front end of the vehicle.

Next, the magnitude of the wind velocity was solved using equation 3.21, and the

direction solved using conditional statements in equations 3.22-3.25, and visualized in

Figure 3.14.

|𝑉𝑉𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤 𝑎𝑎𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤| = �(𝑌𝑌′)2 + (𝑋𝑋)2 (3.21)

75

Figure 3.13: A diagram visualizing wind components and resultant vectors after
subtraction of vehicle velocity from the "Y" component. VWind Corrected is the resultant

vector of Y’ and X components.

76

Figure 3.14: Visualization of wind direction calculation according to equations 21-24

a.) If 𝑌𝑌′ < 0 and 𝑋𝑋 < 0

𝜃𝜃𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤 𝐶𝐶𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤 = 90° − �tan−1 �
𝑌𝑌′

𝑋𝑋
��

(3.22)

b.) If 𝑌𝑌′ < 0 and 𝑋𝑋 > 0

𝜃𝜃𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤 𝐶𝐶𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤 = 270° + �𝑡𝑡𝑎𝑎𝑑𝑑−1 �
𝑌𝑌′

𝑋𝑋
��

(3.23)

77

c.) If 𝑌𝑌′ > 0 and 𝑋𝑋 < 0

𝜃𝜃𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤 𝐶𝐶𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤 = 90° + �𝑡𝑡𝑎𝑎𝑑𝑑−1 �
𝑌𝑌′

𝑋𝑋
��

(3.24)

d.) If 𝑌𝑌′ > 0 and 𝑋𝑋 > 0

𝜃𝜃𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤 𝐶𝐶𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤 = 270° − �𝑡𝑡𝑎𝑎𝑑𝑑−1 �
𝑌𝑌′

𝑋𝑋
��

(3.25)

 Once vehicle dynamics are effectively removed from the apparent wind data, a

final correction rotating the wind vectors relative to True North is necessary for

correlation testing with a static anemometer. In Figure 3.15, “False North” refers to the

heading of the weather station, while |𝑉𝑉𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤| is the corrected wind velocity after

removing vehicle dynamics, and 𝜃𝜃𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤 𝐶𝐶𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤 is the recalculated direction of wind

gusts relative to “False North” or the weather station’s heading. To obtain the correct

heading of wind data, the apparent wind heading is simply added to its relative vehicle

heading as shown in equation 3.26. A modulus function is used to handle resulting

headings greater than 359.9� to keep results in the range of compass bearings.

78

Figure 3.15: Diagram displays principle of correction of wind directions to be relative to
True North

𝜃𝜃𝑇𝑇𝑒𝑒𝑎𝑎𝑊𝑊 = 𝜃𝜃𝑉𝑉𝑊𝑊ℎ𝑖𝑖𝑎𝑎𝑎𝑎𝑊𝑊 + 𝜃𝜃𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤 𝐶𝐶𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤 (3.26)

3.1.10 Quantifying Similitude Between Anemometer and Dynamic Weather Station

 The analysis of output data for this experiment was conducted similarly as the

stationary experiment in Chapter 2. Identical to the analysis of the stationary experiment,

the Pearson correlation coefficient was determined as an unsuitable indicator of

79

similitude between the two data series at the distances between sensors because it tests

for linear dependence. Cross-correlograms were generated and examined at zero lags, and

their shapes were examined for structured decay at increasing lags as indicators of

variability. An analysis of differenced wind velocities was also studied to indicate the

percentage of differences under increasing thresholds. Filtering uncertainty described in

section 2.1.8 was calculated but used only for visualization purposes.

 Results:

3.2.1 Vehicle Velocity and Course Comparisons

 In this section the results for the various methods of vehicle velocity calculations

are discussed. Among the three methods of calculation for the velocity of the weather

station, the results are similar. The targeted vehicle velocity (3mph, 6mph, 9mph) seemed

to have had little effect on the accuracy of any method however, 3 mph trials seemed to

produce the least noise. Figure 3.16, Figure 3.17, and Figure 3.18 display weather station

velocity calculations using the three methods at a 6.10 m separation distance. In some

trials an oscillating trend exists, caused by the driver pushing the gas pedal to accelerate

and letting off to slow to the trial’s target velocity. The three methods were similar to

each other however, method 1 had the most noise. Since this method relied on course

calculations to determine the heading where new coordinates were to be projected to,

inconsistencies in the spacing of these coordinates caused more variation in the velocity

calculation. Since coordinates were projected outward from a circular path with the

course changing rapidly, coordinate spacing was larger as expected, and often smaller

where the vehicle’s course changed more gradually. It also may have been caused by

imprecision with the adjustment method discussed in section 3.1.7. Although the

80

transformed points had a somewhat sporadic spacing, they remained the correct distance

from the GNSS receiver’s location. Figure 3.19 shows how applying filters to the

velocity data over the same time span of wind data helped to alleviate these

inconsistencies.

Figure 3.16: Three methods of calculation for weather station velocity yield close results
for dynamic testing at 20 ft anemometer separation, approximately 3 mph vehicle speed,

trial 1. Method 1 (M1) results were noisier when unfiltered.

0

0.5

1

1.5

2

2.5

3

15:43:12.000 15:43:29.280 15:43:46.560 15:44:03.840 15:44:21.120 15:44:38.400

W
ea

th
er

 S
ta

tio
n

Ve
lo

ci
ty

 (m
/s

)

Time-stamp

M1 Successive Recalculated Coordinate M2 Relative Velocity SOG M3 Relative Successive Coordinate

81

Figure 3.17:Three methods of calculation for weather station velocity yield close results
for dynamic testing at 20 ft anemometer separation, approximately 6 mph vehicle speed,

trial 1.

Figure 3.18: Three methods of calculation for weather station velocity yield close results
for dynamic testing at 20 ft anemometer separation, approximately 9 mph vehicle speed,

trial 1.

1.5

2

2.5

3

3.5

4

16:04:48.000 16:05:05.280 16:05:22.560 16:05:39.840 16:05:57.120 16:06:14.400

W
ea

th
er

 S
ta

tio
n

Ve
lo

ci
ty

 (m
/s

)

Time-stamp

M1 Successive Recalculated Coordinate M2 Relative Velocity SOG

M3 Relative Successive Coordinate

2.8

3.3

3.8

4.3

4.8

15:57:27.360 15:57:36.000 15:57:44.640 15:57:53.280 15:58:01.920 15:58:10.560 15:58:19.200

W
ea

th
er

 S
ta

tio
n

Ve
lo

ci
ty

 (m
/s

)

Time-stamp

M1 Successive Recalculated Coordinate M2 Relative Velocity SOG

M3 Relative Successive Coordinate

82

Figure 3.19: The data for block 3, at a 40 ft separation, 6 mph, no filter (top) and 7-point
moving average (bottom) show filtering’s effect of smoothing weather station dynamics

on method 1 for reducing noise before backing it out from wind data.

For the weather station’s course calculations, all three methods yield the same

results. Matching course calculations for the velocities in Figure 3.16, Figure 3.17, and

Figure 3.18 are plotted in Figure 3.20, Figure 3.21, and Figure 3.22 respectively. As

1

1.5

2

2.5

3

3.5

4

18:04:19.200 18:08:38.400

W
ea

th
er

 S
ta

tio
n

Ve
lo

ci
ty

 (m
/s

)

Time-stamp

M1 Successive Recalculated Coordinate

1

1.5

2

2.5

3

3.5

4

18:04:19.200 18:08:38.400

W
ea

th
er

 S
ta

tio
n

Ve
lo

ci
ty

 (m
/s

)

Time-stamp

M1 Successive Recalculated Coordinate

83

expected, the slope of the weather station’s (vehicle course) plot increases with

increasing velocity because it travels around the circular path faster.

Figure 3.20: Course calculations for all three methods have good alignment with minimal
noise. This sampled data is from Block 1, with an anemometer separation distance of 20

ft and 3 mph vehicle velocity target.

0

50

100

150

200

250

300

350

15:43:12.000 15:43:20.640 15:43:29.280 15:43:37.920 15:43:46.560 15:43:55.200 15:44:03.840

Ve
hi

cl
e

Co
ur

se
 (d

eg
re

es
)

Time

M1 Haversine Recalculated Coordinate M2 Relative Velocity SOG M3 Relative Haversine

84

Figure 3.21: Course calculations for all three methods from sampled data from Block 1,
with an anemometer separation distance of 20 ft and 6 mph vehicle velocity target.

0

50

100

150

200

250

300

350

16:04:48.000 16:04:56.640 16:05:05.280 16:05:13.920 16:05:22.560 16:05:31.200 16:05:39.840

Ve
hi

cl
e

Co
ur

se
 (d

eg
re

es
)

Time

M1 Haversine Recalculated Coordinate M2 Relative Velocity SOG M3 Relative Haversine

85

Figure 3.22: Course calculations for all three methods from sampled data from Block 1,
with an anemometer separation distance of 20 ft and 9 mph vehicle velocity target.

3.2.2 Visualizing Filter Uncertainty

 Filtering’s effect on the dynamic weather station was first examined by plotting

the data with calculated standard deviation for each data point over its filtering window.

This standard deviation was considered the filtering uncertainty because the variance is

descriptive of the range of wind velocities used for the calculation of each filtered point.

These uncertainties were shown graphically as error bars for each resulting data point

post-filtering. Figure 3.23 is the plotted filtered wind velocities and uncertainties for the

stationary and dynamic sensors. Since the dynamic wind data is the result of subtracting

vehicle dynamics, the uncertainty for each of its data points include both filtering

0

50

100

150

200

250

300

350

15:57:27.360 15:57:36.000 15:57:44.640 15:57:53.280 15:58:01.920 15:58:10.560 15:58:19.200

Ve
hi

cl
e

Co
ur

se
 (d

eg
re

es
)

Time

M1 Haversine Recalculated Coordinate M2 Relative Velocity SOG M3 Relative Haversine

86

window’s variance and uncertainty regarding the precision of the vehicle velocity

calculations. Regardless, the initial plotting of the data appeared to show good similitude

between the two series, especially where uncertainties overlap.

Figure 3.23 Scatter plot with filter uncertainties defined as the standard deviation over the
filtering window.

0

0.5

1

1.5

2

2.5

3

3.5

50 55 60 65 70 75 80 85 90 95 100

W
in

d
Ve

lo
ci

ty
 (m

/s
)

Time (seconds)

86000 Velocities (m/s) 92000 Velocity M1 (m/s)

87

3.2.3 Validating Wind Gusts by Comparing Direction

The directional data of raw stationary measurements and processed dynamic

measurements were compared to validate the origin of wind gusts. If processed gusts

were found to have similar velocities and direction, then confidence was improved in the

processing algorithm’s accuracy. Overall, matching wind directions were observed for

both anemometers. Noise identified in the weather station’s velocity calculations carried

over to the processed wind speeds and direction as shown in Figure 3.24. The increasing

filtering window’s effects on noise reduction on the sensors dynamics also carried

through to the wind dynamics as well and is visualized in Figure 3.25. Disregarding

noise, the directional data appeared to fluctuate in sync between the two series,

suggesting that the processing method for reorienting dynamic sensor data was effective.

Increasing distance between the sensors and higher vehicle velocities seemed to result in

greater differences between the wind data. This observation was validated by comparison

to the wind velocity data.

88

Figure 3.24: Noise from calculating vehicle dynamics carry into wind calculations when
unfiltered. This data is from block 1, 40ft separation, 3 mph speed.

Figure 3.25: Noise in wind data were reduced using moving average filtering. This
dataset was from block 1, 40 ft separation, 3 mph, with a 7-point moving average applied.

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

W
in

d
Di

re
ct

io
n

(d
eg

re
es

)

Time (seconds)

86000 Direction 92000 Direction M1

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200

W
in

d
Di

re
ct

io
n

(d
eg

re
es

)

Time (seconds)

86000 Direction 92000 Direction M1

89

3.2.4 Cross-correlation Results

Cross-correlation testing was completed on raw data for each trial and for each

selected filter (3, 5, and 7 point moving averages) for each method of weather station

velocity calculation. In each dataset, the calculated cross-correlation coefficient as well as

its decay over lag times was examined. As with stationary testing, a structured decay

indicated similitude in time-series data because it suggests that paired wind velocities (at

the same time) may experience the same gusts, as wind velocity at both locations

fluctuate together.

Figure 3.26: Increasing filtering window size improves correlation Block 1, 60 ft, 9 mph

0.65

0.7

0.75

0.8

0.85

0.9

0.95

-50 -30 -10 10 30 50

Cr
os

s-
co

rr
el

at
io

n
co

ef
fic

ie
nt

Time Lags (seconds)

No Filter 3 pt 5 pt 7 pt

90

Figure 3.27: Increasing filter size results in method 1 having the highest cross-correlation
and similarity. Data from block 2, 20 ft separation distance, 3 mph is shown with no

filtering (a. top) and 7-point moving average (b. bottom)

Similar to stationary experimentation, filtering using a moving average removed

noise and yielded improved cross-correlation. Method 1 of calculating coordinates at the

location of the weather station and then subsequently calculating the velocity yielded the

lowest cross-correlation coefficient for all trials when left unfiltered. An example cross-

0.77
0.79
0.81
0.83
0.85
0.87
0.89
0.91
0.93

-50 -30 -10 10 30 50

Cr
os

s-
Co

rr
el

at
io

n
Co

ef
fic

ie
nt

Time Lags (seconds)

M1 Successive Coordinate

M2 Relative Velocity

M3 Relative Successive Coordinate
a.

0.89

0.9

0.91

0.92

0.93

0.94

-50 -30 -10 10 30 50

Cr
os

s-
co

rr
el

at
io

n
co

ef
fic

ie
nt

Time Lags (seconds)

M1 Successive Coordinate

M2 Relative Velocity

M3 Relative Successive Coordinate
b.

91

correlogram is displayed as Figure 3.26. This was caused by an abundance of noise in the

calculation of the weather station’s dynamics. When filtering was applied, method 1

sometimes yielded the highest cross-correlation, as shown in Figure 3.27 where method 1

has drastic improvement in correlation after filtering. In all trials the unfiltered data had

very poor cross-correlation and improved significantly with filtering as the vehicle

dynamics were smoothed. Methods 2 and 3 yielded inconsistencies in correlation, and it

is unclear which of the two methods are more ideal from correlograms alone. At a 20 ft

separation between the anemometer and weather station, cross-correlograms generally

had structured decay across increasing lag times, shown in Figure 3.28a. Figure 3.28b is

an example of structured decay over shorter lag distance (about 30 lags or 6 seconds) in

which the increase in cross-correlation at longer times indicate a cyclical trend over the

domain. These occurrences don’t necessarily indicate any lack of similarity but instead

may suggest higher variability over the test’s duration.

With increasing separation distances (40 ft and 60 ft), the cross-correlograms

generally become less structured. Figure 3.29 is an example of a 40 ft trial with good

structure and steep decay. Table 3.2 shows indication of each cross-correlogram structure

for all dynamic trials. “YES” indicates a symmetrical decay in cross-correlation over

positive and negative lags, while “NO” indicates a flat structure. On some trials,

structured decay occurred mainly across positive (Right side) or negative (Left side) lags.

For most trials, an applied 3-point moving average filter significantly improved structure

of the correlograms because of reductions in vehicle dynamic noise, while 5 and 7-point

filters mainly increased the correlation while maintaining structure. In Table 3.2,

indicators summarize the results for all filters tested.

92

Table 3.2: A summary of cross-correlogram structure for unfiltered dynamic trials.
“YES” indicates a symmetrical decay in cross-correlation coefficient, “NO” indicates no

structured decay. Descriptive notes are included for special cases.

Trial 3 mph 6 mph 9 mph

20 ft_1 YES YES Weak

20 ft_2 YES YES N/A

20 ft_3 YES YES N/A

40 ft_1 Weak Weak YES

40 ft_2 YES NO Yes, Left

40 ft_3 YES YES YES

60 ft_1 YES, Left side YES, Left until Lag = 10 YES

60 ft_2 YES YES YES, until lag = 20

60ft _3 YES YES, Left Side Weak

93

Figure 3.28: Block 1, 20 ft, 3 mph (a. top), 6 mph (b. bottom)

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

-50 -30 -10 10 30 50

Cr
os

s-
co

rr
el

at
io

n
co

ef
fic

ie
nt

Time Lags (seconds)

M1 Successive Coordinate

M2 Relative Velocity

M3 Relative Successive Coordinate
a.

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9

-50 -30 -10 10 30 50

Cr
os

s-
co

rr
el

at
io

n
co

ef
fic

ie
nt

Time Lags (seconds)

M1 Successive Coordinate

M2 Relative Velocity

M3 Relative Successive Coordinate
b.

94

Figure 3.29: Block 1, 40ft, 9 mph, 7-point moving average

3.2.5 Special Cases in Cross-Correlation Analysis

For most trials, acceptable structure in cross-correlation was observed once a filter

was applied. In the analysis of these trials, a steeper decay in cross-correlation was

attributed to either agreement between fluctuations in wind velocity at the two locations,

or a long-term trend over the sampled domain for the trial (10 minutes) existent at both

locations. In either case, the results were interpreted as evidence of similitude at the two

locations. Conversely, a flat shape in the cross-correlogram may indicate an abundance of

noise where wind velocity at one location fluctuates so frequently that all lags yield the

same cross-correlation. An example of this phenomenon was discovered from Block 2,

40 ft of separation, with a target vehicle velocity of 6 mph. This trial still yielded a good

correlation of 0.795 at zero lags but, the correlogram’s flat shape suggests that the wind

velocity had more random variability throughout the trial (Figure 3.30). This was

confirmed after the dataset was visualized, shown in Figure 3.31. Filtering the data

0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95

-50 -30 -10 10 30 50

Cr
os

s-
co

rr
el

at
io

n
co

ef
fic

ie
nt

Lags

M1 Successive Coordinate

M2 Relative Velocity

M3 Relative Successive Coordinate

95

resulted in a slight reduction of noise and an increase in cross-correlation coefficient

however, the structure of the resulting cross-correlogram still remained relatively flat.

Next, vehicle velocity calculations were consulted to investigate whether there was an

abundance of noise skewing the data (Figure 3.32) but it was found to be minimal. In this

situation, it’s clear that wind velocity over the time period was more variable than other

observed times at that distance. By following this procedure, determinations of similitude

among wind data for other trials were made.

Figure 3.30: The cross-correlogram for the trial in Block 2, 40ft separation, 6 mph target
vehicle velocity exhibits a flat shape even with a 7-point moving average applied,

suggesting more random variability among one of the time-series datasets

0.77

0.775

0.78

0.785

0.79

0.795

0.8

0.805

-30 -20 -10 0 10 20 30

Cr
os

s-
co

rr
el

at
io

n
co

ef
fic

ie
nt

Lags

M1 Successive Coordinate

96

Figure 3.31: Plotted data for Block 2, 40 ft separation, 6 mph targeted vehicle velocity
still displays an abundance of noise after filtering with a 7-point moving average

Figure 3.32: Vehicle velocity calculations (Method 1) show minimal noise, eliminating it
as a source for irregularities in processed wind data

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600 700 800 900 1000

W
in

d
Ve

lo
ci

ty
 (m

/s
)

Data Pair

Stationary 86000 92000 Velocity M1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

17:27:44.640 17:28:27.840 17:29:11.040 17:29:54.240 17:30:37.440 17:31:20.640 17:32:03.840 17:32:47.040

W
ea

th
er

 S
ta

tio
n

Ve
lo

ci
ty

 (m
/s

)

Time-stamp

M1 Successive Recalculated Coordinate

97

3.2.6 Distribution of Measurement Differences

 In addition to previous methods, a more intuitive approach analyzes the

differences between stationary measurements and processed dynamic wind velocities.

These differences were calculated and placed into bins of width 0.1 m/s. Cumulative

probability density plots were generated for each of the three dynamic processing

methods. The intended goals for this analysis were to help determine which method of

calculating weather station dynamics yielded the closest wind velocities to the stationary

anemometer, and to visualize the extent of each filter’s smoothing effect on the datasets.

Those datasets with larger proportions of small wind velocity differences are easily

recognized by their position on the chart above other trials. Figure 3.33 is the cumulative

probability chart for the first 20 ft separation trial with a targeted 3 mph vehicle velocity.

This observation however was not obvious for all trials. When looking at visualizations

of the data and calculated uncertainty, increasing filter size was shown to minimize large

differences between wind velocities at the two locations for all trials, targeted velocities,

separation distances, and was in agreement to improved cross-correlation when

comparing increasing filtering window size. Histograms of the distribution of

measurement differences also confirmed this but were not included in this work. The

cumulative data masks filtering’s effect of minimizing small differences in method 1

because of the prevalence of noise in the dynamic series. Although not shown in plots,

there was a decrease in the number of bins (of equal width), as more wind velocity

differences were smaller with increasing filtering window.

 Comparing target vehicle velocity, the cumulative probability data were ranked

for each separation distance to visualize its effect on wind velocity differences and were

98

displayed as Table 3.3. All 9 mph trials experienced the largest differences in wind

velocities at the two locations, suggesting at a glance that faster vehicle speeds may

negatively impact the precision of processed dynamic measurements. Considering

distance, there was a noticeable pattern of decreasing similarity with increasing vehicle

speed at a 20 ft separation distance. For the 40 ft and 60 ft trials however, the 3 mph and

6 mph vehicle speeds become increasing inconsistent in ranking compared to the 9 mph

trials. Overall, it appeared that slower speeds yielded the smallest differences between

wind data. An example of this trend is displayed at Figure 3.34. When looking at

increasing distances alone, there wasn’t an apparent trend from this method of analysis.

All potential trends aside, every trial experienced roughly at least 75% of wind velocity

differences less than or equal 1 m/s, showing great similarity between them.

Table 3.3: Ranking for each trial's cumulative probability data is shown. A rank equal to
1 indicates closer wind velocities between sensors, as a higher percent of velocity pairs

have smaller differences.

Trial 3 mph 6 mph 9 mph

20 ft_1 1 2 3

40 ft_1 1 2 3

60 ft_1 1 2 3

20 ft_2 2 1 N/A

40 ft_2 1 2 3

60 ft_2 1 2 3

20 ft_3 1 2 N/A

40 ft_3 2 1 3

60 ft_3 2 1 3

99

Figure 3.33: Cumulative probability distribution shows increasing the moving average
filtering window smooths velocity data and minimizes differences in values

Figure 3.34: Cumulative probability chart shows higher percent of small wind velocity
differences at slower vehicle speeds

0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pe
rc

en
t o

f P
ai

re
d

Ve
lo

ci
tie

s
W

ith

Di
ffe

re
nc

es
 L

es
s

Th
an

 o
r E

qu
al

 B
in

Difference in Wind Velocity Measurement Bin (m/s)

20 ft, 3 mph, No Filter 20 ft, 3 mph, 3pt 20 ft, 3 mph, 5pt 20 ft, 3 mph, 7pt

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Pe
rc

en
t o

f P
ai

re
d

Ve
lo

ci
tie

s
W

ith

Di
ffe

re
nc

es
 L

es
s

Th
an

 o
r E

qu
al

 B
in

Difference in Wind Velocity (m/s)

60 ft , 3 mph 60 ft, 6 mph 60 ft, 9 mph

100

 Discussion:

3.3.1 Weather Station Velocity Transformation

 Three methods of calculation/transform were determined feasible to solve for

weather station velocity. With similar results for each method at a small offset between

the weather station and GNSS receiver, testing of each algorithm may be continued at

larger offsets. Method 1, which uses Vincenty’s formula for calculating new coordinates

using current location, destination distance, heading, then solving for the distance

between coordinates divided by the sampling interval for velocity, was the most robust

and seemingly accurate method of solving for weather station velocity. The second

method, which used the GNSS receiver’s velocity and course calculations solved by the

Doppler effect between satellite signals and transforming them by relative motion to the

weather station’s location was a “quick and dirty” method of transform that appeared

effective during straight path experimentation but required adjustment to be used

correctly. The resulting algorithm required a known physical turn radius, limiting it to

either center-pivot irrigation systems or highly parameterized paths with complex

conditional statements in the algorithm. The third method used Vincenty/Haversine

distance calculations on the original GNSS coordinates, but also suffered the limitations

of method 2 for relative motion transformation. To determine which method may be

suitable for actuating a variable-rate sprayer system, each method’s uncertainty,

calculation time, and device sampling rate should be considered.

101

3.3.1.1 Uncertainty in Velocity Calculations’ Precision

The resulting velocity calculations at the location of the weather station for the

three methods were similar. Vincenty’s formula claims highly precise coordinate

transformations, but its application in this study had limiting factors. The main limitation

was the derivation of headings in the direction of the weather station from the GNSS

receiver, where two bearings between coordinates need to be averaged to obtain an

approximated instantaneous bearing at each coordinate.

Although three methods of calculation for the weather station velocity were

investigated, only similitudes between the results were studied. If the actual precision of

each method is desired, a separate experiment may be conducted in which the velocity at

two separate locations could be solved and compared using two GNSS receivers. This

proposed experiment should record geographical coordinate data while traveling in

circular motion as was completed in this chapter however, with a larger offset between

the receivers comparable to a commercial spray boom. Using the three methods described

in this work, velocities at each GNSS receiver can be calculated by transformation of the

data originating from the other receiver so that the predicted velocities can be validated

by the GNSS output at the location of the prediction.

Additionally, future work should validate the methods of velocity calculation in

this work by investigating transform of GNSS coordinates into a local or regional

coordinate system such as Universal Transverse Mercator (UTM) and subsequently

calculating the position of the anemometer. The velocity of the anemometer can then be

calculated from those successive coordinates. These calculations should be compared

with methods in this work for accuracy and calculation time.

102

In most cases a velocity transform algorithm is probably not needed. When the

vehicle is traveling a straight path, the velocities at all points on the moving body are

equal. For implements that need to travel curved paths, a more complicated algorithm

could be developed that switches transforming portions on and off when traveling across

previously defined locations. Alternatively, radius of curvature calculations described

could detect turns and trigger a transformation method. The filtering technique could also

be refined by implementing band-pass filters to remove obvious outliers from the velocity

transform.

3.3.1.2 Considering Calculation Time

 An important consideration when implementing the processing algorithms is the

calculation time. Since the processing algorithm for dynamic data wasn’t completed in

real-time, the fastest sampling interval was used, and the results interpolated to the

weather station’s data series. In this study, the GNSS receiver sampling interval was 50

ms, while the anemometers sampled at 200 ms. To implement either of the three

algorithms, the calculation time must not exceed the sampling interval/timespan of

filtering to prevent either a backlog of calculations from building or an increasing number

of threads. For example, in this study’s configuration a 3-point moving average required

600 milliseconds of data recording. The corresponding maximum number of recorded

GNSS velocities to be used in vehicle dynamics transformation was 12 points (600 ms /

50 ms = 12 points). If the vehicle dynamics or wind data processing algorithms take

longer than that time (i.e 600 ms) to complete, the processor will fall behind on

calculations it needs to complete and could cause latency in the results or potential

program failure. In section 3.1.8 Comparing Methods of Anemometer Velocity, it was

103

mentioned that method 1 requires the most time to calculate because of an abundance of

trigonometric functions however, the difference in calculation time to the Haversine

method is often considered negligible especially weighing in the benefits of improved

precision. Meanwhile, methods 2 and 3 are notably shorter but sacrifice precision if

implemented on paths not well parameterized.

3.3.2 Feasibility at Varied Distances

 At the beginning of the study, it was expected that the variability between

anemometers would increase with distance. The analysis of cross-correlograms generally

supported this hypothesis by displaying sharper decays in the correlograms for smaller

distances, and flatter structures at farther distances. Despite this, visualizing the data

series and an analysis of differenced values showed no apparent trend of increasing

differences in wind velocity with distance however, cross-correlograms suggest that the

variability between locations differed more, evident in the visuals by less synchronized

fluctuations. Even considering non-synchronized fluctuations, both anemometers saw a

majority of wind velocity differences less than or equal to 1 m/s. The wind direction was

mostly always in sync because the main heading of wind gusts was in the same direction,

but even small variations in direction were seen in both series. This validated that the

same gusts were present at both sensors, but the intensity was not the same nor expected

but was close enough.

104

CHAPTER 4. CONCLUSIONS AND FUTURE WORK

The objectives of this work aimed to help examine the feasibility of using wind

velocity data for controlling droplet spectra in sprayer systems. First, two ultrasonic

anemometers were interfaced with GNSS receivers for timestamping with millisecond

accuracy. Next, stationary testing looked at similitude between wind velocities at varied

separation distances with various moving average filtering window sizes. Finally, a

dynamic test was conducted in which a one anemometer was mounted to a utility vehicle,

and vehicle dynamics were subtracted from apparent wind velocity for comparison to a

stationary anemometer. Various filtering window sizes were tested for noise reduction

and their effects on improving similitude between wind velocities in both experiments.

The anemometers were successfully interfaced for accurate timestamping of wind

data. From the results of experiments in this study, there seems to be promise for making

nozzle decisions in the field at distances many meters away from a recording position for

mitigating drift. As expected, wind intensity varies with increasing distance, but there is

certainly potential for actuating a nozzle orifice to obtain larger droplets in reaction to

gusts, while still maintaining a minimal size to achieve optimal coverage. By applying

filters over the timespan of about one second, there was a notable reduction in noise with

minimal changes to differences between locations.

105

APPENDICES

 Schematics for Machined and 3D Printed Parts

Figure A.1.1: Custom aluminum tripod adapter for 6 ft horizontal 8020 aluminum
extrusion attachment.

106

Figure A.1.2: Custom aluminum slug mount for fastening anemometers. Chamfers were
cut for ease of mounting and filets so that a wrench could grip the slug for tightening.

107

Figure A.1.2: 3D printed lid for PCB enclosure fastens to the bottom piece with 3 #4
machine screws.

108

Figure A.1.3: 3D printed base for PCB enclosure rise and secure the board sufficiently to
the base.

109

 MATLAB Code for Stationary Testing

Caller Script:

%% stationaryPrompt.m
% Author: Austin Weiss
% Date: 2/19/19
% Description:
% Loops through raw data files to create repetition data for
stats
% analysis.
% Passes filename, PrintSuffix, distance, and filter to
% Anemometer_process function
%

clear; clc;
colonfix=1; % Fix colon for millisecond timestamp (1=YES)
direction_ask=0; % Directional filtering (0=NO)
velocity_ask=0; % Velocity filtering (0=NO)
repetition_ask={1,3,5,7};

filename={{'Stationary_20ft_1','Stationary_20ft_2','Stationary_20ft_3'}
,...
 {'Stationary_40ft_1','Stationary_40ft_2','Stationary_40ft_3'},...
 {'Stationary_60ft_1','Stationary_60ft_2','Stationary_60ft_3'}};

%filename={{'Stationary_12ft_1cont'}};

 % filename is 3 cells (1 for each distance) with 3 trials inside
each
PrintSuffix={'_NoFilter','_3pt','_5pt','_7pt'};
distance={20,40,60};
%distance={12};
count=1; % For printing row placement
for x=1:numel(distance)
 for f=1:numel(filename(Xie & Wang)) % For each distance
 readFilename{f}=sprintf('%s',filename(Xie & Wang){f},'.csv');
 end
 for i=1:numel(readFilename)
 for j=1:numel(repetition_ask)
 Printfilename=sprintf('%s',filename(Xie &
Wang){i},PrintSuffix{j},'.xlsx');

cumul=Anemometer_process(readFilename{i},repetition_ask{j},Printfilenam
e,distance(Xie & Wang),colonfix,direction_ask,velocity_ask);
 velthres(1,1)={Printfilename};
 velthres(2,1)={'Difference in Wind Velocity (m/s)'};
velthres(3,1)={'Percent of Measurements <='};

velthres(2,2:numel(cumul(:,1)))=cumul(2:numel(cumul(:,1)),3);

velthres(3,2:numel(cumul(:,1)))=cumul(2:numel(cumul(:,1)),4);

 velthresprint(count,1:numel(velthres(1,:)))=velthres(1,:);

110

velthresprint(count+1,1:numel(velthres(1,:)))=velthres(2,:);

velthresprint(count+2,1:numel(velthres(1,:)))=velthres(3,:);
 velthresprint(count+3,1:numel(velthres(1,:)))={[]};
 clear velthres;
 count=count+4; % Counter for printing
 end
 end
end
xlswrite('DifferenceAnalysis.xlsx',velthresprint,1)

Anemometer Processing:

%% Anemometer_process.m
% UltraSonic Anemometer Processing Script
% Author: Austin Weiss
% Last updated: 3/26/2018
% Description:
% Filtering out errors
% Separating of sensor data by address
% Print results in Excel
% To visualize time in Excel: NEED TO CHANGE NUMBER FORMAT
FOR
% TIME COLUMNS BACK TO 'HH:MM:SS.000'

function [cumul]=
Anemometer_process(filename,repetition_ask,Printfilename,distance,colon
fix,direction_ask,velocity_ask)
%% Main Code:
TimeANDFiltering=0; % Disable time data (old analysis)

% Inactive variables for TimeANDFiltering=1
%print_ask=input('Do you want to print to Excel? 1 = yes, 0 = no ');
%if print_ask==1
%summary_ask=input('Generate Summary Sheet? 1 = yes, 0 = no ');
%else
%end
% Input window size to filter
%% Sheet Name Generator
% Directional and velocity filtering
if direction_ask==1 && velocity_ask==1
 window=input('Enter filtering window for orthogonal window to
remove in degrees ');
 min_velocity=input('Enter minimum velocity (m/s) to include ');
 max_velocity=input('Enter maximum velocity (m/s) to include (0 will
choose dataset maximum) ');
 windowstring=string(window);
 windowsuffix=' deg orthog rem';

 min_velstring=string(min_velocity);
 velstringsuffix=' m_s vel,';
 % Converting Max velocity to actual if not specified
 if max_velocity==0

111

 max_velstring='Max';
 else
 max_velstring=string(max_velocity);
 end
 sheet=sprintf('%s',min_velstring,'-
',max_velstring,velstringsuffix,windowstring,windowsuffix); %
Creates sheet name
 % Direction only filtering
elseif direction_ask==1 && velocity_ask==0
 window=input('Enter filtering window for both directions in degrees
');
 windowstring=string(window);
 windowsuffix=' deg orth rem';
 sheet=sprintf('%s',windowstring,windowsuffix); % Creates sheet
name
 % Velocity only filtering
elseif direction_ask==0 && velocity_ask==1
 min_velocity=input('Enter minimum velocity (m/s) to include ');
 max_velocity=input('Enter maximum velocity (m/s) to include (0 will
choose dataset maximum) ');
 min_velstring=string(min_velocity);
 velstringsuffix=' m_s velocity, ';
 % Converting Max velocity to actual if not specified
 if max_velocity==0
 max_velstring='Max';

 else
 max_velstring=string(max_velocity);
 end
 sheet=sprintf('%s',min_velstring,'-',
max_velstring,velstringsuffix);
else
 sheet='Raw';
end

%tabledataa=readtable('2_15_18_raw.csv');
[num,txt,xlxreaddata]=xlsread(filename); % Read in data from file

sensor1=86000; % Sensor addresses as string (as displayed in
sheet)
sensor2=96000;
k=1; % Start writing counter for sensor1
m=1; % Start writing counter for sensor2
%% Scan for Errors and Delete
% For Table read:
%datafilter=rmmissing(tabledataa,'DataVariables',{'Time'});

% For xlsread:
data=xlxreaddata;
n=numel(data(:,1));
j=1;
count=1;
while n>j
 if isnan(data{j,8}) % if NaN
 data(j,:)=[]; % Deleting errors
 count=count+1; % Counting error that are removed.

112

 n=numel(data(:,1));
 elseif isequal(data{j,8},'00:00:00:000')
 data(j,:)=[]; % Deleting errors
 count=count+1; % Counting error that are removed.
 n=numel(data(:,1));
 elseif colonfix==1 && isnumeric(data{j,8})
 data(j,:)=[]; % Deleting errors
 count=count+1; % Counting error that are removed.
 n=numel(data(:,1));
 else
 j=j+1;
 end
end

%% Sorting data by sensor:
if colonfix==1 % If colon needs replaced....
 for i=2:numel(data(:,1)) % For all rows in the data sheet

 % Fixing millisecond : to . COMMENT OUT AS NEEDED
 X=strsplit(data{i,8},':');
 fix=strjoin(X,{':',':','.'});
 data{i,8}=fix;
 end
else
end
% ^^^
% VV
if colonfix==1
 [rewrite]=data;
 % Building replacement .xlsx for .csv with errors removed.
 csvsplit=strsplit(filename,'.');
 xlxfilename=[csvsplit{1},'.xlsx'];

 xlswrite(xlxfilename,rewrite);
 [num,txt,xlxreaddata]=xlsread(xlxfilename); % Read in data from
file
 data=xlxreaddata;
else
end

%^^
^^
for i=2:numel(data(:,1)) % For all rows in the data sheet

 if data{i,1}==sensor1 % If current row is '86000'
 dataout1(k,:)=data(i,:); % Grab the whole row
 k=k+1; % Move to next writing position
 else % Otherwise sort it as '92000'
 dataout2(m,:)=data(i,:);
 m=m+1; % Move to next writing position
 end
end

%% For directional filtering:
if direction_ask==1 % Prompted at start
 % 86000:
 dir=zeros(numel(dataout1(:,1)),1); %preallocate check array

113

 for d=1:numel(dataout1(:,1)) %86000 60-120 deg
 if dataout1{d,3}>=90-(window/2) && dataout1{d,3}<=90+(window/2)
 dir(d)=1;
 elseif dataout1{d,3}>=270-(window/2) &&
dataout1{d,3}<=270+(window/2)
 dir(d)=1;
 else
 dir(d)=0;
 end
 end
 dataout1(dir(:)==1,:)=[];

 % 92000:
 dir=zeros(numel(dataout2(:,1)),1); %preallocate check array
 for d=1:numel(dataout2(:,1)) %92000 240-200 deg
 if dataout2{d,3}>=90-(window/2) && dataout2{d,3}<=90+(window/2)
% IF direction is inside the window, remove!
 dir(d)=1;
 elseif dataout2{d,3}>=270-(window/2) &&
dataout2{d,3}<=270+(window/2)
 dir(d)=1;
 else
 dir(d)=0;
 end
 end
 dataout2(dir(:)==1,:)=[];
else
end

%% For velocity filtering:
if velocity_ask==1
 if max_velocity==0 % Sets maximum check to actual if not
specified by prompt (entered 0)
 max_velocity1=max([dataout1{:,2}]);
 max_velocity2=max([dataout2{:,2}]);
 else
 % Otherwise set maximum for each sensor as chosen:
 max_velocity1=max_velocity;
 max_velocity2=max_velocity;
 end

 if velocity_ask==1 % Prompted at start
 % 86000:
 vel=zeros(numel(dataout1(:,1)),1); %preallocate check array
 for d=1:numel(dataout1(:,1)) %86000 60-120 deg
 if dataout1{d,2}>max_velocity1 ||
dataout1{d,3}<min_velocity
 vel(d)=1;
 else
 vel(d)=0;
 end
 end
 dataout1(vel(:)==1,:)=[];

 % 92000:
 vel=zeros(numel(dataout2(:,1)),1); %preallocate check array
 for d=1:numel(dataout2(:,1)) %92000 240-200 deg

114

 if dataout2{d,2}>max_velocity2 ||
dataout2{d,3}<min_velocity
 vel(d)=1;
 else
 vel(d)=0;
 end
 end
 dataout2(vel(:)==1,:)=[];
 else
 end
else
end

%% Grabbing data for interpolation
time1=cell2mat(dataout1(:,8));
% Check for duplicates and remove
[newtime1,index,index2]=unique(time1);
time1=time1(index);
dataout1=dataout1(index,:);

velocity1=cell2mat(dataout1(:,2));
direction1=cell2mat(dataout1(:,3));

time2=cell2mat(dataout2(:,8));
velocity2=cell2mat(dataout2(:,2));
direction2=cell2mat(dataout2(:,3));
temperature=cell2mat(dataout2(:,4));
humidity=cell2mat(dataout2(:,5));
pressure=cell2mat(dataout2(:,6));

%% Interpolating 86000 to the time series of 92000
% DECOMPOSING 86000 for interpolation
for i=1:numel(direction1)

 if direction1(i)<=90
 x86(i)=velocity1(i)*sin(direction1(i)*pi/180);
 y86(i)=velocity1(i)*cos(direction1(i)*pi/180);
 elseif direction1(i)<=180 && direction1(i)>90
 x86(i)=velocity1(i)*cos((direction1(i)-90)*pi/180);
 y86(i)=velocity1(i)*sin((direction1(i)-90)*pi/180)*(-1);
 elseif direction1(i)<=270 && direction1(i)>180
 x86(i)=velocity1(i)*sin((direction1(i)-180)*pi/180)*(-1);
 y86(i)=velocity1(i)*cos((direction1(i)-180)*pi/180)*(-1);
 else
 x86(i)=velocity1(i)*cos((direction1(i)-270)*pi/180)*(-1);
 y86(i)=velocity1(i)*sin((direction1(i)-270)*pi/180);
 end
end
%% INTERPOLATING COMPONENTS
interp86000_Xvel=interp1(time1,x86,time2,'linear'); % Interpolating
86000 X Velcocity data onto 92000 time series
interp86000_Yvel=interp1(time1,y86,time2,'linear'); % Y data interp
interp86000vel=sqrt(interp86000_Xvel.^2+interp86000_Yvel.^2); %
Magnitude USED FOR COUNTING NUMBER OF POINTS FOR RECALC DIR
%% Recalculating direction: NOT USED, Just for reference:
%(if moving average=1 point, this direction should equal it.)
for i=1:numel(interp86000vel)

115

 if interp86000_Xvel(i) >=0 & interp86000_Yvel(i)>=0

interp86000dir(i)=180/pi*atan(abs(interp86000_Xvel(i)/interp86000_Yvel(
i))); % Switch X and Y!?
 % =180/pi*atan(x/y) I think this is correct
 elseif interp86000_Xvel(i)>=0 & interp86000_Yvel(i)<0

interp86000dir(i)=90+(180/pi*atan(abs(interp86000_Yvel(i)/interp86000_X
vel(i))));
 elseif interp86000_Xvel(i)<0 & interp86000_Yvel(i)<0

interp86000dir(i)=180+(180/pi*atan(abs(interp86000_Xvel(i)/interp86000_
Yvel(i))));
 else

interp86000dir(i)=270+(180/pi*atan(abs(interp86000_Yvel(i)/interp86000_
Xvel(i))));
 end
end

%% DECOMPOSING 92000
for i=1:numel(direction2)
 if direction2(i)<=90
 x92(i)=velocity2(i)*sin(direction2(i)*pi/180);
 y92(i)=velocity2(i)*cos(direction2(i)*pi/180);
 elseif direction2(i)<=180 && direction2(i)>90
 x92(i)=velocity2(i)*cos((direction2(i)-90)*pi/180);
 y92(i)=velocity2(i)*sin((direction2(i)-90)*pi/180)*(-1);
 elseif direction2(i)<=270 && direction2(i)>180
 x92(i)=velocity2(i)*sin((direction2(i)-180)*pi/180)*(-1);
 y92(i)=velocity2(i)*cos((direction2(i)-180)*pi/180)*(-1);
 else
 x92(i)=velocity2(i)*cos((direction2(i)-270)*pi/180)*(-1);
 y92(i)=velocity2(i)*sin((direction2(i)-270)*pi/180);
 end
end
%% Creating repetitions:
repetition_ask; % Number of points

%% Moving Average Analysis:
% Moving average on components.. Already interpolated
mag86intx=movmean(abs(interp86000_Xvel),repetition_ask,'Endpoints','dis
card'); % For magnitude velocity
mag86inty=movmean(abs(interp86000_Yvel),repetition_ask,'Endpoints','dis
card');
% Variance for uncertainty
mag86varx=movvar(abs(interp86000_Xvel),repetition_ask,'Endpoints','disc
ard');
mag86vary=movvar(abs(interp86000_Yvel),repetition_ask,'Endpoints','disc
ard');
var86=sqrt(mag86varx.^2+mag86vary.^2);
% For direction:
Mov_avg_86X =
movmean(interp86000_Xvel,repetition_ask,'Endpoints','discard'); %
Interpolated 86000 velocity

116

Mov_avg_86Y =
movmean(interp86000_Yvel,repetition_ask,'Endpoints','discard'); %
Interpolated 86000 velocity
% 92000
mag92intx=movmean(abs(x92),repetition_ask,'Endpoints','discard');
mag92inty=movmean(abs(y92),repetition_ask,'Endpoints','discard');
% Variance for uncertainty
mag92varx=movvar(abs(x92),repetition_ask,'Endpoints','discard');
mag92vary=movvar(abs(y92),repetition_ask,'Endpoints','discard');
var92=sqrt(mag92varx.^2+mag92vary.^2);
% For direction:
Mov_avg_92X = movmean(x92,repetition_ask,'Endpoints','discard');
% 92000 velocity
Mov_avg_92Y = movmean(y92,repetition_ask,'Endpoints','discard');
% 92000 velocity
%
%Mov_corr = corrcoef(Mov_avg_86,Mov_avg_92); % Pearson Correlation
calculation
%% Recalculating 86000 direction for filter:
for i=1:numel(Mov_avg_86X)
 if Mov_avg_86X(i) >=0 & Mov_avg_86Y(i)>=0

Mov_avg_dir86(i)=(180/pi*atan(abs(Mov_avg_86X(i)/Mov_avg_86Y(i))));
 elseif Mov_avg_86X(i)>=0 & Mov_avg_86Y(i)<0

Mov_avg_dir86(i)=90+(180/pi*atan(abs(Mov_avg_86Y(i)/Mov_avg_86X(i))));
 elseif Mov_avg_86X(i)<0 & Mov_avg_86Y(i)<0

Mov_avg_dir86(i)=180+(180/pi*atan(abs(Mov_avg_86X(i)/Mov_avg_86Y(i))));
 else

Mov_avg_dir86(i)=270+(180/pi*atan(abs(Mov_avg_86Y(i)/Mov_avg_86X(i))));
 end
end

%% Recalculating 92000 direction for filter
for i=1:numel(Mov_avg_92X)
 if Mov_avg_92X(i) >=0 & Mov_avg_92Y(i)>=0

Mov_avg_dir92(i)=(180/pi*atan(abs(Mov_avg_92X(i)/Mov_avg_92Y(i))));
 elseif Mov_avg_92X(i)>=0 & Mov_avg_92Y(i)<0

Mov_avg_dir92(i)=90+(180/pi*atan(abs(Mov_avg_92Y(i)/Mov_avg_92X(i))));
 elseif Mov_avg_92X(i)<0 & Mov_avg_92Y(i)<0

Mov_avg_dir92(i)=180+(180/pi*atan(abs(Mov_avg_92X(i)/Mov_avg_92Y(i))));
 else

Mov_avg_dir92(i)=270+(180/pi*atan(abs(Mov_avg_92Y(i)/Mov_avg_92X(i))));
 end
end
%% Recombine Components
Mov_avg_86=sqrt(mag86intx.^2+mag86inty.^2); % Use abs for magnitude
average
Mov_avg_92=sqrt(mag92intx.^2+mag92inty.^2);
% Adding Manufacture tolerance
ManufacTol92=Mov_avg_92*.02;

117

ManufacTol86=Mov_avg_86*.02;

Mov_avg_temp =
movmean(temperature,repetition_ask,'Endpoints','discard');
Mov_avg_humid = movmean(humidity,repetition_ask,'Endpoints','discard');
Mov_avg_press = movmean(pressure,repetition_ask,'Endpoints','discard');

num_reps=numel(Mov_avg_86(:,1)); % Number of data points
OUTPUT=cell(num_reps+1,9); % preallocate for speed
OUTPUT(1,:)={'Repetition','Anemometer','Distance (ft)','Wind Velocity
(m/s)','Wind Direction (deg)','Temperature (deg F)','Humidity
(%)','Barometric Pressure (hPa)','Category'};
instant=2; % Used for pairing data points
Randomindex=randperm(num_reps,num_reps); % Non-repeating
randomization
% Preallocating for speed:
Repetition86000=zeros(num_reps,3); % Preallocating size,
repetitions=totalpts/Pointsperrep
Repetition92000=zeros(num_reps,6);

% Writing distance into first column:
Repetition86000(:,1)=distance;
Repetition86000(:,2)=Mov_avg_86(:,1);
Repetition86000(:,3)=Mov_avg_dir86(1,:);

Repetition92000(:,1)=distance;
Repetition92000(:,2)=Mov_avg_92(1,:);
Repetition92000(:,3)=Mov_avg_dir92(1,:);
Repetition92000(:,4)=Mov_avg_temp;
Repetition92000(:,5)=Mov_avg_humid;
Repetition92000(:,6)=Mov_avg_press;

Repetition86000=num2cell(Repetition86000);
Repetition92000=num2cell(Repetition92000);

%% FORMING OUTPUT TABLE:
for i=1:numel(Randomindex)
 Rep_grab=Randomindex(i); % Grabbing randomized repetition
 OUTPUT(instant,1)={i}; % Naming repetition
 OUTPUT(instant,2)={'86000'}; % Writing anemometer name to
row
 OUTPUT(instant,3:5)=Repetition86000(Rep_grab,:);
 % Creating Categorical Variables:
 if Mov_avg_86(Rep_grab) <= 3
 Repetition86000_cat{i,1} = 'Low';
 elseif Mov_avg_86(Rep_grab) > 3 && Mov_avg_86(Rep_grab,1) <= 8
 Repetition86000_cat{i,1} = 'Med';
 else
 Repetition86000_cat{i,1} = 'High';
 end

 OUTPUT(instant,9)=Repetition86000_cat(i);
 instant=instant+1; % Move to next row
 OUTPUT(instant,1)={i}; % Naming repetition
 OUTPUT(instant,2)={'92000'}; % Writing anemometer name to
row
 OUTPUT(instant,3:8)=Repetition92000(Rep_grab,:);

118

 if Mov_avg_92(Rep_grab) <= 3
 Repetition92000_cat{i,1} = 'Low';
 elseif Mov_avg_92(Rep_grab) > 3 && Mov_avg_92(Rep_grab) <= 8
 Repetition92000_cat{i,1} = 'Med';
 else
 Repetition92000_cat{i,1} = 'High';
 end
 OUTPUT(instant,9)=Repetition92000_cat(i);
 instant=instant+1; % Move to next row
end
%% Printing
Mov_avg_92=Mov_avg_92';
var92=var92';
titles=[{'86000 Velocities (m/s)','Error 86000','86000 Direction
(deg)','92000 Velocity (m/s)','Error 92000','92000 Direction (deg)'}];
p(:,1)=Mov_avg_86;
p(:,2)=sqrt(var86)+ManufacTol86;
p(:,3)=Mov_avg_dir86;
p(:,4)=Mov_avg_92;
p(:,5)=sqrt(var92)+ManufacTol92';
p(:,6)=Mov_avg_dir92;
Plotting='Plot';
xlswrite(Printfilename,titles,Plotting,'A1')
xlswrite(Printfilename,p,Plotting,'A2')
xlswrite(Printfilename,OUTPUT, 'Repetitions');

%% Calculating difference in Repetitions & Printing to Excel
difference=abs(Mov_avg_92-Mov_avg_86);
stdevDiff=sqrt(var92(1,:)+var86(:,1)); % These are added to find most
error

%% Histogram setting and extract
dhist = histogram(difference); %Store the histogram results into
variables
dhist.BinWidth=0.1;
dhist.Normalization='cdf';
cumul=cell(numel(difference),4); % Initialize printing cell array
%
difference=num2cell(difference); % Extract and Converting to cells
stdevDiff=num2cell(stdevDiff);
edges=num2cell(dhist.BinEdges)';
countprob=num2cell(dhist.Values*100)';
cumul(1,:)={'Difference in Velocity (m/s)','Filter Uncertainty (stdev
of filtered points)','Bin Edge','Probability'};
cumul(2:numel(difference)+1,1)=difference;
cumul(2:numel(stdevDiff)+1,2)=stdevDiff;
cumul(2:numel(edges)+1,3)=edges;
cumul(2:numel(countprob)+1,4)=countprob; % Fill cells

xlswrite(Printfilename,cumul,'Difference'); % Printing to Excel

%% Cross-Correlation Analysis:
% Replacing NaNs with zeros:
[row,col]=find(isnan(Mov_avg_92));
Mov_avg_92(row)=0;
clear row;

119

[row,col]=find(isnan(Mov_avg_86));
Mov_avg_86(row)=0;
clear row;
% Running cross correlation
[corr,lags]=xcorr(Mov_avg_86,Mov_avg_92,[50],'coeff');
lags=lags';
% Autocorr
auto86=xcorr(Mov_avg_86,50,'coeff');
auto92=xcorr(Mov_avg_92,50,'coeff');
%% Printing Cross Correlation Sheet:
Printcross='Cross Correlation';
corrheads=[{'Lags','Cross-correlation coefficient','86000
Autocorr','92000 Autocorr'}];
crosscorr=[lags,corr,auto86,auto92];
cross=1;
if cross==1
 xlswrite(Printfilename,corrheads,Printcross,'A1')
 xlswrite(Printfilename,crosscorr,Printcross,'A2')
else
end
end

 MATLAB Code for Dynamic Testing

Caller Script:

%% dynamicPrompt.m
% Author: Austin Weiss
% Date: 2/19/19
% Description:
% Loops through raw data files to create repetition data for
stats
% analysis.
% Passes filename, PrintSuffix, distance, and filter to
% Dynamicweatherstation.m function
%

clear; clc;
colonfix=1; % Fix colon for millisecond timestamp (1=YES)
direction_ask=0; % Directional filtering (0=NO)
velocity_ask=0; % Velocity filtering (0=NO)
repetition_ask={1,3,5,7};
RTKfile={{'20-3-r1','20-6-r1','20-9-r1'},...
 {'40-3-r1','40-6-r1','40-9-r1'},...
 {'60-3-r1','60-6-r1','60-9-r1'};...
 {'20-3-r2','20-6-r2','Dummy'},...
 {'40-3-r2','40-6-r2','40-9-r2'},...
 {'60-3-r2','60-6-r2','60-9-r2'};...
 {'20-3-r3','20-6-r3','Dummy'},...
 {'40-3-r3','40-6-r3','40-9-r3'},...
 {'60-3-r3','60-6-r3','60-9-r3'}}; %% ADD THE GNSS FILES

120

filename={{'Dynamic_1_20ft_3mph','Dynamic_1_20ft_6mph','Dynamic_1_20ft_
9mph'}...

{'Dynamic_1_40ft_3mph','Dynamic_1_40ft_6mph','Dynamic_1_40ft_9mph'}...

{'Dynamic_1_60ft_3mph','Dynamic_1_60ft_6mph','Dynamic_1_60ft_9mph'};...
 {'Dynamic_2_20ft_3mph','Dynamic_2_20ft_6mph','Dummy'},...

{'Dynamic_2_40ft_3mph','Dynamic_2_40ft_6mph','Dynamic_2_40ft_9mph'},...

{'Dynamic_2_60ft_3mph','Dynamic_2_60ft_6mph','Dynamic_2_60ft_9mph'};...
 {'Dynamic_3_20ft_3mph','Dynamic_3_20ft_6mph','Dummy'},...

{'Dynamic_3_40ft_3mph','Dynamic_3_40ft_6mph','Dynamic_3_40ft_9mph'},...

{'Dynamic_3_60ft_3mph','Dynamic_3_60ft_6mph','Dynamic_3_60ft_9mph'}};

%filename={{'Stationary_12ft_1cont'}};

 % filename is 3 cells (1 for each distance) with 3 trials inside
each
PrintSuffix={'_NoFilter','_3pt','_5pt','_7pt'};
distance={20,40,60};
%distance={12};
count=1; % For printing row placement
%%
% 20ft 40ft 60ft
% Trial 1: [3mph,6,9] [3,A,9]
% Trial 2:
% Trial 3:

% A location is filename{1,2}{1,2}
for t=1:3 % Each Trial
 for x=1:numel(distance) % Each Distance
 for f=1:3 % For each Velocity
 file_nosuffix=filename{t,x}{1,f};
 readFilename=sprintf('%s',filename{t,x}{1,f},'.csv');
 readgpsFile=sprintf('%s',RTKfile{t,x}{1,f},'.TXT');
 for j=1:numel(repetition_ask)

Printfilename=sprintf('%s',filename{t,x}{1,f},PrintSuffix{j},'.xlsx')
 %try % Should skip holes in the filename matrices
above
 [cumulHAV,cumulSOG,cumulHAVREL] =
Dynamicweatherstation(readFilename,readgpsFile,repetition_ask{j},Printf
ilename,distance{x},colonfix,direction_ask,velocity_ask,file_nosuffix);
 %[cumulHAV,cumulSOG,cumulHAVREL] =
Dynamicweatherstation('Dynamic_3_20ft_3mph.csv','20-3-
r3.TXT',1,'Dynamic_3_20ft_3mph_NoFilter.xlsx',20,1,0,0,'Dynamic_3_20ft_
3mph');

 velthres(1,1)={Printfilename};
 velthres(2,1)={'Difference in Wind Velocity (m/s)'};
velthres(3,1)={'Percent of Measurements <='};

velthres(2,2:numel(cumulHAV(:,1)))=cumulHAV(2:numel(cumulHAV(:,1)),3);

121

velthres(3,2:numel(cumulHAV(:,1)))=cumulHAV(2:numel(cumulHAV(:,1)),4);
 % Adding above result to a running table. Next
iteration will
 % paste below it.

velthresprint(count,1:numel(velthres(1,:)))=velthres(1,:);

velthresprint(count+1,1:numel(velthres(1,:)))=velthres(2,:);

velthresprint(count+2,1:numel(velthres(1,:)))=velthres(3,:);
 velthresprint(count+3,1:numel(velthres(1,:)))={[]};
 clear velthres;
 count=count+4; % Counter for printing
 %catch
 % 'There was an error'
 % Printfilename
 %end
 end
 end
 end
end
xlswrite('DifferenceAnalysis.xlsx',velthresprint,1)

%Printfilename='Stationary_40ft_2_NoFilter.xlsx'; % Define filename to
print processed data

Dynamic Processing Script

%% Austin Weiss
% Dynamicweatherstation.m
% Anemometer & RTK Processing:
% Called Functions:
% RTKprocess.m - Calculates Haversine and Relative Velocity at
% Weather Station location from GNSS data
% haversine.m - Called by RTKprocess to calculate Haversine
% distance and azimuth forward bearings
% DynamicStats.m - Creates Repetitions and creates tables for
stats
% analysis
% Comp2coord.m - Converts x,y components into 360 deg
coordinates
%
% vdist.m - Calculates distance between coordinates
%
% vreckon.m - Calculates new coordinates using Vincenty's
% algorithm
% KEY VARIABLES:
% HaversineVelocityAnemometer = Calculated Haversine Velocity at
Anemometer position
% courseAnem = Calculated course for Haversine Velocity at Anemometer
position

122

% V_anemTransSOG = Velocity at Anemometer position using "Speed over
Ground"
% coursegnd = Course
% HaversineVelocity = Haversine Velocity at GPS position
% HaversineCourse = Haversine course for GPS position
function [cumulHAV, cumulSOG, cumulHAVREL] =
Dynamicweatherstation(filename,RTKfile,repetition_ask,Printfilename,dis
tance,colonfix,direction_ask,velocity_ask,file_nosuffix)
bothmethplot=0; % CHANGE WHEN want to see vehicle vel calcs
%% OUTPUT NAME:
Filesuff='.xlsx';
%% ANEMOMETER DATA:
[num,txt,xlxreaddata]=xlsread(filename); % Read in data from file

% Run RTK calculations
sensor1=86000; % Sensor addresses as string (as displayed in
sheet)
sensor2=96000;
k=1; % Start writing counter for sensor1
m=1; % Start writing counter for sensor2
%% Scan for Errors and Delete
%colonfix=1; % COLON DELIMITS TIME STAMP!!!

% For xlsread:
data=xlxreaddata;
n=numel(data(:,1));
j=1;
count=1;
while n>j
 if isnan(data{j,8}) % if NaN
 data(j,:)=[]; % Deleting errors
 count=count+1; % Counting error that are removed.
 n=numel(data(:,1));
 elseif isequal(data{j,8},'00:00:00:000')
 data(j,:)=[]; % Deleting errors
 count=count+1; % Counting error that are removed.
 n=numel(data(:,1));
 elseif colonfix==1 && isnumeric(data{j,8})
 data(j,:)=[]; % Deleting errors
 count=count+1; % Counting error that are removed.
 n=numel(data(:,1));
 else
 j=j+1;
 end
end
%% Sorting data by sensor:
if colonfix==1 % If colon needs replaced...
for i=2:numel(data(:,1)) % For all rows in the data sheet
% Fixing millisecond : to . COMMENT OUT AS NEEDED
 X(i-1,:)=strsplit(data{i,8},':');
 fix=strjoin(X(i-1,:),{':',':','.'});
 data{i,8}=fix;
end
else
end
%% For all timestamps, create numeric values to compare with GNSS
for n=1:numel(X(:,1))

123

 Timeane=strjoin(X(n,:),{'','','.'});
 TimeWind{n}=Timeane;
end
TimeWind=TimeWind';
TimeWind=str2double(TimeWind); % Converting to number to compare
%% IMPORTING/Processing GNSS DATA
datastrings = textread(RTKfile, '%s');
% Find incomplete strings to remove:
valid = strfind(datastrings,'$');
i=1; % First position initialized to grab
for n=1:numel(datastrings)
 if valid{n}==1

 GNSScheck=strlength(datastrings(n));
 filtered(i) = datastrings(n);
 i=i+1; % Move to next row
 else
 end
end
filtered=filtered';
%% Parsing GNSS strings and organizing data:
checkGGA=strfind(filtered, '$GNGGA');
checkRMC=strfind(filtered, '$GNRMC');

GGA(1,:)={'Format','UTC Time','Latitude','N/S
Indicator','Longitude','E/W Indicator','GPS Quality Indicator','Num
Satellites Used','Horizontal dilution of precision HDOP','Altitude
(m)','"Meters"','Geoidal Separation (m)','"Meters"','Time Since Last
RTK','DGPS Station ID/CheckSum'};
RMC(1,:)={'Format','UTC Time','Status','Latitude','N/S
Indicator','Longitude','E/W Indicator','Speed over ground
(knots)','Course over ground (deg)','UTC Date','Magnetic Variation
(deg)','East/West Indicator','Mode Indicator','*CheckSum'};
i=2;
j=2;
% Extract data:
w=1; % Used for finding errors and accounting for them

for n=1:numel(filtered)
 GNSScheck=strlength(filtered(n));
 if checkGGA{n}==1 % Grab GGA (Don't need)
 try
 GGA(i,:)=strsplit(filtered{n,1},',','CollapseDelimiters',... %
Delimits by ',' and space for when DGPS is blank
 false, 'DelimiterType','RegularExpression');
 i=i+1;
 catch
 end
 else %checkRMC{n}==1 % Grab RMC
 try
 RMC(j,:)=strsplit(filtered{n,1},',');
 j=j+1;
 catch
 a(w)=j+1;
 w=w+1;
 end

124

 end
end
%% WRITING TO XLSX TO GET NUMERIC TIMESTAMP
% VV
%% Creating GNSS timestamp in format of Anemometers
UTCtimedbl=RMC(:,2);
UTCtimedbl(1)=[]; % Clear header

for n=1:numel(UTCtimedbl)
 try
 UTCtimedbl(n)=insertAfter(UTCtimedbl(n),2,':');
UTCtimedbl(n)=insertAfter(UTCtimedbl(n),5,':');
 catch
 end
end
%UTCtimedbl=str2double(UTCtimedbl); % Convert GNSS timestamp to
comparable number
%UTCtimedbl(1)=[]; % Clear header
for n=1:numel(UTCtimedbl)
data{n,9}=UTCtimedbl{n};
end
%% Writing Anemometer data/ GNSS time to XLSX, and rereading for
numeric timestamp
if colonfix==1
[rewrite]=data;
% Building replacement .xlsx for .csv with errors removed.
csvsplit=strsplit(filename,'.');
xlxfilename=[csvsplit{1},'.xlsx'];

xlswrite(xlxfilename,rewrite);
[num,txt,xlxreaddata]=xlsread(xlxfilename); % Read in data from file
data=xlxreaddata;
else
end

UTCtime=cell2mat(data(1:numel(data(:,9)),9)); % Grab Vehicle GPS Time
data(:,9)=[];
%% Separating Anemometer data
for i=2:numel(data(:,1)) % For all rows in the data sheet

 if data{i,1}==sensor1 % If current row is '86000'
 dataout1(k,:)=data(i,:); % Grab the whole row
 k=k+1; % Move to next writing position
 else % Otherwise sort it as '92000'
 dataout2(m,:)=data(i,:);
 m=m+1; % Move to next writing position
 end
end

%% Grabbed data:
time1=cell2mat(dataout1(:,8));
% Check for duplicates and remove
[newtime1,index,index2]=unique(time1);
time1=time1(index);
dataout1=dataout1(index,:);

velocity1=cell2mat(dataout1(:,2));

125

direction1=cell2mat(dataout1(:,3));
%% Removing NaN from data
time1(isnan(time1)) = [];
velocity1(isnan(velocity1)) = [];
direction1(isnan(direction1)) = [];

time2=cell2mat(dataout2(:,8));
velocity2=cell2mat(dataout2(:,2));
direction2=cell2mat(dataout2(:,3));
temperature=cell2mat(dataout2(:,4)); temperature(1)=[];
humidity=cell2mat(dataout2(:,5)); humidity(1)=[];
pressure=cell2mat(dataout2(:,6)); pressure(1)=[];
%% Removing NaN from data:
time2(isnan(time2)) = [];
velocity2(isnan(velocity2)) = [];
direction2(isnan(direction2)) = [];
temperature(isnan(temperature)) = [];
humidity(isnan(humidity)) = [];
pressure(isnan(pressure)) = [];
y=1;
%% Search for starting time, and grab everything after (Eliminating RTK
time before recording)
while UTCtime(1) < time2(1) % COMPARING WITH ANEMOMETER. Extract data
in timeframe
 UTCtime(1)=[];
 UTCtimedbl(1)=[];
 RMC(2,:)=[];
 y=y+1;
end
%% NOW Eliminate weather data that occured before RTK recording
% Maybe not neccessary, allow NaNs
%% Search for end and delete everything after:
% UTCtimedbl=str2double(RMC(:,2)); % Convert GNSS timestamp to
comparable number
time2(isnan(time2)) = []; %Clear out NaNs
while UTCtime(numel(UTCtime)) > time2(numel(time2))
 UTCtime(numel(UTCtime))=[];
 UTCtimedbl(numel(UTCtimedbl))=[];
 RMC(numel(UTCtimedbl),:)=[];
end
%% Extracting GPS INFO:
for j=2:numel(RMC(:,1))
 Latdegmin(j-1)=(insertAfter(RMC(j,4),2,' ')); % Pulling Latitude in
format for Haversine
 Latdegmin(j-1)=strcat(Latdegmin(j-1),RMC(j,5)); % Add N/S
 Longdegmin(j-1)=(insertAfter(RMC(j,6),3,' ')); % Pulling Longitude
 Longdegmin(j-1)=strcat(Longdegmin(j-1),RMC(j,7)); % Add E/W
 velocitygnd(j-1)=str2double(RMC{j,8}); % Speed over ground
(Velocity output from GNSS) %knots
 coursegnd(j-1)=str2double(RMC{j,9}); % Course over ground (deg)

end
%% Calling RTKprocess:
[SuccessiveVelocity,courseAnem,V_anemTransSOG,anemCOG,V_anemRelHav,anem
RelHav,newLong,newLat,Long4Vince,Lat4Vince] =
RTKprocess(Latdegmin,Longdegmin,velocitygnd,coursegnd,distance,repetiti
on_ask);

126

%% Interpolation of 86000 Stationary (Break into components,
interpolate, reconstruct)
 for i=1:numel(direction1)

 if direction1(i)<=90
 x86(i)=velocity1(i)*sin(direction1(i)*pi/180)*(-1);
 y86(i)=velocity1(i)*cos(direction1(i)*pi/180)*(-1);
 elseif direction1(i)<=180 && direction1(i)>90
 x86(i)=velocity1(i)*cos((direction1(i)-90)*pi/180)*(-1);
 y86(i)=velocity1(i)*sin((direction1(i)-90)*pi/180)*(1);
 elseif direction1(i)<=270 && direction1(i)>180
 x86(i)=velocity1(i)*sin((direction1(i)-180)*pi/180)*(1);
 y86(i)=velocity1(i)*cos((direction1(i)-180)*pi/180)*(1);
 else
 x86(i)=velocity1(i)*cos((direction1(i)-270)*pi/180)*(1);
 y86(i)=velocity1(i)*sin((direction1(i)-270)*pi/180)*(-1);
 end
 end

 interp86000_Xvel=interp1(time1,x86,time2,'linear'); %
Interpolating 86000 X Velcocity data onto 92000 time series
 interp86000_Yvel=interp1(time1,y86,time2,'linear'); % Y data
interp
 interp86000vel=sqrt(interp86000_Xvel.^2+interp86000_Yvel.^2); %
Magnitude
 interp86000_Xvel(1)=[]; interp86000_Yvel(1)=[];
interp86000vel(1)=[]; % REMOVING FIRST VALUES TO MATCH 92000 processed
 %% Recalculating direction: NOT USED!!! (For reference: should
equal Moving average of 1 point)
interp86000dir=Comp2coord(interp86000_Xvel,interp86000_Yvel);

%% SUCCESSIVE COORDINATE METHOD of Vehicle Velocity:
% Matching UTC time with Calculated Anemometer velocities
HavTimedbl=UTCtimedbl; HavTime=UTCtime; % Copying time for
Haversine method
HavTimedbl(numel(HavTimedbl))=[]; % Clearing Last time stamp to match
Haversine methods 1 and 3 with SOG method 2
HavTime(numel(HavTime))=[]; %
^^^

%% Successive INTERPOLATION:
% Creating Midpoint Times to represent time for "Average Velocities"
between GNSS
% coordinates for HAVERSINE METHODS 1 AND 3
for n=2:(numel(HavTimedbl))
 try
 Havtimemidpt(n-1)=(HavTime(n)+HavTime(n-1))/2;
 catch
 end
end
Havtimemidpt=Havtimemidpt';
%% Interpolate Method 1:
SuccessiveVelocity=SuccessiveVelocity';
interpHaversineVel=interp1(Havtimemidpt(2:numel(Havtimemidpt)),Successi
veVelocity,time2,'linear'); % INTERPOLATING CALCULATED
VELOCITY/DIRECTION to anemometer time
SuccessiveCourse=courseAnem;

127

interpHaversineCourse=interp1(Havtimemidpt(2:numel(Havtimemidpt)),Succe
ssiveCourse,time2,'linear'); % Interpolating course to anemometer
sampling

%% Interpolate Method 2: "SPEED OVER GROUND"
interpSOG=interp1(HavTime,V_anemTransSOG,time2,'linear');
interpSOGCourse=interp1(HavTime,anemCOG,time2,'linear');

%% Interpolate Method 3:
% Combined: Haversine @ GNSS transformed w/relative motion to weather
% station interpolation:
interpanemRelHav=interp1(Havtimemidpt,V_anemRelHav,time2,'linear');
interpRelHavCourse=interp1(Havtimemidpt,anemRelHav,time2,'linear');

SuccessiveCourse=SuccessiveCourse';
%% SUBTRACTING VEHICLE VELOCITY FROM WIND DATA and Recalculating Wind
direction relative to vehicle heading

for i=1:numel(direction2)

 if direction2(i)<=90
 x(i)=velocity2(i)*sin(direction2(i)*pi/180)*(-1);
 y(i)=velocity2(i)*cos(direction2(i)*pi/180)*(-1);
 % Y>0 so subtract vehicle vel
 y2(i)=y(i)+interpHaversineVel(i);% HAVERSINE
 y2s(i)=y(i)+interpSOG(i);% SOG
 y2hs(i)=y(i)+interpanemRelHav(i); % Method 3: SOG on Hav
 % Recalculating Wind Velocity
 VcorrectHAV(i)=sqrt(y2(i)^2+(abs(x(i))^2));
 VcorrectSOG(i)=sqrt(y2s(i)^2+(abs(x(i))^2));
 VcorrectHAVSOG(i)=sqrt(y2hs(i)^2+(abs(x(i))^2));
 % Recalculating Wind Direction (Still relative to "False
North")

 elseif direction2(i)<=180 && direction2(i)>90
 x(i)=velocity2(i)*cos((direction2(i)-90)*pi/180)*(-1);
 y(i)=velocity2(i)*sin((direction2(i)-90)*pi/180)*(1);

 % Y<0 so add vehicle vel to (-Y) to effectively subtract
 y2(i)=y(i)-interpHaversineVel(i);% HAVERSINE
 y2s(i)=y(i)-interpSOG(i);% SOG
 y2hs(i)=y(i)-interpanemRelHav(i); % Method 3: SOG on Hav

 % Recalculating Wind Velocity
 VcorrectHAV(i)=sqrt(y2(i)^2+(abs(x(i)^2)));
 VcorrectSOG(i)=sqrt(y2s(i)^2+(abs(x(i))^2));
 VcorrectHAVSOG(i)=sqrt(y2hs(i)^2+(abs(x(i))^2));

 elseif direction2(i)<=270 && direction2(i)>180
 x(i)=velocity2(i)*sin((direction2(i)-180)*pi/180)*(1);
 y(i)=velocity2(i)*cos((direction2(i)-180)*pi/180)*(1);

 % Y<0 so add vehicle vel to (-Y) to effectively subtract
 y2(i)=y(i)-interpHaversineVel(i);% HAVERSINE
 y2s(i)=y(i)-interpSOG(i);% SOG
 y2hs(i)=y(i)-interpanemRelHav(i); % Method 3: SOG on Hav

128

 % Recalculating Wind Velocity
 VcorrectHAV(i)=sqrt(y2(i)^2+(abs(x(i))^2));
 VcorrectSOG(i)=sqrt(y2s(i)^2+(abs(x(i))^2));
 VcorrectHAVSOG(i)=sqrt(y2hs(i)^2+(abs(x(i))^2));

 else
 x(i)=velocity2(i)*cos((direction2(i)-270)*pi/180)*(1);
 y(i)=velocity2(i)*sin((direction2(i)-270)*pi/180)*(-1);
 % Y>0
 y2(i)=y(i)+interpHaversineVel(i);% HAVERSINE:
 y2s(i)=y(i)+interpSOG(i);% SOG
 y2hs(i)=y(i)+interpanemRelHav(i); % Method 3: SOG on Hav
 % Recalculating Wind Velocity
 VcorrectHAV(i)=sqrt(y2(i)^2+(abs(x(i))^2));
 VcorrectSOG(i)=sqrt(y2s(i)^2+(abs(x(i))^2));
 VcorrectHAVSOG(i)=sqrt(y2hs(i)^2+(abs(x(i))^2));

 end
end
VcorrectHAV=VcorrectHAV';
VcorrectSOG=VcorrectSOG';
VcorrectHAVSOG=VcorrectHAVSOG';
VcorrectHAV(1)=[]; VcorrectSOG(1)=[]; VcorrectHAVSOG(1)=[]; % REMOVE
NANS
interpHaversineVel(1)=[]; interpSOG(1)=[]; interpanemRelHav(1)=[];
%% Recalculating Wind Direction (Still relative to "False North")
Dir_rel_HAV=Comp2coord(x,y2);
Dir_rel_SOG=Comp2coord(x,y2s);
Dir_rel_HAVSOG=Comp2coord(x,y2hs);
Dir_rel_HAV(1)=[]; Dir_rel_SOG(1)=[]; Dir_rel_HAVSOG(1)=[]; % REMOVE
NANS
interpHaversineCourse(1)=[]; interpSOGCourse(1)=[];
interpRelHavCourse(1)=[];
%% Rotating Dynamic Wind Data Toward Heading of Stationary Data (TRUE
NORTH):
% Need to add vehicle heading to wind direction

for i=1:numel(interpHaversineCourse)
directionTrueNorth_Hav(i) =
mod(interpHaversineCourse(i)+Dir_rel_HAV(i),360);%*360;
directionTrueNorth_SOG(i) =
mod(interpSOGCourse(i)+Dir_rel_SOG(i),360);%*360;
directionTrueNorth_HAVSOG(i) =
mod(interpRelHavCourse(i)+Dir_rel_HAVSOG(i),360);%*360;

end
directionTrueNorth_Hav=directionTrueNorth_Hav';
directionTrueNorth_SOG=directionTrueNorth_SOG';
directionTrueNorth_HAVSOG=directionTrueNorth_HAVSOG';
% Plotting New direction compared to old
% figure(4)
% %scatter(time2,direction2,'.'); hold on;
% scatter(time2,directionTrueNorth_Hav,'.','r'); hold on;
% scatter(time2,directionTrueNorth_SOG,'.','b'); hold on;
% scatter(time2,directionTrueNorth_HAVSOG,'.','m'); hold on;
% legend('Raw Wind Direction','Corrected Wind Direction
(Haversine)','Corrected Wind Direction (SOG)')

129

% %
% Comparing Rotated direction to stationary

%% WHENEVER DIFFERENCE IS NEGATIVE: it means the vehicle was moving
faster than the wind
%% Preparing for STATS Analysis:
%% NEED TO AVERAGE COMPONENTS THEN RECALCULATE DIRECTION
% directionTrueNorth_Hav and direction TrueNorth_SOG are corrected
% directions.

% Method 1: HAVERSINE METHOD:
for i=1:numel(directionTrueNorth_Hav)

 if directionTrueNorth_Hav(i)<=90
 xHAV(i)=VcorrectHAV(i)*sin(directionTrueNorth_Hav(i)*pi/180)*(-
1);
 yHAV(i)=VcorrectHAV(i)*cos(directionTrueNorth_Hav(i)*pi/180)*(-
1);
 elseif directionTrueNorth_Hav(i)<=180 &&
directionTrueNorth_Hav(i)>90
 xHAV(i)=VcorrectHAV(i)*cos((directionTrueNorth_Hav(i)-
90)*pi/180)*(-1);
 yHAV(i)=VcorrectHAV(i)*sin((directionTrueNorth_Hav(i)-
90)*pi/180)*(1);
 elseif directionTrueNorth_Hav(i)<=270 &&
directionTrueNorth_Hav(i)>180
 xHAV(i)=VcorrectHAV(i)*sin((directionTrueNorth_Hav(i)-
180)*pi/180)*(1);
 yHAV(i)=VcorrectHAV(i)*cos((directionTrueNorth_Hav(i)-
180)*pi/180)*(1);
 else
 xHAV(i)=VcorrectHAV(i)*cos((directionTrueNorth_Hav(i)-
270)*pi/180)*(1);
 yHAV(i)=VcorrectHAV(i)*sin((directionTrueNorth_Hav(i)-
270)*pi/180)*(-1);
 end
end
% Method 2: "SPEED OVER GROUND" RELATIVE MOTION METHOD:
for i=1:numel(directionTrueNorth_SOG)

 if directionTrueNorth_SOG(i)<=90
 xSOG(i)=VcorrectSOG(i)*sin(directionTrueNorth_SOG(i)*pi/180)*(-
1);
 ySOG(i)=VcorrectSOG(i)*cos(directionTrueNorth_SOG(i)*pi/180)*(-
1);
 elseif directionTrueNorth_SOG(i)<=180 &&
directionTrueNorth_SOG(i)>90
 xSOG(i)=VcorrectSOG(i)*cos((directionTrueNorth_SOG(i)-
90)*pi/180)*(-1);
 ySOG(i)=VcorrectSOG(i)*sin((directionTrueNorth_SOG(i)-
90)*pi/180)*(1);
 elseif directionTrueNorth_SOG(i)<=270 &&
directionTrueNorth_SOG(i)>180
 xSOG(i)=VcorrectSOG(i)*sin((directionTrueNorth_SOG(i)-
180)*pi/180)*(1);
 ySOG(i)=VcorrectSOG(i)*cos((directionTrueNorth_SOG(i)-
180)*pi/180)*(1);

130

 else
 xSOG(i)=VcorrectSOG(i)*cos((directionTrueNorth_SOG(i)-
270)*pi/180)*(1);
 ySOG(i)=VcorrectSOG(i)*sin((directionTrueNorth_SOG(i)-
270)*pi/180)*(-1);
 end
end

% Method 3: HAVERSINE Velocity at GNSS Transformed Relative to
Anemometer:
for i=1:numel(directionTrueNorth_HAVSOG)

 if directionTrueNorth_HAVSOG(i)<=90

xHAVREL(i)=VcorrectHAVSOG(i)*sin(directionTrueNorth_HAVSOG(i)*pi/180)*(
-1);

yHAVREL(i)=VcorrectHAVSOG(i)*cos(directionTrueNorth_HAVSOG(i)*pi/180)*(
-1);
 elseif directionTrueNorth_HAVSOG(i)<=180 &&
directionTrueNorth_HAVSOG(i)>90
 xHAVREL(i)=VcorrectHAVSOG(i)*cos((directionTrueNorth_HAVSOG(i)-
90)*pi/180)*(-1);
 yHAVREL(i)=VcorrectHAVSOG(i)*sin((directionTrueNorth_HAVSOG(i)-
90)*pi/180)*(1);
 elseif directionTrueNorth_HAVSOG(i)<=270 &&
directionTrueNorth_HAVSOG(i)>180
 xHAVREL(i)=VcorrectHAVSOG(i)*sin((directionTrueNorth_HAVSOG(i)-
180)*pi/180)*(1);
 yHAVREL(i)=VcorrectHAVSOG(i)*cos((directionTrueNorth_HAVSOG(i)-
180)*pi/180)*(1);
 else
 xHAVREL(i)=VcorrectHAVSOG(i)*cos((directionTrueNorth_HAVSOG(i)-
270)*pi/180)*(1);
 yHAVREL(i)=VcorrectHAVSOG(i)*sin((directionTrueNorth_HAVSOG(i)-
270)*pi/180)*(-1);
 end
end

%% Moving average of components 92000 (HAVERSINE AND RELATIVE MOTION
RESULTS:
% Method 1: Haversine vehicle method:
magxHavMov_avg_92 =
movmean(abs(xHAV),repetition_ask,'Endpoints','discard'); % 92000
velocity 3 pt. average
magyHavMov_avg_92 =
movmean(abs(yHAV),repetition_ask,'Endpoints','discard'); % 92000
velocity 3 pt. average
magHavMov_avg_92=sqrt(magxHavMov_avg_92.^2+magyHavMov_avg_92.^2); %
Magnitude
% Variance for uncertainty
var92HAV=movvar(VcorrectHAV,repetition_ask,'Endpoints','discard');
% mag92HAVvarx=movvar(abs(xHAV),repetition_ask,'Endpoints','discard');
% mag92HAVvary=movvar(abs(yHAV),repetition_ask,'Endpoints','discard');
% var92HAV=sqrt(mag92HAVvarx.^2+mag92HAVvary.^2);
% For direction (averaging negatives for vector averages)

131

xHavMov_avg_92 = movmean(xHAV,repetition_ask,'Endpoints','discard');
% 92000 velocity 3 pt. average
yHavMov_avg_92 = movmean(yHAV,repetition_ask,'Endpoints','discard');
% 92000 velocity 3 pt. average
%
% Method 2: "SpeedOverGround" Vehicle method:
magxSOGMov_avg_92 =
movmean(abs(xSOG),repetition_ask,'Endpoints','discard');
magySOGMov_avg_92 =
movmean(abs(ySOG),repetition_ask,'Endpoints','discard'); % 92000
velocity 3 pt. average
magSOGMov_avg_92=sqrt(magxSOGMov_avg_92.^2+magySOGMov_avg_92.^2); %
Magnitude
% Variance for uncertainty
var92SOG=movvar(VcorrectSOG,repetition_ask,'Endpoints','discard');
%mag92SOGvarx=movvar(abs(xSOG),repetition_ask,'Endpoints','discard');
%mag92SOGvary=movvar(abs(ySOG),repetition_ask,'Endpoints','discard');
%var92SOG=sqrt(mag92SOGvarx.^2+mag92SOGvary.^2);
% For direction
xSOGMov_avg_92 = movmean(xSOG,repetition_ask,'Endpoints','discard');
% 92000 velocity 3 pt. average
ySOGMov_avg_92 = movmean(ySOG,repetition_ask,'Endpoints','discard');
% 92000 velocity 3 pt. average
%
% Method 3: Haversine vehicle method Transformed by relative motion:
magxHavRelMov_avg_92 =
movmean(abs(xHAVREL),repetition_ask,'Endpoints','discard'); % 92000
velocity 3 pt. average
magyHavRelMov_avg_92 =
movmean(abs(yHAVREL),repetition_ask,'Endpoints','discard'); % 92000
velocity 3 pt. average
magHavRelMov_avg_92=sqrt(magxHavRelMov_avg_92.^2+magyHavRelMov_avg_92.^
2); % Magnitude
% Variance for uncertainty
%mag92HAVRelvarx=movvar(abs(xHAVREL),repetition_ask,'Endpoints','discar
d');
%mag92HAVRelvary=movvar(abs(yHAVREL),repetition_ask,'Endpoints','discar
d');
var92HAVRel=movvar(VcorrectHAVSOG,repetition_ask,'Endpoints','discard')
;
%var92HAVRel=sqrt(mag92HAVvarx.^2+mag92HAVvary.^2);
% For direction (averaging negatives for vector averages)
xHavRelMov_avg_92 = movmean(xHAV,repetition_ask,'Endpoints','discard');
% 92000 velocity 3 pt. average
yHavRelMov_avg_92 = movmean(yHAV,repetition_ask,'Endpoints','discard');
% 92000 velocity 3 pt. average
%
%% RECONSTRUCTING AVERAGED WIND VECTORS: Calculating the DIRECTION %%

dirHAV_Movavg=Comp2coord(xHavMov_avg_92,yHavMov_avg_92); % Haversine
dirSOG_Movavg=Comp2coord(xSOGMov_avg_92,ySOGMov_avg_92); % SOG
dirHAVRel_Movavg=Comp2coord(xHavRelMov_avg_92,yHavRelMov_avg_92);%
Method 3

%% Moving Average 86000

132

xMov_avg_86 =
movmean(abs(interp86000_Xvel),repetition_ask,'Endpoints','discard'); %
Interpolated 86000 velocity moving average
yMov_avg_86 =
movmean(abs(interp86000_Yvel),repetition_ask,'Endpoints','discard'); %
Interpolated 86000 velocity moving average
Mov_avg_86=sqrt(xMov_avg_86.^2+yMov_avg_86.^2); % Magnitude
% Variance for uncertainty
mag86varx=movvar(abs(interp86000_Xvel),repetition_ask,'Endpoints','disc
ard');
mag86vary=movvar(abs(interp86000_Yvel),repetition_ask,'Endpoints','disc
ard');
var86=sqrt(mag86varx.^2+mag86vary.^2);
% For direction!
Mov_avg_86X =
movmean(interp86000_Xvel,repetition_ask,'Endpoints','discard'); %
Interpolated 86000 velocity 3 pt. average
Mov_avg_86Y =
movmean(interp86000_Yvel,repetition_ask,'Endpoints','discard'); %
Interpolated 86000 velocity 3 pt. average
%
% Reconstruct 86000 Direction after filtering!:
dir86_Movavg=Comp2coord(Mov_avg_86X,Mov_avg_86Y);

Mov_avg_temp =
movmean(temperature,repetition_ask,'Endpoints','discard')';
Mov_avg_humid =
movmean(humidity,repetition_ask,'Endpoints','discard')';
Mov_avg_press =
movmean(pressure,repetition_ask,'Endpoints','discard')';
difff=0;
if difff==1
MovAvgDiff = abs(HavMov_avg_92 - SOGMov_avg_92);
h=histogram(MovAvgDiff,'Normalization','probability');
else
end

%% Calling DynamicStats for Randomized Repetitions:
[OUTPUTHAV, OUTPUTSOG, OUTPUTHAVREL] = DynamicStats(distance,
Mov_avg_86, dir86_Movavg, magHavMov_avg_92, dirHAV_Movavg,
magSOGMov_avg_92, dirSOG_Movavg, magHavRelMov_avg_92, dirHAVRel_Movavg,
Mov_avg_temp, Mov_avg_humid, Mov_avg_press);

%% Difference Analysis: (Percent values <= velocity)
%% METHOD 1: Calculating difference in Repetitions & Printing to Excel
magHavMov_avg_92=magHavMov_avg_92';
var92HAV=var92HAV';
differenceHAV=abs(magHavMov_avg_92-Mov_avg_86);
stdevDiffHAV=sqrt(var92HAV(:,1)+var86(:,1)); % These are added to find
most error
% Histogram setting and extract

dhistHAV = histogram(differenceHAV); %Store the histogram results into
variables
dhistHAV.BinWidth=0.1;
dhistHAV.Normalization='cdf';
cumulHAV=cell(numel(differenceHAV),4); % Initialize printing cell array

133

differenceHAV=num2cell(differenceHAV); % Extract and Converting to
cells
stdevDiffHAV=num2cell(stdevDiffHAV);
edgesHAV=num2cell(dhistHAV.BinEdges)';
countprobHAV=num2cell(dhistHAV.Values*100)';
cumulHAV(1,:)={'Difference in Velocity (m/s)','Filter Uncertainty
(stdev of filtered points)','Bin Edge','Probability'};
cumulHAV(2:numel(differenceHAV)+1,1)=differenceHAV;
cumulHAV(2:numel(stdevDiffHAV)+1,2)=stdevDiffHAV;
cumulHAV(2:numel(edgesHAV)+1,3)=edgesHAV;
cumulHAV(2:numel(countprobHAV)+1,4)=countprobHAV; % Fill cells

%% Method 2:
magSOGMov_avg_92=magSOGMov_avg_92';
var92SOG=var92SOG';
differenceSOG=abs(magSOGMov_avg_92-Mov_avg_86);
stdevDiffSOG=sqrt(var92SOG(:,1)+var86(:,1)); % These are added to find
most error
% Histogram setting and extract
dhistSOG = histogram(differenceSOG); %Store the histogram results into
variables
dhistSOG.BinWidth=0.1;
dhistSOG.Normalization='cdf';
cumulSOG=cell(numel(differenceSOG),4); % Initialize printing cell array

differenceSOG=num2cell(differenceSOG); % Extract and Converting to
cells
stdevDiffSOG=num2cell(stdevDiffSOG);
edgesSOG=num2cell(dhistSOG.BinEdges)';
countprobSOG=num2cell(dhistSOG.Values*100)';
cumulSOG(1,:)={'Difference in Velocity (m/s)','Filter Uncertainty
(stdev of filtered points)','Bin Edge','Probability'};
cumulSOG(2:numel(differenceSOG)+1,1)=differenceSOG;
cumulSOG(2:numel(stdevDiffSOG)+1,2)=stdevDiffSOG;
cumulSOG(2:numel(edgesSOG)+1,3)=edgesSOG;
cumulSOG(2:numel(countprobSOG)+1,4)=countprobSOG; % Fill cells

%% Method 3:
magHavRelMov_avg_92=magHavRelMov_avg_92';
var92HAVRel=var92HAVRel';
differenceHAVREL=abs(magHavRelMov_avg_92-Mov_avg_86);
stdevDiffHAVREL=sqrt(var92HAVRel(:,1)+var86(:,1)); % These are added to
find most error
% Histogram setting and extract
dhistHAVREL = histogram(differenceHAVREL); %Store the histogram results
into variables
dhistHAVREL.BinWidth=0.1;
dhistHAVREL.Normalization='cdf';
cumulHAVREL=cell(numel(differenceHAVREL),4); % Initialize printing cell
array

differenceHAVREL=num2cell(differenceHAVREL); % Extract and Converting
to cells
stdevDiffHAVREL=num2cell(stdevDiffHAVREL);
edgesHAVREL=num2cell(dhistHAVREL.BinEdges)';
countprobHAVREL=num2cell(dhistHAVREL.Values*100)';

134

cumulHAVREL(1,:)={'Difference in Velocity (m/s)','Filter Uncertainty
(stdev of filtered points)','Bin Edge','Probability'};
cumulHAVREL(2:numel(differenceHAVREL)+1,1)=differenceHAVREL;
cumulHAVREL(2:numel(stdevDiffHAVREL)+1,2)=stdevDiffHAVREL;
cumulHAVREL(2:numel(edgesHAVREL)+1,3)=edgesHAVREL;
cumulHAVREL(2:numel(countprobHAVREL)+1,4)=countprobHAVREL; % Fill cells

%% Cross-Correlation Analysis:
% Replacing NaNs with zeros:
[row,col]=find(isnan(Mov_avg_86));
Mov_avg_86(row)=0;
[row,col]=find(isnan(magHavMov_avg_92));
magHavMov_avg_92(row)=0;
clear row;
[row,col]=find(isnan(magSOGMov_avg_92));
magSOGMov_avg_92(row)=0;
clear row;
[row,col]=find(isnan(magHavRelMov_avg_92));
magHavRelMov_avg_92(row)=0;
clear row; clear col;
% Running cross correlation
[Havcorr,lags]=xcorr(Mov_avg_86,magHavMov_avg_92,[50],'coeff');
lags=lags';
Sogcorr=xcorr(Mov_avg_86,magSOGMov_avg_92,[50],'coeff');
Havrelcorr=xcorr(Mov_avg_86,magHavRelMov_avg_92,[50],'coeff');

autostationary=xcorr(Mov_avg_86,50,'coeff');
autoHav=xcorr(magHavMov_avg_92,50,'coeff');
autoSog=xcorr(magSOGMov_avg_92,50,'coeff');
autoHavrel=xcorr(magHavRelMov_avg_92,50,'coeff');

%% Print Excel sheets
%%
print=1;
if print==1
 %% Plot Sheet:
titles=[{'86000 Velocities (m/s)','Std dev 86000','86000 Direction
(deg)','92000 Velocity M1 (m/s)','Std dev 92000 M1','92000 Direction M1
(deg)','92 Velocity M2 (m/s)','Std dev 92 M2','92 Direction M2','92
Velocity M3(m/s)','Std dev 92 M3','92 Direction M3'}];

p(:,1)=Mov_avg_86;
p(:,2)=sqrt(var86);
p(:,3)=dir86_Movavg;
p(:,4)=magHavMov_avg_92;
p(:,5)=sqrt(var92HAV);
p(:,6)=dirHAV_Movavg;
p(:,7)=magSOGMov_avg_92;
p(:,8)=sqrt(var92SOG);
p(:,9)=dirSOG_Movavg;
p(:,10)=magHavRelMov_avg_92;
p(:,11)=sqrt(var92HAVRel);
p(:,12)=dirHAVRel_Movavg;
scatter(1:numel(dirHAV_Movavg),dirHAV_Movavg,'.')
hold on
scatter(1:numel(dir86_Movavg),dir86_Movavg,'.')

135

Plotting='Plot';
xlswrite(Printfilename,titles,Plotting,'A1')
xlswrite(Printfilename,p,Plotting,'A2')
%xlswrite(Printfilename,OUTPUT, 'Repetitions');
%% Printing Cross Correlation Sheet:
Printcross='Cross Correlation';
corrheads=[{'Lags','M1 Successive Coordinate','M2 Relative
Velocity','M3 Relative Haversine','','86000 Autocorr','Dynamic M1 Hav
Autocorr','M2 Rel SOG Autocorr','M3 HavRel Autocorr'}];
crosscorr=[lags,Havcorr,Sogcorr,Havrelcorr,NaN(numel(lags),1),autostati
onary,autoHav,autoSog,autoHavrel];
cross=1;
if cross==1
xlswrite(Printfilename,corrheads,Printcross,'A1')
xlswrite(Printfilename,crosscorr,Printcross,'A2')

%% Printing DIFFERENCES:
% Sheet names:
DifferenceHAVsheet=strcat('Diff_',file_nosuffix,'HAV');
DifferenceSOGsheet=strcat('Diff_',file_nosuffix,'SOG');
DifferenceHAVRELsheet=strcat('Diff_',file_nosuffix,'HAV_REL');

xlswrite(Printfilename,cumulHAV,DifferenceHAVsheet); % Printing to
Excel
xlswrite(Printfilename,cumulSOG,DifferenceSOGsheet); % Printing to
Excel
xlswrite(Printfilename,cumulHAVREL,DifferenceHAVRELsheet); % Printing
to Excel
else
end
%% Printing Vehicle Velocity and Course Calculations
%Vehicle course calcs
% interpHaversineVel(1)=[]; % Clear NaN in first position
% interpHaversineCourse(1)=[]; % Clear NaN in first position
% interpSOG(1)=[]; % Clear NaN in first position
% interpSOGCourse(1)=[]; % Clear NaN in first position
% interpanemRelHav(1)=[]; % Clear NaN in first position
% interpRelHavCourse(1)=[]; % Clear NaN in first position
time2(1)=[];
vehiclelabel=[{'Time','M1 Successive Recalculated Coordinate','M2
Relative Velocity SOG','M3 Relative Haversine'}];
coursecalcs=[time2,interpHaversineCourse,interpSOGCourse,interpRelHavCo
urse];
velocityprints=[time2,interpHaversineVel,interpSOG,interpanemRelHav];
if cross==1
xlswrite(Printfilename,vehiclelabel,'Vehicle Velocity Calcs','A1'); %
Print heading
xlswrite(Printfilename,velocityprints,'Vehicle Velocity Calcs','A2');
% Print data
xlswrite(Printfilename,vehiclelabel,'Vehicle Course Calcs','A1'); %
Print heading
xlswrite(Printfilename,coursecalcs,'Vehicle Course Calcs','A2');
% Print data
else
end

%% Printing Randomized Repetitions from DynamicStats.m

136

PrintsheetnameHAV=strcat(file_nosuffix,'HAV');
PrintsheetnameSOG=strcat(file_nosuffix,'SOG');
PrintsheetnameHAVREL=strcat(file_nosuffix,'HAV_REL');
if cross==1
xlswrite(Printfilename,OUTPUTHAV,PrintsheetnameHAV);
xlswrite(Printfilename,OUTPUTSOG,PrintsheetnameSOG);
xlswrite(Printfilename,OUTPUTHAVREL,PrintsheetnameHAVREL);
else
end

else
end

%% MATLAB Plots:
if bothmethplot==1
figure(1)
ylim([0 7]);
scatter(time2,interpHaversineVel,'.')
hold on
scatter(time2,interpSOG,'.')
hold on
scatter(time2,interpanemRelHav,'.')
%
% Direction
figure(2) % Course compare
scatter(time2,interpHaversineCourse,'.')
hold on
scatter(time2,interpSOGCourse,'.')

coursegnd2=coursegnd;
coursegnd2(1)=[];
interp_rawcog=interp1(HavTime,coursegnd2,time2,'nearest');

figure(3) %Compare original coursegnd with transformed SOG course
scatter(time2,interpSOGCourse,'.')
hold on
scatter(time2,interp_rawcog,'.') % IS CLOSE TO interpSOGCourse COURSE
%^^
^^
else
end

end

GNSS Data Processing

%% RTKprocess.m
% Calculates Haversine Velocity and "SOG" velocity at the Weather
Station's
% location.
% Also calculates the heading in degrees
function
[SucessiveVelocity,courseAnem,V_anemTransSOG,anemCOG,V_anemRelHav,anemR

137

elHav,newLong,newLat,Long4Vince,Lat4Vince] =
RTKprocess(Latdegmin,Longdegmin,velocitygnd,coursegnd,separation,repeti
tion_ask)
old=0;
t=0.05; % time interval (s)
d=31.25*0.0254; %Offset in meters to anemometer
f=0.5*0.0254; % Offset in meters to anemometer
r_earth = 6371.037*1000; %meter radius of Earth
%% Calculating Haversine Distance & Course at GPS Location
for n=2:numel(Latdegmin)
 coord1=strcat(Latdegmin{n-1},',',Longdegmin{n-1});
 coord2=strcat(Latdegmin{n},',',Longdegmin{n});
 [distance(n-1),HaversineCourse(n-1)]=haversine(coord1,coord2); % km
distance
end
HaversineCourse2=HaversineCourse; % Creating copy for later use in calc
bearing GNSS->Anemometer

%% Haversine Velocity at GPS LOCATION:
HaversineVelocity=distance(:)./t; %km/s
HaversineVelocity=HaversineVelocity*1000; %m/s
%velocity=velocity.*1943.84; % knots
HaversineVelocity=HaversineVelocity';
%% Haversine at Anemometer location!
% Calculating Bearing towards anemometer
% ROTATING GNSS HAVERSINE COURSE to face Anemometer
for n=1:numel(HaversineCourse2)+1
 % Create Bearing FROM GPS TO ANEMOMETER:
% HaverGps2AnemBearing(n)=HaversineCourse2(n);
% % - - previously
% HaverGps2AnemBearing(n) =
HaverGps2AnemBearing(n)+(90+(atan(f/d)*180/pi)); % Subtract difference
in
% HaverGps2AnemBearing(n)=mod(HaverGps2AnemBearing(n),360);
 %% Lat:
 temp = regexp(Latdegmin{n}, ' ', 'split'); % STARTING ON FIRST
COORDINATE!
 % LAST WILL BE IGNORED AS IT WAS WON'T HAVE HEADING TO CALCULATE
COORDINATE FROM
 temp{2}(numel(temp{2}))=[]; % Remove Cardinal direction letter
 Latdegree(n) = str2double(temp{1}) + str2double(temp{2})/60;
 clear temp;
 %% Long:
 temp = regexp(Longdegmin{n}, ' ', 'split'); % SEE LAT FOR EXPLAIN n!
 temp{2}(numel(temp{2}))=[]; % Remove Cardinal direction letter
 Longdegree(n) = str2double(temp{1}) + str2double(temp{2})/60;
 clear temp;
 % Convert Latitude and longitude in radians for transform to anem
 % location

 Lat4Vince(n)=Latdegree(n);
 Long4Vince(n)=Longdegree(n);

%% VINCENTY
vince=1;
if vince==1
 lng=sqrt(d^2+f^2); % OFFSET DISTANCE

138

 offsetAngle = asin(f/lng)*180/pi;
 for i=2:numel(Lat4Vince)
 [dist(i-1),vinceCourse(i-1)] = vdist(Lat4Vince(i-
1),Long4Vince(i-1),Lat4Vince(i),Long4Vince(i));
 %[dN1(i-1),cN1(i-1)] = vdist(Lat4Vince(i-1),Long4Vince(i-
1),90,135); % Point 1 Distance to the North Pole
 %[dN2(i-1),cN2(i-1)] =
vdist(Lat4Vince(i),Long4Vince(i),90,135); % Point 2 Distance to the
North Pole
 end

%% Converting to 360 degree format: initial bearing
%vinceCourse=vinceCourse*180/pi;
vinceCourse=coursegnd;
vinceCourse(1)=[];
vinceCourse=vinceCourse*(-1)+360;
vinceCourse=mod(vinceCourse+180,360);
Lat4Vince(1)=[]; Long4Vince(1)=[]; % Clearing bc there's no data for
these
%% Calculating angle facing transform direction
for n=2:numel(vinceCourse)
 %%%%% %ang(n)=180-(offsetAngle+((real(acos(((dN1(n)^2)-
(dN2(n)^2)+(dist(n)^2))/(2*dN1(n)*dist(n)))))*180/pi)); % Angle with
North Pole
 % Angle at North pole Not needed.. ang(n-1)=offsetAngle+90-
((real(acos(((dN1(n)^2)+(dN2(n)^2)-
(dist(n)^2))/(2*dN1(n)*dN2(n))))*180/pi)) +
0.5*((real(acos(((dN1(n)^2)+(dN2(n)^2)-
(dist(n)^2))/(2*dN1(n)*dN2(n))))*180/pi));
 ang(n-1)=90+offsetAngle;
 course(n-1)=mod(((vinceCourse(n)+vinceCourse(n-1))/2)+ang(n-
1),360);
 [newLat(n-1),newLong(n-1),finalbear(n-1)]=vreckon(Lat4Vince(n-
1),Long4Vince(n-1),lng,course(n-1));%/(1/cos((Lat4Vince(n)-Lat4Vince(n-
1)*pi/180))));
end
% %% CONVERTING BACK TO -180,180 DEGREE FORMAT DONT USE HERE
% if course(n)>180
% course(n)=course(n)-180;
% course(n)=course(n)*(-1);
% else
% course(n)=mod(360-course(n),180);
% end
%% Testing distance
for k=1:numel(newLat)
 [dist1(k),vinceCourse1(k)] =
vdist(Lat4Vince(k),Long4Vince(k),newLat(k),newLong(k));
end
% n=1000
% % scatter(Long4Vince(100:n),Lat4Vince(100:n),'.')
% % hold on
% % scatter(newLong(100:n),newLat(100:n),'.')

%% CALCULATING TRANSFORMED DISTANCE (Note inconsistancy):
 for k=2:numel(newLat)
 [distanceVINCE(k-1),vinceCourse1(k-1)] = vdist(newLat(k-1),newLong(k-
1),newLat(k),newLong(k));

139

 end
 vinceCourse1=vinceCourse1*180/pi;
 vinceCourse1=vinceCourse1*(-1)+360;
 vinceCourse1=mod(vinceCourse1+180,360);
 courseAnem=vinceCourse1;
% scatter(1:numel(vinceCourse),vinceCourse,'.')
% hold on
% scatter(1:numel(vinceCourse1),vinceCourse1,'.')

% hold on
% scatter(1:numel(courseAnem),courseAnem,'.')
% hold on
% scatter(1:numel(coursegnd),coursegnd,'.')

 %dist1(1)=[];
%% Velocity calcs, smoothing, assignment to output
% dN1(1)=[];
% dist(1)=[];
SucessiveVelocity=distanceVINCE/t;
%HaversineVelocityAnemometer=(HaversineVelocity.*(lng+dN1)./dN1)/t;
if repetition_ask==0
 smoothVelocity=movmean(SucessiveVelocity,4);
else
 smoothVelocity=movmean(SucessiveVelocity,(4*repetition_ask));
end
SucessiveVelocity=smoothVelocity;
%HaversineVelocityAnemometer=(distanceVINCE-dist1)/t;
% scatter(1:numel(test),test,'.')
% hold on
%
scatter(1:numel(HaversineVelocityAnemometer),HaversineVelocityAnemomete
r,'.')
% hold on
% scatter(1:numel(HaversineVelocity),HaversineVelocity,'.')
% hold on
% scatter(1:numel(dist1),dist1,'.')

%% PRINTING COORDINATE DATA
% Lat4Vince(numel(Lat4Vince))=[]; Long4Vince(numel(Lat4Vince))=[]; %
Clearing bc there's no data for these
%
% titlee=[{'Original Long'},{'Original Lat'},{'New Long'},{'New Lat'}];
% p(:,1)=Long4Vince(1:numel(Long4Vince));
% p(:,2)=Lat4Vince(1:numel(Long4Vince));
% p(:,3)=newLong;
% p(:,4)=newLat;
% xlswrite('Coordinates_1_20ft.xlsx',titlee)
% xlswrite('Coordinates_1_20ft.xlsx',p,1,'A2')

end
% for n=2:numel(newLat)
% [distanceVINCE(n-1),HaversineCourseVINCE(n-
1)]=haversine([newLat(n-1) newLong(n-1)],[newLat(n) newLong(n)]); % km
distance
% end
% distanceVINCE=distanceVINCE*1000;
% HaversineVelocityAnemometer=distanceVINCE/t;

140

% courseAnem=(HaversineCourseVINCE*-1)+360;
%
% scatter(1:numel(courseAnem),courseAnem,'.')
% hold on
% scatter(1:numel(HaversineCourse)-
1,HaversineCourse(2:numel(HaversineCourse)),'.')
% hold on
% scatter(1:numel(coursegnd)-2,coursegnd(3:numel(coursegnd)),'.')

% figure(2)
% scatter(Long4Vince(1:100),Lat4Vince(1:100),'.')
% hold on
% scatter(newLat(1:100),newLong(1:100),'.')
% figure(2)
% scatter(1:numel(HaversineCourse),HaversineCourse,'.')
% hold on
% scatter(1:numel(courseAnem),courseAnem,'.')
% hold on
% fi=mod(finalbear+90,360);
% scatter(1:numel(fi),fi,'.')
%
%
scatter(1:numel(HaversineVelocityAnemometer),HaversineVelocityAnemomete
r,'.')
% hold on
% scatter(1:numel(HaversineVelocity),HaversineVelocity,'.')

% %% OLD METHOD OF calculating new GPS coordinate: Very Noisy
old=1
if old==1
 HaverGps2AnemBearing=vinceCourse1*pi/180;

[HaversineVelocityAnemometer,courseAnem1]=old(Latdegree,Longdegree,d,f,
r_earth,t);
else
end
%% Calculating Velocity at Anemometer based on "Speed over ground"
% ***
%velocitygnd2=velocitygnd; % FOR INTERPOLATION S.O.G ESTIMATE
velocitygnd=velocitygnd*0.514444; %m/s
count=1;
for n=2:numel(velocitygnd)
 Vgps(n-1) = (velocitygnd(n)+velocitygnd(n-1))/2; % AVERAGE SPEED OF
TWO POINTS AS CENTER POINT
 DistSOG(n-1) = Vgps(n-1)*t; % DISTANCE TRAVELED (METERS) based on
AVERAGE SPEED

 %% HANDLING 359-> 1 deg change!
 anglediff(n-1) = coursegnd(n)-coursegnd(n-1); % Angle difference to
calculate turn radius
 if coursegnd(n)<90 && coursegnd(n-1)>270
 c2=360-coursegnd(n-1);
 anglediff(n-1)=c2+coursegnd(n);

 %anglediff(n-1)=mod(coursegnd(n)+coursegnd(n-1),360);
 else
 end

141

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 if anglediff(n-1)<0
 count=count+1;
 anglediff(n-1)=abs(anglediff(n-1));
 %turnrad(n-1)=DistSOG(n-1)/(2*tan(anglediff(n-1)*pi/180/2)); %
Straight line approx XXX
 turnrad(n-1)=DistSOG(n-1)*360/(2*pi*anglediff(n-1)); % GNSS
Turn Radius using Arc length
 %turnrad(n-1)=Vgps(n-1)/(anglediff(n-1)/t*pi/180);
 anemTurn(n-1)= (turnrad(n-1)+
((d/2)/((separation*0.3048)+(d/2)))); % TURN RADIUS AT ANEMOMETER
 %anemTurn(n-1)=DistSOG(n-
1)*((separation*0.3048+(d/2))/separation*0.3048)*360/(2*pi*anglediff(n-
1));
 %anemTurn(n-1)= (turnrad(n-1)+ ((d/2)/((turnrad(n-1))+(d/2))));
% TURN RADIUS AT ANEMOMETER
 %anemTurn(n-1)= (d+turnrad(n-1));
 %anemTurn(n-1)= sqrt((turnrad(n-1)+ d)^2 + dforward^2); % TURN
RADIUS AT ANEMOMETER
 %V_anemTransSOG(n-1) = Vgps(n-1)*((turnrad(n-1)+d)/turnrad(n-
1));
 V_anemTransSOG(n-1) = Vgps(n-1)*anemTurn(n-1)/(turnrad(n-1));
 %% Adjusting for forward offset
 theta=atan(f/d);
 C=sqrt((f^2)+(d^2));
 x=d*cos(theta*pi/180);
 q=C-x;
 q=q/((separation*0.3048)+q);
 %q=sqrt(((V_anemTransSOG(n-1)*t)^2)+(dforward^2));
 anemTurn(n-1)=anemTurn(n-1)+q;
 anemCOG(n-1)=coursegnd(n-1)+ (asin(f/anemTurn(n-1))*180/pi); %
adding course difference of weather station to course of GNSS
 V_anemTransSOG(n-1)= Vgps(n-1)*anemTurn(n-1)/(turnrad(n-1));

 else
 anglediff(n-1)=abs(anglediff(n-1));
 %turnrad(n-1)=DistSOG(n-1)/(2*tan(anglediff(n-1)*pi/180/2)); %
Straight line approx XXX
 turnrad(n-1)=DistSOG(n-1)*360/(2*pi*anglediff(n-1)); % GNSS
Turn Radius using Arc length
 %turnrad(n-1)=Vgps(n-1)/(anglediff(n-1)/t*pi/180);
 %anemTurn(n-1)= sqrt((turnrad(n-1)-d)^2 + dforward^2); % TURN
RADIUS AT ANEMOMETER
 anemTurn(n-1)= (turnrad(n-1)-
((d/2)/((separation*0.3048)+(d/2)))); % TURN RADIUS AT ANEMOMETER
 %anemTurn(n-1)=(turnrad(n-1)+d)*pi*anglediff(n-1)/t/180;
 %anemTurn(n-1)=DistSOG(n-
1)*(((separation*0.3048))/(separation*0.3048)+(d/2))*360/(2*pi*angledif
f(n-1));
 %anemTurn(n-1)= (turnrad(n-1)- ((d/2)/((turnrad(n-1))+(d/2))));
% TURN RADIUS AT ANEMOMETER
 %anemTurn(n-1)=turnrad(n-1)-d;

 %V_anemTransSOG(n-1) = Vgps(n-1)*anemTurn(n-1)/(turnrad(n-1));
 V_anemTransSOG(n-1) = Vgps(n-1)*(anemTurn(n-1)/(turnrad(n-1)));
 %V_anemTransSOG(n-1) = Vgps(n-1)/(anemTurn(n-1)/(turnrad(n-
1)));

142

 %% Adjusting for forward offset
 theta=atan(f/d);
 C=sqrt((f^2)+(d^2));
 x=d*cos(theta*pi/180);
 q=(C-x);
 q=q/((separation*0.3048)+q);

 %q=sqrt(((V_anemTransSOG(n-1)*t)^2)+(dforward^2));
 anemTurn(n-1)=anemTurn(n-1)-q;
 anemCOG(n-1)=coursegnd(n-1)- (asin(f/anemTurn(n-1))*180/pi);
 V_anemTransSOG(n-1)= Vgps(n-1)*(anemTurn(n-1)/(turnrad(n-1)));

 end
end
anemCOG=real(anemCOG);
%% Combining Methods: Using Haversine at GNSS location and using
relative velocity to transform
HaversineVelocity;
HaversineCourse;
count=1;
for n=2:numel(HaversineCourse)

 %VgpsHav(n-1) = (HaversineVelocity(n)+HaversineVelocity(n-1))/2; %
AVERAGE SPEED OF TWO POINTS AS CENTER POINT
 %DistHav(n-1) = VgpsHav(n-1)*t; % DISTANCE TRAVELED (METERS)
based on AVERAGE SPEED
 DistHav(n-1)=distance(n-1)*1000;
 VgpsHav(n-1)=distance(n-1)*1000/t;
 %% HANDLING 359-> 1 deg change!
 anglediffHav(n-1) = HaversineCourse(n)-HaversineCourse(n-1); %
Angle difference to calculate turn radius
% if HaversineCourse(n)>270 && HaversineCourse(n-1)<90
% anglediffHav(n-1)=360-HaversineCourse(n)+HaversineCourse(n-
1);
% else
% %HaversineCourse(n-1)<90 && HaversineCourse(n)
% end
 %anglediffHav(n-1) = HaversineCourse(n)-HaversineCourse(n-1); %
Angle difference to calculate turn radius
 if anglediffHav(n-1)<0
 count=count+1;
 anglediffHav(n-1)=abs(anglediffHav(n-1));
 %turnrad(n-1)=DistSOG(n-1)/(2*tan(anglediff(n-1)*pi/180/2)); %
Straight line approx XXX
 turnradHav(n-1)=DistHav(n-1)*360/(2*pi*anglediffHav(n-1)); %
GNSS Turn Radius using Arc length

 %anemTurnHav(n-1)= sqrt((turnradHav(n-1)+ d)^2 + dforward^2);
% TURN RADIUS AT ANEMOMETER
 %anemTurnHav(n-1)= (turnradHav(n-1)+ (d/(20*0.3048))); % TURN
RADIUS AT ANEMOMETER
 anemTurnHav(n-1)= (turnradHav(n-1)+
((d/2)/((separation*0.3048)+(d/2)))); % TURN RADIUS AT ANEMOMETER
 %anemTurnHav(n-1)=turnradHav(n-1)+d;

 V_anemRelHav(n-1) = VgpsHav(n-1)*anemTurnHav(n-
1)/(turnradHav(n-1));

143

 theta=atan(f/d);
 C=sqrt((f^2)+(d^2));
 x=d*cos(theta*pi/180);
 q=C-x;
 q=q/((separation*0.3048)+q);
 %q=sqrt(((V_anemRelHav(n-1)*t)^2)+(dforward^2));
 anemTurnHav(n-1)=anemTurnHav(n-1)+q;
 anemRelHav(n-1)=HaversineCourse(n-1)+ (asin(f/anemTurnHav(n-
1))*180/pi); % adding course difference of weather station to course of
GNSS
 V_anemRelHav(n-1)= VgpsHav(n-1)*anemTurnHav(n-1)/(turnradHav(n-
1));

 else
 anglediffHav(n-1)=abs(anglediffHav(n-1));
 %turnrad(n-1)=DistSOG(n-1)/(2*tan(anglediff(n-1)*pi/180/2)); %
Straight line approx XXX
 turnradHav(n-1)=DistHav(n-1)*360/(2*pi*anglediffHav(n-1)); %
GNSS Turn Radius using Arc length
 %anemTurnHav(n-1)= sqrt((turnradHav(n-1)-d)^2 + dforward^2); %
TURN RADIUS AT ANEMOMETER
 %% d/SEPARATION DISTANCE (20m)
 %anemTurnHav(n-1)= (turnradHav(n-1)-(d/(20*0.3048))); % TURN
RADIUS AT ANEMOMETER
 %anemTurnHav(n-1)= (turnradHav(n-1)+((d/2)/(turnrad(n-
1)+(d/2)))); % TURN RADIUS AT ANEMOMETER
 %anemTurnHav(n-1)=turnradHav(n-1)-d;
 anemTurnHav(n-1)= (turnradHav(n-1)-
((d/2)/((separation*0.3048)+(d/2))));

 %V_anemRelHav(n-1) = VgpsHav(n-1)/(anemTurnHav(n-
1)/(turnradHav(n-1)));
 V_anemRelHav(n-1) = VgpsHav(n-1)*(anemTurnHav(n-
1)/(turnradHav(n-1)));

 theta=atan(f/d);
 C=sqrt((f^2)+(d^2));
 x=d*cos(theta*pi/180);
 q=C-x;
 q=q/((separation*0.3048)+q);
 %q=sqrt(((V_anemRelHav(n-1)*t)^2)+(dforward^2));
 anemTurnHav(n-1)=anemTurnHav(n-1)-q;
 anemRelHav(n-1)=HaversineCourse(n)- (asin(f/anemTurnHav(n-
1))*180/pi); % Course calc
 V_anemRelHav(n-1)= VgpsHav(n-1)*anemTurnHav(n-1)/(turnradHav(n-
1));

 end
end
anemRelHav=real(anemRelHav);
%% Plots: FIGURE 6 IS BEARING
% Plot Haversine vs "Speed over ground"
aplot=0;
if aplot==1
sa=1:numel(turnrad);

144

scatter(sa,turnrad,'.')
 %% DIRECTION:
sample=1:numel(coursegnd);
sample2=1:numel(HaversineCourse);
scatter(sample,coursegnd,'.')
hold on
scatter(sample2,HaversineCourse,'.')
hold on
scatter(sample2,anemCOG,'.') % SOG
hold on
sample5=1:numel(courseAnem);
scatter(sample5,courseAnem,'.') % HAV at transformed point

%% VELOCITY

sample2=1:numel(SucessiveVelocity);
sample3=1:numel(V_anemRelHav);
%% ***
figure(2)
sample=1:numel(V_anemTransSOG);
scatter(sample,V_anemTransSOG,'.')
hold on
sample4=1:numel(velocitygnd);
scatter(sample4,velocitygnd,'.')
ylim([0 4])

sample3=1:numel(SucessiveVelocity);
scatter(sample3,SucessiveVelocity,'.')
hold on
%% Original GNSS HAV vs HAVREL
sample=1:numel(HaversineVelocity);
scatter(sample,HaversineVelocity,'.')
hold on
samplev=1:numel(SucessiveVelocity);
scatter(samplev,SucessiveVelocity,'.');
hold on
sample2=1:numel(V_anemRelHav);
scatter(sample2,V_anemRelHav,'.')
ylim([1 2])

scatter

figure(1)
scatter(HaversineVelocity(1:numel(HaversineVelocity)),velocitygnd(2:num
el(velocitygnd)),'.')
xlabel('Haversine Calculated Velocity (knots)')
ylabel('GNSS Output Velocity (m/s)')
correlate=corr(HaversineVelocity(:),velocitygnd(:)); % There is good
correlation, but inaccuracy

% Distribution of error for GNSS Velocities:
figure(2)
velocitygnd2=velocitygnd;
velocitygnd2(1)=[];
diff=HaversineVelocity-velocitygnd2;
diff=abs(diff);
histogram(diff,'Normalization','probability')

145

xlabel('m/s')
ylabel('Probability')
title('Difference In GNSS Output "Speed over ground" and Haversine
Calculation')

% Comparing Velocity Calculations over time:
figure(3)
samples=1:numel(HaversineVelocity);
sample2=1:numel(velocitygnd);
scatter(samples,HaversineVelocity,'.')
hold on
scatter(sample2,velocitygnd,'.','r')
legend('Haversine calculated velocity','NMEA "Speed Over Ground"')

% Comparing Anemometer velocity calculated using "Speed over ground"
with
% GNSS S.O.G
figure(4)
samples=1:numel(HaversineVelocity);
sample2=1:numel(V_anemTransSOG);
sample3=1:numel(velocitygnd);
scatter(sample2,V_anemTransSOG,'.') % SPEED OVER GROUND TRANSFORMED TO
ANEMOMETER
hold on
%scatter(samples,HaversineVelocity,'.') % HAVERSINE Not transformed
%hold on
scatter(sample3,velocitygnd,'.') % Speed over Ground Not Transformed
%hold on
%interpsample(numel(interpsample))=[];
%scatter(interpsample,V_aneminterp,'.')
legend('Transformed Anemometer from "S.O.G"','NMEA "Speed Over
Ground"')

% Distance comparison:
figure(5)
 distanceHav=distance*1000;
 scatter(samples,distanceHav,'.')
 hold on
 scatter(sample2,DistSOG,'.')
 legend('Haversine Distance','Speed Over Ground Distance')

% Bearing (course) comparison:
figure(6)
samples=1:numel(HaversineVelocity);
coursegndcomp=coursegnd;
coursegndcomp(numel(coursegnd))=[];

scatter(samples,HaversineCourse,'.')
hold on
samples(1)=[];
scatter(samples,courseAnem,'.')
hold on
scatter(samples,anemCOG(2:numel(anemCOG)),'.')
%%

scatter(samples,coursegndcomp,'.')

146

% Weather station Haversine vel vs S.O.G
sample=1:numel(SucessiveVelocity)
sample2=1:numel(V_anemTransSOG)
figure(7)
scatter(sample,SucessiveVelocity,'.')
hold on
scatter(sample2,V_anemTransSOG,'.')
xlabel('Sample Number')
ylabel('Velocity (m/s)')
legend('Haversine Velocity Anemometer Position','"Speed Over Ground"
Anemometer Position')
hold off
else
end

end

function
[HaversineVelocityAnemometer,COGAnem]=old(Latdegree,Longdegree,d,f,r_ea
rth,t)
Latdegree=Latdegree*pi/180;
Longdegree=Longdegree*pi/180;
angulardistance=sqrt((d^2)+(f^2))/r_earth;

for n=2:numel(Latdegree)-1
HaverGps2AnemBearing(n-1)=mod(((HaversineCourse(n-
1)+HaversineCourse(n))/2)+90+offsetAngle,360)*pi/180;
%HaverGps2AnemBearing(n-1)=mod(HaversineCourse(n-1)+90,360)*pi/180;
Lattrans(n-
1)=asin((sin(Latdegree(n))*cos(angulardistance))+(cos(Latdegree(n))*sin
(angulardistance)*cos(HaverGps2AnemBearing(n-1))));
%Longtrans(n)=Longdegree(n)+
atan2(sin(HaverGps2AnemBearing(n))*sin(angulardistance)*cos(Latdegree(n
)),cos(angulardistance)-sin(Latdegree(n))*sin(Lattrans(n)));
Longtrans(n-1)=mod((Longdegree(n)- asin(sin(HaverGps2AnemBearing(n-
1))*sin(angulardistance)/cos(Latdegree(n)))+pi),2*pi)-pi;
% Convert back to degrees
Lattrans(n-1)=Lattrans(n-1)*180/pi;
Longtrans(n-1)=Longtrans(n-1)*180/pi;
end

%% Vincenty distance between original and spherical transform
for k=1:numel(Lattrans)
 [dist2(k),havveCourse1(k)] =
vdist(Lat4Vince(k),Long4Vince(k),Lattrans(k),Longtrans(k));
end
diff=abs(dist1-dist2);
comptit=[{'Spherical'},{'WGS-84'}];
comp=[dist2',dist1'];
xlswrite('SphereVsWGS84.xlsx',comptit,1,'A1')
xlswrite('SphereVsWGS84.xlsx',comp,1,'A2')
%% Calculating Haversine Distance/Velocity/Heading(bearing) for
Transformed data:
% Recreating String format if needed: UNUSED!!!!!!!!!!!!!!!!
% Separating decimal for conversion from deg to deg,minutes
for n=1:numel(Lattrans) % LATITUDE
 if Lattrans(n)>0

147

 latint(n)=floor(Lattrans(n));
 fractlat(n)=Lattrans(n)-latint(n);
 cardinalLAT{n}='N';
 else
 latint(n)=floor(Lattrans(n));
 fractlat(n)=latint(n)-ceil(Lattrans(n));
 cardinalLAT{n}='S';
 end
end
fractlat=fractlat*60; % Convert decimal part back to minutes

for n=1:numel(Lattrans) % LONGITUDE
 if Longtrans(n)>0
 longint(n)=floor(Longtrans(n));
 fractlong(n)=Longtrans(n)-longint(n);
 cardinalLONG{n}='W';
 else
 longint(n)=floor(Longtrans(n));
 fractlong(n)=longint(n)-ceil(Longtrans(n));
 cardinalLONG{n}='E';
 end
end
fractlong=fractlong*60; % Convert decimal part back to minutes
% Convert to string
for n=1:numel(longint)
 latint1{n}=num2str(latint(n)); longint1{n}=num2str(longint(n));
fractlat1{n}=num2str(fractlat(n)); fractlong1{n}=num2str(fractlong(n));
end
% Concatenate Coordinates
for n=1:numel(fractlat)
 TransformedLat{n}=strcat(latint1{n},'
',fractlat1{n},'',cardinalLAT{n});
 TransformedLat{n}=insertAfter(TransformedLat(n),2,' ');
 TransformedLong{n}=strcat(longint1{n},'
','0',fractlong1{n},'',cardinalLONG{n});
 TransformedLong{n}=insertAfter(TransformedLong(n),2,' ');
end
%dummy='dumb';

%% Haversine for Transformed points: INPUT DECIMAL FORM!!!
%**

%% CHECK IF STRING INPUT HAS DIFFERENT RESULTS
for n=2:numel(Lattrans)
 [distanceAnem(n-1),courseAnem(n-1)]=haversine([Lattrans(n-1)
Longtrans(n-1)],[Lattrans(n) Longtrans(n)]);

 % coord1=strcat(TransformedLat{n-1},',',TransformedLong{n-1});
 % coord2=strcat(TransformedLat{n},',',TransformedLong{n});
 % [distanceAnem2(n-1),courseAnem2(n-
1)]=haversine(coord1{1},coord2{1});
end
%% Haversine Velocity at ANEMOMETER LOCATION:
courseAnem=(courseAnem*-1)+360;
HaversineVelocityAnemometer=distanceAnem./t; %km/s
HaversineVelocityAnemometer=HaversineVelocityAnemometer*1000; %m/s
% %velocity=velocity.*1943.84; % knots

148

% HaversineVelocityAnemometer=HaversineVelocityAnemometer';
scatter(Longtrans,Lattrans,'.')
hold on
scatter(Long4Vince,Lat4Vince,'.')
figure(2)
scatter(HaversineVelocityAnemometer,SucessiveVelocity,'.')
end

Comp2Card

% Comp2card
% Austin Weiss
% Converts X and Y components into 360 degree heading

function dir = Comp2coord(x,y)

for i=1:numel(y)
 if x(i) >=0 & y(i)>=0
 %dir(i)=(180/pi*atan(abs(x(i))/abs(y(i))));
 dir(i)=180+(180/pi*atan(abs(x(i))/abs(y(i))));
 elseif x(i)>0 & y(i)<0
 %dir(i)=90+(180/pi*atan(abs(y(i))/abs(x(i))));
 dir(i)=270+(180/pi*atan(abs(y(i))/abs(x(i))));
 elseif x(i)<0 & y(i)<0
 %dir(i)=270-(180/pi*atan(abs(y(i))/abs(x(i))));
 dir(i)=180/pi*atan(abs(x(i))/abs(y(i)));
 else % x<0, y>0
 %dir(i)=270+(180/pi*atan(abs(y(i))/abs(x(i))));
 dir(i)=90+(180/pi*atan(abs(y(i))/abs(x(i))));
 end
end
end

Haversine Function:

function [km, bearing,nmi, mi] = haversine(loc1, loc2)
% HAVERSINE Compute distance between locations using Haversine
formula
% KM = HAVERSINE(LOC1, LOC2) returns the distance KM in km between
% locations LOC1 and LOC2 using the Haversine formula. LOC1 and LOC2
are
% latitude and longitude coordinates that can be expressed as either
% strings representing degrees, minutes, and seconds (suffixed with
% N/S/E/W), or numeric arrays representing decimal degrees (where
% negative indicates West/South).
%
% [KM, NMI, MI] = HAVERSINE(LOC1, LOC2) returns the computed distance
in
% kilometers (KM), nautical miles (NMI), and miles (MI).
%
% Examples

149

% haversine('53 08 50N, 001 50 58W', '52 12 16N, 000 08 26E')
returns
% 170.2547
% haversine([53.1472 -1.8494], '52 12.16N, 000 08.26E') returns
% 170.2508
% haversine([53.1472 -1.8494], [52.2044 0.1406]) returns 170.2563
%
% Inputs
% LOC must be either a string specifying the location in degrees,
% minutes and seconds, or a 2-valued numeric array specifying the
% location in decimal degrees. If providing a string, the
latitude
% and longitude must be separated by a comma.
%
% The first element indicates the latitude while the second is
the
% longitude.
%
% Notes
% The Haversine formula is used to calculate the great-circle
% distance between two points, which is the shortest distance
over
% the earth's surface.
%
% This program was created using equations found on the website
% http://www.movable-type.co.uk/scripts/latlong.html
% Created by Josiah Renfree
% May 27, 2010
%% MODIFIED by Austin Weiss
% 12/21/2018
% Now includes initial and final bearing (set to final)
% Now takes input as string Latitude,Longitude:
%"degrees minutes.decimalminutes,degrees minutes.decimal minutes"
%% Check user inputs
% If two inputs are given, display error
if ~isequal(nargin, 2)
 error('User must supply two location inputs')

% If two inputs are given, handle data
else

 locs = {loc1 loc2}; % Combine inputs to make checking easier

 % Cycle through to check both inputs
 for i = 1:length(locs)

 % Check inputs and convert to decimal if needed
 if ischar(locs{i})

 % Parse lat and long info from current input
 temp = regexp(locs{i}, ',', 'split');
 lat = temp{1}; lon = temp{2};
 clear temp
 locs{i} = []; % Remove string to make room for
array

 % Obtain degrees, minutes, seconds, and hemisphere

150

 temp = regexp(lat, '(\d+)\D+(\d+)\D+(\d+)(\w?)', 'tokens');
 temp = temp{1};
 num=numel(num2str(temp{3})); % number of digits in decimal,
to remake decimal to add back
 % Calculate latitude in decimal degrees
 locs{i}(1) = str2double(temp{1}) +
str2double(temp{2})/60+str2double(temp{3})/(10^num)/60;

 % Make sure hemisphere was given
 if isempty(temp{4})
 error('No hemisphere given')
 % If latitude is south, make decimal negative
 elseif strcmpi(temp{4}, 'S')
 locs{i}(1) = -locs{i}(1);
 end

 clear temp
 % Obtain degrees, minutes, seconds, and hemisphere
 temp = regexp(lon, '(\d+)\D+(\d+)\D+(\d+)(\w?)', 'tokens');
 temp = temp{1};
 num=numel(num2str(temp{3})); % number of digits in decimal,
to remake decimal to add back
 % Calculate longitude in decimal degrees
 locs{i}(2) = str2double(temp{1}) +
str2double(temp{2})/60+str2double(temp{3})/(10^num)/60;

 % Make sure hemisphere was given
 if isempty(temp{4})
 error('No hemisphere given')

 % If longitude is west, make decimal negative
 elseif strcmpi(temp{4}, 'W')
 locs{i}(2) = -locs{i}(2);
 end

 clear temp lat lon
 end
 end
end
% Check that both cells are a 2-valued array
if any(cellfun(@(x) ~isequal(length(x),2), locs))
 error('Incorrect number of input coordinates')
end
% Convert all decimal degrees to radians
locs = cellfun(@(x) x .* pi./180, locs, 'UniformOutput', 0);
%% Begin Distance calculation
R = 6371; % Earth's radius in km
delta_lat = locs{2}(1) - locs{1}(1); % difference in latitude
delta_lon = locs{2}(2) - locs{1}(2); % difference in longitude
a = sin(delta_lat/2)^2 + cos(locs{1}(1)) * cos(locs{2}(1)) * ...
 sin(delta_lon/2)^2;
c = 2 * atan2(sqrt(a), sqrt(1-a));
km = R * c; % distance in km
%% Convert result to nautical miles and miles
nmi = km * 0.539956803; % nautical miles
mi = km * 0.621371192; % miles
%% INITIAL Bearing Calculation:

151

b1=sin(delta_lon)*cos(locs{2}(1));
b2=(cos(locs{1}(1))*sin(locs{2}(1)))-
(sin(locs{1}(1))*cos(locs{2}(1))*cos(delta_lon));
bearing1=atan2(b2,b1);
bearing1=bearing1*180/pi; % convert to degrees
% Converting to 360 degree format
bearing1=bearing1+180;
 if bearing1>=360
 bearing1=bearing1-360;
 else
 end
% bearing1=mod(bearing1-90,360);
%% FINAL Bearing calculation
final=1;
if final==1
bearing2=atan2(b1,b2);
bearing2=bearing2*180/pi; % Convert to degrees
bearing2=mod(bearing2,360);

%for n=1:numel(bearing2)
 %if bearing2>=360
 % bearing2=bearing2-360;
 %else
 %end
%end
bearing=bearing2;
else
 bearing=bearing1;
end
%bearing=(bearing1+bearing2)/2;
end

Vincenty Distance Function:

function [s,a21] = vdist(lat1,lon1,lat2,lon2)
% VDIST - compute distance between points on the WGS-84 ellipsoidal
Earth
% to within a few millimeters of accuracy using Vincenty's
algorithm
%
% s = vdist(lat1,lon1,lat2,lon2)
%
% s = distance in meters
% lat1 = GEODETIC latitude of first point (degrees)
% lon1 = longitude of first point (degrees)
% lat2, lon2 = second point (degrees)
%
% Original algorithm source:
% T. Vincenty, "Direct and Inverse Solutions of Geodesics on the
Ellipsoid
% with Application of Nested Equations", Survey Review, vol. 23, no.
176,
% April 1975, pp 88-93

152

%
% Notes: (1) Error correcting code, convergence failure traps,
antipodal corrections,
% polar error corrections, WGS84 ellipsoid parameters,
testing, and comments
% written by Michael Kleder, 2004.
% (2) Vincenty describes his original algorithm as precise to
within
% 0.01 millimeters, subject to the ellipsoidal model.
% (3) Essentially antipodal points are treated as exactly
antipodal,
% potentially reducing accuracy by a small amount.
% (4) Failures for points exactly at the poles are eliminated by
% moving the points by 0.6 millimeters.
% (5) Vincenty's azimuth formulas are not implemented in this
% version, but are available as comments in the code.
% (6) The Vincenty procedure was transcribed verbatim by Peter
Cederholm,
% August 12, 2003. It was modified and translated to English
by Michael Kleder.
% Mr. Cederholm's website is http://www.plan.aau.dk/~pce/
% (7) Code to test the disagreement between this algorithm and
the
% Mapping Toolbox spherical earth distance function is
provided
% as comments in the code. The maximum differences are:
% Max absolute difference: 38 kilometers
% Max fractional difference: 0.56 percent

% Input check:
if abs(lat1)>90 | abs(lat2)>90
 error('Input latitudes must be between -90 and 90 degrees,
inclusive.')
end
% Supply WGS84 earth ellipsoid axis lengths in meters:
a = 6378137; % definitionally
b = 6356752.31424518; % computed from WGS84 earth flattening
coefficient definition
% convert inputs in degrees to radians:
lat1 = lat1 * 0.0174532925199433;
lon1 = lon1 * 0.0174532925199433;
lat2 = lat2 * 0.0174532925199433;
lon2 = lon2 * 0.0174532925199433;
% correct for errors at exact poles by adjusting 0.6 millimeters:
if abs(pi/2-abs(lat1)) < 1e-10;
 lat1 = sign(lat1)*(pi/2-(1e-10));
end
if abs(pi/2-abs(lat2)) < 1e-10;
 lat2 = sign(lat2)*(pi/2-(1e-10));
end
f = (a-b)/a;
U1 = atan((1-f)*tan(lat1));
U2 = atan((1-f)*tan(lat2));
lon1 = mod(lon1,2*pi);
lon2 = mod(lon2,2*pi);
L = (lon2-lon1);

153

%%
if L > pi
 L = 2*pi - L;
end
lambda = L;
lambdaold = 0;
itercount = 0;
while ~itercount | abs(lambda-lambdaold) > 1e-12 % force at least one
execution
 itercount = itercount+1;
 if itercount > 50
 warning('Points are essentially antipodal. Precision may be
reduced slightly.');
 lambda = pi;
 break
 end
 lambdaold = lambda;
 sinsigma = sqrt((cos(U2)*sin(lambda))^2+(cos(U1)*...
 sin(U2)-sin(U1)*cos(U2)*cos(lambda))^2);
 cossigma = sin(U1)*sin(U2)+cos(U1)*cos(U2)*cos(lambda);
 sigma = atan2(sinsigma,cossigma);
 alpha = asin(cos(U1)*cos(U2)*sin(lambda)/sin(sigma));
 cos2sigmam = cos(sigma)-2*sin(U1)*sin(U2)/cos(alpha)^2;
 C = f/16*cos(alpha)^2*(4+f*(4-3*cos(alpha)^2));
 lambda = L+(1-C)*f*sin(alpha)*(sigma+C*sin(sigma)*...
 (cos2sigmam+C*cos(sigma)*(-1+2*cos2sigmam^2)));
 % correct for convergence failure in the case of essentially
antipodal points
 if lambda > pi
 warning('Points are essentially antipodal. Precision may be
reduced slightly.');
 lambda = pi;
 break
 end
end
u2 = cos(alpha)^2*(a^2-b^2)/b^2;
A = 1+u2/16384*(4096+u2*(-768+u2*(320-175*u2)));
B = u2/1024*(256+u2*(-128+u2*(74-47*u2)));
deltasigma = B*sin(sigma)*(cos2sigmam+B/4*(cos(sigma)*(-
1+2*cos2sigmam^2)...
 -B/6*cos2sigmam*(-3+4*sin(sigma)^2)*(-3+4*cos2sigmam^2)));
s = b*A*(sigma-deltasigma);

% %
===
% % Vicenty's azimuth calculation code is left unused:
% % (results in radians)
% % From point #1 to point #2

a12 = atan2(cos(U2)*sin(lambda),cos(U1)*sin(U2)-
sin(U1)*cos(U2)*cos(lambda));
if a12 < 0
 a12 = a12+2*pi;
end
% % from point #2 to point #1

154

a21 = atan2(cos(U1)*sin(lambda),-
sin(U1)*cos(U2)+cos(U1)*sin(U2)*cos(lambda));
if a21 < 0
 a21 = a21+pi;
end
if (L>0) & (L<pi)
 a21 = a21 + pi;
end

% %
===
% % Code to test the Mapping Toolbox spherical earth distance against
% % Vincenty's algorithm using random test points:
% format short g
% errmax=0;
% abserrmax=0;
% for i = 1:10000
% llat = rand * 184-92;
% tlat = rand * 184-92;
% llon = rand * 364 - 2;
% tlon = rand * 364 - 2;
% llat = max(-90,min(90,llat)); % round to include occasional exact
poles
% tlat = max(-90,min(90,tlat));
% llon = max(0,min(360,llon));
% tlon = max(0,min(360,tlon));
% % randomly test exact equator
% if rand < .01
% llat = 0;
% llon = 0;
% else
% if rand < .01
% llat = 0;
% end
% if rand < .01
% tlat = 0;
% end
% end
% dm = 1000*deg2km(distance(llat,llon,tlat,tlon));
% dv = vdist(llat,llon,tlat,tlon);
% abserr = abs(dm-dv);
% if abserr < 1e-2 % disagreement less than a centimeter
% err = 0;
% else
% err = abs(dv-dm)/dv;
% end
% errmax = max(err,errmax);
% abserrmax = max(abserr,abserrmax);
% % if i==1 | rand > .99
% disp([i dv dm err errmax abserrmax])
% % end
% if err > .01
% break
% end
% end

155

Vincenty Coordiante Calculation Function:

function [lat2,lon2,a21] = vreckon(lat1,lon1,s,a12)
% RECKON - Using the WGS-84 Earth ellipsoid, travel a given distance
along
% a given azimuth starting at a given initial point, and
return
% the endpoint within a few millimeters of accuracy, using
% Vincenty's algorithm.
%
% USAGE:
% [lat2,lon2] = vreckon(lat1, lon1, s, a12)
%
% VARIABLES:
% lat1 = inital latitude (degrees)
% lon1 = initial longitude (degrees)
% s = distance (meters)
% a12 = intial azimuth (degrees)
% lat2, lon2 = second point (degrees)
% a21 = reverse azimuth (degrees), at final point facing back toward
the
% intial point
%
% Original algorithm source:
% T. Vincenty, "Direct and Inverse Solutions of Geodesics on the
Ellipsoid
% with Application of Nested Equations", Survey Review, vol. 23, no.
176,
% April 1975, pp 88-93.
% Available at: http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
%
% Notes:
% (1) The Vincenty reckoning algorithm was transcribed verbatim into
% JavaScript by Chris Veness. It was modified and translated to
Matlab
% by Michael Kleder. Mr. Veness's website is:
% http://www.movable-type.co.uk/scripts/latlong-vincenty-
direct.html
% (2) Error correcting code, polar error corrections, WGS84 ellipsoid
% parameters, testing, and comments by Michael Kleder.
% (3) By convention, when starting at a pole, the longitude of the
initial
% point (otherwise meaningless) determines the longitude line along
% which to traverse, and hence the longitude of the final point.
% (4) The convention noted in (3) above creates a discrepancy with
VDIST
% when the the intial or final point is at a pole. In the VDIST
% function, when traversing from a pole, the azimuth is 0 when
% heading away from the south pole and 180 when heading away from
the
% north pole. In contrast, this VRECKON function uses the azimuth
as
% noted in (3) above when traversing away form a pole.
% (5) In testing, where the traversal subtends no more than 178
degrees,
% this function correctly inverts the VDIST function to within 0.2

156

% millimeters of distance, 5e-10 degrees of forward azimuth,
% and 5e-10 degrees of reverse azimuth. Precision reduces as test
% points approach antipodal because the precision of VDIST is
reduced
% for nearly antipodal points. (A warning is given by VDIST.)
% (6) Tested but no warranty. Use at your own risk.
% (7) Ver 1.0, Michael Kleder, November 2007

% Input check:
if abs(lat1)>90
 error('Input latitude must be between -90 and 90 degrees,
inclusive.')
end
a = 6378137; % semimajor axis
%b = 6356752.314140347;
 b = 6356752.31424518; % semiminor axis ORIGINAL
f = 1/298.257223563; % flattening coefficient WGS-84 ORIGINAL
%f=1/298.257222100882711243;
lat1 = lat1 * .1745329251994329577e-1; % intial latitude in radians
lon1 = lon1 * .1745329251994329577e-1; % intial longitude in radians
% correct for errors at exact poles by adjusting 0.6 millimeters:
kidx = abs(pi/2-abs(lat1)) < 1e-10;
if any(kidx);
 lat1(kidx) = sign(lat1(kidx))*(pi/2-(1e-10));
end
alpha1 = a12 * .1745329251994329577e-1; % inital azimuth in radians
sinAlpha1 = sin(alpha1);
cosAlpha1 = cos(alpha1);
tanU1 = (1-f) * tan(lat1);
cosU1 = 1 / sqrt(1 + tanU1*tanU1);
sinU1 = tanU1*cosU1;
sigma1 = atan2(tanU1, cosAlpha1);
sinAlpha = cosU1 * sinAlpha1;
cosSqAlpha = 1 - sinAlpha*sinAlpha;
uSq = cosSqAlpha * (a*a - b*b) / (b*b);
A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)));
%k1=((sqrt(1+uSq)-1)/(sqrt(1+uSq)+1));
%A = (1+(.25*k1^2));
%B = k1*(1-(3/8)*k1^2);
B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)));
sigma = s / (b*A);
sigmaP = 2*pi;
while (abs(sigma-sigmaP) > 1e-12)
 cos2SigmaM = cos(2*sigma1 + sigma);
 sinSigma = sin(sigma);
 cosSigma = cos(sigma);
 deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+...
 2*cos2SigmaM*cos2SigmaM)-...
 B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+...
 4*cos2SigmaM*cos2SigmaM)));
 sigmaP = sigma;
 sigma = s / (b*A) + deltaSigma;
end
tmp = sinU1*sinSigma - cosU1*cosSigma*cosAlpha1;
lat2 = atan2(sinU1*cosSigma + cosU1*sinSigma*cosAlpha1,...
 (1-f)*sqrt(sinAlpha*sinAlpha + tmp*tmp));
lambda = atan2(sinSigma*sinAlpha1, cosU1*cosSigma - ...

157

 sinU1*sinSigma*cosAlpha1);
C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha));
L = lambda - (1-C) * f * sinAlpha * (sigma + C*sinSigma*(cos2SigmaM+...
 C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)));
lon2 = lon1 + L;
% output degrees
lat2 = lat2 * 57.295779513082322865;
lon2 = lon2 * 57.295779513082322865;
lon2 = mod(lon2,360); % follow [0,360] convention
if nargout > 2
 a21 = atan2(sinAlpha, -tmp);
 a21 = 180 + a21 * 57.295779513082322865; % note direction
reversal
 a21=mod(a21,360);
end
return

158

 R Script

getwd()

#setwd("C:/Users/Weiss/OneDrive - University of Kentucky/1 Thesis Work/Correlation
Between Stationary Ultrasonic Anemometers/Feb 13th Test")

setwd("C:/Users/Weiss/Desktop/Dynamic result")

require(xlsx)

require(gstat)

require(sp)

require(lattice)

require(gstat)

data<-read.xlsx("Dynamic_1_20ft_3mph_NoFilter.xlsx", "Plot")

a<- summary(data)

head(data)

1st Order Probability (mean)

mean(data$X86000.Velocities..m.s.)

2nd Order Probability (variance)

sort(var(data$X86000.Velocities..m.s.))

library(moments)

skewness(data$X86000.Velocities..m.s., na.rm = FALSE)

kurtosis(data$X86000.Velocities..m.s., na.rm = FALSE)

86000 QQ

qqnorm(data$X86000.Velocities..m.s., main = "Normal Q-Q Plot - Yield")

qqline(data$X86000.Velocities..m.s., col='red')

92000 QQ

qqnorm(data$X92000.Velocity.M1..m.s., main = "Normal Q-Q Plot - Yield")

qqline(data$X92000.Velocity.M1..m.s., col='red')

pearcorr <- cor(data) # Calculates Pearson correlation coefficents

#Spearman not appropriate

159

#spearcorr <- cor(data, method = "spearman") # Calculates Spearman correlation
coefficients

86000 Autocorr

lag=50 # Change for lag distance

acf1 <- acf(data$X86000.Velocities..m.s., lag=lag) # Calc autocorr function for yield at
lag distance 16

acf1

acf1.d<-data.frame(acf1$lag, acf1$acf) # Reorganize (lag distance, autocorr function)

acf1.d

plot(acf1.d, type="p",main="86000 Velocities", xlab="Lag (h)", ylab="Correlation
Coefficient", ylim=c(0,1), xlim=c(0,lag))

#write.csv(acf1.d,"acf1.d.csv")

92000 Autocorr

lag=50 # Change for lag distance

#acf1 <- acf(data$X92000.Velocity..m.s., lag=lag) # Calc autocorr function for yield at
lag distance 16

acf1 <- acf(data$X92000.Velocity.M1..m.s., lag=lag) # Calc autocorr function for yield
at lag distance 16

acf1

acf1.d<-data.frame(acf1$lag, acf1$acf) # Reorganize (lag distance, autocorr function)

acf1.d

plot(acf1.d, type="p",main="92000 Velocities", xlab="Lag (h)", ylab="Correlation
Coefficient", ylim=c(0,1), xlim=c(0,lag))

FAST PROCESS CROSS CORR: CHANGE FILE READ AND SAVE AND RUN
TO END

setwd("C:/Users/Weiss/Desktop/Feb 13th Test")

#setwd("C:/Users/Weiss/Desktop/Dynamic result")

#data<-read.xlsx("Dynamic_3_40ft_3mph_NoFilter.xlsx", "Plot")

160

data<-read.xlsx("Stationary_20ft_1_NoFilter.xlsx", "Plot")

Cross-Corrleation

lag=50

ccf1<-ccf(data$X86000.Velocities..m.s.,data$X92000.Velocity.M1..m.s.,
lag=lag,na.action = na.pass)

#ccf1<-ccf(data$X86000.Velocities..m.s.,data$X92.Velocity.M2..m.s., lag=lag,na.action
= na.pass)

#ccf1<-ccf(data$X86000.Velocities..m.s.,data$X92.Velocity.M3.m.s., lag=lag,na.action
= na.pass)

plot(ccf1, type="b",main="86000 vs 92000 Velocities", xlab="Lag (h)", ylab="Cross
Correlation Coefficient", ylim=c(0,.7), xlim=c(-lag,lag))

ccf1line<-data.frame((-lag:lag), ccf1$acf)

lines(smooth.spline(ccf1line, spar=0.1), col="blue")

ccf1.print <- data.frame(ccf1$lag,ccf1$acf) # Reorganize data in columns

ccf1.print

Printing Cross Corr

setwd("C:/Users/Weiss/Desktop/Dynamic result/cross corr")

write.xlsx(ccf1.print,"CrossCorr_3_20ft_3mph_NoFilter_M2.xlsx")

161

 Data Logging Code (VB.NET)

Form1.vb

Public Class Form1
 Private WithEvents CommPort As New RS232
 Private WithEvents CommPort2 As New RS232
 Private Sample As Integer = 1
 Private TriggerThread As System.Threading.Thread
 Private ElapsedTime As New Stopwatch
 Private LogFileName As String

 Dim myPort As Array
 Dim DataCollect As Array
 'Private WithEvents Printer As New Printcsv
 Public Event ListBuild()
 Public inputs As String
 Public PrintList As New List(Of String)
 Public PrintList2 As New List(Of String)
 Public WriteTrigger = 1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
'Form1_Load is the main program!!
 CheckForIllegalCrossThreadCalls = False
 BaudRate.Items.Add(38400)
 For Each PORT In CommPort.GetComPortNames
 ModelPortName.Items.Add(PORT)
 ResponseOnePort.Items.Add(PORT)
 Next
 ModelPortName.Text = ModelPortName.Items.Item(0) 'Sets Port List to first
option so text appears on startup
 ResponseOnePort.Text = ResponseOnePort.Items.Item(0) 'Sets Port List to
first option so text appears on startup
 BaudRate.Text = BaudRate.Items.Item(0)
 CloseButton.Enabled = False 'Disables Close Button since there is no Open
 'Dim newTread As New System.Threading.Thread(AddressOf MessageReceived)
 'Dim thread As New Thread(AddressOf MyBackgroundPrinter) 'Starting
background printer thread
 'Thread.Start()

 End Sub

 'Start CONNECT BUTTON'
 Private Sub OpenButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles OpenButton.Click
 CommPort.OpenPort(ModelPortName.Text, 38400, 8, "N", 1) 'Opens the Port
 CommPort2.OpenPort(ResponseOnePort.Text, 38400, 8, "N", 1) 'Opens other
port
 OpenButton.Enabled = False
 CloseButton.Enabled = True
 End Sub

 Public Sub MessageReceived() Handles CommPort.NewMessage

162

 DataPrint.Text = CommPort.GetMessage 'Grabs Message and Time
 Dim Message As String = CommPort.GetMessage

 'DataPrint.Text = Message
 Dim Items As String() = Split(Message, " ")
 SensorAddress.Text = "86000"
 'SensorAddress.Text = Message
 WindSpeed.Text = Items(1)
 WindDirection.Text = Items(2)
 StatusCodeCheckSum.Text = Items(3)
 'OLD METHOD: Write time into text box
 'Time1.Text = CommPort.Time
 Time1.Text = Items(4) ' Grabs timestamp from GPS

 'Writes Data When Log Button is Pressed
 If (LogData.Text = "Stop Logging") Then
 ' Grab text box data and create string:
 'Dim inputs As String = "86000" & "," & WindSpeed.Text & "," &
WindDirection.Text & "," & "," & "," & "," & StatusCodeCheckSum.Text & "," &
Time1.Text
 inputs = "86000" & "," & Items(1) & "," & Items(2) & "," & "," & "," &
"," & Items(3) & "," & Items(4)
 ' Call file writer with string to write as input
 'BackgroundWorker1.RunWorkerAsync(inputs)

 'Dim Printcheck = Printer.List4write(inputs)

 List4write(inputs)
 'File.AppendAllText(Path.Text, "86000" & "," & WindSpeed.Text & "," &
WindDirection.Text & "," & "," & "," & "," & StatusCodeCheckSum.Text & "," &
Time1.Text & vbCrLf)
 Else
 LogData.Text = "Log Data"
 LogData.Enabled = True
 Filename.Enabled = True

 End If

 End Sub

 Public Sub MessageReceived2() Handles CommPort2.NewMessage
 DataPrint2.Text = CommPort2.GetMessage 'Grabs Message and Time
 Dim MessageOne As String = CommPort2.GetMessage
 Dim ItemsOne As String() = Split(MessageOne, " ")
 SensorAddress2.Text = "92000"
 WindSpeed2.Text = ItemsOne(1)
 WindDirection2.Text = ItemsOne(2)
 Temperature.Text = ItemsOne(3)
 RelativeHumidity.Text = ItemsOne(4)
 BarometricPressure.Text = ItemsOne(5)
 StatusCodeCheckSum2.Text = ItemsOne(6)
 'Write time into text box from RS232 class old method of calling computer
timestamping
 'Time2.Text = CommPort2.Time
 Time2.Text = ItemsOne(7) ' Grabs timestamp from GPS

 'Writes Data When Log Button is Pressed

163

 If (LogData.Text = "Stop Logging") Then
 ' Grab text box data and create string:
 'Dim inputs As String = "92000" & "," & WindSpeed2.Text & "," &
WindDirection2.Text & "," & Temperature.Text & "," & RelativeHumidity.Text & "," &
BarometricPressure.Text & "," & StatusCodeCheckSum2.Text & "," & Time2.Text
 inputs = "92000" & "," & ItemsOne(1) & "," & ItemsOne(2) & "," &
ItemsOne(3) & "," & ItemsOne(4) & "," & ItemsOne(5) & "," & ItemsOne(6) & "," &
ItemsOne(7)

 List4write(inputs)
 'BackgroundWorker2.RunWorkerAsync(inputs) 'Raises DoWork Event

 'File.AppendAllText(Path.Text, "92000" & "," & WindSpeed2.Text & "," &
WindDirection2.Text & "," & Temperature.Text & "," & RelativeHumidity.Text & "," &
BarometricPressure.Text & "," & StatusCodeCheckSum2.Text & "," & Time2.Text &
vbCrLf)
 Else
 LogData.Text = "Log Data"
 LogData.Enabled = True
 Filename.Enabled = True
 End If
 End Sub

 'Private Sub Bittester() Handles CommPort2.Bitgot
 'Dim file2 As System.IO.StreamWriter
 'File2.WriteAllText(C:\Users\amwe235\Documents\test.txt)
 'file2.AppendAllText(SerialPort1.ReadExisting + Time1)
 'file2 =
My.Computer.FileSystem.OpenTextFileWriter("C:\Users\amwe235\Documents\test.txt",
True)
 'file2.WriteLine(SerialPort1.ReadExisting + CommPort2.Time1)
 'End Sub

 'Start Disconnect Button'
 Private Sub CloseButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles CloseButton.Click
 SerialPort1.Close()
 SerialPort2.Close()
 OpenButton.Enabled = True
 CloseButton.Enabled = False
 End Sub

 'Send Button Start'
 Private Sub SendButton_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles SendButton.Click
 SerialPort1.Write(SendInput.Text)
 End Sub

 Private Sub LogData_Click(sender As Object, e As EventArgs) Handles
LogData.Click

 If LogData.Text = "Log Data" Then
 LogData.Text = "Stop Logging"
 Filename.Enabled = False
 Timer1.Enabled = True

 Else
 LogData.Text = "Log Data"

164

 Filename.Enabled = True
 Timer1.Enabled = False
 End If

 End Sub

 Public Sub Browse_Click(sender As Object, e As EventArgs) Handles Browse.Click

 Dim result As DialogResult = FolderBrowserDialog1.ShowDialog()
 'FolderBrowserDialog1.ShowDialog()
 If (result = DialogResult.OK) Then
 Dim FolderChoice As String = FolderBrowserDialog1.SelectedPath
 Dim Destination As String = String.Concat(FolderChoice, "\")
 Dim Filepath = String.Concat(Destination, Filename.Text)
 Dim FullFilepath = String.Concat(Filepath, ".csv")
 Path.Text = FullFilepath
 File.WriteAllText(FullFilepath, "Sensor Address,Wind Speed (m/s),Wind
Direction (deg),Temperature (deg C),Relative Humidity (%),Barometric Pressure
(hPa),StatusCode*CheckSum,Time" & vbCrLf) ' Create File and Write Titles

 ElseIf (result = DialogResult.Cancel) Then
 Return
 End If
 End Sub

 Public Function List4write(inputs) 'As Task(Of Integer)
 Dim done As Integer
 If WriteTrigger = 1 And PrintList.Count < 20 Then
 PrintList.Add(inputs)
 'Return PrintList
 ElseIf WriteTrigger = 2 And PrintList2.Count < 20 Then
 PrintList2.Add(inputs)
 'Return PrintList2
 ElseIf WriteTrigger = 1 And PrintList.Count >= 20 Then
 If BackgroundPrinter.IsBusy = False Then
 PrintList.Add(inputs)
 BackgroundPrinter.RunWorkerAsync()
 done = 1

 Else
 End If

 ElseIf WriteTrigger = 2 And PrintList2.Count >= 20 Then
 If BackgroundPrinter.IsBusy = False Then
 PrintList2.Add(inputs)
 BackgroundPrinter.RunWorkerAsync()
 done = 1
 Else
 End If
 End If

 Return done
 'Dim dummy = 1

 End Function

165

 Private Sub BackgroundPrinter_DoWork(sender As Object, e As DoWorkEventArgs)
Handles BackgroundPrinter.DoWork
 'While PrintList.Count <> 0
 If WriteTrigger = 1 Then
 WriteTrigger = 2
 File.AppendAllLines(Path.Text, PrintList)

 PrintList.Clear()
 ElseIf WriteTrigger = 2 Then 'And PrintList2.Count > 10
 WriteTrigger = 1
 File.AppendAllLines(Path.Text, PrintList2)

 PrintList2.Clear()
 End If
 'End While
 'Return 1
 End Sub

 Private Sub BackgroundPrinter_RunWorkerCompleted(sender As Object, e As
RunWorkerCompletedEventArgs) Handles BackgroundPrinter.RunWorkerCompleted
 'Timer1.Enabled = True
 End Sub
End Class

RS232.vb
'**
'* TITLE: RS232.vb (c)2010 *
'* AUTHOR: Michael P. Sama / Austin Weiss *
'* COMPANY: Biosystems & Agricultural Engineering, Univeristy of Kentucky *
'* DATES: 3/24/09 - Current *
'* DESCRIPTION: This class provides a method for accessing a RS232 COM Port *
'* using the SerialPort class. Input characters are buffered *
'* and searched for valid strings starting with "$" and ending *
'* with "\r". When a valid string is found, it is removed from *
'* the buffer and stored as a separate string. A public event is *
'* raised to let the parent class know a new message is available. *
'* Latest Version: 2/15/2018 Modified for timestamping data stream as property *
' accessable from outside the class *
'**

Public Class RS232

 Public Event NewMessage()
 Private Buffer As String = ""
 Private Message As String
 Private WithEvents SerialPort1 As New System.IO.Ports.SerialPort
 Private LastOutgoingMessage As String = ""
 Public PauseSerialInput As Boolean = False
 'Public Property Time As String
 Public Property Time As String ' Define Time as a property to call
 Public TimeTrigger As Boolean = False ' Trigger for timing

166

 Public Sub Write(ByVal BytesToWrite() As Byte, ByVal StartIndex As Integer,
ByVal Length As Integer)
 SerialPort1.Write(BytesToWrite, StartIndex, Length)
 End Sub

 Public Sub SendMessage(ByVal OutgoingMessage As String)
 LastOutgoingMessage = OutgoingMessage
 Try
 SerialPort1.Write(OutgoingMessage)
 Catch ex As Exception
 Dim Dummy As Boolean = False
 End Try

 End Sub
 Public Sub ResendMessage()
 Try
 SerialPort1.Write(LastOutgoingMessage)
 Catch ex As Exception
 'error
 End Try

 End Sub

 Public Function GetMessage()
 Return Message
 'Return Time unnecessary because it's a property of the class
 End Function

 Public Function ClosePort()
 If SerialPort1.IsOpen Then
 Try
 SerialPort1.Close()
 Return 1
 Catch ex As Exception
 Return 0
 End Try
 Else
 Return 1
 End If
 End Function

 Public Function OpenPort(ByVal PortName As String, ByVal BaudRate As Integer,
ByVal DataBits As Integer, ByVal Parity As Char, ByVal StopBits As Single)
 If SerialPort1.IsOpen Then
 Return 0
 Else
 Try
 SerialPort1.PortName = PortName
 SerialPort1.BaudRate = BaudRate
 SerialPort1.DataBits = DataBits
 Select Case Parity
 Case "N", "n", "0"
 SerialPort1.Parity = IO.Ports.Parity.None
 Case "E", "e", "2"
 SerialPort1.Parity = IO.Ports.Parity.Even
 Case "M", "m", "3"
 SerialPort1.Parity = IO.Ports.Parity.Mark
 Case "O", "o", "1"

167

 SerialPort1.Parity = IO.Ports.Parity.Odd
 Case " ", "_", "4"
 SerialPort1.Parity = IO.Ports.Parity.Space
 Case Else
 Return 0
 End Select
 Select Case StopBits
 Case 0
 SerialPort1.StopBits = IO.Ports.StopBits.None
 Case 1
 SerialPort1.StopBits = IO.Ports.StopBits.One
 Case 1.5
 SerialPort1.StopBits = IO.Ports.StopBits.OnePointFive
 Case 2
 SerialPort1.StopBits = IO.Ports.StopBits.Two
 Case Else
 Return 0
 End Select

 SerialPort1.ReceivedBytesThreshold = 1
 SerialPort1.Open()
 SerialPort1.DiscardInBuffer()

 AddHandler SerialPort1.DataReceived, AddressOf
Me.SerialBytesRecieved

 Catch ex As Exception
 Return 0
 End Try
 Return 1
 End If

 End Function

 Public Function IsOpen() As Boolean
 Return SerialPort1.IsOpen()
 End Function

 Private Sub SerialBytesRecieved(ByVal Sender As Object, ByVal e As
System.IO.Ports.SerialDataReceivedEventArgs)
 'If timestamp is here, it will timestamp everytime bits are recieved
 'Assign the current time to the property "Time"
hours:minutes:seconds:thousandth of second
 'Time trigger check and timing
 If TimeTrigger = True Then
 'Time = DateTime.Now.ToString(“HH:mm:ss.fff”)
 'TimeTrigger = False
 Else

 End If

 If Not PauseSerialInput Then
 Try
 'ADD TO BUFFER
 AddToBuffer(SerialPort1.ReadExisting)

 Catch ex As Exception

168

 Dim dummy As Boolean = False
 End Try
 Else
 SerialPort1.DiscardInBuffer()
 Buffer = ""
 End If
 End Sub

 Private Sub AddToBuffer(ByVal characters As String)
 Buffer += characters
 StringSearch()

 End Sub

 Private Sub StringSearch()

 RemoveHandler SerialPort1.DataReceived, AddressOf Me.SerialBytesRecieved

 Dim First As Integer = -1
 Dim Last As Integer = -1

 Try
 'Defining demlimiter of data sentence separation
 First = Buffer.IndexOf(vbCrLf) ' CHANGED vbCr to
vbCrLf for new GNSS included string

 Last = Buffer.LastIndexOf(vbCrLf)

 Catch ex As Exception
 Dim dummy As Boolean = False
 End Try

 Try
 If (First <> -1 And Last <> -1) And (Last > First) Then
 Message = Buffer.Substring(First, (Last - First))
 Buffer = Buffer.Remove(0, Last - 1)
 If PauseSerialInput Then

 Else

 ' A Full message is found, get ready to time the next one!
 'TimeTrigger = True
 RaiseEvent NewMessage()

 End If

 End If
 Catch ex As Exception
 Dim dummy As Boolean = False
 End Try

 AddHandler SerialPort1.DataReceived, AddressOf Me.SerialBytesRecieved

 End Sub

169

 Public Function GetComPortNames()
 Dim PortNames As New List(Of String)
 For i As Integer = 0 To (My.Computer.Ports.SerialPortNames.Count - 1)
 PortNames.Add(My.Computer.Ports.SerialPortNames(i))
 Next
 BubbleSort(Of String)(PortNames)
 Return PortNames
 End Function

 Private Sub BubbleSort(Of ItemType)(ByRef SortByName As List(Of ItemType))
 Dim x As Integer, y As Integer
 For j As Integer = 0 To (SortByName.Count)
 For k As Integer = (SortByName.Count - 1) To 1 Step -1
 x = Mid(SortByName(k).ToString, 4, SortByName(k).ToString.Length -
3)
 y = Mid(SortByName(k - 1).ToString, 4, SortByName(k -
1).ToString.Length - 3)
 If x < y Then
 Swap(Of ItemType)(SortByName(k), SortByName(k - 1))
 End If
 Next
 Next
 End Sub

 Private Sub Swap(Of ItemType)(ByRef v1 As ItemType, ByRef v2 As ItemType)
 Dim temp As ItemType
 temp = v1
 v1 = v2
 v2 = temp
 End Sub

End Class

170

 Microcontroller Design and Code:

PCB Design Schematics:

Figure A.6.1 Bottom copper layer of microcontroller

171

Figure A.4.2 Bottom solder mask

Figure A.6.3 Top copper layer

172

Figure A.6.4 Top paste mask

173

Figure A.6.5 Top silkscreen

Figure A.6.6 Top solder mask

174

Figure A.6.7 PCB color drawing

175

Table A.6 PCB Bill of Materials:

Compon-
ents

Description Manufactu-
rer Part
Number

Manufac-
turer

Supplier
Part
Number

Suppli-
er

Unit
Cost

Unit
Quan
-tity

Unit
Exten
-ded

UC1 Digital Signal
Processor

DSPIC30F4
013-30I/PT

Microchip
Technology

DSPIC30F4
01330IPT-
ND

Digi-
Key
Corpor
ation

$5.7
3

1 $5.73

COM1 Male D-SUB
9 Connector

5747840-3 TE
Connectivity

A32091-
ND

Digi-
Key
Corpor
ation

$2.5
5

1 $2.55

COM2 Female D-
SUB 9
Connector

1734354-1 TE
Connectivity

A35107-
ND

Digi-
Key
Corpor
ation

$1.5
7

1 $1.57

GPS1 Right Angle
JST
connector

SM06B-
SRSS-
TB(LF)(SN)

JST Sales
America Inc.

455-1806-
1-ND

Digi-
Key
Corpor
ation

$0.8
3

1 $0.83

ICSP1 6P6C RJ-11
Jack

5520470-3 TE
Connectivity

A31417-
ND

Digi-
Key
Corpor
ation

$2.3
5

1 $2.35

CR1 15 Mhz
Crystal
Oscillator

ECS-150-S-
4X

ECS Inc. X1070-ND Digi-
Key
Corpor
ation

$0.6
9

1 $0.69

VR1 5.0V Linear
Voltage
Regulator

LM1084IS-
5.0/NOPB

Texas
Instruments

LM1084IS-
5.0/NOPB-
ND

Digi-
Key
Corpor
ation

$2.8
5

1 $2.85

IC1 RS-232 Level
Shifter

MAX232D
R

Texas
Instruments

296-14619-
1-ND

Digi-
Key
Corpor
ation

$1.3
7

1 $1.37

CAN1 CAN
Transceiver

MCP2551T-
I/SN

Microchip
Technology

MCP2551-
I/SN-ND

Digi-
Key
Corpor
ation

$1.0
8

1 $1.08

D1 2A 40V
Shottky
Diode

CD1206-
B240

Bournes Inc. CD1206-
B240CT-
ND

Digi-
Key
Corpor
ation

$0.5
1

1 $0.51

J3 2 Position
Jumper

382811-8 TE
Connectivity

A26228-
ND

Digi-
Key
Corpor
ation

$0.1
3

1 $0.13

T1,T3 2 Position
Terminal
Block

284392-2 TE
Connectivity

A98166-
ND

Digi-
Key
Corpor
ation

$1.1
2

2 $2.24

POWER1 3 Position
Terminal
Block

284392-3 TE
Connectivity

A98167-
ND

Digi-
Key
Corpor
ation

$1.6
8

1 $1.68

C3 10 uF
Capacitor
(Tantalum
2313)

F931V106M
CC

Nichicon 478-8332-
1-ND

Digi-
Key
Corpor
ation

$1.0
1

1 $1.01

176

C4 10 uF
Capacitor
(Tantalum
1210)

F931A106M
BA

Nichicon 478-8194-
1-ND

Digi-
Key
Corpor
ation

$0.5
0

1 $0.50

LED5 Red LED
(1206 2V)

LTST-
C150KRKT

Lite-On Inc 160-1405-
1-ND

Digi-
Key
Corpor
ation

$0.3
9

1 $0.39

LED1,
LED2,
LED3,
LED 4

Blue LED
(1206 3.3V)

LTST-
C150TBKT

Lite-On Inc 160-1643-
1-ND

Digi-
Key
Corpor
ation

$0.3
9

4 $1.56

R1, R3, R8-
R11, R14-
R17

10 K Resistor
(Thick Film
0603

CRCW0603
10K0FKEA

Vishay Dale 541-
10.0KHCT-
ND

Digi-
Key
Corpor
ation

$0.1
0

10 $1.00

R6, R12,
R13, R18,
R19

470 Resistor
(Thick Film
0603)

CRCW0603
470RJNEA
HP

Vishay Dale 541-
470SACT-
ND

Digi-
Key
Corpor
ation

$0.1
7

5 $0.85

R7 120 Resistor
(Thick Film
0603)

CRCW0603
120RFKEA

Vishay Dale 541-
120HCT-
ND

Digi-
Key
Corpor
ation

$0.1
0

1 $0.10

R4, R5 4.7 K
Resistor
(Thick Film
0603)

CRCW0603
4K70FKEA

Vishay Dale 541-
4.70KHCT-
ND

Digi-
Key
Corpor
ation

$0.0
8

2 $0.16

R2 1 K Resistor
(Thick Film
0603)

CRCW0603
1K00FKEC

Vishay Dale 541-2986-
1-ND

Digi-
Key
Corpor
ation

$0.1
0

2 $0.20

C5-C9,
C17-C20

1 uF
Capacitor
(Ceramic
0603)

C0603C105
Z3VAC786
7

KEMET 399-14943-
6-ND

Digi-
Key
Corpor
ation

$0.2
6

9 $2.34

C1, C2,
C10-C16

0.1 uF
Capacitor
(Ceramic
0603)

GRM188R7
2A104KA35
D

Murata
Electronics
North
America

490-3285-
1-ND

Digi-
Key
Corpor
ation

$0.2
3

9 $2.07

SW1 SPST NO
Tactile
Switch

EVQ-
PJJ04T

Lite-On Inc P12240SCT
-ND

Digi-
Key
Corpor
ation

$0.4
5

1 $0.45

Q1 - Q8 PNP
Transistor

MMBT3906
LT3G

ON
Semiconducto
r

MMBT390
6LT3GOSC
T-ND

Digi-
Key
Corpor
ation

$0.1
7

4 $0.68

H1 26 Pin
Header

PRPC013D
AAN-RC

Sullins
Connector
Solutions

S2011EC-
13-ND

Digi-
Key
Corpor
ation

$0.6
9

1 $0.69

Q9 - Q11 MOSFET N-
CH 30V 6A
SOT23

SI2338DS-
T1-GE3

Vishay
Siliconix

SI2338DS-
T1-GE3CT-
ND

Digi-
Key
Corpor
ation

$0.5
2

3 $1.56

GPS Garmin GPS
18 LVC

 010-00321-
31

GARMIN 010-00321-
31

Garmin $84.
99

1 $84.9
9

177

UTC_Timestamp Code:

//

// Title: UTC_Timestamp //

// Author: Michael P. Sama //

// Date: 3/27/18 //

// Description: This program configures the dsPIC30F4013 to measure the local times
when //

// a Pulse Per Second (PPS) signal is received on IC2 and the leading edge of //

// a serial data stream into UART1 on IC1. A GPGGA string from a GPS receiver //

// is also recieved by UART2 for determing the local time in UTC. Serial data //

// recieved on UART1 is appended with a UTC timestamp (HH:MM:SS:mms) upon
 //

// reception of a carriage return (0x0D). //

// Notes: UART1 and and UART2 are configured to 38,400-8-N-1. Data rates on UART2
in //

// excess of 1 Hz or streams that include messages other than GPGAA may result in
 //

// ISR overflows. //

//

//***Definitions***

#define SYSCLK 15000000UL //Define the system clock speed as 15 MHz

#define FCY 3750000UL //Define the instruction clock speed as 3.75 MHz

//***Pin Aliases***

#define IC1_OV IC1CONbits.ICOV //Flag indicates IC1 buffer was not read
before next event

#define IC2_OV IC2CONbits.ICOV //Flag indicates IC2 buffer was not read
before next event

#define UART1_OV U1STAbits.OERR //Flag indicates UART1 RX buffer overflow

#define UART2_OV U2STAbits.OERR //Flag indicates UART2 RX buffer overflow

178

#define LED PORTFbits.RF6 //Status LED

//***External References***

#include <p30fxxxx.h> //Base library for the dsPIC30F

#include <libpic30.h> //General c30 Functions (delays, etc.)

#include <uart.h> //Universal Asynchronous Receiver/Transmiter

#include <string.h> //String Manipulation

#include <stdio.h> //Standard Input/Output

#include <InCap.h> //Input Capture

#include "RS232.h" //Custom RS-232 Message Processing Library

//***Microcontroller Configuration***

_FOSC(HS) //Set the oscillator to external high speed crystal

_FWDT(WDT_OFF) //Turn off the watch dog timer

//***Global Variables***

char TXdata1[128]; //Data transmit string PPS event (disabled by default)

char TXdata2[128]; //Data transmit string UTC timestamp

char RXdata[128]; //Data receive string for UART2

unsigned int PPS = 0; //Stores the Timer2 value at a PPS event

unsigned int SER = 0; //Stores the Timer2 value at a serial data recieved event

unsigned int UTC_H = 0; //UTC Hours unsigned int UTC_M = 0; //UTC
Minutes unsigned int UTC_S = 0; //UTC Seconds unsigned int UTC_MS = 0; //UTC
Milliseconds

unsigned int PPS_Flag = 0; //Indicates a new PPS event has occured

unsigned int SER_Flag = 0; //Indicates a new serial data has been recieved unsigned int
IC1_Flag = 0; //Indicates the first seral data character leading edge unsigned int PPS_IL
= 0; //Interlock for PPS signal

179

unsigned int GPS_IL = 0; //Interlock for GPS data

unsigned int SER_IL = 0; //Interlock for serial data

//***Function Prototypes***

void attribute ((interrupt)) _U1RXInterrupt(void); //UART1 receive interrupt handler
void attribute ((interrupt)) _U2RXInterrupt(void); //UART2 receive interrupt handler
void attribute ((interrupt)) _IC1Interrupt(void); //IC1 interrupt handler

void attribute ((interrupt)) _IC2Interrupt(void); //IC2 interrupt handler

//***UART1 Receive Interrupt Handler***

void attribute ((interrupt, no_auto_psv)) _U1RXInterrupt(void)

{

unsigned char Character = ReadUART1(); //Read character from UART1 RX buffer

if (Character == 0x0D) //Carriage Return

{

SER_Flag = 1; //Rase the serial data flag since the string has completed

IC1CONbits.ICM = 2; //Turn on IC1 Module after receiving carrage return

}

else if (Character == 0x0A) //New Line

{

//do nothing

}

else //Any other serial data character

{

putcUART1(Character); //Echo the character out UART1 TX

}

IFS0bits.U1RXIF = 0; //Clear UART1 RX interrupt flag

}

180

//***UART2 Receive Interrupt Handler***

void attribute ((interrupt, no_auto_psv)) _U2RXInterrupt(void)

{

IFS1bits.U2RXIF = 0; //Clear UART2 RX interrupt flag

char Character = ReadUART2(); //Read character from UART2 RX buffer

//putcUART1(Character); //Enable for debugging, passes GPS data through UART1
CharacterBuffer(Character); //Process character to compile data string

}

//***IC1 Receive Interrupt Handler***

void attribute ((interrupt, no_auto_psv)) _IC1Interrupt(void)

{

IFS0bits.IC1IF = 0; //Clear IC1 interrupt flag

IC1CONbits.ICM = 0; //Turn off IC1 module until re-armed by serial character SER =
IC1BUF; //Store Timer2 value of the first serial character SER_IL += 1;
 //Increment serial data interlock value

IC1_Flag = 1; //Raise IC1 flag in the main function

}

//IC2 Receive Interrupt Handler

void attribute ((interrupt, no_auto_psv)) _IC2Interrupt(void)

{

IFS0bits.IC2IF = 0; //Clear IC2 interrupt flag UTC_S += 1; //Increment elapsed UTC
second

PPS = IC2BUF; //Store Timer2 value of the PPS signal PPS_IL = 1; //Raise PPS
interlock value

//PPS_Flag = 1; //Enable for debugging, causes PPS Timer2 value to transmitted

}

//***Main Function***

int main (void)

181

{

//***I/O Type and Direction***

ADPCFG = 0b000000000111000; //Sets ANx pins to analog (0) or digital (1) TRISF =
0b10011111; //RF5 and RF6 set to output (LED, UART1)

//***Open UART1 38400-8-N-1*** (uses Microchip C30 library) OpenUART1 (
UART_EN &

UART_IDLE_CON & UART_DIS_WAKE & UART_DIS_LOOPBACK &
UART_DIS_ABAUD & UART_NO_PAR_8BIT & UART_1STOPBIT,
UART_INT_TX_BUF_EMPTY & UART_TX_PIN_NORMAL &
UART_TX_ENABLE & UART_INT_RX_CHAR & UART_ADR_DETECT_DIS &
UART_RX_OVERRUN_CLEAR, 5);

U1MODEbits.ALTIO = 1; //Set UART1 to the default pins

///***Open UART2 38400-8-N-1*** (uses Microchip C30 library) OpenUART2 (
UART_EN &

UART_IDLE_CON & UART_DIS_WAKE & UART_DIS_LOOPBACK &
UART_DIS_ABAUD &

UART_NO_PAR_8BIT & UART_1STOPBIT, UART_INT_TX_BUF_EMPTY &
UART_TX_PIN_NORMAL & UART_TX_ENABLE & UART_INT_RX_CHAR &
UART_ADR_DETECT_DIS & UART_RX_OVERRUN_CLEAR, 5);

//***Configure Timer 2***

T2CONbits.TSIDL = 0; //Timer2 operation in Idle mode T2CONbits.TGATE = 0;
 //Timer2 gated time accumulation disabled T2CONbits.TCKPS = 2;
 //Timer2 input clock prescale bits set to 1:64 T2CONbits.T32 = 0; //Timer2 and
Timer3 form seperate 16-bit timers T2CONbits.TCS = 0; //Timer 2 uses internal clock
source (FOSC/4) T2CONbits.TON = 1; //Start Timer2

//***Configure IC 1***

IC1CONbits.ICM = 0; //Turn off IC1 Module while configuring

IC1CONbits.ICSIDL = 0; //Input capture module will continute to operate in CPU Idle
Mode IC1CONbits.ICTMR = 1; //TMR 2 contents are captured on capture event

182

IC1CONbits.ICI = 0; //interrupt on every capture event IC1CONbits.ICM = 2;
 //capture every falling edge

//***Configure IC 2***

IC2CONbits.ICM = 0; //Turn off IC1 Module while configuring

IC2CONbits.ICSIDL = 0; //Input capture module will continute to operate in CPU Idle
Mode IC2CONbits.ICTMR = 1; //TMR 2 contents are captured on capture event

IC2CONbits.ICI = 0; //interrupt on every capture event IC2CONbits.ICM = 2;
 //capture every falling edge

//***I/O Initialization and Startup Output String*** putsUART1((unsigned int
*)"\r\n***Ultrasonic Anemomter V 1.1***\r\n"); LED = 1;

//***Interrupt Priorities*** IPC2bits.U1RXIP = 7; //Highest priority IPC6bits.U2RXIP
= 4; //Lowest priority IPC0bits.IC1IP = 6;

IPC1bits.IC2IP = 5;

//Enable Interrupts

IEC0bits.U1RXIE = 1; //Enable UART 1 RX interrupt IEC1bits.U2RXIE = 1;
 //Enable UART 2 RX interrupt IEC0bits.IC1IE = 1; //Enable IC1 interrupt
IEC0bits.IC2IE = 1; //Enable IC2 interrupt

//***Main loop to handle data processing

while(1) //Loop indefinitely

{

if (IC1_OV) //IC1 buffer was not read before next IC1 event

{

IC1CONbits.ICM = 0; //Reset module IC1CONbits.ICM = 2; //Capture every falling
edge

putsUART1((unsigned int *)"IC1 OVERRUN\r\n"); //Report overrun

}

if (IC2_OV) //IC2 buffer was not read before next IC2 event

{

183

IC2CONbits.ICM = 0; //Reset module IC2CONbits.ICM = 2; //Capture every rising edge

putsUART1((unsigned int *)"IC2 OVERRUN\r\n"); //Report overrun

}

if (UART1_OV) //UART1 RX buffer overrun

{

UART1_OV = 0; //Clear overrun flag

putsUART1((unsigned int *)"UART1 RX OVERRUN\r\n"); //Report overrun

}

if (UART2_OV) //UART2 RX buffer overrun

{

UART2_OV = 0; //Clear overrun flag

putsUART1((unsigned int *)"UART2 RX OVERRUN\r\n"); //Report overrun

}

if (PPS_Flag) //PPS flag raised by IC2 interrupt

{

PPS_Flag = 0; //Clear PPS flag sprintf(TXdata1,"$PPS,%u\r\n",PPS); //Compile
output string putsUART1((unsigned int *) TXdata1); //Transmit PPS Timer2 value

}

if (SER_Flag) //Serial data flag raised by UART1 RX interrupt

{

SER_Flag = 0; //Clear serial data flag

if (UTC_S > 59) //UTC seconds overflow

{

UTC_S = 0; //Set UTC seconds to zero UTC_M += 1; //Increment UTC minutes

if (UTC_M > 59) //UTC minutes overflow

{

UTC_M = 0; //Set UTC minutes to zero UTC_H += 1; //Increment UTC hours

if (UTC_H > 23) //UTC hours overflow

{

UTC_H = 0; //Set UTC hours to zero

184

}

}

}

sprintf(TXdata2," %02u:%02u:%02u:%03u\r\n",UTC_H,UTC_M,UTC_S,UTC_MS);
//Compile timestamp putsUART1((unsigned int *) TXdata2); //Transmit timestamp

}

if (IC1_Flag && PPS_IL && GPS_IL) //Serial character flag raised by IC1 and
interlocks passed

{

IC1_Flag = 0; //Clear serial character flag

if (SER >= PPS) //Timer2 values are in order

{

//Compute the exapsed milliseconds since most recent PPS

UTC_MS = (unsigned int) ((unsigned long) (SER - PPS) * 1000 / 58594);

}

else //Timer2 values wrap around 65535

{

//Unwrap and compute the exapsed milliseconds since most recent PPS UTC_MS =
(unsigned int) ((unsigned long) (65535-PPS+SER) * 1000 / 58594);

}

if ((SER_IL > 6)) //No new GPS data have been received since the last six serial
messages

{

UTC_H = 0; //Clear UTC hours UTC_M = 0; //Clear UTC minutes UTC_S = 0; //Clear
UTC seconds

UTC_MS = 0; //Clear UTC milliseconds

SER_IL = 7; //Limit the interlock from incrementing indefinitely

}

}

if (NewMessage()) //A new NEMA 0183 message has been detected

{

185

strcpy(RXdata,GetMessage()); //Retrieve the data from the message buffer

if ((RXdata[0] == '$') && //"$GPGGA" has been received (RXdata[1] == 'G') &&

(RXdata[2] == 'P') &&

(RXdata[3] == 'G') &&

(RXdata[4] == 'G') &&

(RXdata[5] == 'A'))

seconds

{

UTC_H = 10*(RXdata[7] - 48) + (RXdata[8] - 48); //Decode and store the UTC hours
UTC_M = 10*(RXdata[9] - 48) + (RXdata[10] - 48); //Decode and store the UTC
minutes UTC_S = 10*(RXdata[11] - 48) + (RXdata[12] - 48); //Decode and store the
UTC

GPS_IL = 1; //Set the GPS data interlock

}

SER_IL = 0; //Reset the serial interlock counter to zero

}

}

return 0; //Program does not reach this line due to infinite while loop

}

186

REFERENCES:

Azaroff, L. S., & Neas, L. M. (1999). Acute Health Effects Associated with Nonoccupational
Pesticide Exposure in Rural El Salvador. Environmental Research, 80(2), 158-164.
doi:https://doi.org/10.1006/enrs.1998.3878

B. Smith, D., E. Bode, L., & D. Gerard, P. (2000). PREDICTING GROUND BOOM SPRAY DRIFT.
Transactions of the ASAE, 43(3), 547. doi:https://doi.org/10.13031/2013.2734

Baetens, K., Ho, Q. T., Nuyttens, D., De Schampheleire, M., Melese Endalew, A., Hertog, M. L. A.
T. M., . . . Verboven, P. (2009). A validated 2-D diffusion–advection model for prediction
of drift from ground boom sprayers. Atmospheric Environment, 43(9), 1674-1682.
doi:https://doi.org/10.1016/j.atmosenv.2008.12.047

Butler Ellis, M. C., Alanis, R., Lane, A. G., Tuck, C. R., Nuyttens, D., & van de Zande, J. C. (2017).
Wind tunnel measurements and model predictions for estimating spray drift reduction
under field conditions. Biosystems Engineering, 154(Supplement C), 25-34.
doi:https://doi.org/10.1016/j.biosystemseng.2016.08.013

Calculate distance, bearing and more between Latitude/Longitude points. Retrieved from
https://www.movable-type.co.uk/scripts/latlong.html

Contini, D., Donateo, A., & Belosi, F. (2006). Accuracy of Measurements of Turbulent
Phenomena in the Surface Layer with an Ultrasonic Anemometer. Journal of
Atmospheric & Oceanic Technology, 23(6), 785-801.

D. Luck, J., A. Shearer, S., P. Sama, M., & K. Pitla, S. (2015). Control System Development and
Response Analysis of an Electronically Actuated Variable-Orifice Nozzle for Agricultural
Pesticide Applications. Transactions of the ASABE, 58(4), 997.
doi:https://doi.org/10.13031/trans.58.10945

D. Luck, J., K. Pitla, S., P. Sama, M., & A. Shearer, S. (2015). Flow, Spray Pattern, and Droplet
Spectra Characteristics of an Electronically Actuated Variable-Orifice Nozzle.
Transactions of the ASABE, 58(2), 261. doi:https://doi.org/10.13031/trans.58.10798

de Snoo, G. R., & van der Poll, R. J. (1999). Effect of herbicide drift on adjacent boundary
vegetation. Agriculture, Ecosystems & Environment, 73(1), 1-6.
doi:https://doi.org/10.1016/S0167-8809(99)00008-0

Duke, S. O. (2005). Taking stock of herbicide-resistant crops ten years after introduction. Pest
management science, 61(3), 211-218.

Everitt, J. D., & Keeling, J. W. (2009). Cotton Growth and Yield Response to Simulated 2,4-D and
Dicamba Drift. Weed Technology, 23(4), 503-506.

Fujimura, M., & Maeda, J. (2009). Cross-correlation of fluctuating components of wind speed
based on strong wind measurement.

Gaglione, S. (2015). How does a GNSS receiver estimate velocity? InsideGNSS(March/April 2015),
38-41.

Google. (n.d). Google Maps image of 38.026924°, -84.509623°.
Gove, B., Power, S. A., Buckley, G. P., & Ghazoul, J. (2007). Effects of herbicide spray drift and

fertilizer overspread on selected species of woodland ground flora: comparison
between short-term and long-term impact assessments and field surveys. Journal of
Applied Ecology, 44(2), 374-384.

Grover, R., Maybank, J., Caldwell, B. C., & Wolf, T. M. (1997). Airborne off-target losses and
deposition characteristics from a self-propelled, high speed and high clearance ground
sprayer. Canadian Journal of Plant Science, 77(3), 493-500. doi:10.4141/P96-169

https://doi.org/10.1006/enrs.1998.3878
https://doi.org/10.13031/2013.2734
https://doi.org/10.1016/j.atmosenv.2008.12.047
https://doi.org/10.1016/j.biosystemseng.2016.08.013
https://www.movable-type.co.uk/scripts/latlong.html
https://doi.org/10.13031/trans.58.10945
https://doi.org/10.13031/trans.58.10798
https://doi.org/10.1016/S0167-8809(99)00008-0

187

Heinemann, D., Langner, D., Stabe, U., & Waldl, H.-P. (1997). MEASUREMENT AND CORRECTION
OF ULTRASONIC ANEMOMETER ERRORS AND IMPACT ON TURBULENCE
MEASUREMENTS.

Holt, M. S. (2000). Sources of chemical contaminants and routes into the freshwater
environment. Food and Chemical Toxicology, 38, S21-S27.
doi:https://doi.org/10.1016/S0278-6915(99)00136-2

Imai, T., Kusunoki, K., Hono, Y., Takemi, T., Araki, K., Fukuhara, T., . . . Shibata, T. (2009). Spatial
correlation and temporal fluctuations of wind velocities observed on a plain field. Wind
Engineering.

Landwehr, S., O’Sullivan, N., & Ward, B. (2015). Direct Flux Measurements from Mobile
Platforms at Sea: Motion and Airflow Distortion Corrections Revisited. Journal of
Atmospheric and Oceanic Technology, 32(6), 1163-1178. doi:10.1175/jtech-d-14-
00137.1

Lebeau, F., Verstraete, A., Stainier, C., & Destain, M. F. (2011). RTDrift: A real time model for
estimating spray drift from ground applications. Computers and Electronics in
Agriculture, 77(2), 161-174. doi:https://doi.org/10.1016/j.compag.2011.04.009

Mekonnen, Y., & Agonafir, T. (2002). Pesticide sprayers' knowledge, attitude and practice of
pesticide use on agricultural farms of Ethiopia. Occupational Medicine, 52(6), 311-315.
doi:10.1093/occmed/52.6.311

Ooms, D., Ruter, R., Lebeau, F., & Destain, M. F. (2003). Impact of the horizontal movements of a
sprayer boom on the longitudinal spray distribution in field conditions. Crop Protection,
22(6), 813-820. doi:https://doi.org/10.1016/S0261-2194(03)00045-0

Reid, S. J., & Turner, R. (2001). Correlation of Real and Model Wind Speeds in Different Terrains.
Weather and Forecasting, 16(5), 620-627. doi:10.1175/1520-
0434(2001)016<0620:coramw>2.0.co;2

Robusto, C. C. (1957). The Cosine-Haversine Formula. The American Mathematical Monthly,
64(1), 38-40. doi:10.2307/2309088

Sama, M. P., Stombaugh, T. S., & Lumpp, J. E. (2013). A hardware method for time-stamping
asynchronous serial data streams relative to GNSS time. Computers and Electronics in
Agriculture, 97(Supplement C), 56-60.
doi:https://doi.org/10.1016/j.compag.2013.07.003

Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of
nested equations. Survey review, 23(176), 88-93.

Xie, K., & Wang, K. (2011). Measurement of Wind Speed and Direction with Ultrasonic Sensor
Using FPGA. Energy Procedia, 12(Supplement C), 837-843.
doi:https://doi.org/10.1016/j.egypro.2011.10.110

Young, R. M. Instructions: ResponseONE Model 92000 Weather Transmitter. Retrieved from
http://www.youngusa.com/Manuals/92000-90(A).pdf

Young, R. M. Instructions: Ultrasonic Anemometer Model 86000. Retrieved from
http://www.youngusa.com/Manuals/86000-90(E).pdf

https://doi.org/10.1016/S0278-6915(99)00136-2
https://doi.org/10.1016/j.compag.2011.04.009
https://doi.org/10.1016/S0261-2194(03)00045-0
https://doi.org/10.1016/j.compag.2013.07.003
https://doi.org/10.1016/j.egypro.2011.10.110
http://www.youngusa.com/Manuals/92000-90(A).pdf
http://www.youngusa.com/Manuals/86000-90(E).pdf

188

VITA

Austin Weiss

EDUCATION:

• B.S, in Biosystems Engineering, University of Kentucky (Fall 2012- May
2017)

PROFESSIONAL EXPERIENCE:

• Sr. Application Technology Specialist, Syngenta (July 2019 – Present)

• Graduate Research Assistant, University of Kentucky (August 2017 – August
2019)

• Fellow, Office of Technology Commercialization, University of Kentucky
(July 2018 – July 2019)

• Undergraduate Research Assistant, University of Kentucky (January 2017 –
August 2017)

• Intern at Big Ass Solutions, Lexington, KY (August 2016 – January 2017)

PUBLICATIONS:

• Sama, Michael P.; Weiss, Austin M.; and Benedict, Emma K., "Validating
Spray Coverage Rate Using Liquid Mass on a Spray Card" (2018).
Biosystems and Agricultural Engineering Faculty Publications. 219.

CERTIFICATIONS:

• Engineer-In-Training: Passed the Fundamentals of Engineering exam (FE)
 August 2017

PROFESSIONAL SKILLS:

Programming (MATLAB, Visual Basic, Arduino), Computer-aided component
design (Autodesk Inventor), Instrumentation, Data acquisition, Data processing
and statistical analysis, Image analysis

PROFESSIONAL ORGANIZATIONS:

• Member of American Society of Agricultural and Biological Engineers
(ASABE)

	REMOVING VEHICLE SPEED FROM APPARENT WIND VELOCITY
	Recommended Citation

	Title Page
	ABSTRACT
	ACKNOWLEDGMENTS
	Table of Contents
	List of Tables
	List of Figures
	CHAPTER 1. PROJECT MOTIVATION AND LITERATURE REVIEW
	1.1 Introduction:
	1.2 Objectives:
	1.3 Causes and Effects of Spray Drift on Efficacy of Liquid Application
	1.4 The Variable Orifice Nozzle
	1.5 Anemometers for Quantifying Wind Velocity
	1.5.1 Uncertainties Surrounding Ultrasonic Anemometers for Agricultural Applications
	1.5.2 Timestamping Wind Velocity Measurements

	1.6 Statistical Analysis for Similitude of Wind Data
	1.7 Previous Spray Drift Characterization Methods and Modeling

	CHAPTER 2. CORRELATION TESTING BETWEEN TWO STATIONARY ULTRASONIC ANEMOMETERS
	2.1 Methods and Materials:
	2.1.1 Ultrasonic Anemometer Interfacing:
	2.1.2 Hardware Timestamping of Serial Data from Ultrasonic Anemometers
	2.1.3 Test Fixture Design and Assembly
	2.1.4 Preliminary Data Collection and Setup Procedure
	2.1.5 Field Testing
	2.1.6 Processing Procedures
	2.1.7 Assumptions and Validity of Correlation Analysis
	2.1.8 Quantifying Uncertainty in Processed Wind Velocities

	2.2 Results:
	2.2.1 Visualizing Data and Filter Uncertainties
	2.2.2 Correlation Results:
	2.2.3 Distribution of measurement differences between the two anemometers:
	2.2.4 A Note on Filtering Uncertainty Analysis by Probability Distribution
	2.2.5 Conclusions from Static Testing

	CHAPTER 3. CORRELATION TESTING BETWEEN ONE DYNAMIC AND ONE STATIONARY ANEMOMETER
	3.1 Methods and Materials:
	3.1.1 Equipment Setup and Vehicle Mounting
	3.1.2 Methods for Calculation of Weather Station Velocity
	3.1.3 Method 1: Successive Coordinates
	3.1.4 Method 2: Relative Velocity to GNSS
	3.1.5 Calculating Velocity at Weather Station’s Location relative to GNSS Location
	3.1.6 Method 3: Calculating Haversine velocity at GNSS location and using the relative velocity method to transform velocity to the weather station’s location
	3.1.7 Adjustments and Limitations for Methods for A Circular Path
	3.1.8 Comparing Methods of Anemometer Velocity
	3.1.9 Removing Vehicle Velocity from Apparent Wind Data
	3.1.10 Quantifying Similitude Between Anemometer and Dynamic Weather Station

	3.2 Results:
	3.2.1 Vehicle Velocity and Course Comparisons
	3.2.2 Visualizing Filter Uncertainty
	3.2.3 Validating Wind Gusts by Comparing Direction
	3.2.4 Cross-correlation Results
	3.2.5 Special Cases in Cross-Correlation Analysis
	3.2.6 Distribution of Measurement Differences

	3.3 Discussion:
	3.3.1 Weather Station Velocity Transformation
	3.3.1.1 Uncertainty in Velocity Calculations’ Precision
	3.3.1.2 Considering Calculation Time

	3.3.2 Feasibility at Varied Distances

	CHAPTER 4. CONCLUSIONS AND FUTURE WORK
	APPENDICES
	Appendix 1. Schematics for Machined and 3D Printed Parts
	Appendix 2. MATLAB Code for Stationary Testing
	Appendix 3. MATLAB Code for Dynamic Testing
	Appendix 4. R Script
	Appendix 5. Data Logging Code (VB.NET)
	Appendix 6. Microcontroller Design and Code:

	REFERENCES:
	VITA

