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ABSTRACT OF THESIS 

 

 
REMOVING VEHICLE SPEED FROM APPARENT WIND VELOCITY 

 

Variable-rate technologies for sprayer applications stand to increase efficacy by 
ensuring the right amount of chemical is applied at the right location. However, external 
environmental factors such as droplet drift caused by variable ambient condition, are not 
yet integrated into modern sprayer systems. Real-time wind velocity measurements can be 
used to control droplet spectra for reducing spray drift by actuating a variable-orifice 
nozzle. This work aimed to develop data processing methods needed to filter noise and 
remove vehicle speed from wind velocity measurements collected with an ultrasonic 
anemometer aboard a moving platform. Using a global navigation satellite system (GNSS), 
vehicle speed was calculated in the field and subtracted from apparent wind velocity for 
comparison to static measurements. Experiments under stationary and dynamic sensor 
deployments were used to develop an algorithm to provide instantaneous local wind 
velocity and to better understand the local spatiotemporal variability of wind under field 
conditions. 
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CHAPTER 1. PROJECT MOTIVATION AND LITERATURE REVIEW 

 

 Introduction: 

 Sprayer drift is the phenomenon of misapplication of liquids on non-targeted 

areas often caused by wind interference. Sprayer drift affects farm efficiency through the 

introduction of off-target and off-rate application errors (Grover, Maybank, Caldwell, & 

Wolf, 1997), has potential to negatively affect neighboring crops, and has potential to 

harm the environment (de Snoo & van der Poll, 1999). A common solution to the 

problem is to avoid application on windy days at all (Mekonnen & Agonafir, 2002), 

while some producers could be tempted to increase application of water and crop 

protection chemicals to compensate for losses displaced by wind. Much research has 

indicated that over-application or drift of crop controlling chemicals such as pesticides, 

herbicides, and fertilizers contribute to issues such as crop loss (Everitt & Keeling, 2009), 

herbicide resistance in weeds (Duke, 2005), and damages to the environment (Gove, 

Power, Buckley, & Ghazoul, 2007). Even non-occupational exposure has been shown to 

cause risks to human health (Azaroff & Neas, 1999). Increases in some herbicide-

resistant weeds can be attributed to selection pressure against non-resistant weeds, and 

herbicides subjected to drift can reduce natural fauna health and biodiversity in non-

targeted areas (Duke, 2005). In some woodland species fauna, drift from nearby 

application of fertilizer has been shown to cause reduced fertility, while herbicide 

reduced biomass and increased mortality rates (Gove et al., 2007). These chemicals can 

contaminate nearby water sources and pose health risks to human health (Holt, 2000). 

Under-application on targeted areas caused by drift can also fail to fulfill the desired 
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effects. Movement of a spray boom itself at different speeds also can cause variation in 

longitudinal droplet distribution that affect drift (Ooms, Ruter, Lebeau, & Destain, 2003). 

 To mitigate the effects of spray drift, a collaborative group was developed 

comprising researchers from the University of Nebraska-Lincoln and the University of 

Kentucky. The goal of the project was to develop a system in which a variable-orifice 

nozzle, capable of adjusting the droplet spectrum (e.g. distribution of droplet sizes) of 

applied liquids, could be actuated according to real-time wind velocity data from an on-

board weather station. By increasing droplet size during wind gusts, coverage of applied 

products may be better assured as wind’s influence of droplet’s trajectories are reduced 

while droplets that are too large may fail to stick to their targeted areas. A calibrated 

system may ensure optimal coverage for weather conditions in real time. The goal for this 

work is to design an interface that integrates real-time wind velocity data from an on-

board weather station for the control input of a variable-orifice nozzle. Additionally, the 

project aims to test and determine the feasibility of sensor accuracy onboard a moving 

platform, as well as determine appropriate sampling rates and filtering processes to 

produce highly correlated, accurate results between stationary and dynamic wind velocity 

measurements. The following specific objectives were developed in effort to achieve the 

project goal. 
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 Objectives: 

1. Interface two ultrasonic anemometers with global navigation satellite system 

(GNSS) receivers to timestamp and record wind velocity data. 

2. Determine the appropriate sampling rate and filtering process to produce highly 

correlated wind velocity measurements between multiple sensors. 

3. Remove vehicle speed from apparent wind velocity measurements. 

 

 Causes and Effects of Spray Drift on Efficacy of Liquid Application 

Many studies have been conducted investigating the causes of droplet drift during 

liquid application using spray nozzles. Experiments show that nozzle height, droplet 

speed in the direction of gravity, flow rate, pressure, wind speed, and air temperature are 

significant variables contributing to droplet drift in a single sprayer system (B. Smith, E. 

Bode, & D. Gerard, 2000). Nozzle height and droplet speed provide potential for drift by 

affecting the time for droplets to reach the ground. Larger distances between a nozzle and 

the ground allow greater opportunity for interference with droplet trajectories by wind 

gusts. These observations on the causes of sprayer drift are valuable however – to 

mitigate nozzle drift for boom applications – a means of collecting and filtering ambient 

wind measurements near the ground must be developed and investigated if real-time 

decisions on droplet spectra are to be made.  

Variability of field wind velocity is consistently a source of uncertainty for 

modeling spray drift (Butler Ellis et al., 2017). Wind tunnel testing has proven a viable 

method for simulating these field conditions, in which Butler used a wind tunnel to 

estimate spray drift in simulated environmental conditions for the purpose of minimizing 
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agricultural buffer zones (unused buffer space between crops and natural fauna for drift 

particles to land). The tunnel data was compared to field data for analysis of the process’ 

similitude. They found that their method is successful for short distance drift in the field 

up to 20 meters for simulating field conditions. Testing at the UNL Spray Application 

Testing Lab and the UNL West Central Research and Extension Center Pesticide 

Application Technology Laboratory will investigate drift estimation. Meanwhile, this 

work aims to provide a mechanism for real-time quantification of wind conditions in the 

field.  

 

 The Variable Orifice Nozzle 

Tests on a single electronically actuated variable-orifice nozzle found that 

pressure affects droplet size or spectra more than flow rate (D. Luck, K. Pitla, P. Sama, & 

A. Shearer, 2015). Higher pressures yielded finer liquid particles while lower pressures 

create larger droplets. A metering stem was used to actuate the variable-orifice, and 

analysis of data showed its position/nozzle flow rate had no significant trend on droplet 

diameter. Using pressure as a means to actuate this variable-orifice technology stands to 

reduce errors in application caused by pressure loss in fixed-orifice systems and will be 

the preferred control response for adjusting droplet spectra according to instantaneous 

wind velocity inputs. By adjusting to larger droplets during wind gusts, wind may have a 

reduced impact on droplet trajectories. 
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Figure 1.1 The components of the variable orifice nozzle consist of a metering stem 
moved by a linear actuator (D. Luck, A. Shearer, P. Sama, & K. Pitla, 2015) 

 

 Anemometers for Quantifying Wind Velocity 

 Cup anemometers are a relatively low-cost method for measuring wind speed. 

However, they have inherent disadvantages stemming from their design. By calculating 

wind speeds from the mechanical rotation of cups, many cup anemometers are limited by 

starting thresholds of about 0.5 m/s with resolutions also equal to 0.5 m/s. Additionally 

these sensors risk mechanical wear from long term continuous operation and by collision 

or jamming from dust/debris that can affect the accuracy of measurements if not properly 

maintained. They are also incapable of measuring direction without a separate wind vane. 

Alternatively, ultrasonic anemometers use transducers to emit and detect sonic 

pulses at desired intervals. When a sonic pulse is emitted from the sending transducer, the 

time-of-flight to receiving ends are measured. As wind gusts on the sensor, the time-of-

flight of sonic pulses is changed by the physical contact of air on the sonic wave. The 

device takes this difference of time-of-flight measurement from each receiving transducer 
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and calculates components of the wind’s magnitude and direction in either two or three 

orthogonal dimensions depending on the sensor configuration. Ultrasonic anemometers 

allow high frequency collection of wind velocity as vector components. Measurements 

are more accurate compared to cup anemometers because the absence of moving parts 

eliminates uncertainty caused by cup momentum and mechanical wear. Also, they aren’t 

limited by a minimum threshold as cup anemometers are. Ultrasonic anemometers are 

ideal for this project because of their higher accuracy and reliability. 

1.5.1 Uncertainties Surrounding Ultrasonic Anemometers for Agricultural Applications 

Typically for agricultural and meteorological applications, ultrasonic 

anemometers are mounted on stationary platforms as a component in a weather station. 

While these anemometers are used onboard vessels at sea, wind measurements seen by 

the sensor are used to provide information about high-volume air collision on the side of 

sea vessels (which contribute to yaw and rocking), or for estimating propulsion (for 

sailboats). Although the vessel’s dynamics cause false wind velocities, this fact can be 

disregarded because accuracy of wind gusts (especially at low speeds) aren’t used as 

control inputs. Corrections for vessel tilt-induced airflow distortion for better agreement 

with weather stations have been investigated in literature to some success (Landwehr, 

O’Sullivan, & Ward, 2015) however aim to reduce much larger errors than expected on 

land where large vehicle tilt is less likely. 

Anemometers mounted aboard agricultural vehicles will produce a false apparent 

wind velocity as the anemometer is moved through the ambient flow field. The close 

proximity to the ground and the irregular shape of high-clearance self-propelled sprayers 

(the target application of this work) will likely add turbulence that is readily detected by 
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an ultrasonic anemometer. Obstacles surrounding the device can also interfere with the 

ambient flow field. Uncertainty in stationary ultrasonic anemometer data has been shown 

to increase close to equipment or obstacles (Contini, Donateo, & Belosi, 2006). Contini 

used paired anemometers at different mounting orientations, spacing, and in proximity 

with other detectors to investigate uncertainties in measurements. The results showed that 

uncertainty increased when the anemometers were mounted on separate masts, or 

alongside other detectors or obstacles. Larger distances between two anemometers also 

yielded larger inconsistency in measurements. 

Uncertainty was calculated using time averaged measurements of the sensors and 

comparing the results. To quantify these uncertainties, equations using uncertainty values 

γ from Gaussian distributions with equal variances and systematic uncertainties ω were 

derived for each anemometer as equation 1.1. The difference between these equations is 

denoted in equation 1.2 (Contini et al., 2006), and was considered the prediction of 

uncertainty for time-averaged datasets. The random differenced uncertainty component 𝜂𝜂 

assumes identical wind velocity at both locations, meaning that the difference in recorded 

wind velocities consisted only of systematic and random uncertainty. In Contini’s 2006 

study, this generalization appears reasonable for quantifying uncertainties, because wind 

velocity data were collected in very close proximity. In this work, wind velocities were 

recorded at distances up to 60 feet and actual wind velocity 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 was expected to be 

different. Systematic uncertainty refers to uncertainties present in both sensors and can be 

attributed to sensor geometry and position. In this study, system uncertainty is well 

quantified by manufacturer supplied measurement tolerances, since both anemometers 

were positioned clear of obstacles and with the same transducer designs. 
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𝑉𝑉𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛾𝛾 + 𝜔𝜔 (1.1) 

Where: 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = Actual measurement (m/s) 

𝑉𝑉𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎 = Measurement output by anemometer (m/s) 

𝛾𝛾 = Random uncertainty extracted from Gaussian distribution (m/s) 

𝜔𝜔 = Systematic uncertainty (m/s) 

 

𝐷𝐷𝑋𝑋 = 𝛾𝛾1 − 𝛾𝛾2 + 𝜔𝜔1 − 𝜔𝜔2 = 𝜂𝜂 + 𝛽𝛽 (1.2) 

Where:  

𝜂𝜂 = 𝛾𝛾1 −  𝛾𝛾2 = Random uncertainties (m/s) obtained from data values of Gaussian 

distribution (mean=0 and equal standard deviation) 

𝛽𝛽 = 𝜔𝜔1 − 𝜔𝜔2 = Difference in systematic uncertainties (m/s) 

Contini et. al (2006) also found that uncertainty decreased with increasing 

averaging time, yielding impressively small uncertainties as low as 0.01 m s-1 for an 

averaging time of 30 minutes. These results indicate good performance for 

meteorological applications – however, to provide control inputs in real-time, similitude 

of data at much shorter intervals is needed. For an acceptable resolution to be obtained in 

spraying applications corresponding to the fate of a spray droplet, filtering must occur 

over a couple seconds or less. Regardless, averaging wind data is a proven correction for 



 

9 
 

smoothing problematic or noisy data and was used in this study. Additionally, a means of 

evaluating the effects of filtering on measurement uncertainty needed to be addressed. A 

modified interpretation of Contini’s uncertainty calculation was used for this evaluation 

where random uncertainty originating from sensor orientation is replaced by uncertainty 

derived from the filtering process. This is described in more detail in section 2.1.8. 

A study in Oldenburg, Germany looked at sensor accuracy affected by transducer 

shadowing, the effect of added turbulence by the obstruction of airflow from transducers, 

and found a significant effect based on wind direction (Heinemann, Langner, Stabe, & 

Waldl, 1997). These uncertainties are of minimal concern in this study since both 

anemometers described in section 2.1.1 have the same transducer design and equal 

uncertainties documented in their user manuals. Ultimately obtaining the exact wind 

velocity is not of focus, but instead a calibrated response of nozzle orifice diameter to 

wind fluctuations. 

Previous literature has studied the effects of sensor tilt on the accuracy of wind 

vector measurements, and correction methods for tilting have been studied as well 

(Landwehr et al., 2015). Translational motion correction, however, is much less 

researched. The dynamics of the anemometer on a moving platform needs to be 

subtracted from the observed wind velocity to obtain accurate measurements. 

1.5.2 Timestamping Wind Velocity Measurements  

To test corrections on measurements from an ultrasonic anemometer in-motion, a 

stationary anemometer is needed for reference. Before testing on-board a moving 

platform, validation of correlation between two stationary anemometers at the same fixed 
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distances was necessary for comparison. If there were no significant differences between 

wind velocities at a known spacing, then correlation of corrected measurements taken 

while in motion at the same or similar spacing to a stationary reference anemometer 

could help prove feasibility for sprayer applications. Before correlation testing for wind 

data from the two anemometers can be completed, the addition of temporal measurement 

data was needed for analysis and post-processing. Since the target application for the 

interfaced anemometers is outdoors, a reliable source of timekeeping is needed that can 

operate on DC power. A global navigation satellite-based system (GNSS) receiver is 

ideal for these requirements because it allows accurate timekeeping while recording the 

location of the moving platform if needed. A hardware method for capturing temporal 

data and concatenating with serial data streams was developed by Sama et al. (2013) that 

eliminates uncertainties caused by software latency, described as the delay between 

measurement and timestamping. They utilized a pulse-per-second (PPS) signal output 

from a GNSS as a reference to synchronize location readings from a tracking total station 

(TTS) using a signal timing device. The resulting data from experimentation showed 

acceptable precision in the timestamps for agricultural applications (devices moving 10 

m/s or less). An input capture on the signal timing device’s microcontroller was used to 

keep track of when the PSS occurred relative to a 3.75 MHz local clock source, which 

allowed incoming serial data to be timestamped to universal coordinated time (UTC) with 

an accuracy of less than 1 millisecond. A comparison between this hardware method to a 

software method of timestamping utilizing a PC’s system clock was explored in this 

project during experimentation with the two stationary ultrasonic anemometers. To 

investigate similarity between measurements, a study of correlation between data from 
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two anemometers at temporal resolutions equal or close to droplet airtime from a sprayer 

boom’s height needed to be studied.  

 

 Statistical Analysis for Similitude of Wind Data 

 Determining the feasibility of using weather data on-board a sprayer system 

heavily relies on proving similitude among wind data from a stationary anemometer and 

processed dynamic weather data. Correlation as a means of similitude for paired 

measurement is widely used in literature (Contini et al., 2006, Imai et al., 2009, Reid & 

Turner, 2001), however, these studies used filters over timespans of minutes or longer 

and have a significant reduction in noise. If weather data is to be used for real-time 

actuation of a variable-orifice nozzle, filtering must be completed at a much smaller 

scales, with the cost of increased noise. These noisier datasets were destined to yield 

poorer correlation for a classical pearson correlation test (See section 2.1.7), so alternate 

indicators of similitude are needed. In literature, a study using multiple weather stations 

to quantify the spatial structure of wind from a tower for wind power simulation purposes 

used cross-correlation to characterize the relationship between lateral and vertical 

components of wind gusts (Fujimura & Maeda, 2009). This approach took wind 

velocities from two anemometers to test for structured decay over lag times or the time 

difference between paired velocity measurements. In other words, multiple correlation 

tests were run on data pairs separated by increasing time between measurements. If cross-

correlation was markedly improved with zero lag, then some degree of similitude can be 

assured. This is because time-synchronized measurements with better correlation 
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compared to measurements out of phase imply that small scale fluctuations match and are 

not spatially independent. 

Contini et al. (2006) looked at differenced wind velocity values to quantify and 

analyze the distribution of random uncertainties. This work looks to compare wind 

velocities at two locations with much larger distances, and are not expected to be equal at 

any time. With random uncertainty replaced with filtering uncertainty, and systematic 

uncertainties added, a range of the potential wind velocity any time may be depicted 

similarly as uncertainty was in Contini’s work.  In this study, differenced wind velocities 

and derived uncertainties were used as an additional means of comparing wind intensity 

between two locations. 

  

 Previous Spray Drift Characterization Methods and Modeling 

 Some previous work and developed models were studied for considering wind 

effects on droplet drift which were developed using ultrasonic anemometers for 

quantifying drift per wind velocity. A few models for droplet trajectory simulate spray 

drift under input sprayer configurations. RTDrift (Lebeau, Verstraete, Stainier, & 

Destain, 2011) is a Gaussian plume model that allows input parameters for pressure, 

movement, and height of a spray nozzle. Equations for spray drift were derived from 

previous studies and used experimental wind data collected from ultrasonic anemometers 

mounted on a spray nozzle. Droplet spectra data were collected using a Phase Doppler 

Interferometer and were used to predict resulting drift and evaporation of liquids during 

trajectory was also accounted for. A Computational Fluid Dynamics (CFD) model, 

compared to experimental data, displayed success in predicting drift for varying fixed 
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nozzle diameters, wind velocity, height, and pressure of spray booms (Baetens et al., 

2009). This model was validated also by using ultrasonic anemometers at different 

elevations. Important parameters for drift included the boom’s height, wind speed, and 

nozzle-orifice size.  



 

14 
 

CHAPTER 2. CORRELATION TESTING BETWEEN TWO STATIONARY 

ULTRASONIC ANEMOMETERS 

 

 Methods and Materials: 

 Determining correlation between readings from two stationary ultrasonic 

anemometers was completed to help validate a claim that wind gust velocities measured 

in close proximity to each other are statistically similar. The purpose of this experiment 

was a feasibility study before moving forward with testing of the sensors onboard a 

moving platform. The experiment involved the design of a rigid stationary test fixture to 

mount both anemometers, a data acquisition Windows Form Application, a MATLAB 

script for processing data and performing statistical analysis, and also a SAS script for 

statistical analysis. Additional testing was completed using a GNSS receiver’s pulse-per-

second (PPS) signal in conjunction with output UTC time for improved precision of 

timestamps at a millisecond scale. The receiver was interfaced to add timestamps to the 

serial data stream output from the anemometers using a PCB board. A variety of weather 

conditions were observed and tested for correlation while also using different filtering 

techniques for noise reduction. A desired result for these tests was a successful filter that 

could be implemented in the time-domain for developing control inputs to the variable-

orifice nozzle. 

 



 

15 
 

2.1.1 Ultrasonic Anemometer Interfacing: 

Two ultrasonic anemometers (86000 and ResponseOne 92000, RM Young, 

Traverse City, MI) were selected to collect weather data including temperature, relative 

humidity, wind speed, direction, and air pressure as inputs for the system. A 13.8 V 

nominal power supply (1680, BK Precision, Yorba Linda, CA) was connected to supply 

the required power (10-30VDC) to both sensors, and output communication to a PC was 

configured using RS-232-to-USB converters (Keyspan U209-000-R, Tripp Lite, Chicago, 

IL). Using manufacturer provided configuration programs, the serial data output format 

was set to ASCII with a 38,400 baud rate, 8 data bits, no parity, and 1 stop bit (38400-8-

N-1) for both anemometers and the units were set to metric. 

 

Figure 2.1 Ultrasonic anemometers used in this study were manufactured by RM Young 
(Young) 

Microsoft Visual Studio was used to develop a user interface and the supporting 

code writing in the Visual Basic language (VB.NET). Functions of the program included 

setting the serial port baud rate for data retrieval, assigning the ports for serial data 

collection, opening and closing the ports, a space to send commands if necessary, 
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automatic timestamping and parsing of data strings, display for incoming and parsed data, 

and the ability to start and stop logging to a .csv file. The code is included as Appendix 5 

and the graphical user interface is shown in Figure 2.2. 

At the program’s startup, a Sub statement “Build_Interface” ran immediately to 

set up the user interface and display available COM ports for assignment to the 

anemometers. COM port names were automatically assigned by the RS-232-to-USB 

converter driver and set accordingly in the program. The remaining COM port settings 

were configured to match the anemometers’ settings (38400-8-N-1). Before data were 

read and saved, a destination file was needed to store the information. The filename must 

be input into a text box, and then a save location must be chosen. A 

“FolderBrowserDialog” object was used to browse save locations and automatically 

create a .csv file with the input name once a destination is chosen. 
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Figure 2.2 The Serial Communication Interface allows control of the data logging 
procedure and provides graphical display of ultrasonic anemometer sensor parameters 

 

To read data from the serial ports, an existing RS-232.vb class written by Dr. 

Michael Sama was used to read available COM ports and list them in a ComboBox drop 

down menu. A button was created to initiate opening the serial ports for reading after 

being designated to each sensor. Once the ports were opened, data were received for each 

anemometer using separate subfunctions, with handles that call the subfunction when a 

full new message was received. A full message was defined in the RS-232 class as all 

characters between carriage returns (Figure 2.3). The class was also modified to utilize a 

Boolean logic variable to check for the arrival of a message, and subsequently call 

DateTime.Now.ToString for local timestamping at the arrival of the next bits. Each data 
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sentence was then parsed after arrival using spaces as the delimiter within Sub statements 

MessageReceived and MessageReceived2. These statements received and parsed 

sentences from the 86000 and 92000 models, respectively. 

 

Figure 2.3: Data sentence format for the 92000 ResponseOne (Young) and 86000 
(Young) ultrasonic anemometers from the user manuals. Each sentence is separated by a 

carriage return <CR>. This is used to separate sentences from each other. The class 
definition of carriage return in Visual Basic is "vbCr" 

 

A log button with two states was created to start recording data as it is received. 

By default the button indicated that data were not being logged (inactive) and would 

cycle between logging (active) and not logging each time it was pressed. When a 

 

92000 ResponseOne ASCII Polar Format:   86000 ASCII Polar Format: 

a www.ww ddd.d ttt.t hhh.h bbbb.b ppppp ss*cc<CR> a www.ww ddd.d ss*cc<CR> 

 

a  = Sensor address 

www.ww = Wind speed (m/s) 

ddd.d  = Wind direction (degrees) 

ttt.t  = Temperature (°C) 

hhh.h  = Relative Humidity (%) 

bbbb.b  = Barometric Pressure (hPa) 

ppppp  = Tipping Bucket Count (optional) 

ss  = Status code 

*   = Asterisk (ASCII 42) 

cc   = Checksum 

<CR>  = Carriage Return 
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message was received by the program, the subfunctions MessageReceived and 

MessageReceived2 executed, and the status of the logging button was checked. If active, 

the messages were recorded to the file created by the folder browser subfunction. The 

user interface was designed such that each functionality occurs independently. Opening 

and closing the ports, initiating the file generator, “FolderBrowserDialog”, and data 

recording were contained in separate sub statements so that each process’ success could 

be verified. An advantage to this arrangement was having the capability to precisely 

begin data logging at the press of the logging button rather than after the selection of the 

save location and file generation. 

 The output of this program was organized data from the 86000 and 92000 model 

ultrasonic anemometers. The data were labeled by sensor model so it could be separated 

and processed using MATLAB R2017a. Example data is shown in Table 2.1 from testing 

the data logging functionality. The checksums were included to validate that data streams 

transferred successfully. The timestamps are displayed on the right-most column.  

 

Table 2.1 Output data from sensors can be separated in MATLAB by their sensor 
addresses. 

Sensor 
Address 

Wind 
Speed 
(m/s) 

Wind 
Direction 

(°) 

Temp- 
erature 

(°C) 

Relative 
Humidity 

(%) 

Barometric 
Pressure 

(hPa) 

StatusCode 
*CheckSum Time 

86000 2.52 161    00*0F 12:07:59.810 
92000 1.78 327.3 20.6 60.9 982 00*1D 12:07:59.920 
86000 2.60 180    00*03 12:08:00.060 
92000 1.75 235.5 20.5 60.9 982 00*17 12:08:00.170 
86000 3.32 142    00*09 12:08:00.300 
92000 2.11 235.3 20.6 61 982 00*1A 12:08:00.430 
86000 2.57 161    00*0F 12:07:59.810 
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2.1.2 Hardware Timestamping of Serial Data from Ultrasonic Anemometers 

 The PC timestamps recorded along with incoming data were subject to latency. 

Data were output at regular intervals, whereas the PC timestamps indicated variability by 

as much as 10 ms. For a more accurate measure of similitude between two distanced 

stationary anemometers, precise timestamping was needed for collected wind data. 

Initial testing utilized the Visual Studio VB.NET function 

DateTime.Now.ToString(“HH:mm:ss.fff”) to timestamp using a computer’s clock 

synchronized over the internet. This function was triggered by a Boolean variable 

“TimeTrigger” that armed once a full message was identified. As characters were 

received, the state of “TimeTrigger” was checked such that when the first character in the 

next sentence was received, the time was recorded. While this method was effective for 

timestamping at high baud rates, it is limited by software latency and application in the 

field. Thus, a hardware method with improved mobility was explored. 

A GPS receiver (GPS 18x LVC, Garmin) was used to append a UTC timestamp 

to each anemometer serial data message. A custom printed circuit board was developed to 

interface with the pulse-per-second (PPS) and serial data stream from the GPS, shown as 

Figure 2.4. The PPS signal was connected to an input capture on a microcontroller 

(dsPIC30F4013, Microchip) and provided the 1 second epoch within 1 microsecond. The 

serial data stream transmitted the NEMA 0183 GPGGA string, which included a UTC 

timestamp. PPS events recorded an internal timer value from a 58.58375 kHz clock 

source that was used to keep track of other events between PPS events.  The first start bit 

of each anemometer serial data message triggered a second input capture to record the 

local timer value. A UTC timestamp was computed from the local timer value and 
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appended to the end of each anemometer data string in the same format as used for the 

previous software method of timestamping. The microcontroller program used to 

timestamp anemometer serial data is included in Appendix 8. 

 

Figure 2.4 The assembled PCB allows a hardware method of timestamping 

 

 Adjustments were made to the Windows Form Application to handle hardware 

timestamped serial data streams. The hardware timestamped serial data streams replaced 

the carriage return with a carriage return line feed and contained a UTC timestamp 

concatenated between it and the calculated checksum from the anemometer. A space was 

maintained as the delimiter for separating data. Occasionally collected data would have a 

timestamp with 1000 ms after the decimal place. These rare instances were incorrectly 

read by processing scripts as 100 ms. Data with these incorrect timestamps were removed 

from the data series to simplify processing. 
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2.1.3 Test Fixture Design and Assembly 

 Important criteria for the test fixture included rigidity, durability, and ease of 

assembly. The test fixture (Figure 2.5) consisted of 3 pieces of 2x1 inch t-slotted 

aluminum extrusion framing, a custom machined aluminum tripod adapter, machined 

slug mounts for the sensors to tighten onto, as well as brackets and screws to hold the 

pieces together. The test fixture was designed to mount on a tripod using a standard 5/8”-

10 machine screw. Test fixture components were modeled using Autodesk Inventor 

Professional 2018. The 2x1 inch framing was selected because of its relatively light 

weight and ease to assemble/disassemble and transport. The custom tripod adapter and 

support brackets were secured using t-slot fasteners. The frame provided reasonable 

resistance to torsion caused by long lever arms in the form of the vertical extrusions. The 

horizontal aluminum beam was 1.83 m long and each vertical beam holding the slug 

mounts was 0.91 m long. The height at the top of each anemometer with the fixture fully 

assembled was approximately 2 m. Slug mounts were each 15.24 cm long and 3.40 cm in 

diameter, allowing the fastening of the anemometers using included brackets by the 

manufacturer. The slug mounts and top end of the vertical extrusions were tapped to 

1/4”-20 threads and secured with hex-head screws for consistency with the framing 
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brackets. Schematics of machined parts are displayed in Appendix 1.

 

Figure 2.5: Assembly for Preliminary Test Fixture 

 

 The PCBs required an enclosure to protect components from inadvertent contact. 

The design for a 3D printed enclosure needed to provide easy access to connections on 

the PCB labeled in Figure 2.4 and also allow vision to the board’s status lights for 

confirmation that the system was operating correctly. Aesthetics were also considered: 

providing indentations for printed labels, rounded edges and walls, and engraving of a 

University of Kentucky logo. The assembled PCB and case are shown as Figure 2.6. The 

lid and base contained three holes that were tapped for 1-inch length #4-44 rounded head 
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machine screws. The screws fastened through the lid, the PCB mounting holes, and into 

the base. Detailed drawings are presented in Appendix 1. 

 

Figure 2.6 The assembled PCB and case 

 

2.1.4 Preliminary Data Collection and Setup Procedure 

 Data were collected for the static experiment on the roof of the University of 

Kentucky’s Charles E. Barnhart building. Each test was conducted at the same location 

on the roof at its edge at the coordinate 38.026924°, -84.509623°. A satellite image of the 

test site is displayed as Figure 2.7. The 12 V DC power supply was used to provide 

power to the sensors, while the data acquisition system was run on a Microsoft® Surface 
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3 tablet computer. Data were collected purposely on days with varying temperatures, 

humidity, and average wind speeds because they are known factors to effect spray drift. 

There was also no precipitation during any of the testing days and the usual test duration 

lasted between 1 to 3 hours, determinant on the possibility of rain or snow. The test 

fixture was installed at the determined testing location next to a cart (seen in Figure 2.8) 

supporting the laptop, power supply, PCBs, and Trimble GNSS receivers. For the 

hardware timestamping method, the housed PCBs were each connected to one ultrasonic 

anemometer and to a Garmin GNSS receiver. 

 

Figure 2.7 A satellite image displays the location of the test site at 38.026924°, -
84.509623° (Google, n.d) 
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Figure 2.8 A cart was used as a surface for the computer, power supply, PCBs, and GPS 
receivers 

 

 The 12V power supply was first turned on to power the ultrasonic anemometers, 

custom PCBs, and GPS receivers. The status lights on the PCBs were observed to 

confirm that the equipment was functioning properly prior to logging data. 
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2.1.5 Field Testing 

 Experimentation at various separation distances between the two anemometers 

was completed to validate dynamic testing. If sufficient correlation could be achieved for 

both stationary and dynamic testing at a chosen distance, then a sprayer boom size equal 

to twice that distance (from the center to edge on both sides added) may have potential 

for drift mitigation based on weather data recorded at the boom’s center. First a pilot test 

ranging from 3.66-7.32 meters (12-24 feet) was attempted. Due to data logging issues, 

many points were lost during writing to the .csv file, so correlation analysis was not 

pursued, however wind velocities appeared similar enough to continue at larger distances. 

Testing was then conducted at 6.10, 12.20, and 18.29 meter (20, 40, and 60 feet) 

separations. The maximum distance was chosen based on current spray boom widths of 

high-clearance self-propelled sprayers and represented one half of the total boom width. 

 The first field experiment was conducted at the University of Kentucky’s C. Oran 

Little Research Center in Versailles, Kentucky (38.085714°, -84.734869°) on October 5th, 

2018 from 14:16:00 to 20:07:00 UTC to examine correlation at various anemometer 

separation distances. A photo of the equipment setup is shown as Figure 2.9. The 

experiment was conducted as a completely randomized block design, in which 3 

separation distances were tested with 3 replications each for a total of 9 trials. The order 

of testing for each replication was determined randomly as shown in Table 2.2 to capture 

wind variability throughout the day while distributing error from weather variability 

across all trials. The height for both anemometers was set at 194.3 cm checked using a 

tape measure. Despite dropped readings because of errors in data logging, the remaining 

wind velocity pairs were close enough to warrant testing at larger separation distances. 
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Table 2.2: Completely randomized block design for stationary testing 

Block 1 Block 2 Block 3 

5.49 m 7.32 m 3.66 m 

7.32 m 3.66 m 5.49 m 

3.66 m 5.49 m 7.32 m 

 

 

Figure 2.9: Static testing was completed at the University of Kentucky’s C. Oran Little 
Research center in Versailles, KY on October 5th, 2018. 
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 Following this experiment, a second test of different separation distances between 

the anemometers was conducted at 6.10, 12.20, and 18.29 meter (20, 40, and 60 feet) to 

emulate larger commercial spray booms. The field experiment was conducted on 

relatively flat ground at the University of Kentucky’s North Farm in Lexington, 

Kentucky (38.130583°, -84.493944°) on February 13th, 2019 between 18:15:00 to 

21:15:00 UTC to examine correlation at various anemometer separation distances. The 

experiment was conducted as a completely randomized block design, in which 3 

separation distances were tested with 3 replications each for a total of 9 trials. The order 

of testing for each replication was determined randomly as shown in Table 2.3 to capture 

wind variability throughout the day while distributing error from weather variability 

across all trials. A photo of the experiment setup is shown as Figure 2.10. Between each 

replication a digital level was used to check anemometer tilt to ensure they were 

horizontally level with an error of ±0.2° the ground plane. Also, a digital compass was 

used to align both anemometers facing North. This was completed by holding the 

compass up to the Northern indicator on each anemometer and is expected to have an 

error of roughly ±2° from North. The height for both anemometers was kept constant at 

194.3 cm and was checked using a tape measure. The 6.10, 12.20, and 18.29 meter (20, 

40, and 60 feet) trials were chosen to emulate larger commercial spray booms. 
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Table 2.3: Completely randomized block design for stationary testing 

Block 1 Block 2 Block 3 

12.2 m 18.29 m 12.2 m 

18.29 m 12.2 m 6.10 m 

6.10 m 6.10 m 18.29 m 

 

 

Figure 2.10: Static testing at the University of Kentucky’s North Farm was completed on 
February 13th, 2019. 



 

31 
 

2.1.6 Processing Procedures 

 After data collection, a MATLAB® script (R2017a) was utilized to filter out data 

with incorrect timestamps, separate data by sensor address, and interpolate data from the 

86000 model to the time interval of the 92000 model anemometer. Interpolation of one 

dataset onto the time interval of the other was necessary to perform correlation testing 

because the anemometers were not temporally synchronized. Linear interpolation was 

chosen due to simplicity. The decision to interpolate the 86000 model’s data onto the 

92000 data was determined because the 92000 model was assumed to be a superior 

sensor. This was also the motivation for mounting the 92000 on the moving vehicle later 

in CHAPTER 3. Statistical analyses were completed using MATLAB, SAS 9.4, and 

Microsoft Excel. 

 Various moving-average filters were tested on the dataset to reduce noise, and 

correlation testing was done to determine the optimal technique yielding acceptable 

correlation while maintaining accuracy. The filters selected were 3, 5, and 7-point 

moving averages. At a 200 ms sampling rate, the filtering windows involve data over the 

time interval of 0.6 seconds to 1.4 seconds. The data were processed to create replications 

for correlation testing. Replications were defined as a pair of velocity measurements, one 

from each anemometer, at the same time instant. For example, a replication for testing 

raw data would include the recorded value of the model 92000 weather station and the 

interpolated value of the 86000 model for that instant. Additionally, data was arbitrarily 

categorized by wind velocity as “low” if less than 3 m/s, “medium” if between 3 and 6 

m/s, or “high” if higher than 6 m/s. This categorization was completed so that correlation 

could be compared at different velocity ranges. It also allowed testing of replications of 
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mixed categories, or large differences in the paired data. Using these tests, the plan for 

correlation results for each separation distance and filter was to calibrate the results as a 

reference to a “worse case” result. With the minimal Pearson correlation coefficient 

known for each separation distance, it could be used as a benchmark for comparison in 

dynamic testing. After completing Pearson correlation testing, flaws in its 

appropriateness at long distances were discovered which are discussed in section 2.1.7. 

 

2.1.7 Assumptions and Validity of Correlation Analysis 

The overlying assumptions for correlation analysis need to be carefully 

considered. For short time intervals, stationarity of the weather data is assumed because 

noticeable differences in weather are unlikely to occur. Through the assumption of 

stationarity (no change in distribution over time), an assumption of homoscedasticity 

(constant variance) is also made. This can be confirmed by scatterplot visualization of 

wind speeds for both anemometers but is somewhat arbitrary since the range of wind 

velocities is expected to be small with no trend over short timespans. The design of the 

experiment served to better satisfy the concern of nonstationary by collecting data at 

short time intervals of approximately 15-minutes. The correlation test assumes constant 

variance for this timespan rather than for all collected data for each anemometer 

separation distance. In summary, the analysis staves off concerns surrounding weather 

variability changes throughout the day by a completely randomized block, which breaks 

up this potential trend among all trials. Normality was tested for anemometer data using 

R-Studio (Version 1.1.456) using installed packages (xlsx, gstat, sp, and lattice) and was 

determined sufficient based on calculated residuals, skewness, and kurtosis. 
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A Pearson correlation test serves to test for linear dependence between two 

variables. After testing for Pearson correlation, it was determined that further analysis 

was needed to validate correlation as a means for determining similitude between the 

anemometers, especially for longer physical separation distances. The reason for this 

additional validation becoming necessary was because of small Pearson correlation 

coefficients at increasing distances, even though differences in measurements were 

generally not large and likely acceptable for making droplet spectrum decisions. 

Considering velocity measurements are taken at separate locations, it is expected that 

wind velocity will be different. If regression were to be calculated for each data series, 

poor models (low r value) would be expected. Therefore, a perfect linear dependence 

between them is not expected either. Alternatively, one strategy for determining 

similitude is to compute covariance between wind velocities at both locations however, 

the combined effects of unreduced noise and uncertain variability at different vehicle 

velocities and distances could yield incomparable variance during dynamic testing. For 

comparison purposes, the normalized cross-correlation coefficient between the two time-

series data was computed, and the resulting cross-correlograms examined. The advantage 

to this correlation analysis is that focus is shifted towards detecting agreements in wind 

fluctuation at both locations rather than whether the velocity was the same. An analysis 

on the actual differences in wind velocities was carried out separately to the correlation 

analysis. 

For cross-correlation testing to be meaningful, there must be both an individual 

structured auto-correlogram for each anemometer, and a structured cross-correlogram 

representing both sensor’s data. Although the relationship between sequential 
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measurements is not of interest here, if there is a structured cross-correlation, and it is 

strongest with both series in phase (lag=0) with decay into increasing lag times, then it 

suggests merit in the cross-correlation analysis on paired measurements, because 

comparisons at the same instant yield better similitude than with measurements separated 

by short time lags. A high cross-correlation coefficient would suggest that wind velocity 

at both locations fluctuate synchronously. Additionally, by observing the cross-

correlogram, the variability of wind velocity can also be observed by noting the rate of 

correlation decay across lag times. A steeper drop in cross-correlation can suggest 

distinct matching wind variability while a flatter slope suggests less similarity over the 

time period tested. 

  

2.1.8 Quantifying Uncertainty in Processed Wind Velocities 

 Two sources of uncertainty were considered regarding wind velocity 

measurements between the two sensors. The first source was systematic uncertainty, 

defined in this work as the manufacturer provided 2% tolerance given by each 

anemometer’s specification. The second was inspired by Contini et al. (2006). The study 

looked at quantifying random uncertainties related to sensor orientation and prevalence of 

obstacles. For this study, nozzle control per wind velocity data will require calibration to 

translate velocity readings to appropriate droplet spectra. Therefore, predicting random 

uncertainties to obtain statistically very precise estimates of true wind velocity 

(subtracting error caused by obstacles) is not necessary because ultimately the data will 

be used to make decisions at a different location. Instead, Contini’s random uncertainty 

component γ was repurposed to encompass uncertainty derived by the filtering method. 
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Rather than using standard error, the standard deviation of measurements for each filtered 

measurement was used for uncertainty because it is better suited for describing variability 

amongst those measurements, as opposed to incorrectly describing results as a 

statistically derived estimate. The modified form of equation 2.1, expressing actual wind 

velocity as the sum of output data, filtering uncertainty, and systematic uncertainty is 

shown as equation 2.2. 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎 ± (𝛾𝛾 + 𝜔𝜔) (2.1) 

Where: 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = Actual measurement (m/s) 

𝑉𝑉𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎 = Measurement output by anemometer (m/s) 

𝛾𝛾 = Uncertainty in measurement derived from filtering (𝛾𝛾 = 𝜎𝜎 (m/s)) 

𝜔𝜔 = Systematic uncertainty (Manufacturer provided 2% of output wind velocity (m/s)) 

 

 Differences between measurements were calculated using equation 2.2 to evaluate 

the accuracy and similitude between two anemometers at varying separation distances. 

The filtering uncertainties for each sensor were added rather than subtracted to obtain 

uncertainty limits for each data pair’s difference. For this portion of the analysis, the 

manufacturer’s systematic uncertainty was excluded because it was the same for both 

sensors, and we are more concerned with filtering effects on accuracy. The resulting 

uncertainty equation is the spatial uncertainty (differences in velocity) added to the 

filtering uncertainty (standard deviation over filter’s window). These differenced velocity 
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values α were placed into bins of 0.1 m/s in width, and cumulative probability plots were 

generated for each trial to supplement the correlation analysis. Additionally, the filtering 

uncertainty was organized into bins to compare filtering window size contribution to the 

measurement uncertainty. 

 

Uncertainty in Measurement = (𝛼𝛼1 − 𝛼𝛼2) ± (𝛾𝛾1 + 𝛾𝛾2) (2.2) 

Where: 

𝛼𝛼𝑖𝑖 =  Measurement value for anemometer 𝑖𝑖 (m/s) 

𝛾𝛾𝑖𝑖 =  Filtering uncertainty for anemometer 𝑖𝑖 (m/s) 

(𝛼𝛼1 − 𝛼𝛼2) =  Spatial Uncertainty (m/s) 

(𝛾𝛾1 + 𝛾𝛾2) =  Filter Uncertainty (m/s) 

 

 Results: 

2.2.1 Visualizing Data and Filter Uncertainties 

 The processed wind velocity and directional data was plotted in Excel with 

uncertainty bars representing filtering uncertainty and systematic uncertainty. An 

example dataset is visualized in Figure 2.11 and Figure 2.12, showing data from block 1, 

20 ft separation filtered using a 3-point moving average. Filter uncertainty or standard 

deviation for used points in the filtering window is shown as error bars in the velocity 
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data. Uncertainty for wind direction was not derived because it was used for comparison 

and validation sake, and not for statistical analysis. 

 

Figure 2.11: Wind velocity data is shown for the first 30 seconds of data at 20 ft 
separation, block 1, filtered using a 3-point moving average 
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Figure 2.12: Wind direction is shown for the first 30 seconds of data at 20 ft separation, 
block 1, filtered using a 3-point moving average  

 

2.2.2 Correlation Results: 

 The results of an initial Pearson correlation test using SAS 9.4 showed decreasing 

correlation with increasing distance between anemometers. This result was expected 

however R-values seemed mediocre averaging about 0.512 for 20ft, 0.353 for 40ft (the 

3rd trial was 0.18 and very noisy), and 0.327 for 60ft. To examine whether these results 

were indicative of the degree of similitude between the sensors, cross-correlation among 

lag times were tested. Each lag step is equal to the sampling interval of 200 milliseconds, 

and plots were generated to 50 lags (10 seconds). This time interval was chosen because 

this work aims to examine feasibility of real-time adjustments of a nozzle, so timespans 

longer than a few seconds are irrelevant for droplet control.  
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 Auto-correlograms such as the example shown in Figure 2.13 were generated for 

the 20ft, 40ft, and 60ft trials to validate structure before computing cross-correlograms 

such as in Figure 2.14. The results of these tests indicate structured correlation between 

the two anemometers that flatten with increasing lag times. The lag time is the offset 

which the data is temporally shifted out of phase and tested for correlation. Correlation 

decayed at different intensities depending on distance. These structures were examined 

for each of the 3 separations distances with various moving average filters as well. As 

expected, the correlogram structures are smoothed with increasing averaging time 

because velocity measurements are smoothed while also improving correlation among lag 

times. For all trials and filters, generated auto-correlograms showed structure that 

warranted analysis by cross-correlation. 

  

 

Figure 2.13: Autocorrelograms for 20ft separation, trial 1, show structured 
autocorrelation warranting a cross-correlation analysis. 
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Figure 2.14: Cross-Correlogram for 20ft separation, trial 1, shows structured decay in 
correlation with increasing lag 

 

  Figure 2.14 displays the cross-correlogram for data collected with a 20ft 

separation between anemometers for multiple filters. The figure shows a clear decay in 

correlation with lag time, suggesting that both anemometers experienced fluctuations in 

wind velocity in-phase. At larger separation distances this phenomenon diminished. 

Table 2.4 displays a summary of cross-correlograms and a descriptor of their structure. 

“YES” indicates structured decay, while “Flat” indicates small slop of decay. In Figure 

2.15, cross-correlograms for block 1 trials is displayed. The cross-correlation coefficient 

at zero lag decreases with growing distance, but also decays at slower rates. This is likely 

explained by an increased occurrence of larger differences between the two sensors 

overall, thus causing smaller slopes in correlation when the series are out of phase. These 
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trends were apparent among all blocks as shown in Figure 2.16 and Figure 2.17 however, 

in the later it’s worth noting that the 40 ft trial is almost completely flat. When 

considering the poor 0.18 Pearson coefficient for this trial mentioned at the beginning of 

this section, this trial supports the methodology of identifying noisy or largely different 

data series by their flat cross-correlograms. Such phenomenon was considered during 

further analysis of velocity differences between the anemometers. 

Table 2.4: Unfiltered trials generally all had structured decay in cross-correlograms 
except for one trial. 

Trial Structure? 

20 ft, block 1 YES 

20 ft, block 2 YES 

20 ft, block 3 YES 

40 ft, block 1 YES 

40 ft, block 2 YES 

40 ft, block 3 Flat 

60 ft, block 1 YES 

60 ft, block 2 YES 

60 ft, block 3 YES 
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Figure 2.15: Cross-Correlogram for all separation distances in block 1 shows decreasing 
correlation with increasing distance and flatter structure, suggesting less similarity in 

wind velocity with increasing distance on the scale of spray boom size 

  

Figure 2.16: Cross-correlogram for all separation distances in block 2 shows decreasing 
correlation with increasing distance and flatter structure, suggesting less similarity in 

wind velocity with increasing distance 
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Figure 2.17: Cross-correlogram for 60 ft separation, trial 3, shows similar trends as 
Figure 2.17 and Figure 2.18, but displays the highly varied 40 ft trial. 
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trend is easily recognizable by the positioning of each filter’s series relative to each other. 

The filter with the steepest initial slope was a 7-point moving average, indicating that the 

distribution of differenced values was more right-tailed and had a higher percentage of 

small differences, and less large differences between wind velocity series compared to 

smaller filtering windows. 

 

 

Figure 2.18: Cumulative probability chart for 20ft separation distance, trial 1 
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amounts of larger velocity differences with increasing distance between sensors, except 

for block 3 where the before-mentioned noisy 40ft trial occurred. This trend of decreasing 

similarity at larger distances between the anemometers was considered for comparison to 

dynamic testing in Chapter 3. 

 

Figure 2.19: Cumulative probability plot for all trials in block 1 
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Figure 2.20: Cumulative probability plot for all trials in block 2 

 

 

Figure 2.21: Cumulative probability plot for all trials in block 3 
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2.2.4 A Note on Filtering Uncertainty Analysis by Probability Distribution 

An ideal filter is one that reduces noise while preserving the desired signal. Improved 

cross-correlation results for increasing filter size was expected because each dataset is 

smoothed by the filter, and noise reduction improves similitude. The calculated filtering 

uncertainty or standard deviation of points included in each filter’s window was 

organized into histograms for comparison among filters as shown by example in Figure 

2.22. Generally, among the three filters as filter size increased, the uncertainty in each 

processed result seemed to increase, but was determined too close, and with too many 

inconsistencies to determine as a definite trend. This was not surprising because larger 

windows allow more fluctuations to be included in the calculation of each filtered point, 

but in less noisy datasets could deceptively not be present where the range of values in 

the window were smaller. If replicated, this method of analysis should be completed with 

caution and while consulting a visual of the dataset. It was not replicated in this work for 

dynamic testing. 
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Figure 2.22: Sample histogram of filtering uncertainties distribution for block 1, 20 ft 
separation 
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separation distances. Intuition says that this measure becomes increasingly more 

inappropriate because differences in wind velocity are expected at longer distances. 

Instead, focus was shifted toward quantifying whether wind velocity fluctuated together, 

as opposed to comparing precise values at each location. Cross-correlograms suggested 

that filtering improved similarity between the two series, and an analysis of differenced 

velocities confirmed it. Increasing distance between the anemometers resulted in smaller 

cross-correlation at zero lags as the wind varied more. Flattening of cross-correlograms 

was explained by both higher differences in wind velocities and increased prevalence of 

non-matching fluctuations. Especially noisy datasets masked some matching fluctuations 

between the two sensors. 
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CHAPTER 3. CORRELATION TESTING BETWEEN ONE DYNAMIC AND ONE 

STATIONARY ANEMOMETER 

 

 Methods and Materials: 

 Once similitude between static sensors was confirmed, dynamic testing was 

completed in comparison. The location of these tests was at the University of Kentucky’s 

North Farm in Lexington, KY (38.130583°, -84.493944°) on an open parcel of land with 

no trees or structures within several hundred meters. For three separation distances and 

three ground speeds, a vehicle mounted weather station was driven in circles around a 

stationary anemometer to test whether this work’s processing algorithm could 

successfully back-out vehicle dynamics from the apparent wind velocity measurements 

and obtain good agreement with the stationary data. The purpose for using multiple 

vehicle velocities was to examine the feasibility and differences in the algorithm’s 

performance in addition to varying separation distance. Since cruise control was not 

available on the vehicle, vehicle speed was not constant for the duration of each trial. For 

the remainder of this work, the intended velocity of vehicle is referred to as the target 

velocity what was indicated by the vehicle’s speedometer and monitored by the driver in 

effort to maintain the target velocity. The design was a completely randomized block, in 

which the order of testing for the radii of the vehicles path were completely random for a 

total of 3 trials each. Within each radius, targeted velocities were randomized as well. 

The advantage to this design allowed any temporal weather variability throughout the 

data to be distributed randomly among all trials. The tested radii for the vehicle’s path 

were 6.10 m, 12.2 m, and 18.29 m, and the target velocities were 4.83 km/h, 9.66 km/h, 
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and 14.48 km/h. Two of the 6.10 m, 14.48 km/h trials were cancelled during 

experimentation because of increasing difficulty driving at that speed without sliding and 

digging ruts in the field. The order of testing is shown in Table 3.1, and an aerial photo of 

the experiment captured with a drone is displayed as Figure 3.1.  

 

Table 3.1: The completely randomized block design is shown. The procedure moved 
down each block in order, completing separations from top to bottom, and vehicle 
velocities from left to right. Two of the 14.48 km/h trials were omitted because of 

difficulty turning the vehicle at that speed. 

Block 1 Block 2 Block 3 
6.10 

m  

4.83 

km/h 

14.48 

km/h 

9.66 

km/h 

18.29 

m 

9.66 

km/h 

4.83 

km/h 

14.48 

km/h 

12.19 

m 

4.83 

km/h 

14.48 

km/h 

9.66 

km/h 

18.29 

m 

14.48 

km/h 

9.66 

km/h 

4.83 

km/h 

12.19 

m 

4.83 

km/h 

9.66 

km/h 

14.48 

km/h 

6.10 

m 

9.66 

km/h 

4.83 

km/h 

14.48 

km/h 

12.19 

m 

4.83 

km/h 

14.48 

km/h 

9.66 

km/h 

6.10 

m 

14.48 

km/h 

9.66 

km/h 

4.83 

km/h 

18.29 

m 

14.48 

km/h 

4.83 

km/h 

9.66 

km/h 
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Figure 3.1: Aerial photo visualizing the three radii for dynamic testing 

 

A goal for this experiment was to remove components of the anemometer’s output 

wind velocity caused by the motion of the sensor itself and quantify the degree of 

similitude with a stationary anemometer. To accomplish this, the vehicle’s velocity and 

heading were calculated using three methods for comparison, from the output of a survey 

grade GNSS receiver operating in RTK mode. This calculated velocity was interpolated 

to the sampling interval of the 92000 model anemometer and were subtracted from the 

apparent wind velocity vector. The direction of wind data relative to the vehicle’s 

heading was also recalculated using the newly solved wind vectors. The determined 
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vehicle heading was used to rotate the wind data relative to “True North” to match a 

stationary anemometer for statistical analysis. 

3.1.1 Equipment Setup and Vehicle Mounting 

 A Trimble R10 GNSS receiver was used to record the vehicles position. NMEA 

GPGGA and GPRMC were output at 20 Hz and included UTC time, UTC date, latitude, 

longitude, velocity, and course over ground, among other parameters. The GNSS receiver 

was mounted on the roof of a utility vehicle (XUV 855D, John Deere) using a bracket 

mounted to a t-slotted aluminum framing cross member. The 92000 model ResponseOne 

weather station was also mounted to the cross member. The forward and sideways offset 

between the devices were measured for velocity transformation from the GNSS location 

to the weather station’s location. To reduce potential effects of tilt or vibration on 

measurement accuracy of the moving anemometer, testing was done on flat land. Applied 

moving average filters also hoped to reduce noise that may be caused by noticeable 

bumps on the vehicle’s path. 

3.1.2 Methods for Calculation of Weather Station Velocity 

Even though the GNSS receiver and weather station were mounted closely on the 

vehicle used, efforts were made in this study to derive an algorithm to transform position 

and velocity data from the GNSS location to the location of the weather station. At a 

separation of a few inches, the difference in velocity between the GNSS receiver and 

weather station may be considered negligible however, at larger distances or high turning 

rates this would not be the case. The velocity of the vehicle compared to at the end of a 

large spray boom however, may be notably different especially while turning. To provide 
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feasibility for estimating anemometer velocity located at larger distances from the GNSS 

receiver (i.e.: at the end of a large spray boom) an algorithm for transforming GNSS 

velocity to the position of the weather station was necessary to obtain the velocity of the 

weather station. 

 Three methods for calculating the velocity of the weather station were 

investigated using GNSS data and compared to each other. The justification for this 

approach was to provide alternative methods of velocity calculation that are dependent on 

different GNSS parameters available in the GPGGA and GPRMC messages. The first 

method, dependent on the GNSS fix precision, involved using GPS coordinates and the 

known offset between devices to calculate new coordinates at the weather station’s 

position. The Haversine distance formula (Robusto, 1957) was used to calculate the 

distance between the two coordinates, and velocity was obtained by dividing by the 

sampling interval of the GNSS receiver. Vincenty’s formula was also used to calculate 

new coordinates at the 92000 model’s position and to calculate velocity for comparison. 

The second method used the GNSS receiver’s “Speed Over Ground” and “Course Over 

Ground” outputs. The velocity at the location of the weather station was determined by 

modeling vehicle motion as a curved path and solving for weather station by multiplying 

GNSS velocity by a scalar multiple equal to a ratio of turn radii at each location. The 

third method utilizes the Haversine/Vincenty methods to calculate the GNSS velocity, 

however, uses the relative motion algorithm in method 2 to transform velocity data to the 

weather station’s location. A comparison of the three methods is discussed in section 

3.1.8. 
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3.1.3 Method 1: Successive Coordinates 

 Perhaps the most intuitive method of calculating velocity from GNSS data is to 

calculate the distance between successive coordinates and divide by the known sampling 

interval. It is important to recognize that GPS coordinates are spherical coordinates, and 

that the coordinate system they are based on has a non-uniform grid size therefore, 

Pythagorean distance is an incorrect estimator of distance unless coordinates are 

transformed. Two methods of solving for the distance between coordinates were 

explored. 

The Haversine “Great Circle” distance was first solved instead. Before finding the 

Haversine distance, new coordinates at the weather station’s position needed to be 

calculated. The following equations represent a clockwise path, but the opposite direction 

(used in this study) was easily derived geometrically. First, the azimuth forward bearing 

was calculated according to equation 3.1. Next, the bearing facing the weather station 

from the GNSS receiver is solved using trigonometry in Equations 3.2 and 3.3. A legend 

defining the terms equations 3.1-3.10 is displayed as Figure 3.3, and the parameters are 

visualized in Figure 3.2. 

𝜃𝜃 = tan−1(sin(𝐾𝐾𝑖𝑖 − 𝐾𝐾𝑖𝑖−1) ∗ cos(𝐿𝐿𝑖𝑖) ,  cos(𝐿𝐿𝑖𝑖−1) ∗ sin(𝐿𝐿𝑖𝑖) 

− sin(𝐿𝐿𝑖𝑖−1) ∗ cos(𝐿𝐿𝑖𝑖) ∗ cos(𝐾𝐾𝑖𝑖 − 𝐾𝐾𝑖𝑖−1) 

(3.1) 

𝜑𝜑 = tan−1 �
𝑌𝑌
𝑋𝑋
� (3.2) 

𝜃𝜃𝐺𝐺→𝑤𝑤 = 𝜃𝜃 − (90 − 𝜑𝜑) (3.3) 
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Figure 3.2: Diagram shows the definition of azimuth forward bearing θ, and bearing 
facing the weather station 𝜃𝜃𝐺𝐺→𝑤𝑤 

 

Once the bearing facing the weather station was calculated, ("Calculate distance, bearing 

and more between Latitude/Longitude points,") the angular distance 𝛿𝛿 from the GNSS to 

weather station and was calculated, shown as equation 3.4. The new latitude and 

longitude coordinates are solved using equations 3.5 and 3.6 respectively. 

  

𝛿𝛿 =
Offset Distance

𝑟𝑟
 

(3.4) 
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𝐿𝐿𝑇𝑇 =  sin−1(sin(𝐿𝐿𝑖𝑖) ∗ cos(𝛿𝛿) + cos(𝐿𝐿𝑖𝑖) ∗ sin(𝛿𝛿) ∗ cos(𝜃𝜃𝐺𝐺→𝑤𝑤)) (3.5) 

𝐾𝐾𝑇𝑇 = 𝐾𝐾𝑖𝑖 + tan−1(sin(𝜃𝜃𝐺𝐺→𝑤𝑤) ∗ sin(𝛿𝛿) ∗ cos(𝐿𝐿𝑖𝑖) ,  cos(𝛿𝛿) − sin(𝐿𝐿𝑖𝑖) ∗ sin(𝐿𝐿𝑇𝑇)) (3.6) 

 

The Haversine distance calculation is completed using equations 3.7, 3.8, and 3.9. The 

resulting velocity at the weather station’s location is the Haversine distance divided by 

the sampling interval t (equation 3.10). Finally, the heading at the weather station’s 

location can be calculated using the same method as at the GNSS location using equation 

1. 

 

𝑎𝑎 =  sin �
𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑖𝑖−1

2
�
2

+ cos(𝐿𝐿𝑖𝑖−1) ∗ cos(𝐿𝐿𝑖𝑖) ∗ sin �
𝐾𝐾𝑖𝑖 − 𝐾𝐾𝑖𝑖−1

2
�
2

 
(3.7) 

𝑐𝑐 = 2 tan−1�√𝑎𝑎 ,  √1 − 𝑎𝑎� (3.8) 

𝑑𝑑 = 𝑟𝑟 ∗ 𝑐𝑐 (3.9) 

𝑣𝑣 =
𝑑𝑑
𝑡𝑡

 
(3.10) 
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Figure 3.3: Legend for equations 3.1-3.10 

 

 

Although seemingly effective by comparison to other methods during preliminary testing, 

the resulting Haversine velocity calculations were noisy and yielded poor similarity as 

compared to other methods (Figure 3.4). This was because equations 3.1-3.10 assume a 

spherical Earth model. An alternative method of solving for coordinates at the weather 

station’s location involved using Thaddeus Vincenty’s formula for a WGS-84 geodetic 

ellipsoid (Vincenty, 1975). A modified form of Vincenty’s formula was also used to 

solve for distance between transformed points. This algorithm is significantly longer but, 

claims higher accuracy up to a few millimeters. 

Where: 

𝛿𝛿 = angular distance 

Offset Distance = �((31.25 ∗ .0254)2 + (0.5 ∗ 0.354)2  meters from GNSS receiver 

𝑟𝑟 = Radius of the Earth (6361 ∗ 103 𝑚𝑚) 

𝐿𝐿𝑇𝑇 = Transformed Latitude Coordinate in decimal degrees 

𝐾𝐾𝑇𝑇 =  Transformed Longitude Coordinate in decimal degrees 

𝐿𝐿𝑖𝑖 = Latitude coordinate at position 𝑖𝑖 in decimal degrees 

𝐾𝐾𝑖𝑖 = Longitude coordinate at position 𝑖𝑖 in decimal degrees 

𝑑𝑑 = Haversine distance in meter 

𝑣𝑣 = Average velocity between coordinates 

𝑡𝑡 =  Sampling interval of GNSS (0.05 seconds) 
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Figure 3.4: The Haversine calculated form of method 1 yielded poor similitude when 
using equations 4-6 for new coordinate calculation 

 

The accuracy of this method of calculation is determinant on the accuracy of the 

GPS fix at the location of the GNSS receiver, which can vary greatly based on the current 

satellite constellation, location on Earth, interference, and differential correction method. 

For collected data in this study, the expected error of the fix is small because of the Real-

Time Kinematic RTK functionality included in the Trimble R10 model GNSS, which 

received data from the Kentucky Transportation Cabinet virtual reference station (VRS). 

Also, the Haversine distance formula assumes a spherical model of the Earth, and a 

constant known Earth radius at all locations involved in the calculation, which has been 
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assumed equal to 6371 ∗ 103 meters. The Vincenty formula differs from this by 

assuming a WGS-84 oblate ellipsoid. In both formulas, the transform headings were 

calculated by averaging sequential GNSS courses so that the transform could be 

completed relative to the course at each coordinate rather than courses in route towards 

them. A sample plot of original GNSS coordinates and calculated coordinates at the 

weather station’s location is shown as Figure 3.5. 

Distances between the GNSS coordinates and the transformed coordinates using 

equations 1-6 (spherical Earth model) and the Vincenty method (WGS-84 Earth model) 

were calculated using Vincenty’s distance formula (vreckon.m in Appendix 5 ) to 

compare accuracy between the methods of coordinate transform. The expected distance 

was the measured 0.7939 meters between the GNSS receiver and the 92000 model 

anemometer. The Vincenty WGS-84 method yielded better accuracy compared to the 

spherical method however, the spherical method of transform was still accurate within 

about ±0.06 meters. The distances are both displayed as Figure 3.6. To reduce noise in 

the velocity calculations, filtering was applied to match the timespan of filtering for the 

anemometers. These results are displayed and compared to other methods in section 

3.2.1. 
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Figure 3.5: Weather stations coordinates solved using Vincenty's formula were effective 
at transforming at a set distance. 
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Figure 3.6 Distances between GNSS coordinates and transformed coordinates (coordinate 
pairs) show better accuracy using the WGS-84 Earth model  

 

3.1.4 Method 2: Relative Velocity to GNSS 

 Higher-end GNSS receivers such as the Trimble RTK R10 may feature high 

precision velocity tracking that can be used in substitute to the successive coordinate 

method previously described. The featured GNSS receiver uses the Doppler effect to 

calculate velocity relative to satellite motion, measuring the difference in a message’s 

frequency at emission and arrival from multiple satellites to solve for velocity. The 

principle of this calculation is explained in depth by an article from InsideGNSS 

(Gaglione, 2015). Similar to the successive coordinate method, the velocity at the 

location of the GNSS receiver is insufficient for large separation distances from the 

weather station, thus a transform algorithm is described, relating the velocities at each 

location by a scalar multiple equal to the ratio of the turn radii of both locations. This 
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method 2 and the subsequent section’s method 3 were examined as a comparison to the 

calculated weather station dynamics solved using method 1. 

Before implementing this method, a few assumptions need considered. First, the 

precision of the transformed velocity is dependent on the precision of the output GNSS 

velocity. The precision of the GNSS velocity is dependent on the number of available 

satellites involved in the Doppler effect calculations. Additionally, the principle of this 

method relies on an assumption that angular velocity of the vehicle and attached bodies is 

equal and acceleration is negligible between measurements. This is a reasonable 

assumption at high sampling rates where accelerative force does not significantly change 

velocity between sampled points. 

3.1.5 Calculating Velocity at Weather Station’s Location relative to GNSS Location 

The velocity transform from the GNSS receiver location to the location of the 

weather station that was initially used was completed by computing a scalar multiple 

equal to the ratio of turn radii at both locations (GNSS and weather station) that can be 

applied to the output GNSS velocity. The principle of calculation is described in this 

section. 

Equations 3.11 and 3.12 express the velocities at the GNSS and weather station 

locations as circular motion by relating them to an equal angular velocity ω multiplied by 

their respective turn radii. Combining these two equations yield equation 3.13 for the 

velocity at the location of the weather station. Figure 3.7 visualizes the geometry for 

equations 3.14 and 3.15 solving for the turn radius at the weather station for right-hand 
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and left-hand turns respectively. Once this relation is derived, the turn radii of the GNSS 

needs to be calculated. 

𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝜔𝜔 ∗ 𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (3.11) 

𝑉𝑉𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 =  𝜔𝜔 ∗ 𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 (3.12) 

𝑉𝑉𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 = 𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∗ �
𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒

𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
� (3.13) 

𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 =  �(𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑋𝑋)2 + 𝑌𝑌2 (3.14) 

𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 =  �(𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑋𝑋)2 + 𝑌𝑌2 (3.15) 
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Figure 3.7: Diagram displaying turn radii and velocity vectors at the GNSS and weather 
station locations. The direction of the velocity vectors are pointing to the rear of the 

vehicle for visibility. 

 

 To solve for the turn radius of the GNSS receiver, two velocity measurements 

were used in an attempt to solve for GNSS turn radii without physical measurements. The 

theoretical distance traveled between data samples was solved by averaging successive 

velocities multiplied by the sampling time interval (equation 3.16). Equation 3.17 

expresses the distance traveled as the arc length of the path traveled. By using these two 

relations, the turn radius 𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 was solved using equation 3.18 and was used to solve for 

the turn radii at the weather station location. With all required parameters solved, the 

velocity at the weather station was attempted. A legend for the terms of equations 3.16-
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3.18 is displayed as Figure 3.9, and a visualization of variables as Figure 3.8. This 

method was unsuccessful however, because the calculated turn radii is better described as 

the radius of curvature. The offset distance between the GNSS receiver positions was 

consistently much larger than the calculated radius, which could not be scaled to the 

actual turn radius of the receiver for transformation to the weather station’s position. 

Instead, the known turn radii defined by the experiment’s plan was used. This is 

described further in 3.1.7. 

 

𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑎𝑎𝑑𝑑𝑐𝑐𝑑𝑑 = 𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∗ ∆𝑡𝑡 (3.16) 

𝑑𝑑𝑖𝑖𝑑𝑑𝑡𝑡𝑎𝑎𝑑𝑑𝑐𝑐𝑑𝑑 = 2𝜋𝜋𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∗
𝑑𝑑𝜃𝜃

360
 

(3.17) 

𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑡𝑡 ∗ 360

2𝜋𝜋 ∗ 𝑑𝑑𝜃𝜃
 (3.18) 
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Figure 3.8: Turn radius visualization at the GNSS location requires two velocity 
measurements. Velocity vectors are pointing in the opposite direction for improved 

visibility. 

 

 

Figure 3.9: Legend for parameters in equations 16-18 

Where:  

𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  Turn radius of GNSS receiver 

𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 = Turn radius of weather station 

𝑋𝑋 =  Sideways offset 

𝑌𝑌 = Forward offset 

𝑉𝑉𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = Recorded velocity of GNSS receiver 

𝑉𝑉𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 = Calculated velocity of weather station 
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Finally, to obtain the heading of the weather station, first 𝜃𝜃 in Figure 3.7 can be 

calculated using equation 3.19, and can be added to the GNSS “Course Over Ground” 

output for left turns and subtracted for right turns. 

𝜃𝜃 =  sin−1 �
𝑌𝑌

𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒
� (3.19) 

 

3.1.6 Method 3: Calculating Haversine velocity at GNSS location and using the relative 

velocity method to transform velocity to the weather station’s location 

 Alternative to the previous methods, a third method of calculating GNSS velocity 

using successive coordinates and transforming them to the weather station’s location 

using the relative velocity method was attempted. This could be a more elegant option for 

using successive coordinates if using a GNSS receiver that does not output velocity, 

because it yields a shorter algorithm that likely would solve faster compared to Method 1. 

This is because it eliminates the need to calculate azimuth forward bearing and 

coordinates at the location of the weather station. First, Vincenty or Haversine distance 

and velocity can be calculated, and then transformation completed using the relative 

velocity method. 

3.1.7 Adjustments and Limitations for Methods for A Circular Path 

 After collecting pilot GPS data to test vehicle velocity calculations, all methods 

appeared to work well when driving along a straight path, but later testing revealed flaws 

in the algorithm on a circular path. For method 1, the issue was identified by incorrectly 
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transformed coordinates caused by misalignment of the bearings in time with GPS 

coordinate data. Initially the transform angle towards the weather station was calculated 

locally as a constant (90 degrees added to the counter-clockwise form of equation 3), 

which was relative to the front of the vehicle however, the course angles used were the 

average course between points rather than at each coordinate. The course before and after 

each location were averaged to represent the angle at the point. After calculating the 

weather station’s velocity, filtering was conducted over the timespan of anemometer data 

filtering. 

For methods 2 and 3, flaws were discovered in the underlying equations for 

calculating the scalar multiple for velocity transform. In equations 3.14 and 3.15, by 

adding the physical offset dimension to the radius of curvature, the scalar was incorrectly 

calculated. The mistake isn’t obvious for straight paths because the radius of curvature 

approaches infinity, so small physical offsets make a negligible difference in the 

calculation. To correct this, the physical offset between the weather station and GNSS 

receiver needed to be scaled to match the radius of curvature by dividing by the offset by 

the actual turn radius, to add to the GNSS radius of curvature (equation 3.20). 

Alternatively, simply calculating the ratio of physical turn radii as the scalar multiple has 

similar results and has the advantage of not needing the previous heading to calculate 

GNSS turn radii. Applying this adjustment to these methods automatically limit their 

application because the physical turn radius must be estimated. In this study, trials were 

completed at known separation distance however, were not precise for the duration of 

each trial because of inevitable human errors while driving. Implementing these methods 
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in an actual system would require knowing the turn radius and may be better suited for 

center-pivot irrigation systems than self-propelled sprayers. 

 

𝑟𝑟𝑊𝑊𝑊𝑊𝑎𝑎𝑎𝑎ℎ𝑊𝑊𝑒𝑒 = 𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 +  
offset + separation

separation
 

(3.20) 

 

3.1.8 Comparing Methods of Anemometer Velocity 

 The methods of velocity calculations are compared. Calculation time from data 

collection through the calculation of the weather station’s velocity were an important 

consideration for processing the observed wind data. Here a discussion of the reaction 

time is introduced as the time period in which data processing and nozzle orifice 

actuation can be completed. This work focuses on the processing portion of this reaction 

time and involves the time to collect and filter weather data, collect GNSS data, calculate 

vehicle dynamics, and back out those vehicle dynamics from apparent wind velocities. 

Since the three described methods of velocity calculation have different inputs and 

principles of calculation, the following should be considered. 

Flow diagrams displaying the number of steps for each of the three methods are 

displayed as Figure 3.10, Figure 3.11, and Figure 3.12. Transforming position 

coordinates to different coordinates were much more time consuming than velocity 

calculations. All methods of calculating weather station velocity from GNSS 

measurements require at least two data points. Using the successive coordinate method 1 

requires three position coordinates for the Vincenty formulas. Two course bearings are 

obtained from the 3 positions and are averaged to get the instantaneous bearing at the 
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middle coordinate. If a GNSS receiver that calculates velocity and “course over ground” 

from the doppler effect is used, then only two position coordinates are needed (with 

matching output bearings) to solve for velocity using Vincenty’s formula. Alternatively, 

the relative velocity methods 2 and 3 using this output data require two GNSS velocity 

measurements. As mentioned in the previous section, the latter two methods may 

alternatively be calculated with one GNSS velocity measurement but still depend on a 

known or estimated instantaneous turn radius with good precision. A disadvantage to 

calculating velocity using successive GNSS coordinates (method 1) is an increased 

calculation time, as GNSS velocity must be calculated after data collection, whereas 

using a GNSS receiver utilizing doppler effect calculations (methods 2 and 3) provides 

this information as an output. This is easily visible by the difference in calculation 

lengths between the methods, where the successive coordinate method 1 requires several 

computationally time expensive trigonometric functions for both Vincenty and Haversine 

calculations. Method 3 requires the Haversine calculation, while method 2 only requires 1 

trig function for the heading. Depending on the GNSS sampling interval, method 2 could 

have a significant advantage in potential reaction time however its effectiveness and that 

of method 3 effectiveness is again limited by the precision of the input turn radii. 
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Figure 3.10: Flow chart visualizing Method 1 weather station velocity calculation 

 

 

Figure 3.11: Flow chart visualizing Method 2 weather station velocity calculation for 
known turn radii 

 

 

Figure 3.12: Flow chart visualizing method 3 weather station velocity calculation 
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Considering the weather station’s temporal sampling interval of 200 ms, and the 

GNSS receiver sampling every 50 ms, whenever GNSS measured or sampled velocities 

did not line up with weather data, all three methods could yield either three or four 

velocity calculations between weather data samples. With perfect alignment, up to five 

GPS coordinates can be recorded over 200 ms. The vehicle velocity data solved using 

method 1 was filtered using a moving average matching the sampling interval/filtering 

window of the weather station to reduce noise, simulating the amount of data available in 

real-time. For example, if the weather data were to be filtered with a 3-point window 

(600ms), then the GNSS velocity was filtered using a 12-point window (600ms). These 

velocity calculations were linearly interpolated to the time interval of the weather data, so 

a correction of weather data by subtracting vehicle dynamics can be achieved. Since 

interpolation accuracy is dependent on the sampling interval, the correction of wind data 

will be as well. 

 

3.1.9 Removing Vehicle Velocity from Apparent Wind Data 

 Once the determined vehicle dynamics have been linearly interpolated to the time 

interval of collected weather data, a correction of the observed weather station can be 

applied. First, wind data collected as polar vectors needed transformed into component 

values before the correction could be applied. Alternatively the anemometer may be 

configured to output wind vectors in polar format. Conditional statements for 

decomposing the 360-degree compass coordinates were used before applying 

trigonometric functions to calculate wind velocity components. Once wind vectors were 

decomposed into “X” and “Y” components, the interpolated dynamics at the weather 
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station’s location were subtracted from the forward “Y” component of the wind data as 

shown in Figure 3.13. Again, a conditional statement was required to handle negative Y 

component values corresponding to gusts blowing from the front end of the vehicle. 

Next, the magnitude of the wind velocity was solved using equation 3.21, and the 

direction solved using conditional statements in equations 3.22-3.25, and visualized in 

Figure 3.14. 

 

|𝑉𝑉𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤 𝑎𝑎𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤| =  �(𝑌𝑌′)2 + (𝑋𝑋)2 (3.21) 
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Figure 3.13: A diagram visualizing wind components and resultant vectors after 
subtraction of vehicle velocity from the "Y" component. VWind Corrected is the resultant 

vector of Y’ and X components. 
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Figure 3.14: Visualization of wind direction calculation according to equations 21-24 

 

a.)  If 𝑌𝑌′ < 0 and 𝑋𝑋 < 0 

𝜃𝜃𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤 𝐶𝐶𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤 = 90° −  �tan−1 �
𝑌𝑌′

𝑋𝑋
�� 

(3.22) 

b.)  If 𝑌𝑌′ < 0 and 𝑋𝑋 > 0 

𝜃𝜃𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤 𝐶𝐶𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤 = 270° + �𝑡𝑡𝑎𝑎𝑑𝑑−1 �
𝑌𝑌′

𝑋𝑋
�� 

(3.23) 
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c.)  If 𝑌𝑌′ > 0 and 𝑋𝑋 < 0 

𝜃𝜃𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤 𝐶𝐶𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤 = 90° + �𝑡𝑡𝑎𝑎𝑑𝑑−1 �
𝑌𝑌′

𝑋𝑋
�� 

(3.24) 

 

d.)  If 𝑌𝑌′ > 0 and 𝑋𝑋 > 0 

𝜃𝜃𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤 𝐶𝐶𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤 = 270° − �𝑡𝑡𝑎𝑎𝑑𝑑−1 �
𝑌𝑌′

𝑋𝑋
�� 

(3.25) 

 

 Once vehicle dynamics are effectively removed from the apparent wind data, a 

final correction rotating the wind vectors relative to True North is necessary for 

correlation testing with a static anemometer. In Figure 3.15, “False North” refers to the 

heading of the weather station, while |𝑉𝑉𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤| is the corrected wind velocity after 

removing vehicle dynamics, and 𝜃𝜃𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤 𝐶𝐶𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤 is the recalculated direction of wind 

gusts relative to “False North” or the weather station’s heading. To obtain the correct 

heading of wind data, the apparent wind heading is simply added to its relative vehicle 

heading as shown in equation 3.26. A modulus function is used to handle resulting 

headings greater than 359.9� to keep results in the range of compass bearings. 
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Figure 3.15: Diagram displays principle of correction of wind directions to be relative to 
True North 

 

𝜃𝜃𝑇𝑇𝑒𝑒𝑎𝑎𝑊𝑊 = 𝜃𝜃𝑉𝑉𝑊𝑊ℎ𝑖𝑖𝑎𝑎𝑎𝑎𝑊𝑊 + 𝜃𝜃𝑊𝑊𝑖𝑖𝑤𝑤𝑤𝑤 𝐶𝐶𝑜𝑜𝑒𝑒𝑒𝑒𝑊𝑊𝑎𝑎𝑎𝑎𝑊𝑊𝑤𝑤 (3.26) 

 

3.1.10 Quantifying Similitude Between Anemometer and Dynamic Weather Station 

 The analysis of output data for this experiment was conducted similarly as the 

stationary experiment in Chapter 2. Identical to the analysis of the stationary experiment, 

the Pearson correlation coefficient was determined as an unsuitable indicator of 
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similitude between the two data series at the distances between sensors because it tests 

for linear dependence. Cross-correlograms were generated and examined at zero lags, and 

their shapes were examined for structured decay at increasing lags as indicators of 

variability. An analysis of differenced wind velocities was also studied to indicate the 

percentage of differences under increasing thresholds. Filtering uncertainty described in 

section 2.1.8 was calculated but used only for visualization purposes. 

 Results: 

3.2.1 Vehicle Velocity and Course Comparisons 

 In this section the results for the various methods of vehicle velocity calculations 

are discussed. Among the three methods of calculation for the velocity of the weather 

station, the results are similar. The targeted vehicle velocity (3mph, 6mph, 9mph) seemed 

to have had little effect on the accuracy of any method however, 3 mph trials seemed to 

produce the least noise. Figure 3.16, Figure 3.17, and Figure 3.18 display weather station 

velocity calculations using the three methods at a 6.10 m separation distance. In some 

trials an oscillating trend exists, caused by the driver pushing the gas pedal to accelerate 

and letting off to slow to the trial’s target velocity. The three methods were similar to 

each other however, method 1 had the most noise. Since this method relied on course 

calculations to determine the heading where new coordinates were to be projected to, 

inconsistencies in the spacing of these coordinates caused more variation in the velocity 

calculation. Since coordinates were projected outward from a circular path with the 

course changing rapidly, coordinate spacing was larger as expected, and often smaller 

where the vehicle’s course changed more gradually. It also may have been caused by 

imprecision with the adjustment method discussed in section 3.1.7. Although the 
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transformed points had a somewhat sporadic spacing, they remained the correct distance 

from the GNSS receiver’s location. Figure 3.19 shows how applying filters to the 

velocity data over the same time span of wind data helped to alleviate these 

inconsistencies. 

 

Figure 3.16: Three methods of calculation for weather station velocity yield close results 
for dynamic testing at 20 ft anemometer separation, approximately 3 mph vehicle speed, 

trial 1. Method 1 (M1) results were noisier when unfiltered. 
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Figure 3.17:Three methods of calculation for weather station velocity yield close results 
for dynamic testing at 20 ft anemometer separation, approximately 6 mph vehicle speed, 

trial 1. 

 

Figure 3.18: Three methods of calculation for weather station velocity yield close results 
for dynamic testing at 20 ft anemometer separation, approximately 9 mph vehicle speed, 

trial 1. 
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Figure 3.19: The data for block 3, at a 40 ft separation, 6 mph, no filter (top) and 7-point 
moving average (bottom) show filtering’s effect of smoothing weather station dynamics 

on method 1 for reducing noise before backing it out from wind data. 

 

For the weather station’s course calculations, all three methods yield the same 

results. Matching course calculations for the velocities in Figure 3.16, Figure 3.17, and 

Figure 3.18 are plotted in Figure 3.20, Figure 3.21, and Figure 3.22 respectively. As 
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expected, the slope of the weather station’s (vehicle course) plot increases with 

increasing velocity because it travels around the circular path faster. 

 

 

Figure 3.20: Course calculations for all three methods have good alignment with minimal 
noise. This sampled data is from Block 1, with an anemometer separation distance of 20 

ft and 3 mph vehicle velocity target. 
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Figure 3.21: Course calculations for all three methods from sampled data from Block 1, 
with an anemometer separation distance of 20 ft and 6 mph vehicle velocity target. 
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Figure 3.22: Course calculations for all three methods from sampled data from Block 1, 
with an anemometer separation distance of 20 ft and 9 mph vehicle velocity target. 
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window’s variance and uncertainty regarding the precision of the vehicle velocity 

calculations. Regardless, the initial plotting of the data appeared to show good similitude 

between the two series, especially where uncertainties overlap. 

 

Figure 3.23 Scatter plot with filter uncertainties defined as the standard deviation over the 
filtering window. 
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3.2.3 Validating Wind Gusts by Comparing Direction 

The directional data of raw stationary measurements and processed dynamic 

measurements were compared to validate the origin of wind gusts. If processed gusts 

were found to have similar velocities and direction, then confidence was improved in the 

processing algorithm’s accuracy. Overall, matching wind directions were observed for 

both anemometers. Noise identified in the weather station’s velocity calculations carried 

over to the processed wind speeds and direction as shown in Figure 3.24. The increasing 

filtering window’s effects on noise reduction on the sensors dynamics also carried 

through to the wind dynamics as well and is visualized in Figure 3.25. Disregarding 

noise, the directional data appeared to fluctuate in sync between the two series, 

suggesting that the processing method for reorienting dynamic sensor data was effective. 

Increasing distance between the sensors and higher vehicle velocities seemed to result in 

greater differences between the wind data. This observation was validated by comparison 

to the wind velocity data. 
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Figure 3.24: Noise from calculating vehicle dynamics carry into wind calculations when 
unfiltered. This data is from block 1, 40ft separation, 3 mph speed. 

 

Figure 3.25: Noise in wind data were reduced using moving average filtering. This 
dataset was from block 1, 40 ft separation, 3 mph, with a 7-point moving average applied. 
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3.2.4 Cross-correlation Results 

Cross-correlation testing was completed on raw data for each trial and for each 

selected filter (3, 5, and 7 point moving averages) for each method of weather station 

velocity calculation. In each dataset, the calculated cross-correlation coefficient as well as 

its decay over lag times was examined. As with stationary testing, a structured decay 

indicated similitude in time-series data because it suggests that paired wind velocities (at 

the same time) may experience the same gusts, as wind velocity at both locations 

fluctuate together. 

 

Figure 3.26: Increasing filtering window size improves correlation Block 1, 60 ft, 9 mph 
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Figure 3.27: Increasing filter size results in method 1 having the highest cross-correlation 
and similarity. Data from block 2, 20 ft separation distance, 3 mph is shown with no 

filtering (a. top) and 7-point moving average (b. bottom) 
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correlogram is displayed as Figure 3.26. This was caused by an abundance of noise in the 

calculation of the weather station’s dynamics. When filtering was applied, method 1 

sometimes yielded the highest cross-correlation, as shown in Figure 3.27 where method 1 

has drastic improvement in correlation after filtering. In all trials the unfiltered data had 

very poor cross-correlation and improved significantly with filtering as the vehicle 

dynamics were smoothed. Methods 2 and 3 yielded inconsistencies in correlation, and it 

is unclear which of the two methods are more ideal from correlograms alone. At a 20 ft 

separation between the anemometer and weather station, cross-correlograms generally 

had structured decay across increasing lag times, shown in Figure 3.28a. Figure 3.28b is 

an example of structured decay over shorter lag distance (about 30 lags or 6 seconds) in 

which the increase in cross-correlation at longer times indicate a cyclical trend over the 

domain. These occurrences don’t necessarily indicate any lack of similarity but instead 

may suggest higher variability over the test’s duration. 

With increasing separation distances (40 ft and 60 ft), the cross-correlograms 

generally become less structured. Figure 3.29 is an example of a 40 ft trial with good 

structure and steep decay. Table 3.2 shows indication of each cross-correlogram structure 

for all dynamic trials. “YES” indicates a symmetrical decay in cross-correlation over 

positive and negative lags, while “NO” indicates a flat structure. On some trials, 

structured decay occurred mainly across positive (Right side) or negative (Left side) lags. 

For most trials, an applied 3-point moving average filter significantly improved structure 

of the correlograms because of reductions in vehicle dynamic noise, while 5 and 7-point 

filters mainly increased the correlation while maintaining structure. In Table 3.2, 

indicators summarize the results for all filters tested. 
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Table 3.2: A summary of cross-correlogram structure for unfiltered dynamic trials. 
“YES” indicates a symmetrical decay in cross-correlation coefficient, “NO” indicates no 

structured decay. Descriptive notes are included for special cases. 

Trial 3 mph 6 mph 9 mph 

20 ft_1 YES YES Weak 

20 ft_2 YES YES N/A 

20 ft_3 YES YES N/A 

40 ft_1 Weak Weak YES 

40 ft_2 YES NO Yes, Left 

40 ft_3 YES YES YES 

60 ft_1 YES, Left side YES, Left until Lag = 10 YES 

60 ft_2 YES YES YES, until lag = 20 

60ft _3 YES YES, Left Side Weak 
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Figure 3.28: Block 1, 20 ft, 3 mph (a. top), 6 mph (b. bottom) 
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Figure 3.29: Block 1, 40ft, 9 mph, 7-point moving average 

 

3.2.5 Special Cases in Cross-Correlation Analysis 

For most trials, acceptable structure in cross-correlation was observed once a filter 

was applied. In the analysis of these trials, a steeper decay in cross-correlation was 

attributed to either agreement between fluctuations in wind velocity at the two locations, 

or a long-term trend over the sampled domain for the trial (10 minutes) existent at both 

locations. In either case, the results were interpreted as evidence of similitude at the two 

locations. Conversely, a flat shape in the cross-correlogram may indicate an abundance of 

noise where wind velocity at one location fluctuates so frequently that all lags yield the 

same cross-correlation. An example of this phenomenon was discovered from Block 2, 

40 ft of separation, with a target vehicle velocity of 6 mph. This trial still yielded a good 

correlation of 0.795 at zero lags but, the correlogram’s flat shape suggests that the wind 

velocity had more random variability throughout the trial (Figure 3.30). This was 

confirmed after the dataset was visualized, shown in Figure 3.31. Filtering the data 

0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95

-50 -30 -10 10 30 50

Cr
os

s-
co

rr
el

at
io

n 
co

ef
fic

ie
nt

Lags

M1 Successive Coordinate

M2 Relative Velocity

M3 Relative Successive Coordinate



 

95 
 

resulted in a slight reduction of noise and an increase in cross-correlation coefficient 

however, the structure of the resulting cross-correlogram still remained relatively flat. 

Next, vehicle velocity calculations were consulted to investigate whether there was an 

abundance of noise skewing the data (Figure 3.32) but it was found to be minimal. In this 

situation, it’s clear that wind velocity over the time period was more variable than other 

observed times at that distance. By following this procedure, determinations of similitude 

among wind data for other trials were made. 

 

Figure 3.30: The cross-correlogram for the trial in Block 2, 40ft separation, 6 mph target 
vehicle velocity exhibits a flat shape even with a 7-point moving average applied, 

suggesting more random variability among one of the time-series datasets 
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Figure 3.31: Plotted data for Block 2, 40 ft separation, 6 mph targeted vehicle velocity 
still displays an abundance of noise after filtering with a 7-point moving average 

 

Figure 3.32: Vehicle velocity calculations (Method 1) show minimal noise, eliminating it 
as a source for irregularities in processed wind data 
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3.2.6 Distribution of Measurement Differences 

 In addition to previous methods, a more intuitive approach analyzes the 

differences between stationary measurements and processed dynamic wind velocities. 

These differences were calculated and placed into bins of width 0.1 m/s. Cumulative 

probability density plots were generated for each of the three dynamic processing 

methods. The intended goals for this analysis were to help determine which method of 

calculating weather station dynamics yielded the closest wind velocities to the stationary 

anemometer, and to visualize the extent of each filter’s smoothing effect on the datasets. 

Those datasets with larger proportions of small wind velocity differences are easily 

recognized by their position on the chart above other trials. Figure 3.33 is the cumulative 

probability chart for the first 20 ft separation trial with a targeted 3 mph vehicle velocity. 

This observation however was not obvious for all trials. When looking at visualizations 

of the data and calculated uncertainty, increasing filter size was shown to minimize large 

differences between wind velocities at the two locations for all trials, targeted velocities, 

separation distances, and was in agreement to improved cross-correlation when 

comparing increasing filtering window size. Histograms of the distribution of 

measurement differences also confirmed this but were not included in this work. The 

cumulative data masks filtering’s effect of minimizing small differences in method 1 

because of the prevalence of noise in the dynamic series. Although not shown in plots, 

there was a decrease in the number of bins (of equal width), as more wind velocity 

differences were smaller with increasing filtering window. 

 Comparing target vehicle velocity, the cumulative probability data were ranked 

for each separation distance to visualize its effect on wind velocity differences and were 
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displayed as Table 3.3. All 9 mph trials experienced the largest differences in wind 

velocities at the two locations, suggesting at a glance that faster vehicle speeds may 

negatively impact the precision of processed dynamic measurements. Considering 

distance, there was a noticeable pattern of decreasing similarity with increasing vehicle 

speed at a 20 ft separation distance. For the 40 ft and 60 ft trials however, the 3 mph and 

6 mph vehicle speeds become increasing inconsistent in ranking compared to the 9 mph 

trials. Overall, it appeared that slower speeds yielded the smallest differences between 

wind data. An example of this trend is displayed at Figure 3.34. When looking at 

increasing distances alone, there wasn’t an apparent trend from this method of analysis. 

All potential trends aside, every trial experienced roughly at least 75% of wind velocity 

differences less than or equal 1 m/s, showing great similarity between them. 

Table 3.3: Ranking for each trial's cumulative probability data is shown. A rank equal to 
1 indicates closer wind velocities between sensors, as a higher percent of velocity pairs 

have smaller differences. 

Trial 3 mph 6 mph 9 mph 

20 ft_1 1 2 3 

40 ft_1 1 2 3 

60 ft_1 1 2 3 

20 ft_2 2 1 N/A 

40 ft_2 1 2 3 

60 ft_2 1 2 3 

20 ft_3 1 2 N/A 

40 ft_3 2 1 3 

60 ft_3 2 1 3 
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Figure 3.33: Cumulative probability distribution shows increasing the moving average 
filtering window smooths velocity data and minimizes differences in values 

 

 

Figure 3.34: Cumulative probability chart shows higher percent of small wind velocity 
differences at slower vehicle speeds 
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 Discussion: 

3.3.1 Weather Station Velocity Transformation 

 Three methods of calculation/transform were determined feasible to solve for 

weather station velocity. With similar results for each method at a small offset between 

the weather station and GNSS receiver, testing of each algorithm may be continued at 

larger offsets. Method 1, which uses Vincenty’s formula for calculating new coordinates 

using current location, destination distance, heading, then solving for the distance 

between coordinates divided by the sampling interval for velocity, was the most robust 

and seemingly accurate method of solving for weather station velocity. The second 

method, which used the GNSS receiver’s velocity and course calculations solved by the 

Doppler effect between satellite signals and transforming them by relative motion to the 

weather station’s location was a “quick and dirty” method of transform that appeared 

effective during straight path experimentation but required adjustment to be used 

correctly. The resulting algorithm required a known physical turn radius, limiting it to 

either center-pivot irrigation systems or highly parameterized paths with complex 

conditional statements in the algorithm. The third method used Vincenty/Haversine 

distance calculations on the original GNSS coordinates, but also suffered the limitations 

of method 2 for relative motion transformation. To determine which method may be 

suitable for actuating a variable-rate sprayer system, each method’s uncertainty, 

calculation time, and device sampling rate should be considered. 
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3.3.1.1 Uncertainty in Velocity Calculations’ Precision 

The resulting velocity calculations at the location of the weather station for the 

three methods were similar. Vincenty’s formula claims highly precise coordinate 

transformations, but its application in this study had limiting factors. The main limitation 

was the derivation of headings in the direction of the weather station from the GNSS 

receiver, where two bearings between coordinates need to be averaged to obtain an 

approximated instantaneous bearing at each coordinate. 

Although three methods of calculation for the weather station velocity were 

investigated, only similitudes between the results were studied. If the actual precision of 

each method is desired, a separate experiment may be conducted in which the velocity at 

two separate locations could be solved and compared using two GNSS receivers. This 

proposed experiment should record geographical coordinate data while traveling in 

circular motion as was completed in this chapter however, with a larger offset between 

the receivers comparable to a commercial spray boom. Using the three methods described 

in this work, velocities at each GNSS receiver can be calculated by transformation of the 

data originating from the other receiver so that the predicted velocities can be validated 

by the GNSS output at the location of the prediction. 

Additionally, future work should validate the methods of velocity calculation in 

this work by investigating transform of GNSS coordinates into a local or regional 

coordinate system such as Universal Transverse Mercator (UTM) and subsequently 

calculating the position of the anemometer. The velocity of the anemometer can then be 

calculated from those successive coordinates. These calculations should be compared 

with methods in this work for accuracy and calculation time. 
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In most cases a velocity transform algorithm is probably not needed. When the 

vehicle is traveling a straight path, the velocities at all points on the moving body are 

equal. For implements that need to travel curved paths, a more complicated algorithm 

could be developed that switches transforming portions on and off when traveling across 

previously defined locations. Alternatively, radius of curvature calculations described 

could detect turns and trigger a transformation method. The filtering technique could also 

be refined by implementing band-pass filters to remove obvious outliers from the velocity 

transform. 

3.3.1.2 Considering Calculation Time 

 An important consideration when implementing the processing algorithms is the 

calculation time. Since the processing algorithm for dynamic data wasn’t completed in 

real-time, the fastest sampling interval was used, and the results interpolated to the 

weather station’s data series. In this study, the GNSS receiver sampling interval was 50 

ms, while the anemometers sampled at 200 ms. To implement either of the three 

algorithms, the calculation time must not exceed the sampling interval/timespan of 

filtering to prevent either a backlog of calculations from building or an increasing number 

of threads. For example, in this study’s configuration a 3-point moving average required 

600 milliseconds of data recording. The corresponding maximum number of recorded 

GNSS velocities to be used in vehicle dynamics transformation was 12 points (600 ms / 

50 ms = 12 points). If the vehicle dynamics or wind data processing algorithms take 

longer than that time (i.e 600 ms) to complete, the processor will fall behind on 

calculations it needs to complete and could cause latency in the results or potential 

program failure. In section 3.1.8 Comparing Methods of Anemometer Velocity, it was 
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mentioned that method 1 requires the most time to calculate because of an abundance of 

trigonometric functions however, the difference in calculation time to the Haversine 

method is often considered negligible especially weighing in the benefits of improved 

precision. Meanwhile, methods 2 and 3 are notably shorter but sacrifice precision if 

implemented on paths not well parameterized. 

 

3.3.2 Feasibility at Varied Distances 

 At the beginning of the study, it was expected that the variability between 

anemometers would increase with distance. The analysis of cross-correlograms generally 

supported this hypothesis by displaying sharper decays in the correlograms for smaller 

distances, and flatter structures at farther distances. Despite this, visualizing the data 

series and an analysis of differenced values showed no apparent trend of increasing 

differences in wind velocity with distance however, cross-correlograms suggest that the 

variability between locations differed more, evident in the visuals by less synchronized 

fluctuations. Even considering non-synchronized fluctuations, both anemometers saw a 

majority of wind velocity differences less than or equal to 1 m/s. The wind direction was 

mostly always in sync because the main heading of wind gusts was in the same direction, 

but even small variations in direction were seen in both series. This validated that the 

same gusts were present at both sensors, but the intensity was not the same nor expected 

but was close enough. 
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CHAPTER 4. CONCLUSIONS AND FUTURE WORK 

 

The objectives of this work aimed to help examine the feasibility of using wind 

velocity data for controlling droplet spectra in sprayer systems. First, two ultrasonic 

anemometers were interfaced with GNSS receivers for timestamping with millisecond 

accuracy. Next, stationary testing looked at similitude between wind velocities at varied 

separation distances with various moving average filtering window sizes. Finally, a 

dynamic test was conducted in which a one anemometer was mounted to a utility vehicle, 

and vehicle dynamics were subtracted from apparent wind velocity for comparison to a 

stationary anemometer. Various filtering window sizes were tested for noise reduction 

and their effects on improving similitude between wind velocities in both experiments. 

The anemometers were successfully interfaced for accurate timestamping of wind 

data. From the results of experiments in this study, there seems to be promise for making 

nozzle decisions in the field at distances many meters away from a recording position for 

mitigating drift. As expected, wind intensity varies with increasing distance, but there is 

certainly potential for actuating a nozzle orifice to obtain larger droplets in reaction to 

gusts, while still maintaining a minimal size to achieve optimal coverage. By applying 

filters over the timespan of about one second, there was a notable reduction in noise with 

minimal changes to differences between locations. 
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APPENDICES 

 Schematics for Machined and 3D Printed Parts 

 

 

Figure A.1.1: Custom aluminum tripod adapter for 6 ft horizontal 8020 aluminum 
extrusion attachment. 
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Figure A.1.2: Custom aluminum slug mount for fastening anemometers. Chamfers were 
cut for ease of mounting and filets so that a wrench could grip the slug for tightening. 
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Figure A.1.2: 3D printed lid for PCB enclosure fastens to the bottom piece with 3 #4 
machine screws. 
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Figure A.1.3: 3D printed base for PCB enclosure rise and secure the board sufficiently to 
the base. 
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 MATLAB Code for Stationary Testing 

Caller Script: 

%% stationaryPrompt.m 
% Author: Austin Weiss 
% Date: 2/19/19 
% Description: 
%       Loops through raw data files to create repetition data for 
stats 
%       analysis. 
%       Passes filename, PrintSuffix, distance, and filter to 
%       Anemometer_process function 
% 
  
clear; clc; 
colonfix=1;       % Fix colon for millisecond timestamp (1=YES) 
direction_ask=0;  % Directional filtering (0=NO) 
velocity_ask=0;   % Velocity filtering (0=NO) 
repetition_ask={1,3,5,7}; 
  
filename={{'Stationary_20ft_1','Stationary_20ft_2','Stationary_20ft_3'}
,... 
   {'Stationary_40ft_1','Stationary_40ft_2','Stationary_40ft_3'},... 
   {'Stationary_60ft_1','Stationary_60ft_2','Stationary_60ft_3'}}; 
  
%filename={{'Stationary_12ft_1cont'}}; 
  
    % filename is 3 cells (1 for each distance) with 3 trials inside 
each 
PrintSuffix={'_NoFilter','_3pt','_5pt','_7pt'}; 
distance={20,40,60}; 
%distance={12}; 
count=1; % For printing row placement 
for x=1:numel(distance) 
    for f=1:numel(filename(Xie & Wang))  % For each distance 
        readFilename{f}=sprintf('%s',filename(Xie & Wang){f},'.csv'); 
    end 
    for i=1:numel(readFilename) 
        for j=1:numel(repetition_ask) 
            Printfilename=sprintf('%s',filename(Xie & 
Wang){i},PrintSuffix{j},'.xlsx'); 
            
cumul=Anemometer_process(readFilename{i},repetition_ask{j},Printfilenam
e,distance(Xie & Wang),colonfix,direction_ask,velocity_ask); 
            velthres(1,1)={Printfilename}; 
            velthres(2,1)={'Difference in Wind Velocity (m/s)'}; 
velthres(3,1)={'Percent of Measurements <='}; 
            
velthres(2,2:numel(cumul(:,1)))=cumul(2:numel(cumul(:,1)),3); 
            
velthres(3,2:numel(cumul(:,1)))=cumul(2:numel(cumul(:,1)),4); 
             
            velthresprint(count,1:numel(velthres(1,:)))=velthres(1,:); 
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velthresprint(count+1,1:numel(velthres(1,:)))=velthres(2,:); 
            
velthresprint(count+2,1:numel(velthres(1,:)))=velthres(3,:); 
            velthresprint(count+3,1:numel(velthres(1,:)))={[]}; 
            clear velthres; 
            count=count+4; % Counter for printing 
        end 
    end 
end 
xlswrite('DifferenceAnalysis.xlsx',velthresprint,1) 
 

Anemometer Processing: 

%% Anemometer_process.m 
%  UltraSonic Anemometer Processing Script 
% Author: Austin Weiss 
% Last updated: 3/26/2018 
% Description: 
%           Filtering out errors 
%           Separating of sensor data by address 
%           Print results in Excel 
%           To visualize time in Excel: NEED TO CHANGE NUMBER FORMAT 
FOR 
%           TIME COLUMNS BACK TO 'HH:MM:SS.000'  
  
function [cumul]= 
Anemometer_process(filename,repetition_ask,Printfilename,distance,colon
fix,direction_ask,velocity_ask) 
%% Main Code: 
TimeANDFiltering=0; % Disable time data (old analysis) 
  
% Inactive variables for TimeANDFiltering=1 
%print_ask=input('Do you want to print to Excel? 1 = yes, 0 = no '); 
%if print_ask==1 
%summary_ask=input('Generate Summary Sheet? 1 = yes, 0 = no '); 
%else 
%end 
% Input window size to filter 
%% Sheet Name Generator 
% Directional and velocity filtering 
if direction_ask==1 && velocity_ask==1 
    window=input('Enter filtering window for orthogonal window to 
remove in degrees '); 
    min_velocity=input('Enter minimum velocity (m/s) to include '); 
    max_velocity=input('Enter maximum velocity (m/s) to include (0 will 
choose dataset maximum) '); 
    windowstring=string(window); 
    windowsuffix=' deg orthog rem'; 
     
    min_velstring=string(min_velocity); 
    velstringsuffix=' m_s vel,'; 
    % Converting Max velocity to actual if not specified 
    if max_velocity==0 
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        max_velstring='Max'; 
    else 
        max_velstring=string(max_velocity); 
    end 
    sheet=sprintf('%s',min_velstring,'-
',max_velstring,velstringsuffix,windowstring,windowsuffix);     % 
Creates sheet name 
    % Direction only filtering 
elseif direction_ask==1 && velocity_ask==0 
    window=input('Enter filtering window for both directions in degrees 
'); 
    windowstring=string(window); 
    windowsuffix=' deg orth rem'; 
    sheet=sprintf('%s',windowstring,windowsuffix);     % Creates sheet 
name 
    % Velocity only filtering 
elseif direction_ask==0 && velocity_ask==1 
    min_velocity=input('Enter minimum velocity (m/s) to include '); 
    max_velocity=input('Enter maximum velocity (m/s) to include (0 will 
choose dataset maximum) '); 
    min_velstring=string(min_velocity); 
    velstringsuffix=' m_s velocity, '; 
    % Converting Max velocity to actual if not specified 
    if max_velocity==0 
        max_velstring='Max'; 
         
    else 
        max_velstring=string(max_velocity); 
    end 
    sheet=sprintf('%s',min_velstring,'-', 
max_velstring,velstringsuffix); 
else 
    sheet='Raw'; 
end 
  
 
%tabledataa=readtable('2_15_18_raw.csv'); 
[num,txt,xlxreaddata]=xlsread(filename); % Read in data from file 
  
sensor1=86000;      % Sensor addresses as string (as displayed in 
sheet) 
sensor2=96000; 
k=1;            % Start writing counter for sensor1 
m=1;            % Start writing counter for sensor2 
%% Scan for Errors and Delete 
% For Table read: 
%datafilter=rmmissing(tabledataa,'DataVariables',{'Time'}); 
  
% For xlsread: 
data=xlxreaddata; 
n=numel(data(:,1)); 
j=1; 
count=1; 
while n>j 
    if isnan(data{j,8}) % if NaN 
        data(j,:)=[];   % Deleting errors 
        count=count+1;   % Counting error that are removed. 
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        n=numel(data(:,1)); 
    elseif isequal(data{j,8},'00:00:00:000') 
        data(j,:)=[];   % Deleting errors 
        count=count+1;   % Counting error that are removed. 
        n=numel(data(:,1)); 
    elseif colonfix==1 && isnumeric(data{j,8}) 
        data(j,:)=[];   % Deleting errors 
        count=count+1;   % Counting error that are removed. 
        n=numel(data(:,1)); 
    else 
        j=j+1; 
    end 
end 
  
%% Sorting data by sensor: 
if colonfix==1  % If colon needs replaced.... 
    for i=2:numel(data(:,1))        % For all rows in the data sheet 
         
        % Fixing millisecond : to . COMMENT OUT AS NEEDED 
        X=strsplit(data{i,8},':'); 
        fix=strjoin(X,{':',':','.'}); 
        data{i,8}=fix; 
    end 
else 
end 
% ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
% VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV 
if colonfix==1 
    [rewrite]=data; 
    % Building replacement .xlsx for .csv with errors removed. 
    csvsplit=strsplit(filename,'.'); 
    xlxfilename=[csvsplit{1},'.xlsx']; 
     
    xlswrite(xlxfilename,rewrite); 
    [num,txt,xlxreaddata]=xlsread(xlxfilename); % Read in data from 
file 
    data=xlxreaddata; 
else 
end 
  
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^ 
for i=2:numel(data(:,1))        % For all rows in the data sheet 
     
    if data{i,1}==sensor1       % If current row is '86000' 
        dataout1(k,:)=data(i,:);    % Grab the whole row 
        k=k+1;              % Move to next writing position 
    else                % Otherwise sort it as '92000' 
        dataout2(m,:)=data(i,:); 
        m=m+1;              % Move to next writing position 
    end 
end 
  
%% For directional filtering: 
if direction_ask==1     % Prompted at start 
    % 86000: 
    dir=zeros(numel(dataout1(:,1)),1);   %preallocate check array 
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    for d=1:numel(dataout1(:,1))    %86000  60-120 deg 
        if dataout1{d,3}>=90-(window/2) && dataout1{d,3}<=90+(window/2) 
            dir(d)=1; 
        elseif dataout1{d,3}>=270-(window/2) && 
dataout1{d,3}<=270+(window/2) 
            dir(d)=1; 
        else 
            dir(d)=0; 
        end 
    end 
    dataout1(dir(:)==1,:)=[]; 
     
    % 92000: 
    dir=zeros(numel(dataout2(:,1)),1);   %preallocate check array 
    for d=1:numel(dataout2(:,1))    %92000 240-200 deg 
        if dataout2{d,3}>=90-(window/2) && dataout2{d,3}<=90+(window/2)     
% IF direction is inside the window, remove! 
            dir(d)=1; 
        elseif dataout2{d,3}>=270-(window/2) && 
dataout2{d,3}<=270+(window/2) 
            dir(d)=1; 
        else 
            dir(d)=0; 
        end 
    end 
    dataout2(dir(:)==1,:)=[]; 
else 
end 
  
%% For velocity filtering: 
if velocity_ask==1 
    if max_velocity==0      % Sets maximum check to actual if not 
specified by prompt (entered 0) 
        max_velocity1=max([dataout1{:,2}]); 
        max_velocity2=max([dataout2{:,2}]); 
    else 
        % Otherwise set maximum for each sensor as chosen: 
        max_velocity1=max_velocity; 
        max_velocity2=max_velocity; 
    end 
     
    if velocity_ask==1     % Prompted at start 
        % 86000: 
        vel=zeros(numel(dataout1(:,1)),1);   %preallocate check array 
        for d=1:numel(dataout1(:,1))    %86000  60-120 deg 
            if dataout1{d,2}>max_velocity1 || 
dataout1{d,3}<min_velocity 
                vel(d)=1; 
            else 
                vel(d)=0; 
            end 
        end 
        dataout1(vel(:)==1,:)=[]; 
         
        % 92000: 
        vel=zeros(numel(dataout2(:,1)),1);   %preallocate check array 
        for d=1:numel(dataout2(:,1))    %92000 240-200 deg 



 

114 
 

            if dataout2{d,2}>max_velocity2 || 
dataout2{d,3}<min_velocity 
                vel(d)=1; 
            else 
                vel(d)=0; 
            end 
        end 
        dataout2(vel(:)==1,:)=[]; 
    else 
    end 
else 
end 
  
%% Grabbing data for interpolation 
time1=cell2mat(dataout1(:,8)); 
% Check for duplicates and remove 
[newtime1,index,index2]=unique(time1); 
time1=time1(index); 
dataout1=dataout1(index,:); 
  
velocity1=cell2mat(dataout1(:,2)); 
direction1=cell2mat(dataout1(:,3)); 
  
time2=cell2mat(dataout2(:,8)); 
velocity2=cell2mat(dataout2(:,2)); 
direction2=cell2mat(dataout2(:,3)); 
temperature=cell2mat(dataout2(:,4)); 
humidity=cell2mat(dataout2(:,5)); 
pressure=cell2mat(dataout2(:,6)); 
  
%% Interpolating 86000 to the time series of 92000 
% DECOMPOSING 86000 for interpolation 
for i=1:numel(direction1) 
     
    if direction1(i)<=90 
        x86(i)=velocity1(i)*sin(direction1(i)*pi/180); 
        y86(i)=velocity1(i)*cos(direction1(i)*pi/180); 
    elseif direction1(i)<=180 && direction1(i)>90 
        x86(i)=velocity1(i)*cos((direction1(i)-90)*pi/180); 
        y86(i)=velocity1(i)*sin((direction1(i)-90)*pi/180)*(-1); 
    elseif direction1(i)<=270 && direction1(i)>180 
        x86(i)=velocity1(i)*sin((direction1(i)-180)*pi/180)*(-1); 
        y86(i)=velocity1(i)*cos((direction1(i)-180)*pi/180)*(-1); 
    else 
        x86(i)=velocity1(i)*cos((direction1(i)-270)*pi/180)*(-1); 
        y86(i)=velocity1(i)*sin((direction1(i)-270)*pi/180); 
    end 
end 
%% INTERPOLATING COMPONENTS 
interp86000_Xvel=interp1(time1,x86,time2,'linear');    % Interpolating 
86000 X Velcocity data onto 92000 time series 
interp86000_Yvel=interp1(time1,y86,time2,'linear');    % Y data interp 
interp86000vel=sqrt(interp86000_Xvel.^2+interp86000_Yvel.^2); % 
Magnitude USED FOR COUNTING NUMBER OF POINTS FOR RECALC DIR 
%% Recalculating direction: NOT USED, Just for reference: 
%(if moving average=1 point, this direction should equal it.) 
for i=1:numel(interp86000vel) 
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    if interp86000_Xvel(i) >=0 & interp86000_Yvel(i)>=0 
        
interp86000dir(i)=180/pi*atan(abs(interp86000_Xvel(i)/interp86000_Yvel(
i))); % Switch X and Y!? 
        % =180/pi*atan(x/y) I think this is correct 
    elseif interp86000_Xvel(i)>=0 & interp86000_Yvel(i)<0 
        
interp86000dir(i)=90+(180/pi*atan(abs(interp86000_Yvel(i)/interp86000_X
vel(i)))); 
    elseif interp86000_Xvel(i)<0 & interp86000_Yvel(i)<0 
        
interp86000dir(i)=180+(180/pi*atan(abs(interp86000_Xvel(i)/interp86000_
Yvel(i)))); 
    else 
        
interp86000dir(i)=270+(180/pi*atan(abs(interp86000_Yvel(i)/interp86000_
Xvel(i)))); 
    end 
end 
  
%% DECOMPOSING 92000 
for i=1:numel(direction2) 
    if direction2(i)<=90 
        x92(i)=velocity2(i)*sin(direction2(i)*pi/180); 
        y92(i)=velocity2(i)*cos(direction2(i)*pi/180); 
    elseif direction2(i)<=180 && direction2(i)>90 
        x92(i)=velocity2(i)*cos((direction2(i)-90)*pi/180); 
        y92(i)=velocity2(i)*sin((direction2(i)-90)*pi/180)*(-1); 
    elseif direction2(i)<=270 && direction2(i)>180 
        x92(i)=velocity2(i)*sin((direction2(i)-180)*pi/180)*(-1); 
        y92(i)=velocity2(i)*cos((direction2(i)-180)*pi/180)*(-1); 
    else 
        x92(i)=velocity2(i)*cos((direction2(i)-270)*pi/180)*(-1); 
        y92(i)=velocity2(i)*sin((direction2(i)-270)*pi/180); 
    end 
end 
%% Creating repetitions: 
repetition_ask; % Number of points 
  
%% Moving Average Analysis: 
% Moving average on components.. Already interpolated 
mag86intx=movmean(abs(interp86000_Xvel),repetition_ask,'Endpoints','dis
card'); % For magnitude velocity 
mag86inty=movmean(abs(interp86000_Yvel),repetition_ask,'Endpoints','dis
card'); 
% Variance for uncertainty 
mag86varx=movvar(abs(interp86000_Xvel),repetition_ask,'Endpoints','disc
ard'); 
mag86vary=movvar(abs(interp86000_Yvel),repetition_ask,'Endpoints','disc
ard'); 
var86=sqrt(mag86varx.^2+mag86vary.^2); 
% For direction: 
Mov_avg_86X = 
movmean(interp86000_Xvel,repetition_ask,'Endpoints','discard');      % 
Interpolated 86000 velocity 
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Mov_avg_86Y = 
movmean(interp86000_Yvel,repetition_ask,'Endpoints','discard');      % 
Interpolated 86000 velocity 
% 92000 
mag92intx=movmean(abs(x92),repetition_ask,'Endpoints','discard'); 
mag92inty=movmean(abs(y92),repetition_ask,'Endpoints','discard'); 
% Variance for uncertainty 
mag92varx=movvar(abs(x92),repetition_ask,'Endpoints','discard'); 
mag92vary=movvar(abs(y92),repetition_ask,'Endpoints','discard'); 
var92=sqrt(mag92varx.^2+mag92vary.^2); 
% For direction: 
Mov_avg_92X = movmean(x92,repetition_ask,'Endpoints','discard');           
% 92000 velocity 
Mov_avg_92Y = movmean(y92,repetition_ask,'Endpoints','discard');           
% 92000 velocity 
% 
%Mov_corr = corrcoef(Mov_avg_86,Mov_avg_92);    % Pearson Correlation 
calculation 
%% Recalculating 86000 direction for filter: 
for i=1:numel(Mov_avg_86X) 
    if Mov_avg_86X(i) >=0 & Mov_avg_86Y(i)>=0 
        
Mov_avg_dir86(i)=(180/pi*atan(abs(Mov_avg_86X(i)/Mov_avg_86Y(i)))); 
    elseif Mov_avg_86X(i)>=0 & Mov_avg_86Y(i)<0 
        
Mov_avg_dir86(i)=90+(180/pi*atan(abs(Mov_avg_86Y(i)/Mov_avg_86X(i)))); 
    elseif Mov_avg_86X(i)<0 & Mov_avg_86Y(i)<0 
        
Mov_avg_dir86(i)=180+(180/pi*atan(abs(Mov_avg_86X(i)/Mov_avg_86Y(i)))); 
    else 
        
Mov_avg_dir86(i)=270+(180/pi*atan(abs(Mov_avg_86Y(i)/Mov_avg_86X(i)))); 
    end 
end 
  
%% Recalculating 92000 direction for filter 
for i=1:numel(Mov_avg_92X) 
    if Mov_avg_92X(i) >=0 & Mov_avg_92Y(i)>=0 
        
Mov_avg_dir92(i)=(180/pi*atan(abs(Mov_avg_92X(i)/Mov_avg_92Y(i)))); 
    elseif Mov_avg_92X(i)>=0 & Mov_avg_92Y(i)<0 
        
Mov_avg_dir92(i)=90+(180/pi*atan(abs(Mov_avg_92Y(i)/Mov_avg_92X(i)))); 
    elseif Mov_avg_92X(i)<0 & Mov_avg_92Y(i)<0 
        
Mov_avg_dir92(i)=180+(180/pi*atan(abs(Mov_avg_92X(i)/Mov_avg_92Y(i)))); 
    else 
        
Mov_avg_dir92(i)=270+(180/pi*atan(abs(Mov_avg_92Y(i)/Mov_avg_92X(i)))); 
    end 
end 
%% Recombine Components 
Mov_avg_86=sqrt(mag86intx.^2+mag86inty.^2);   % Use abs for magnitude 
average 
Mov_avg_92=sqrt(mag92intx.^2+mag92inty.^2); 
% Adding Manufacture tolerance 
ManufacTol92=Mov_avg_92*.02; 
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ManufacTol86=Mov_avg_86*.02; 
  
Mov_avg_temp = 
movmean(temperature,repetition_ask,'Endpoints','discard'); 
Mov_avg_humid = movmean(humidity,repetition_ask,'Endpoints','discard'); 
Mov_avg_press = movmean(pressure,repetition_ask,'Endpoints','discard'); 
  
num_reps=numel(Mov_avg_86(:,1));   % Number of data points 
OUTPUT=cell(num_reps+1,9); % preallocate for speed 
OUTPUT(1,:)={'Repetition','Anemometer','Distance (ft)','Wind Velocity 
(m/s)','Wind Direction (deg)','Temperature (deg F)','Humidity 
(%)','Barometric Pressure (hPa)','Category'}; 
instant=2;  % Used for pairing data points 
Randomindex=randperm(num_reps,num_reps);   % Non-repeating 
randomization 
% Preallocating for speed: 
Repetition86000=zeros(num_reps,3);    % Preallocating size, 
repetitions=totalpts/Pointsperrep 
Repetition92000=zeros(num_reps,6); 
  
% Writing distance into first column: 
Repetition86000(:,1)=distance; 
Repetition86000(:,2)=Mov_avg_86(:,1); 
Repetition86000(:,3)=Mov_avg_dir86(1,:); 
  
Repetition92000(:,1)=distance; 
Repetition92000(:,2)=Mov_avg_92(1,:); 
Repetition92000(:,3)=Mov_avg_dir92(1,:); 
Repetition92000(:,4)=Mov_avg_temp; 
Repetition92000(:,5)=Mov_avg_humid; 
Repetition92000(:,6)=Mov_avg_press; 
  
Repetition86000=num2cell(Repetition86000); 
Repetition92000=num2cell(Repetition92000); 
  
%% FORMING OUTPUT TABLE: 
for i=1:numel(Randomindex) 
    Rep_grab=Randomindex(i);    % Grabbing randomized repetition 
    OUTPUT(instant,1)={i};      % Naming repetition 
    OUTPUT(instant,2)={'86000'};        % Writing anemometer name to 
row 
    OUTPUT(instant,3:5)=Repetition86000(Rep_grab,:); 
    % Creating Categorical Variables: 
    if Mov_avg_86(Rep_grab) <= 3 
        Repetition86000_cat{i,1} = 'Low'; 
    elseif Mov_avg_86(Rep_grab) > 3 && Mov_avg_86(Rep_grab,1) <= 8 
        Repetition86000_cat{i,1} = 'Med'; 
    else 
        Repetition86000_cat{i,1} = 'High'; 
    end 
     
    OUTPUT(instant,9)=Repetition86000_cat(i); 
    instant=instant+1;          % Move to next row 
    OUTPUT(instant,1)={i};      % Naming repetition 
    OUTPUT(instant,2)={'92000'};        % Writing anemometer name to 
row 
    OUTPUT(instant,3:8)=Repetition92000(Rep_grab,:); 
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    if Mov_avg_92(Rep_grab) <= 3 
        Repetition92000_cat{i,1} = 'Low'; 
    elseif Mov_avg_92(Rep_grab) > 3 && Mov_avg_92(Rep_grab) <= 8 
        Repetition92000_cat{i,1} = 'Med'; 
    else 
        Repetition92000_cat{i,1} = 'High'; 
    end 
    OUTPUT(instant,9)=Repetition92000_cat(i); 
    instant=instant+1;          % Move to next row 
end 
%% Printing 
Mov_avg_92=Mov_avg_92'; 
var92=var92'; 
titles=[{'86000 Velocities (m/s)','Error 86000','86000 Direction 
(deg)','92000 Velocity (m/s)','Error 92000','92000 Direction (deg)'}]; 
p(:,1)=Mov_avg_86; 
p(:,2)=sqrt(var86)+ManufacTol86; 
p(:,3)=Mov_avg_dir86; 
p(:,4)=Mov_avg_92; 
p(:,5)=sqrt(var92)+ManufacTol92'; 
p(:,6)=Mov_avg_dir92; 
Plotting='Plot'; 
xlswrite(Printfilename,titles,Plotting,'A1') 
xlswrite(Printfilename,p,Plotting,'A2') 
xlswrite(Printfilename,OUTPUT, 'Repetitions'); 
  
%% Calculating difference in Repetitions & Printing to Excel 
difference=abs(Mov_avg_92-Mov_avg_86); 
stdevDiff=sqrt(var92(1,:)+var86(:,1)); % These are added to find most 
error 
  
%% Histogram setting and extract 
dhist = histogram(difference); %Store the histogram results into 
variables 
dhist.BinWidth=0.1; 
dhist.Normalization='cdf'; 
cumul=cell(numel(difference),4); % Initialize printing cell array 
% 
difference=num2cell(difference); % Extract and Converting to cells 
stdevDiff=num2cell(stdevDiff); 
edges=num2cell(dhist.BinEdges)'; 
countprob=num2cell(dhist.Values*100)'; 
cumul(1,:)={'Difference in Velocity (m/s)','Filter Uncertainty (stdev 
of filtered points)','Bin Edge','Probability'}; 
cumul(2:numel(difference)+1,1)=difference; 
cumul(2:numel(stdevDiff)+1,2)=stdevDiff; 
cumul(2:numel(edges)+1,3)=edges; 
cumul(2:numel(countprob)+1,4)=countprob; % Fill cells 
  
xlswrite(Printfilename,cumul,'Difference'); % Printing to Excel 
  
%% Cross-Correlation Analysis: 
% Replacing NaNs with zeros: 
[row,col]=find(isnan(Mov_avg_92)); 
Mov_avg_92(row)=0; 
clear row; 
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[row,col]=find(isnan(Mov_avg_86)); 
Mov_avg_86(row)=0; 
clear row; 
% Running cross correlation 
[corr,lags]=xcorr(Mov_avg_86,Mov_avg_92,[50],'coeff'); 
lags=lags'; 
% Autocorr 
auto86=xcorr(Mov_avg_86,50,'coeff'); 
auto92=xcorr(Mov_avg_92,50,'coeff'); 
%% Printing Cross Correlation Sheet: 
Printcross='Cross Correlation'; 
corrheads=[{'Lags','Cross-correlation coefficient','86000 
Autocorr','92000 Autocorr'}]; 
crosscorr=[lags,corr,auto86,auto92]; 
cross=1; 
if cross==1 
    xlswrite(Printfilename,corrheads,Printcross,'A1') 
    xlswrite(Printfilename,crosscorr,Printcross,'A2') 
else 
end 
end 
 

 MATLAB Code for Dynamic Testing 

Caller Script: 

%% dynamicPrompt.m 
% Author: Austin Weiss 
% Date: 2/19/19 
% Description: 
%       Loops through raw data files to create repetition data for 
stats 
%       analysis. 
%       Passes filename, PrintSuffix, distance, and filter to 
%       Dynamicweatherstation.m function 
% 
  
clear; clc; 
colonfix=1;       % Fix colon for millisecond timestamp (1=YES) 
direction_ask=0;  % Directional filtering (0=NO) 
velocity_ask=0;   % Velocity filtering (0=NO) 
repetition_ask={1,3,5,7}; 
RTKfile={{'20-3-r1','20-6-r1','20-9-r1'},... 
    {'40-3-r1','40-6-r1','40-9-r1'},... 
    {'60-3-r1','60-6-r1','60-9-r1'};... 
    {'20-3-r2','20-6-r2','Dummy'},... 
    {'40-3-r2','40-6-r2','40-9-r2'},... 
    {'60-3-r2','60-6-r2','60-9-r2'};... 
    {'20-3-r3','20-6-r3','Dummy'},... 
    {'40-3-r3','40-6-r3','40-9-r3'},... 
    {'60-3-r3','60-6-r3','60-9-r3'}}; %% ADD THE GNSS FILES 
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filename={{'Dynamic_1_20ft_3mph','Dynamic_1_20ft_6mph','Dynamic_1_20ft_
9mph'}... 
   
{'Dynamic_1_40ft_3mph','Dynamic_1_40ft_6mph','Dynamic_1_40ft_9mph'}... 
   
{'Dynamic_1_60ft_3mph','Dynamic_1_60ft_6mph','Dynamic_1_60ft_9mph'};... 
   {'Dynamic_2_20ft_3mph','Dynamic_2_20ft_6mph','Dummy'},... 
   
{'Dynamic_2_40ft_3mph','Dynamic_2_40ft_6mph','Dynamic_2_40ft_9mph'},... 
   
{'Dynamic_2_60ft_3mph','Dynamic_2_60ft_6mph','Dynamic_2_60ft_9mph'};... 
   {'Dynamic_3_20ft_3mph','Dynamic_3_20ft_6mph','Dummy'},... 
   
{'Dynamic_3_40ft_3mph','Dynamic_3_40ft_6mph','Dynamic_3_40ft_9mph'},... 
   
{'Dynamic_3_60ft_3mph','Dynamic_3_60ft_6mph','Dynamic_3_60ft_9mph'}}; 
  
%filename={{'Stationary_12ft_1cont'}}; 
  
    % filename is 3 cells (1 for each distance) with 3 trials inside 
each 
PrintSuffix={'_NoFilter','_3pt','_5pt','_7pt'}; 
distance={20,40,60}; 
%distance={12}; 
count=1; % For printing row placement 
%% 
%               20ft        40ft        60ft 
% Trial 1:  [3mph,6,9]     [3,A,9] 
% Trial 2: 
% Trial 3: 
  
% A location is filename{1,2}{1,2} 
for t=1:3                           % Each Trial 
    for x=1:numel(distance)         % Each Distance 
        for f=1:3                   % For each Velocity 
            file_nosuffix=filename{t,x}{1,f}; 
            readFilename=sprintf('%s',filename{t,x}{1,f},'.csv'); 
            readgpsFile=sprintf('%s',RTKfile{t,x}{1,f},'.TXT'); 
            for j=1:numel(repetition_ask) 
                
Printfilename=sprintf('%s',filename{t,x}{1,f},PrintSuffix{j},'.xlsx') 
                %try  % Should skip holes in the filename matrices 
above 
                [cumulHAV,cumulSOG,cumulHAVREL] = 
Dynamicweatherstation(readFilename,readgpsFile,repetition_ask{j},Printf
ilename,distance{x},colonfix,direction_ask,velocity_ask,file_nosuffix); 
                %[cumulHAV,cumulSOG,cumulHAVREL] = 
Dynamicweatherstation('Dynamic_3_20ft_3mph.csv','20-3-
r3.TXT',1,'Dynamic_3_20ft_3mph_NoFilter.xlsx',20,1,0,0,'Dynamic_3_20ft_
3mph'); 
                 
                velthres(1,1)={Printfilename}; 
                velthres(2,1)={'Difference in Wind Velocity (m/s)'}; 
velthres(3,1)={'Percent of Measurements <='}; 
                
velthres(2,2:numel(cumulHAV(:,1)))=cumulHAV(2:numel(cumulHAV(:,1)),3); 
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velthres(3,2:numel(cumulHAV(:,1)))=cumulHAV(2:numel(cumulHAV(:,1)),4); 
                % Adding above result to a running table. Next 
iteration will 
                % paste below it. 
                
velthresprint(count,1:numel(velthres(1,:)))=velthres(1,:); 
                
velthresprint(count+1,1:numel(velthres(1,:)))=velthres(2,:); 
                
velthresprint(count+2,1:numel(velthres(1,:)))=velthres(3,:); 
                velthresprint(count+3,1:numel(velthres(1,:)))={[]}; 
                clear velthres; 
                count=count+4; % Counter for printing 
                %catch 
                 %   'There was an error' 
                  %  Printfilename 
                %end 
            end 
        end 
    end 
end 
xlswrite('DifferenceAnalysis.xlsx',velthresprint,1) 
  
%Printfilename='Stationary_40ft_2_NoFilter.xlsx'; % Define filename to 
print processed data 
 

Dynamic Processing Script 

%% Austin Weiss 
% Dynamicweatherstation.m 
% Anemometer & RTK Processing: 
% Called Functions: 
%       RTKprocess.m  - Calculates Haversine and Relative Velocity at 
%                       Weather Station location from GNSS data 
%       haversine.m  -  Called by RTKprocess to calculate Haversine 
%                       distance and azimuth forward bearings 
%       DynamicStats.m  -  Creates Repetitions and creates tables for 
stats 
%                          analysis 
%       Comp2coord.m -  Converts x,y components into 360 deg 
coordinates 
%        
%       vdist.m  -      Calculates distance between coordinates 
% 
%       vreckon.m  -    Calculates new coordinates using Vincenty's 
%       algorithm 
% KEY VARIABLES: 
% HaversineVelocityAnemometer = Calculated Haversine Velocity at 
Anemometer position 
% courseAnem = Calculated course for Haversine Velocity at Anemometer 
position 
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% V_anemTransSOG = Velocity at Anemometer position using "Speed over 
Ground" 
% coursegnd = Course  
% HaversineVelocity = Haversine Velocity at GPS position 
% HaversineCourse = Haversine course for GPS position 
function [cumulHAV, cumulSOG, cumulHAVREL] = 
Dynamicweatherstation(filename,RTKfile,repetition_ask,Printfilename,dis
tance,colonfix,direction_ask,velocity_ask,file_nosuffix) 
bothmethplot=0; % CHANGE WHEN want to see vehicle vel calcs 
%% OUTPUT NAME: 
Filesuff='.xlsx'; 
%% ANEMOMETER DATA: 
[num,txt,xlxreaddata]=xlsread(filename); % Read in data from file 
  
% Run RTK calculations 
sensor1=86000;      % Sensor addresses as string (as displayed in 
sheet) 
sensor2=96000; 
k=1;            % Start writing counter for sensor1 
m=1;            % Start writing counter for sensor2 
%% Scan for Errors and Delete 
%colonfix=1; % COLON DELIMITS TIME STAMP!!! 
  
% For xlsread: 
data=xlxreaddata; 
n=numel(data(:,1)); 
j=1; 
count=1; 
while n>j 
    if isnan(data{j,8}) % if NaN 
        data(j,:)=[];   % Deleting errors 
        count=count+1;   % Counting error that are removed. 
        n=numel(data(:,1)); 
    elseif isequal(data{j,8},'00:00:00:000') 
        data(j,:)=[];   % Deleting errors 
        count=count+1;   % Counting error that are removed. 
        n=numel(data(:,1)); 
    elseif colonfix==1 && isnumeric(data{j,8}) 
        data(j,:)=[];   % Deleting errors 
        count=count+1;   % Counting error that are removed. 
        n=numel(data(:,1)); 
    else 
        j=j+1; 
    end 
end 
%% Sorting data by sensor: 
if colonfix==1  % If colon needs replaced... 
for i=2:numel(data(:,1))        % For all rows in the data sheet 
% Fixing millisecond : to . COMMENT OUT AS NEEDED 
    X(i-1,:)=strsplit(data{i,8},':'); 
    fix=strjoin(X(i-1,:),{':',':','.'}); 
    data{i,8}=fix; 
end 
else 
end 
%% For all timestamps, create numeric values to compare with GNSS 
for n=1:numel(X(:,1)) 
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    Timeane=strjoin(X(n,:),{'','','.'}); 
    TimeWind{n}=Timeane; 
end 
TimeWind=TimeWind'; 
TimeWind=str2double(TimeWind); % Converting to number to compare 
%% IMPORTING/Processing GNSS DATA 
datastrings = textread(RTKfile, '%s'); 
% Find incomplete strings to remove: 
valid = strfind(datastrings,'$'); 
i=1; % First position initialized to grab 
for n=1:numel(datastrings) 
    if valid{n}==1 
  
        GNSScheck=strlength(datastrings(n)); 
        filtered(i) = datastrings(n); 
        i=i+1; % Move to next row 
    else 
    end 
end 
filtered=filtered'; 
%% Parsing GNSS strings and organizing data: 
checkGGA=strfind(filtered, '$GNGGA'); 
checkRMC=strfind(filtered, '$GNRMC'); 
  
GGA(1,:)={'Format','UTC Time','Latitude','N/S 
Indicator','Longitude','E/W Indicator','GPS Quality Indicator','Num 
Satellites Used','Horizontal dilution of precision HDOP','Altitude 
(m)','"Meters"','Geoidal Separation (m)','"Meters"','Time Since Last 
RTK','DGPS Station ID/CheckSum'}; 
RMC(1,:)={'Format','UTC Time','Status','Latitude','N/S 
Indicator','Longitude','E/W Indicator','Speed over ground 
(knots)','Course over ground (deg)','UTC Date','Magnetic Variation 
(deg)','East/West Indicator','Mode Indicator','*CheckSum'}; 
i=2; 
j=2; 
% Extract data: 
w=1; % Used for finding errors and accounting for them 
  
for n=1:numel(filtered) 
    GNSScheck=strlength(filtered(n)); 
    if checkGGA{n}==1 % Grab GGA (Don't need) 
        try 
        GGA(i,:)=strsplit(filtered{n,1},',','CollapseDelimiters',... % 
Delimits by ',' and space for when DGPS is blank 
            false, 'DelimiterType','RegularExpression'); 
        i=i+1; 
        catch 
        end 
    else %checkRMC{n}==1 % Grab RMC 
        try 
            RMC(j,:)=strsplit(filtered{n,1},','); 
            j=j+1; 
        catch 
            a(w)=j+1; 
            w=w+1; 
        end 
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    end 
end 
%% WRITING TO XLSX TO GET NUMERIC TIMESTAMP 
% VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV 
%% Creating GNSS timestamp in format of Anemometers 
UTCtimedbl=RMC(:,2); 
UTCtimedbl(1)=[]; % Clear header 
  
for n=1:numel(UTCtimedbl) 
    try 
        UTCtimedbl(n)=insertAfter(UTCtimedbl(n),2,':'); 
UTCtimedbl(n)=insertAfter(UTCtimedbl(n),5,':'); 
    catch 
    end 
end 
%UTCtimedbl=str2double(UTCtimedbl); % Convert GNSS timestamp to 
comparable number 
%UTCtimedbl(1)=[]; % Clear header 
for n=1:numel(UTCtimedbl) 
data{n,9}=UTCtimedbl{n}; 
end 
%% Writing Anemometer data/ GNSS time to XLSX, and rereading for 
numeric timestamp 
if colonfix==1  
[rewrite]=data; 
% Building replacement .xlsx for .csv with errors removed. 
csvsplit=strsplit(filename,'.'); 
xlxfilename=[csvsplit{1},'.xlsx']; 
  
xlswrite(xlxfilename,rewrite); 
[num,txt,xlxreaddata]=xlsread(xlxfilename); % Read in data from file 
data=xlxreaddata; 
else 
end 
  
UTCtime=cell2mat(data(1:numel(data(:,9)),9)); % Grab Vehicle GPS Time  
data(:,9)=[]; 
%% Separating Anemometer data 
for i=2:numel(data(:,1))        % For all rows in the data sheet 
     
    if data{i,1}==sensor1       % If current row is '86000' 
        dataout1(k,:)=data(i,:);    % Grab the whole row 
        k=k+1;              % Move to next writing position 
    else                % Otherwise sort it as '92000' 
        dataout2(m,:)=data(i,:); 
        m=m+1;              % Move to next writing position 
    end 
end 
  
%% Grabbed data: 
time1=cell2mat(dataout1(:,8)); 
% Check for duplicates and remove 
[newtime1,index,index2]=unique(time1); 
time1=time1(index); 
dataout1=dataout1(index,:); 
  
velocity1=cell2mat(dataout1(:,2)); 
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direction1=cell2mat(dataout1(:,3)); 
%% Removing NaN from data 
time1(isnan(time1)) = []; 
velocity1(isnan(velocity1)) = []; 
direction1(isnan(direction1)) = []; 
  
time2=cell2mat(dataout2(:,8)); 
velocity2=cell2mat(dataout2(:,2)); 
direction2=cell2mat(dataout2(:,3)); 
temperature=cell2mat(dataout2(:,4));    temperature(1)=[]; 
humidity=cell2mat(dataout2(:,5));       humidity(1)=[]; 
pressure=cell2mat(dataout2(:,6));       pressure(1)=[]; 
%% Removing NaN from data: 
time2(isnan(time2)) = []; 
velocity2(isnan(velocity2)) = []; 
direction2(isnan(direction2)) = []; 
temperature(isnan(temperature)) = []; 
humidity(isnan(humidity)) = []; 
pressure(isnan(pressure)) = []; 
y=1; 
%% Search for starting time, and grab everything after (Eliminating RTK 
time before recording) 
while UTCtime(1) < time2(1) % COMPARING WITH ANEMOMETER. Extract data 
in timeframe 
            UTCtime(1)=[]; 
            UTCtimedbl(1)=[]; 
            RMC(2,:)=[]; 
            y=y+1; 
end 
%% NOW Eliminate weather data that occured before RTK recording 
% Maybe not neccessary, allow NaNs 
%% Search for end and delete everything after: 
% UTCtimedbl=str2double(RMC(:,2)); % Convert GNSS timestamp to 
comparable number 
time2(isnan(time2)) = [];   %Clear out NaNs 
while UTCtime(numel(UTCtime)) > time2(numel(time2)) 
        UTCtime(numel(UTCtime))=[]; 
        UTCtimedbl(numel(UTCtimedbl))=[]; 
        RMC(numel(UTCtimedbl),:)=[]; 
end 
%% Extracting GPS INFO: 
for j=2:numel(RMC(:,1)) 
    Latdegmin(j-1)=(insertAfter(RMC(j,4),2,' ')); % Pulling Latitude in 
format for Haversine 
    Latdegmin(j-1)=strcat(Latdegmin(j-1),RMC(j,5)); % Add N/S 
    Longdegmin(j-1)=(insertAfter(RMC(j,6),3,' ')); % Pulling Longitude 
    Longdegmin(j-1)=strcat(Longdegmin(j-1),RMC(j,7)); % Add E/W 
    velocitygnd(j-1)=str2double(RMC{j,8}); % Speed over ground 
(Velocity output from GNSS) %knots 
    coursegnd(j-1)=str2double(RMC{j,9}); % Course over ground (deg) 
     
end 
%% Calling RTKprocess: 
[SuccessiveVelocity,courseAnem,V_anemTransSOG,anemCOG,V_anemRelHav,anem
RelHav,newLong,newLat,Long4Vince,Lat4Vince] = 
RTKprocess(Latdegmin,Longdegmin,velocitygnd,coursegnd,distance,repetiti
on_ask); 



 

126 
 

%% Interpolation of 86000 Stationary (Break into components, 
interpolate, reconstruct) 
    for i=1:numel(direction1) 
         
        if direction1(i)<=90 
            x86(i)=velocity1(i)*sin(direction1(i)*pi/180)*(-1); 
            y86(i)=velocity1(i)*cos(direction1(i)*pi/180)*(-1); 
        elseif direction1(i)<=180 && direction1(i)>90 
            x86(i)=velocity1(i)*cos((direction1(i)-90)*pi/180)*(-1); 
            y86(i)=velocity1(i)*sin((direction1(i)-90)*pi/180)*(1); 
        elseif direction1(i)<=270 && direction1(i)>180 
            x86(i)=velocity1(i)*sin((direction1(i)-180)*pi/180)*(1); 
            y86(i)=velocity1(i)*cos((direction1(i)-180)*pi/180)*(1); 
        else 
            x86(i)=velocity1(i)*cos((direction1(i)-270)*pi/180)*(1); 
            y86(i)=velocity1(i)*sin((direction1(i)-270)*pi/180)*(-1); 
        end 
    end 
     
    interp86000_Xvel=interp1(time1,x86,time2,'linear');    % 
Interpolating 86000 X Velcocity data onto 92000 time series 
    interp86000_Yvel=interp1(time1,y86,time2,'linear');    % Y data 
interp 
    interp86000vel=sqrt(interp86000_Xvel.^2+interp86000_Yvel.^2); % 
Magnitude 
    interp86000_Xvel(1)=[]; interp86000_Yvel(1)=[]; 
interp86000vel(1)=[]; % REMOVING FIRST VALUES TO MATCH 92000 processed 
    %% Recalculating direction: NOT USED!!! (For reference: should 
equal Moving average of 1 point) 
interp86000dir=Comp2coord(interp86000_Xvel,interp86000_Yvel); 
     
%% SUCCESSIVE COORDINATE METHOD of Vehicle Velocity: 
% Matching UTC time with Calculated Anemometer velocities 
HavTimedbl=UTCtimedbl;  HavTime=UTCtime;    % Copying time for 
Haversine method 
HavTimedbl(numel(HavTimedbl))=[]; % Clearing Last time stamp to match 
Haversine methods 1 and 3 with SOG method 2 
HavTime(numel(HavTime))=[];    % 
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
  
%% Successive INTERPOLATION: 
% Creating Midpoint Times to represent time for "Average Velocities" 
between GNSS 
% coordinates for HAVERSINE METHODS 1 AND 3 
for n=2:(numel(HavTimedbl)) 
    try 
        Havtimemidpt(n-1)=(HavTime(n)+HavTime(n-1))/2; 
    catch 
    end 
end 
Havtimemidpt=Havtimemidpt'; 
%% Interpolate Method 1: 
SuccessiveVelocity=SuccessiveVelocity'; 
interpHaversineVel=interp1(Havtimemidpt(2:numel(Havtimemidpt)),Successi
veVelocity,time2,'linear'); % INTERPOLATING CALCULATED 
VELOCITY/DIRECTION to anemometer time 
SuccessiveCourse=courseAnem; 
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interpHaversineCourse=interp1(Havtimemidpt(2:numel(Havtimemidpt)),Succe
ssiveCourse,time2,'linear'); % Interpolating course to anemometer 
sampling 
  
%% Interpolate Method 2: "SPEED OVER GROUND" 
interpSOG=interp1(HavTime,V_anemTransSOG,time2,'linear'); 
interpSOGCourse=interp1(HavTime,anemCOG,time2,'linear'); 
  
%% Interpolate Method 3: 
% Combined: Haversine @ GNSS transformed w/relative motion to weather 
% station interpolation: 
interpanemRelHav=interp1(Havtimemidpt,V_anemRelHav,time2,'linear'); 
interpRelHavCourse=interp1(Havtimemidpt,anemRelHav,time2,'linear'); 
  
SuccessiveCourse=SuccessiveCourse'; 
%% SUBTRACTING VEHICLE VELOCITY FROM WIND DATA and Recalculating Wind 
direction relative to vehicle heading 
  
for i=1:numel(direction2) 
     
    if direction2(i)<=90 
        x(i)=velocity2(i)*sin(direction2(i)*pi/180)*(-1); 
        y(i)=velocity2(i)*cos(direction2(i)*pi/180)*(-1);  
        % Y>0 so subtract vehicle vel 
        y2(i)=y(i)+interpHaversineVel(i);% HAVERSINE 
        y2s(i)=y(i)+interpSOG(i);% SOG 
        y2hs(i)=y(i)+interpanemRelHav(i); % Method 3: SOG on Hav 
        % Recalculating Wind Velocity 
        VcorrectHAV(i)=sqrt(y2(i)^2+(abs(x(i))^2)); 
        VcorrectSOG(i)=sqrt(y2s(i)^2+(abs(x(i))^2)); 
        VcorrectHAVSOG(i)=sqrt(y2hs(i)^2+(abs(x(i))^2)); 
        % Recalculating Wind Direction (Still relative to "False 
North") 
  
    elseif direction2(i)<=180 && direction2(i)>90 
        x(i)=velocity2(i)*cos((direction2(i)-90)*pi/180)*(-1); 
        y(i)=velocity2(i)*sin((direction2(i)-90)*pi/180)*(1); 
         
        % Y<0 so add vehicle vel to (-Y) to effectively subtract 
        y2(i)=y(i)-interpHaversineVel(i);% HAVERSINE 
        y2s(i)=y(i)-interpSOG(i);% SOG 
        y2hs(i)=y(i)-interpanemRelHav(i); % Method 3: SOG on Hav 
         
        % Recalculating Wind Velocity 
        VcorrectHAV(i)=sqrt(y2(i)^2+(abs(x(i)^2))); 
        VcorrectSOG(i)=sqrt(y2s(i)^2+(abs(x(i))^2)); 
        VcorrectHAVSOG(i)=sqrt(y2hs(i)^2+(abs(x(i))^2)); 
         
    elseif direction2(i)<=270 && direction2(i)>180 
        x(i)=velocity2(i)*sin((direction2(i)-180)*pi/180)*(1); 
        y(i)=velocity2(i)*cos((direction2(i)-180)*pi/180)*(1); 
         
         % Y<0 so add vehicle vel to (-Y) to effectively subtract 
        y2(i)=y(i)-interpHaversineVel(i);% HAVERSINE 
        y2s(i)=y(i)-interpSOG(i);% SOG 
        y2hs(i)=y(i)-interpanemRelHav(i); % Method 3: SOG on Hav 
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        % Recalculating Wind Velocity 
        VcorrectHAV(i)=sqrt(y2(i)^2+(abs(x(i))^2)); 
        VcorrectSOG(i)=sqrt(y2s(i)^2+(abs(x(i))^2)); 
        VcorrectHAVSOG(i)=sqrt(y2hs(i)^2+(abs(x(i))^2)); 
         
    else 
        x(i)=velocity2(i)*cos((direction2(i)-270)*pi/180)*(1); 
        y(i)=velocity2(i)*sin((direction2(i)-270)*pi/180)*(-1);  
        % Y>0 
        y2(i)=y(i)+interpHaversineVel(i);% HAVERSINE: 
        y2s(i)=y(i)+interpSOG(i);% SOG 
        y2hs(i)=y(i)+interpanemRelHav(i); % Method 3: SOG on Hav 
        % Recalculating Wind Velocity 
        VcorrectHAV(i)=sqrt(y2(i)^2+(abs(x(i))^2)); 
        VcorrectSOG(i)=sqrt(y2s(i)^2+(abs(x(i))^2)); 
        VcorrectHAVSOG(i)=sqrt(y2hs(i)^2+(abs(x(i))^2)); 
  
    end 
end 
VcorrectHAV=VcorrectHAV'; 
VcorrectSOG=VcorrectSOG'; 
VcorrectHAVSOG=VcorrectHAVSOG'; 
VcorrectHAV(1)=[]; VcorrectSOG(1)=[]; VcorrectHAVSOG(1)=[]; % REMOVE 
NANS 
interpHaversineVel(1)=[]; interpSOG(1)=[]; interpanemRelHav(1)=[]; 
%% Recalculating Wind Direction (Still relative to "False North") 
Dir_rel_HAV=Comp2coord(x,y2); 
Dir_rel_SOG=Comp2coord(x,y2s); 
Dir_rel_HAVSOG=Comp2coord(x,y2hs); 
Dir_rel_HAV(1)=[]; Dir_rel_SOG(1)=[]; Dir_rel_HAVSOG(1)=[]; % REMOVE 
NANS 
interpHaversineCourse(1)=[]; interpSOGCourse(1)=[]; 
interpRelHavCourse(1)=[]; 
%% Rotating Dynamic Wind Data Toward Heading of Stationary Data (TRUE 
NORTH): 
% Need to add vehicle heading to wind direction 
  
for i=1:numel(interpHaversineCourse) 
directionTrueNorth_Hav(i) = 
mod(interpHaversineCourse(i)+Dir_rel_HAV(i),360);%*360; 
directionTrueNorth_SOG(i) = 
mod(interpSOGCourse(i)+Dir_rel_SOG(i),360);%*360; 
directionTrueNorth_HAVSOG(i) = 
mod(interpRelHavCourse(i)+Dir_rel_HAVSOG(i),360);%*360; 
  
end 
directionTrueNorth_Hav=directionTrueNorth_Hav'; 
directionTrueNorth_SOG=directionTrueNorth_SOG'; 
directionTrueNorth_HAVSOG=directionTrueNorth_HAVSOG'; 
% Plotting New direction compared to old 
% figure(4) 
% %scatter(time2,direction2,'.'); hold on; 
% scatter(time2,directionTrueNorth_Hav,'.','r'); hold on; 
% scatter(time2,directionTrueNorth_SOG,'.','b'); hold on; 
% scatter(time2,directionTrueNorth_HAVSOG,'.','m'); hold on; 
% legend('Raw Wind Direction','Corrected Wind Direction 
(Haversine)','Corrected Wind Direction (SOG)') 
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% % 
% Comparing Rotated direction to stationary 
  
%% WHENEVER DIFFERENCE IS NEGATIVE: it means the vehicle was moving 
faster than the wind 
%% Preparing for STATS Analysis: 
%% NEED TO AVERAGE COMPONENTS THEN RECALCULATE DIRECTION 
% directionTrueNorth_Hav and direction TrueNorth_SOG are corrected 
% directions. 
  
% Method 1: HAVERSINE METHOD: 
for i=1:numel(directionTrueNorth_Hav) 
     
    if directionTrueNorth_Hav(i)<=90 
        xHAV(i)=VcorrectHAV(i)*sin(directionTrueNorth_Hav(i)*pi/180)*(-
1); 
        yHAV(i)=VcorrectHAV(i)*cos(directionTrueNorth_Hav(i)*pi/180)*(-
1); 
    elseif directionTrueNorth_Hav(i)<=180 && 
directionTrueNorth_Hav(i)>90 
        xHAV(i)=VcorrectHAV(i)*cos((directionTrueNorth_Hav(i)-
90)*pi/180)*(-1); 
        yHAV(i)=VcorrectHAV(i)*sin((directionTrueNorth_Hav(i)-
90)*pi/180)*(1); 
    elseif directionTrueNorth_Hav(i)<=270 && 
directionTrueNorth_Hav(i)>180 
        xHAV(i)=VcorrectHAV(i)*sin((directionTrueNorth_Hav(i)-
180)*pi/180)*(1); 
        yHAV(i)=VcorrectHAV(i)*cos((directionTrueNorth_Hav(i)-
180)*pi/180)*(1); 
    else 
        xHAV(i)=VcorrectHAV(i)*cos((directionTrueNorth_Hav(i)-
270)*pi/180)*(1); 
        yHAV(i)=VcorrectHAV(i)*sin((directionTrueNorth_Hav(i)-
270)*pi/180)*(-1); 
    end 
end 
% Method 2: "SPEED OVER GROUND" RELATIVE MOTION METHOD: 
for i=1:numel(directionTrueNorth_SOG) 
     
    if directionTrueNorth_SOG(i)<=90 
        xSOG(i)=VcorrectSOG(i)*sin(directionTrueNorth_SOG(i)*pi/180)*(-
1); 
        ySOG(i)=VcorrectSOG(i)*cos(directionTrueNorth_SOG(i)*pi/180)*(-
1); 
    elseif directionTrueNorth_SOG(i)<=180 && 
directionTrueNorth_SOG(i)>90 
        xSOG(i)=VcorrectSOG(i)*cos((directionTrueNorth_SOG(i)-
90)*pi/180)*(-1); 
        ySOG(i)=VcorrectSOG(i)*sin((directionTrueNorth_SOG(i)-
90)*pi/180)*(1); 
    elseif directionTrueNorth_SOG(i)<=270 && 
directionTrueNorth_SOG(i)>180 
        xSOG(i)=VcorrectSOG(i)*sin((directionTrueNorth_SOG(i)-
180)*pi/180)*(1); 
        ySOG(i)=VcorrectSOG(i)*cos((directionTrueNorth_SOG(i)-
180)*pi/180)*(1); 
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    else 
        xSOG(i)=VcorrectSOG(i)*cos((directionTrueNorth_SOG(i)-
270)*pi/180)*(1); 
        ySOG(i)=VcorrectSOG(i)*sin((directionTrueNorth_SOG(i)-
270)*pi/180)*(-1); 
    end 
end 
  
% Method 3: HAVERSINE Velocity at GNSS Transformed Relative to 
Anemometer: 
for i=1:numel(directionTrueNorth_HAVSOG) 
     
    if directionTrueNorth_HAVSOG(i)<=90 
        
xHAVREL(i)=VcorrectHAVSOG(i)*sin(directionTrueNorth_HAVSOG(i)*pi/180)*(
-1); 
        
yHAVREL(i)=VcorrectHAVSOG(i)*cos(directionTrueNorth_HAVSOG(i)*pi/180)*(
-1); 
    elseif directionTrueNorth_HAVSOG(i)<=180 && 
directionTrueNorth_HAVSOG(i)>90 
        xHAVREL(i)=VcorrectHAVSOG(i)*cos((directionTrueNorth_HAVSOG(i)-
90)*pi/180)*(-1); 
        yHAVREL(i)=VcorrectHAVSOG(i)*sin((directionTrueNorth_HAVSOG(i)-
90)*pi/180)*(1); 
    elseif directionTrueNorth_HAVSOG(i)<=270 && 
directionTrueNorth_HAVSOG(i)>180 
        xHAVREL(i)=VcorrectHAVSOG(i)*sin((directionTrueNorth_HAVSOG(i)-
180)*pi/180)*(1); 
        yHAVREL(i)=VcorrectHAVSOG(i)*cos((directionTrueNorth_HAVSOG(i)-
180)*pi/180)*(1); 
    else 
        xHAVREL(i)=VcorrectHAVSOG(i)*cos((directionTrueNorth_HAVSOG(i)-
270)*pi/180)*(1); 
        yHAVREL(i)=VcorrectHAVSOG(i)*sin((directionTrueNorth_HAVSOG(i)-
270)*pi/180)*(-1); 
    end 
end 
  
%% Moving average of components 92000 (HAVERSINE AND RELATIVE MOTION 
RESULTS: 
% Method 1: Haversine vehicle method: 
magxHavMov_avg_92 = 
movmean(abs(xHAV),repetition_ask,'Endpoints','discard');     % 92000 
velocity 3 pt. average 
magyHavMov_avg_92 = 
movmean(abs(yHAV),repetition_ask,'Endpoints','discard');     % 92000 
velocity 3 pt. average 
magHavMov_avg_92=sqrt(magxHavMov_avg_92.^2+magyHavMov_avg_92.^2);   % 
Magnitude 
% Variance for uncertainty 
var92HAV=movvar(VcorrectHAV,repetition_ask,'Endpoints','discard'); 
% mag92HAVvarx=movvar(abs(xHAV),repetition_ask,'Endpoints','discard'); 
% mag92HAVvary=movvar(abs(yHAV),repetition_ask,'Endpoints','discard'); 
% var92HAV=sqrt(mag92HAVvarx.^2+mag92HAVvary.^2); 
% For direction (averaging negatives for vector averages) 
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xHavMov_avg_92 = movmean(xHAV,repetition_ask,'Endpoints','discard');     
% 92000 velocity 3 pt. average 
yHavMov_avg_92 = movmean(yHAV,repetition_ask,'Endpoints','discard');     
% 92000 velocity 3 pt. average 
% 
% Method 2: "SpeedOverGround" Vehicle method: 
magxSOGMov_avg_92 = 
movmean(abs(xSOG),repetition_ask,'Endpoints','discard'); 
magySOGMov_avg_92 = 
movmean(abs(ySOG),repetition_ask,'Endpoints','discard');     % 92000 
velocity 3 pt. average 
magSOGMov_avg_92=sqrt(magxSOGMov_avg_92.^2+magySOGMov_avg_92.^2);    % 
Magnitude 
% Variance for uncertainty 
var92SOG=movvar(VcorrectSOG,repetition_ask,'Endpoints','discard'); 
%mag92SOGvarx=movvar(abs(xSOG),repetition_ask,'Endpoints','discard'); 
%mag92SOGvary=movvar(abs(ySOG),repetition_ask,'Endpoints','discard'); 
%var92SOG=sqrt(mag92SOGvarx.^2+mag92SOGvary.^2); 
% For direction 
xSOGMov_avg_92 = movmean(xSOG,repetition_ask,'Endpoints','discard');     
% 92000 velocity 3 pt. average 
ySOGMov_avg_92 = movmean(ySOG,repetition_ask,'Endpoints','discard');     
% 92000 velocity 3 pt. average 
% 
% Method 3: Haversine vehicle method Transformed by relative motion: 
magxHavRelMov_avg_92 = 
movmean(abs(xHAVREL),repetition_ask,'Endpoints','discard');     % 92000 
velocity 3 pt. average 
magyHavRelMov_avg_92 = 
movmean(abs(yHAVREL),repetition_ask,'Endpoints','discard');     % 92000 
velocity 3 pt. average 
magHavRelMov_avg_92=sqrt(magxHavRelMov_avg_92.^2+magyHavRelMov_avg_92.^
2);   % Magnitude 
% Variance for uncertainty 
%mag92HAVRelvarx=movvar(abs(xHAVREL),repetition_ask,'Endpoints','discar
d'); 
%mag92HAVRelvary=movvar(abs(yHAVREL),repetition_ask,'Endpoints','discar
d'); 
var92HAVRel=movvar(VcorrectHAVSOG,repetition_ask,'Endpoints','discard')
; 
%var92HAVRel=sqrt(mag92HAVvarx.^2+mag92HAVvary.^2); 
% For direction (averaging negatives for vector averages) 
xHavRelMov_avg_92 = movmean(xHAV,repetition_ask,'Endpoints','discard');     
% 92000 velocity 3 pt. average 
yHavRelMov_avg_92 = movmean(yHAV,repetition_ask,'Endpoints','discard');     
% 92000 velocity 3 pt. average 
% 
%% RECONSTRUCTING AVERAGED WIND VECTORS: Calculating the DIRECTION %% 
  
dirHAV_Movavg=Comp2coord(xHavMov_avg_92,yHavMov_avg_92);  % Haversine 
dirSOG_Movavg=Comp2coord(xSOGMov_avg_92,ySOGMov_avg_92);  % SOG 
dirHAVRel_Movavg=Comp2coord(xHavRelMov_avg_92,yHavRelMov_avg_92);% 
Method 3 
  
%% Moving Average 86000 
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xMov_avg_86 = 
movmean(abs(interp86000_Xvel),repetition_ask,'Endpoints','discard');  % 
Interpolated 86000 velocity moving average 
yMov_avg_86 = 
movmean(abs(interp86000_Yvel),repetition_ask,'Endpoints','discard');  % 
Interpolated 86000 velocity moving average 
Mov_avg_86=sqrt(xMov_avg_86.^2+yMov_avg_86.^2); % Magnitude 
% Variance for uncertainty 
mag86varx=movvar(abs(interp86000_Xvel),repetition_ask,'Endpoints','disc
ard'); 
mag86vary=movvar(abs(interp86000_Yvel),repetition_ask,'Endpoints','disc
ard'); 
var86=sqrt(mag86varx.^2+mag86vary.^2); 
% For direction! 
Mov_avg_86X = 
movmean(interp86000_Xvel,repetition_ask,'Endpoints','discard');      % 
Interpolated 86000 velocity 3 pt. average 
Mov_avg_86Y = 
movmean(interp86000_Yvel,repetition_ask,'Endpoints','discard');      % 
Interpolated 86000 velocity 3 pt. average 
% 
% Reconstruct 86000 Direction after filtering!: 
dir86_Movavg=Comp2coord(Mov_avg_86X,Mov_avg_86Y); 
  
Mov_avg_temp = 
movmean(temperature,repetition_ask,'Endpoints','discard')'; 
Mov_avg_humid = 
movmean(humidity,repetition_ask,'Endpoints','discard')'; 
Mov_avg_press = 
movmean(pressure,repetition_ask,'Endpoints','discard')'; 
difff=0; 
if difff==1 
MovAvgDiff = abs(HavMov_avg_92 - SOGMov_avg_92); 
h=histogram(MovAvgDiff,'Normalization','probability'); 
else 
end 
  
%% Calling DynamicStats for Randomized Repetitions: 
[OUTPUTHAV, OUTPUTSOG, OUTPUTHAVREL] = DynamicStats(distance, 
Mov_avg_86, dir86_Movavg, magHavMov_avg_92, dirHAV_Movavg, 
magSOGMov_avg_92, dirSOG_Movavg, magHavRelMov_avg_92, dirHAVRel_Movavg, 
Mov_avg_temp, Mov_avg_humid, Mov_avg_press); 
  
%% Difference Analysis: (Percent values <= velocity) 
%% METHOD 1: Calculating difference in Repetitions & Printing to Excel 
magHavMov_avg_92=magHavMov_avg_92'; 
var92HAV=var92HAV'; 
differenceHAV=abs(magHavMov_avg_92-Mov_avg_86); 
stdevDiffHAV=sqrt(var92HAV(:,1)+var86(:,1)); % These are added to find 
most error 
% Histogram setting and extract 
  
dhistHAV = histogram(differenceHAV); %Store the histogram results into 
variables 
dhistHAV.BinWidth=0.1; 
dhistHAV.Normalization='cdf'; 
cumulHAV=cell(numel(differenceHAV),4); % Initialize printing cell array 
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differenceHAV=num2cell(differenceHAV); % Extract and Converting to 
cells 
stdevDiffHAV=num2cell(stdevDiffHAV); 
edgesHAV=num2cell(dhistHAV.BinEdges)'; 
countprobHAV=num2cell(dhistHAV.Values*100)'; 
cumulHAV(1,:)={'Difference in Velocity (m/s)','Filter Uncertainty 
(stdev of filtered points)','Bin Edge','Probability'}; 
cumulHAV(2:numel(differenceHAV)+1,1)=differenceHAV; 
cumulHAV(2:numel(stdevDiffHAV)+1,2)=stdevDiffHAV; 
cumulHAV(2:numel(edgesHAV)+1,3)=edgesHAV; 
cumulHAV(2:numel(countprobHAV)+1,4)=countprobHAV; % Fill cells 
  
%% Method 2: 
magSOGMov_avg_92=magSOGMov_avg_92'; 
var92SOG=var92SOG'; 
differenceSOG=abs(magSOGMov_avg_92-Mov_avg_86); 
stdevDiffSOG=sqrt(var92SOG(:,1)+var86(:,1)); % These are added to find 
most error 
% Histogram setting and extract 
dhistSOG = histogram(differenceSOG); %Store the histogram results into 
variables 
dhistSOG.BinWidth=0.1; 
dhistSOG.Normalization='cdf'; 
cumulSOG=cell(numel(differenceSOG),4); % Initialize printing cell array 
  
differenceSOG=num2cell(differenceSOG); % Extract and Converting to 
cells 
stdevDiffSOG=num2cell(stdevDiffSOG); 
edgesSOG=num2cell(dhistSOG.BinEdges)'; 
countprobSOG=num2cell(dhistSOG.Values*100)'; 
cumulSOG(1,:)={'Difference in Velocity (m/s)','Filter Uncertainty 
(stdev of filtered points)','Bin Edge','Probability'}; 
cumulSOG(2:numel(differenceSOG)+1,1)=differenceSOG; 
cumulSOG(2:numel(stdevDiffSOG)+1,2)=stdevDiffSOG; 
cumulSOG(2:numel(edgesSOG)+1,3)=edgesSOG; 
cumulSOG(2:numel(countprobSOG)+1,4)=countprobSOG; % Fill cells 
  
%% Method 3: 
magHavRelMov_avg_92=magHavRelMov_avg_92'; 
var92HAVRel=var92HAVRel'; 
differenceHAVREL=abs(magHavRelMov_avg_92-Mov_avg_86); 
stdevDiffHAVREL=sqrt(var92HAVRel(:,1)+var86(:,1)); % These are added to 
find most error 
% Histogram setting and extract 
dhistHAVREL = histogram(differenceHAVREL); %Store the histogram results 
into variables 
dhistHAVREL.BinWidth=0.1; 
dhistHAVREL.Normalization='cdf'; 
cumulHAVREL=cell(numel(differenceHAVREL),4); % Initialize printing cell 
array 
  
differenceHAVREL=num2cell(differenceHAVREL); % Extract and Converting 
to cells 
stdevDiffHAVREL=num2cell(stdevDiffHAVREL); 
edgesHAVREL=num2cell(dhistHAVREL.BinEdges)'; 
countprobHAVREL=num2cell(dhistHAVREL.Values*100)'; 
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cumulHAVREL(1,:)={'Difference in Velocity (m/s)','Filter Uncertainty 
(stdev of filtered points)','Bin Edge','Probability'}; 
cumulHAVREL(2:numel(differenceHAVREL)+1,1)=differenceHAVREL; 
cumulHAVREL(2:numel(stdevDiffHAVREL)+1,2)=stdevDiffHAVREL; 
cumulHAVREL(2:numel(edgesHAVREL)+1,3)=edgesHAVREL; 
cumulHAVREL(2:numel(countprobHAVREL)+1,4)=countprobHAVREL; % Fill cells 
  
%% Cross-Correlation Analysis: 
% Replacing NaNs with zeros: 
[row,col]=find(isnan(Mov_avg_86)); 
Mov_avg_86(row)=0; 
[row,col]=find(isnan(magHavMov_avg_92)); 
magHavMov_avg_92(row)=0; 
clear row; 
[row,col]=find(isnan(magSOGMov_avg_92)); 
magSOGMov_avg_92(row)=0; 
clear row; 
[row,col]=find(isnan(magHavRelMov_avg_92)); 
magHavRelMov_avg_92(row)=0; 
clear row; clear col; 
% Running cross correlation 
[Havcorr,lags]=xcorr(Mov_avg_86,magHavMov_avg_92,[50],'coeff'); 
lags=lags'; 
Sogcorr=xcorr(Mov_avg_86,magSOGMov_avg_92,[50],'coeff'); 
Havrelcorr=xcorr(Mov_avg_86,magHavRelMov_avg_92,[50],'coeff'); 
  
autostationary=xcorr(Mov_avg_86,50,'coeff'); 
autoHav=xcorr(magHavMov_avg_92,50,'coeff'); 
autoSog=xcorr(magSOGMov_avg_92,50,'coeff'); 
autoHavrel=xcorr(magHavRelMov_avg_92,50,'coeff'); 
  
%% Print Excel sheets 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
print=1; 
if print==1 
   %% Plot Sheet: 
titles=[{'86000 Velocities (m/s)','Std dev 86000','86000 Direction 
(deg)','92000 Velocity M1 (m/s)','Std dev 92000 M1','92000 Direction M1 
(deg)','92 Velocity M2 (m/s)','Std dev 92 M2','92 Direction M2','92 
Velocity M3(m/s)','Std dev 92 M3','92 Direction M3'}]; 
  
p(:,1)=Mov_avg_86; 
p(:,2)=sqrt(var86); 
p(:,3)=dir86_Movavg; 
p(:,4)=magHavMov_avg_92; 
p(:,5)=sqrt(var92HAV); 
p(:,6)=dirHAV_Movavg; 
p(:,7)=magSOGMov_avg_92; 
p(:,8)=sqrt(var92SOG); 
p(:,9)=dirSOG_Movavg; 
p(:,10)=magHavRelMov_avg_92; 
p(:,11)=sqrt(var92HAVRel); 
p(:,12)=dirHAVRel_Movavg; 
scatter(1:numel(dirHAV_Movavg),dirHAV_Movavg,'.') 
hold on 
scatter(1:numel(dir86_Movavg),dir86_Movavg,'.') 
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Plotting='Plot'; 
xlswrite(Printfilename,titles,Plotting,'A1') 
xlswrite(Printfilename,p,Plotting,'A2') 
%xlswrite(Printfilename,OUTPUT, 'Repetitions'); 
%% Printing Cross Correlation Sheet: 
Printcross='Cross Correlation'; 
corrheads=[{'Lags','M1 Successive Coordinate','M2 Relative 
Velocity','M3 Relative Haversine','','86000 Autocorr','Dynamic M1 Hav 
Autocorr','M2 Rel SOG Autocorr','M3 HavRel Autocorr'}]; 
crosscorr=[lags,Havcorr,Sogcorr,Havrelcorr,NaN(numel(lags),1),autostati
onary,autoHav,autoSog,autoHavrel]; 
cross=1; 
if cross==1 
xlswrite(Printfilename,corrheads,Printcross,'A1') 
xlswrite(Printfilename,crosscorr,Printcross,'A2') 
  
%% Printing DIFFERENCES: 
% Sheet names: 
DifferenceHAVsheet=strcat('Diff_',file_nosuffix,'HAV'); 
DifferenceSOGsheet=strcat('Diff_',file_nosuffix,'SOG'); 
DifferenceHAVRELsheet=strcat('Diff_',file_nosuffix,'HAV_REL'); 
  
xlswrite(Printfilename,cumulHAV,DifferenceHAVsheet); % Printing to 
Excel 
xlswrite(Printfilename,cumulSOG,DifferenceSOGsheet); % Printing to 
Excel 
xlswrite(Printfilename,cumulHAVREL,DifferenceHAVRELsheet); % Printing 
to Excel 
else 
end 
%% Printing Vehicle Velocity and Course Calculations 
%Vehicle course calcs 
% interpHaversineVel(1)=[]; % Clear NaN in first position 
% interpHaversineCourse(1)=[]; % Clear NaN in first position 
% interpSOG(1)=[]; % Clear NaN in first position 
% interpSOGCourse(1)=[]; % Clear NaN in first position 
% interpanemRelHav(1)=[]; % Clear NaN in first position 
% interpRelHavCourse(1)=[]; % Clear NaN in first position 
time2(1)=[]; 
vehiclelabel=[{'Time','M1 Successive Recalculated Coordinate','M2 
Relative Velocity SOG','M3 Relative Haversine'}]; 
coursecalcs=[time2,interpHaversineCourse,interpSOGCourse,interpRelHavCo
urse]; 
velocityprints=[time2,interpHaversineVel,interpSOG,interpanemRelHav]; 
if cross==1 
xlswrite(Printfilename,vehiclelabel,'Vehicle Velocity Calcs','A1'); % 
Print heading 
xlswrite(Printfilename,velocityprints,'Vehicle Velocity Calcs','A2');    
% Print data 
xlswrite(Printfilename,vehiclelabel,'Vehicle Course Calcs','A1'); % 
Print heading 
xlswrite(Printfilename,coursecalcs,'Vehicle Course Calcs','A2');         
% Print data 
else 
end 
  
%% Printing Randomized Repetitions from DynamicStats.m 
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PrintsheetnameHAV=strcat(file_nosuffix,'HAV'); 
PrintsheetnameSOG=strcat(file_nosuffix,'SOG'); 
PrintsheetnameHAVREL=strcat(file_nosuffix,'HAV_REL'); 
if cross==1 
xlswrite(Printfilename,OUTPUTHAV,PrintsheetnameHAV); 
xlswrite(Printfilename,OUTPUTSOG,PrintsheetnameSOG); 
xlswrite(Printfilename,OUTPUTHAVREL,PrintsheetnameHAVREL); 
else 
end 
  
else 
end 
  
%% MATLAB Plots: 
if bothmethplot==1 
figure(1) 
ylim([0 7]); 
scatter(time2,interpHaversineVel,'.') 
hold on 
scatter(time2,interpSOG,'.') 
hold on 
scatter(time2,interpanemRelHav,'.') 
% 
% Direction 
figure(2) % Course compare 
scatter(time2,interpHaversineCourse,'.') 
hold on 
scatter(time2,interpSOGCourse,'.') 
  
coursegnd2=coursegnd; 
coursegnd2(1)=[]; 
interp_rawcog=interp1(HavTime,coursegnd2,time2,'nearest'); 
  
figure(3) %Compare original coursegnd with transformed SOG course 
scatter(time2,interpSOGCourse,'.') 
hold on 
scatter(time2,interp_rawcog,'.') % IS CLOSE TO interpSOGCourse COURSE 
%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^ 
else 
end 
  
end 
 

GNSS Data Processing 

%% RTKprocess.m 
% Calculates Haversine Velocity and "SOG" velocity at the Weather 
Station's 
% location. 
% Also calculates the heading in degrees 
function 
[SucessiveVelocity,courseAnem,V_anemTransSOG,anemCOG,V_anemRelHav,anemR
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elHav,newLong,newLat,Long4Vince,Lat4Vince] = 
RTKprocess(Latdegmin,Longdegmin,velocitygnd,coursegnd,separation,repeti
tion_ask) 
old=0; 
t=0.05; % time interval (s) 
d=31.25*0.0254; %Offset in meters to anemometer 
f=0.5*0.0254; % Offset in meters to anemometer 
r_earth = 6371.037*1000; %meter radius of Earth 
%% Calculating Haversine Distance & Course at GPS Location 
for n=2:numel(Latdegmin) 
  coord1=strcat(Latdegmin{n-1},',',Longdegmin{n-1}); 
  coord2=strcat(Latdegmin{n},',',Longdegmin{n}); 
  [distance(n-1),HaversineCourse(n-1)]=haversine(coord1,coord2); % km 
distance 
end 
HaversineCourse2=HaversineCourse; % Creating copy for later use in calc 
bearing GNSS->Anemometer 
  
%% Haversine Velocity at GPS LOCATION: 
HaversineVelocity=distance(:)./t; %km/s 
HaversineVelocity=HaversineVelocity*1000; %m/s 
%velocity=velocity.*1943.84; % knots 
HaversineVelocity=HaversineVelocity'; 
%% Haversine at Anemometer location! 
% Calculating Bearing towards anemometer 
% ROTATING GNSS HAVERSINE COURSE to face Anemometer 
for n=1:numel(HaversineCourse2)+1 
  % Create Bearing FROM GPS TO ANEMOMETER: 
% HaverGps2AnemBearing(n)=HaversineCourse2(n); 
%                                                 % -   -  previously 
% HaverGps2AnemBearing(n) = 
HaverGps2AnemBearing(n)+(90+(atan(f/d)*180/pi)); % Subtract difference 
in 
% HaverGps2AnemBearing(n)=mod(HaverGps2AnemBearing(n),360); 
  %% Lat: 
  temp = regexp(Latdegmin{n}, ' ', 'split');  % STARTING ON FIRST 
COORDINATE! 
  % LAST WILL BE IGNORED AS IT WAS WON'T HAVE HEADING TO CALCULATE 
COORDINATE FROM  
  temp{2}(numel(temp{2}))=[]; % Remove Cardinal direction letter 
  Latdegree(n) = str2double(temp{1}) + str2double(temp{2})/60; 
  clear temp; 
  %% Long: 
  temp = regexp(Longdegmin{n}, ' ', 'split'); % SEE LAT FOR EXPLAIN n! 
  temp{2}(numel(temp{2}))=[]; % Remove Cardinal direction letter 
  Longdegree(n) = str2double(temp{1}) + str2double(temp{2})/60; 
  clear temp; 
  % Convert Latitude and longitude in radians for transform to anem 
  % location 
   
  Lat4Vince(n)=Latdegree(n); 
  Long4Vince(n)=Longdegree(n); 
   
%% VINCENTY 
vince=1; 
if vince==1 
    lng=sqrt(d^2+f^2); % OFFSET DISTANCE 
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    offsetAngle = asin(f/lng)*180/pi; 
    for i=2:numel(Lat4Vince) 
        [dist(i-1),vinceCourse(i-1)] = vdist(Lat4Vince(i-
1),Long4Vince(i-1),Lat4Vince(i),Long4Vince(i)); 
        %[dN1(i-1),cN1(i-1)] = vdist(Lat4Vince(i-1),Long4Vince(i-
1),90,135); % Point 1 Distance to the North Pole 
        %[dN2(i-1),cN2(i-1)] = 
vdist(Lat4Vince(i),Long4Vince(i),90,135);     % Point 2 Distance to the 
North Pole 
    end 
  
%% Converting to 360 degree format: initial bearing 
%vinceCourse=vinceCourse*180/pi; 
vinceCourse=coursegnd; 
vinceCourse(1)=[]; 
vinceCourse=vinceCourse*(-1)+360; 
vinceCourse=mod(vinceCourse+180,360); 
Lat4Vince(1)=[]; Long4Vince(1)=[]; % Clearing bc there's no data for 
these 
%% Calculating angle facing transform direction 
for n=2:numel(vinceCourse) 
    %%%%% %ang(n)=180-(offsetAngle+((real(acos(((dN1(n)^2)-
(dN2(n)^2)+(dist(n)^2))/(2*dN1(n)*dist(n)))))*180/pi)); % Angle with 
North Pole 
    % Angle at North pole Not needed..  ang(n-1)=offsetAngle+90-
((real(acos(((dN1(n)^2)+(dN2(n)^2)-
(dist(n)^2))/(2*dN1(n)*dN2(n))))*180/pi))    +   
0.5*((real(acos(((dN1(n)^2)+(dN2(n)^2)-
(dist(n)^2))/(2*dN1(n)*dN2(n))))*180/pi)); 
    ang(n-1)=90+offsetAngle; 
    course(n-1)=mod(((vinceCourse(n)+vinceCourse(n-1))/2)+ang(n-
1),360); 
    [newLat(n-1),newLong(n-1),finalbear(n-1)]=vreckon(Lat4Vince(n-
1),Long4Vince(n-1),lng,course(n-1));%/(1/cos((Lat4Vince(n)-Lat4Vince(n-
1)*pi/180)))); 
end 
%       %% CONVERTING BACK TO -180,180 DEGREE FORMAT DONT USE HERE 
%       if course(n)>180 
%       course(n)=course(n)-180; 
%       course(n)=course(n)*(-1); 
%       else 
%           course(n)=mod(360-course(n),180); 
%       end 
%% Testing distance 
for k=1:numel(newLat) 
  [dist1(k),vinceCourse1(k)] = 
vdist(Lat4Vince(k),Long4Vince(k),newLat(k),newLong(k)); 
end 
% n=1000 
% %  scatter(Long4Vince(100:n),Lat4Vince(100:n),'.') 
% %   hold on 
% %   scatter(newLong(100:n),newLat(100:n),'.') 
  
%% CALCULATING TRANSFORMED DISTANCE (Note inconsistancy): 
  for k=2:numel(newLat) 
  [distanceVINCE(k-1),vinceCourse1(k-1)] = vdist(newLat(k-1),newLong(k-
1),newLat(k),newLong(k)); 



 

139 
 

  end 
  vinceCourse1=vinceCourse1*180/pi; 
  vinceCourse1=vinceCourse1*(-1)+360; 
  vinceCourse1=mod(vinceCourse1+180,360); 
  courseAnem=vinceCourse1; 
% scatter(1:numel(vinceCourse),vinceCourse,'.') 
% hold on 
% scatter(1:numel(vinceCourse1),vinceCourse1,'.') 
  
% hold on 
% scatter(1:numel(courseAnem),courseAnem,'.') 
% hold on 
% scatter(1:numel(coursegnd),coursegnd,'.') 
  
  %dist1(1)=[]; 
%% Velocity calcs, smoothing, assignment to output 
% dN1(1)=[]; 
% dist(1)=[]; 
SucessiveVelocity=distanceVINCE/t; 
%HaversineVelocityAnemometer=(HaversineVelocity.*(lng+dN1)./dN1)/t; 
if repetition_ask==0 
    smoothVelocity=movmean(SucessiveVelocity,4); 
else 
    smoothVelocity=movmean(SucessiveVelocity,(4*repetition_ask)); 
end 
SucessiveVelocity=smoothVelocity; 
%HaversineVelocityAnemometer=(distanceVINCE-dist1)/t; 
% scatter(1:numel(test),test,'.') 
% hold on 
% 
scatter(1:numel(HaversineVelocityAnemometer),HaversineVelocityAnemomete
r,'.') 
% hold on 
% scatter(1:numel(HaversineVelocity),HaversineVelocity,'.') 
% hold on 
% scatter(1:numel(dist1),dist1,'.') 
  
%% PRINTING COORDINATE DATA 
% Lat4Vince(numel(Lat4Vince))=[]; Long4Vince(numel(Lat4Vince))=[]; % 
Clearing bc there's no data for these 
%  
% titlee=[{'Original Long'},{'Original Lat'},{'New Long'},{'New Lat'}]; 
% p(:,1)=Long4Vince(1:numel(Long4Vince)); 
% p(:,2)=Lat4Vince(1:numel(Long4Vince)); 
% p(:,3)=newLong; 
% p(:,4)=newLat; 
% xlswrite('Coordinates_1_20ft.xlsx',titlee) 
% xlswrite('Coordinates_1_20ft.xlsx',p,1,'A2') 
  
end 
%   for n=2:numel(newLat) 
%       [distanceVINCE(n-1),HaversineCourseVINCE(n-
1)]=haversine([newLat(n-1) newLong(n-1)],[newLat(n) newLong(n)]); % km 
distance 
%   end 
%   distanceVINCE=distanceVINCE*1000; 
%   HaversineVelocityAnemometer=distanceVINCE/t; 
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%   courseAnem=(HaversineCourseVINCE*-1)+360; 
% 
% scatter(1:numel(courseAnem),courseAnem,'.') 
% hold on 
% scatter(1:numel(HaversineCourse)-
1,HaversineCourse(2:numel(HaversineCourse)),'.') 
% hold on 
% scatter(1:numel(coursegnd)-2,coursegnd(3:numel(coursegnd)),'.') 
   
%   figure(2) 
%   scatter(Long4Vince(1:100),Lat4Vince(1:100),'.') 
%   hold on 
%   scatter(newLat(1:100),newLong(1:100),'.') 
%   figure(2) 
%   scatter(1:numel(HaversineCourse),HaversineCourse,'.') 
%   hold on 
%   scatter(1:numel(courseAnem),courseAnem,'.') 
%   hold on 
%   fi=mod(finalbear+90,360); 
%   scatter(1:numel(fi),fi,'.') 
%    
%  
scatter(1:numel(HaversineVelocityAnemometer),HaversineVelocityAnemomete
r,'.') 
%   hold on 
%   scatter(1:numel(HaversineVelocity),HaversineVelocity,'.') 
  
% %% OLD METHOD OF calculating new GPS coordinate: Very Noisy 
old=1 
if old==1 
    HaverGps2AnemBearing=vinceCourse1*pi/180; 
   
[HaversineVelocityAnemometer,courseAnem1]=old(Latdegree,Longdegree,d,f,
r_earth,t); 
else 
end 
%% Calculating Velocity at Anemometer based on "Speed over ground" 
% *********************************************** 
%velocitygnd2=velocitygnd; % FOR INTERPOLATION S.O.G ESTIMATE 
velocitygnd=velocitygnd*0.514444; %m/s 
count=1; 
for n=2:numel(velocitygnd) 
    Vgps(n-1) = (velocitygnd(n)+velocitygnd(n-1))/2; % AVERAGE SPEED OF 
TWO POINTS AS CENTER POINT 
    DistSOG(n-1) = Vgps(n-1)*t;   % DISTANCE TRAVELED (METERS) based on 
AVERAGE SPEED 
     
    %% HANDLING 359-> 1 deg change! 
    anglediff(n-1) = coursegnd(n)-coursegnd(n-1); % Angle difference to 
calculate turn radius 
    if coursegnd(n)<90 && coursegnd(n-1)>270 
        c2=360-coursegnd(n-1); 
        anglediff(n-1)=c2+coursegnd(n); 
         
        %anglediff(n-1)=mod(coursegnd(n)+coursegnd(n-1),360); 
    else 
    end 
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if anglediff(n-1)<0 
        count=count+1; 
        anglediff(n-1)=abs(anglediff(n-1)); 
        %turnrad(n-1)=DistSOG(n-1)/(2*tan(anglediff(n-1)*pi/180/2)); % 
Straight line approx XXX 
        turnrad(n-1)=DistSOG(n-1)*360/(2*pi*anglediff(n-1));    % GNSS 
Turn Radius using Arc length 
        %turnrad(n-1)=Vgps(n-1)/(anglediff(n-1)/t*pi/180); 
        anemTurn(n-1)= (turnrad(n-1)+ 
((d/2)/((separation*0.3048)+(d/2))));  % TURN RADIUS AT ANEMOMETER 
        %anemTurn(n-1)=DistSOG(n-
1)*((separation*0.3048+(d/2))/separation*0.3048)*360/(2*pi*anglediff(n-
1)); 
        %anemTurn(n-1)= (turnrad(n-1)+ ((d/2)/((turnrad(n-1))+(d/2))));  
% TURN RADIUS AT ANEMOMETER 
        %anemTurn(n-1)= (d+turnrad(n-1)); 
        %anemTurn(n-1)= sqrt((turnrad(n-1)+ d)^2 + dforward^2);  % TURN 
RADIUS AT ANEMOMETER 
         %V_anemTransSOG(n-1) = Vgps(n-1)*((turnrad(n-1)+d)/turnrad(n-
1)); 
        V_anemTransSOG(n-1) = Vgps(n-1)*anemTurn(n-1)/(turnrad(n-1)); 
        %% Adjusting for forward offset 
        theta=atan(f/d); 
        C=sqrt((f^2)+(d^2)); 
        x=d*cos(theta*pi/180); 
        q=C-x; 
        q=q/((separation*0.3048)+q); 
        %q=sqrt(((V_anemTransSOG(n-1)*t)^2)+(dforward^2)); 
        anemTurn(n-1)=anemTurn(n-1)+q; 
        anemCOG(n-1)=coursegnd(n-1)+ (asin(f/anemTurn(n-1))*180/pi); % 
adding course difference of weather station to course of GNSS 
        V_anemTransSOG(n-1)= Vgps(n-1)*anemTurn(n-1)/(turnrad(n-1)); 
         
    else 
        anglediff(n-1)=abs(anglediff(n-1)); 
        %turnrad(n-1)=DistSOG(n-1)/(2*tan(anglediff(n-1)*pi/180/2)); % 
Straight line approx XXX 
        turnrad(n-1)=DistSOG(n-1)*360/(2*pi*anglediff(n-1));  % GNSS 
Turn Radius using Arc length   
        %turnrad(n-1)=Vgps(n-1)/(anglediff(n-1)/t*pi/180); 
        %anemTurn(n-1)= sqrt((turnrad(n-1)-d)^2 + dforward^2);  % TURN 
RADIUS AT ANEMOMETER 
        anemTurn(n-1)= (turnrad(n-1)- 
((d/2)/((separation*0.3048)+(d/2))));  % TURN RADIUS AT ANEMOMETER 
        %anemTurn(n-1)=(turnrad(n-1)+d)*pi*anglediff(n-1)/t/180; 
        %anemTurn(n-1)=DistSOG(n-
1)*(((separation*0.3048))/(separation*0.3048)+(d/2))*360/(2*pi*angledif
f(n-1)); 
        %anemTurn(n-1)= (turnrad(n-1)- ((d/2)/((turnrad(n-1))+(d/2))));  
% TURN RADIUS AT ANEMOMETER 
        %anemTurn(n-1)=turnrad(n-1)-d; 
         
        %V_anemTransSOG(n-1) = Vgps(n-1)*anemTurn(n-1)/(turnrad(n-1)); 
        V_anemTransSOG(n-1) = Vgps(n-1)*(anemTurn(n-1)/(turnrad(n-1))); 
        %V_anemTransSOG(n-1) = Vgps(n-1)/(anemTurn(n-1)/(turnrad(n-
1))); 
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        %% Adjusting for forward offset 
        theta=atan(f/d); 
        C=sqrt((f^2)+(d^2)); 
        x=d*cos(theta*pi/180); 
        q=(C-x); 
        q=q/((separation*0.3048)+q); 
         
        %q=sqrt(((V_anemTransSOG(n-1)*t)^2)+(dforward^2)); 
        anemTurn(n-1)=anemTurn(n-1)-q; 
        anemCOG(n-1)=coursegnd(n-1)- (asin(f/anemTurn(n-1))*180/pi); 
        V_anemTransSOG(n-1)= Vgps(n-1)*(anemTurn(n-1)/(turnrad(n-1))); 
         
    end 
end 
anemCOG=real(anemCOG); 
%% Combining Methods: Using Haversine at GNSS location and using 
relative velocity to transform 
HaversineVelocity; 
HaversineCourse; 
count=1; 
for n=2:numel(HaversineCourse) 
     
    %VgpsHav(n-1) = (HaversineVelocity(n)+HaversineVelocity(n-1))/2; % 
AVERAGE SPEED OF TWO POINTS AS CENTER POINT 
    %DistHav(n-1) = VgpsHav(n-1)*t;   % DISTANCE TRAVELED (METERS) 
based on AVERAGE SPEED 
    DistHav(n-1)=distance(n-1)*1000; 
    VgpsHav(n-1)=distance(n-1)*1000/t; 
    %% HANDLING 359-> 1 deg change! 
    anglediffHav(n-1) = HaversineCourse(n)-HaversineCourse(n-1); % 
Angle difference to calculate turn radius 
%     if HaversineCourse(n)>270 && HaversineCourse(n-1)<90 
%         anglediffHav(n-1)=360-HaversineCourse(n)+HaversineCourse(n-
1); 
%     else 
%             %HaversineCourse(n-1)<90 && HaversineCourse(n) 
%     end 
    %anglediffHav(n-1) = HaversineCourse(n)-HaversineCourse(n-1); % 
Angle difference to calculate turn radius 
    if anglediffHav(n-1)<0 
        count=count+1; 
        anglediffHav(n-1)=abs(anglediffHav(n-1)); 
        %turnrad(n-1)=DistSOG(n-1)/(2*tan(anglediff(n-1)*pi/180/2)); % 
Straight line approx XXX 
        turnradHav(n-1)=DistHav(n-1)*360/(2*pi*anglediffHav(n-1));    % 
GNSS Turn Radius using Arc length 
         
        %anemTurnHav(n-1)= sqrt((turnradHav(n-1)+ d)^2 + dforward^2);  
% TURN RADIUS AT ANEMOMETER 
        %anemTurnHav(n-1)= (turnradHav(n-1)+ (d/(20*0.3048)));  % TURN 
RADIUS AT ANEMOMETER 
        anemTurnHav(n-1)= (turnradHav(n-1)+ 
((d/2)/((separation*0.3048)+(d/2))));  % TURN RADIUS AT ANEMOMETER 
        %anemTurnHav(n-1)=turnradHav(n-1)+d; 
         
        V_anemRelHav(n-1) = VgpsHav(n-1)*anemTurnHav(n-
1)/(turnradHav(n-1)); 
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        theta=atan(f/d); 
        C=sqrt((f^2)+(d^2)); 
        x=d*cos(theta*pi/180); 
        q=C-x; 
        q=q/((separation*0.3048)+q); 
        %q=sqrt(((V_anemRelHav(n-1)*t)^2)+(dforward^2)); 
        anemTurnHav(n-1)=anemTurnHav(n-1)+q; 
        anemRelHav(n-1)=HaversineCourse(n-1)+ (asin(f/anemTurnHav(n-
1))*180/pi); % adding course difference of weather station to course of 
GNSS 
        V_anemRelHav(n-1)= VgpsHav(n-1)*anemTurnHav(n-1)/(turnradHav(n-
1)); 
         
    else 
        anglediffHav(n-1)=abs(anglediffHav(n-1)); 
        %turnrad(n-1)=DistSOG(n-1)/(2*tan(anglediff(n-1)*pi/180/2)); % 
Straight line approx XXX 
        turnradHav(n-1)=DistHav(n-1)*360/(2*pi*anglediffHav(n-1));  % 
GNSS Turn Radius using Arc length 
        %anemTurnHav(n-1)= sqrt((turnradHav(n-1)-d)^2 + dforward^2);  % 
TURN RADIUS AT ANEMOMETER 
        %% d/SEPARATION DISTANCE (20m) 
        %anemTurnHav(n-1)= (turnradHav(n-1)-(d/(20*0.3048)));  % TURN 
RADIUS AT ANEMOMETER 
        %anemTurnHav(n-1)= (turnradHav(n-1)+((d/2)/(turnrad(n-
1)+(d/2))));  % TURN RADIUS AT ANEMOMETER 
        %anemTurnHav(n-1)=turnradHav(n-1)-d; 
        anemTurnHav(n-1)= (turnradHav(n-1)-
((d/2)/((separation*0.3048)+(d/2)))); 
         
        %V_anemRelHav(n-1) = VgpsHav(n-1)/(anemTurnHav(n-
1)/(turnradHav(n-1))); 
        V_anemRelHav(n-1) = VgpsHav(n-1)*(anemTurnHav(n-
1)/(turnradHav(n-1))); 
         
        theta=atan(f/d); 
        C=sqrt((f^2)+(d^2)); 
        x=d*cos(theta*pi/180); 
        q=C-x; 
        q=q/((separation*0.3048)+q); 
        %q=sqrt(((V_anemRelHav(n-1)*t)^2)+(dforward^2)); 
        anemTurnHav(n-1)=anemTurnHav(n-1)-q; 
        anemRelHav(n-1)=HaversineCourse(n)- (asin(f/anemTurnHav(n-
1))*180/pi); % Course calc 
        V_anemRelHav(n-1)= VgpsHav(n-1)*anemTurnHav(n-1)/(turnradHav(n-
1)); 
         
  
    end 
end 
anemRelHav=real(anemRelHav); 
%% Plots: FIGURE 6 IS BEARING 
% Plot Haversine vs "Speed over ground" 
aplot=0; 
if aplot==1 
sa=1:numel(turnrad); 
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scatter(sa,turnrad,'.')     
    %% DIRECTION: 
sample=1:numel(coursegnd); 
sample2=1:numel(HaversineCourse); 
scatter(sample,coursegnd,'.') 
hold on 
scatter(sample2,HaversineCourse,'.') 
hold on 
scatter(sample2,anemCOG,'.')    % SOG 
hold on 
sample5=1:numel(courseAnem); 
scatter(sample5,courseAnem,'.') % HAV at transformed point 
  
%% VELOCITY 
  
sample2=1:numel(SucessiveVelocity); 
sample3=1:numel(V_anemRelHav); 
%% *** 
figure(2) 
sample=1:numel(V_anemTransSOG); 
scatter(sample,V_anemTransSOG,'.') 
hold on 
sample4=1:numel(velocitygnd); 
scatter(sample4,velocitygnd,'.') 
ylim([0 4]) 
  
sample3=1:numel(SucessiveVelocity); 
scatter(sample3,SucessiveVelocity,'.') 
hold on 
%% Original GNSS HAV vs HAVREL 
sample=1:numel(HaversineVelocity); 
scatter(sample,HaversineVelocity,'.') 
hold on 
samplev=1:numel(SucessiveVelocity); 
scatter(samplev,SucessiveVelocity,'.'); 
hold on 
sample2=1:numel(V_anemRelHav); 
scatter(sample2,V_anemRelHav,'.') 
ylim([1 2]) 
  
scatter 
  
figure(1) 
scatter(HaversineVelocity(1:numel(HaversineVelocity)),velocitygnd(2:num
el(velocitygnd)),'.') 
xlabel('Haversine Calculated Velocity (knots)') 
ylabel('GNSS Output Velocity (m/s)') 
correlate=corr(HaversineVelocity(:),velocitygnd(:)); % There is good 
correlation, but inaccuracy 
  
% Distribution of error for GNSS Velocities: 
figure(2) 
velocitygnd2=velocitygnd; 
velocitygnd2(1)=[]; 
diff=HaversineVelocity-velocitygnd2; 
diff=abs(diff); 
histogram(diff,'Normalization','probability') 
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xlabel('m/s') 
ylabel('Probability') 
title('Difference In GNSS Output "Speed over ground" and Haversine 
Calculation') 
  
% Comparing Velocity Calculations over time: 
figure(3) 
samples=1:numel(HaversineVelocity); 
sample2=1:numel(velocitygnd); 
scatter(samples,HaversineVelocity,'.') 
hold on 
scatter(sample2,velocitygnd,'.','r') 
legend('Haversine calculated velocity','NMEA "Speed Over Ground"') 
  
% Comparing Anemometer velocity calculated using "Speed over ground" 
with 
% GNSS S.O.G 
figure(4) 
samples=1:numel(HaversineVelocity); 
sample2=1:numel(V_anemTransSOG); 
sample3=1:numel(velocitygnd); 
scatter(sample2,V_anemTransSOG,'.') % SPEED OVER GROUND TRANSFORMED TO 
ANEMOMETER 
hold on 
%scatter(samples,HaversineVelocity,'.') % HAVERSINE Not transformed 
%hold on 
scatter(sample3,velocitygnd,'.') % Speed over Ground Not Transformed 
%hold on 
%interpsample(numel(interpsample))=[]; 
%scatter(interpsample,V_aneminterp,'.') 
legend('Transformed Anemometer from "S.O.G"','NMEA "Speed Over 
Ground"') 
  
% Distance comparison: 
figure(5) 
 distanceHav=distance*1000; 
 scatter(samples,distanceHav,'.') 
 hold on 
 scatter(sample2,DistSOG,'.') 
 legend('Haversine Distance','Speed Over Ground Distance') 
  
% Bearing (course) comparison: 
figure(6) 
samples=1:numel(HaversineVelocity); 
coursegndcomp=coursegnd; 
coursegndcomp(numel(coursegnd))=[]; 
  
scatter(samples,HaversineCourse,'.') 
hold on 
samples(1)=[]; 
scatter(samples,courseAnem,'.') 
hold on 
scatter(samples,anemCOG(2:numel(anemCOG)),'.') 
%% 
  
  
scatter(samples,coursegndcomp,'.') 
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% Weather station Haversine vel vs S.O.G 
sample=1:numel(SucessiveVelocity) 
sample2=1:numel(V_anemTransSOG) 
figure(7) 
scatter(sample,SucessiveVelocity,'.') 
hold on 
scatter(sample2,V_anemTransSOG,'.') 
xlabel('Sample Number') 
ylabel('Velocity (m/s)') 
legend('Haversine Velocity Anemometer Position','"Speed Over Ground" 
Anemometer Position') 
hold off 
else 
end 
  
end 
  
function 
[HaversineVelocityAnemometer,COGAnem]=old(Latdegree,Longdegree,d,f,r_ea
rth,t) 
Latdegree=Latdegree*pi/180; 
Longdegree=Longdegree*pi/180; 
angulardistance=sqrt((d^2)+(f^2))/r_earth; 
  
for n=2:numel(Latdegree)-1 
HaverGps2AnemBearing(n-1)=mod(((HaversineCourse(n-
1)+HaversineCourse(n))/2)+90+offsetAngle,360)*pi/180; 
%HaverGps2AnemBearing(n-1)=mod(HaversineCourse(n-1)+90,360)*pi/180; 
Lattrans(n-
1)=asin((sin(Latdegree(n))*cos(angulardistance))+(cos(Latdegree(n))*sin
(angulardistance)*cos(HaverGps2AnemBearing(n-1)))); 
%Longtrans(n)=Longdegree(n)+ 
atan2(sin(HaverGps2AnemBearing(n))*sin(angulardistance)*cos(Latdegree(n
)),cos(angulardistance)-sin(Latdegree(n))*sin(Lattrans(n))); 
Longtrans(n-1)=mod((Longdegree(n)- asin(sin(HaverGps2AnemBearing(n-
1))*sin(angulardistance)/cos(Latdegree(n)))+pi),2*pi)-pi; 
% Convert back to degrees 
Lattrans(n-1)=Lattrans(n-1)*180/pi; 
Longtrans(n-1)=Longtrans(n-1)*180/pi; 
end 
  
%% Vincenty distance between original and spherical transform 
for k=1:numel(Lattrans) 
  [dist2(k),havveCourse1(k)] = 
vdist(Lat4Vince(k),Long4Vince(k),Lattrans(k),Longtrans(k)); 
end 
diff=abs(dist1-dist2); 
comptit=[{'Spherical'},{'WGS-84'}]; 
comp=[dist2',dist1']; 
xlswrite('SphereVsWGS84.xlsx',comptit,1,'A1') 
xlswrite('SphereVsWGS84.xlsx',comp,1,'A2') 
%% Calculating Haversine Distance/Velocity/Heading(bearing) for 
Transformed data: 
% Recreating String format if needed: UNUSED!!!!!!!!!!!!!!!! 
% Separating decimal for conversion from deg to deg,minutes 
for n=1:numel(Lattrans) % LATITUDE 
    if Lattrans(n)>0 
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        latint(n)=floor(Lattrans(n)); 
        fractlat(n)=Lattrans(n)-latint(n); 
        cardinalLAT{n}='N'; 
    else 
        latint(n)=floor(Lattrans(n)); 
        fractlat(n)=latint(n)-ceil(Lattrans(n)); 
        cardinalLAT{n}='S'; 
    end 
end 
fractlat=fractlat*60; % Convert decimal part back to minutes 
  
for n=1:numel(Lattrans) % LONGITUDE 
    if Longtrans(n)>0 
        longint(n)=floor(Longtrans(n)); 
        fractlong(n)=Longtrans(n)-longint(n); 
        cardinalLONG{n}='W'; 
    else 
        longint(n)=floor(Longtrans(n)); 
        fractlong(n)=longint(n)-ceil(Longtrans(n)); 
        cardinalLONG{n}='E'; 
    end 
end 
fractlong=fractlong*60; % Convert decimal part back to minutes 
% Convert to string 
for n=1:numel(longint) 
    latint1{n}=num2str(latint(n)); longint1{n}=num2str(longint(n)); 
fractlat1{n}=num2str(fractlat(n)); fractlong1{n}=num2str(fractlong(n)); 
end 
% Concatenate Coordinates 
for n=1:numel(fractlat) 
    TransformedLat{n}=strcat(latint1{n},' 
',fractlat1{n},'',cardinalLAT{n}); 
    TransformedLat{n}=insertAfter(TransformedLat(n),2,' '); 
    TransformedLong{n}=strcat(longint1{n},' 
','0',fractlong1{n},'',cardinalLONG{n}); 
    TransformedLong{n}=insertAfter(TransformedLong(n),2,' '); 
end 
%dummy='dumb'; 
  
%% Haversine for Transformed points: INPUT DECIMAL FORM!!! 
%**********************************************************************
*** 
%% CHECK IF STRING INPUT HAS DIFFERENT RESULTS 
for n=2:numel(Lattrans) 
    [distanceAnem(n-1),courseAnem(n-1)]=haversine([Lattrans(n-1) 
Longtrans(n-1)],[Lattrans(n) Longtrans(n)]); 
     
    %   coord1=strcat(TransformedLat{n-1},',',TransformedLong{n-1}); 
    %   coord2=strcat(TransformedLat{n},',',TransformedLong{n}); 
    %   [distanceAnem2(n-1),courseAnem2(n-
1)]=haversine(coord1{1},coord2{1}); 
end 
%% Haversine Velocity at ANEMOMETER LOCATION: 
courseAnem=(courseAnem*-1)+360; 
HaversineVelocityAnemometer=distanceAnem./t; %km/s 
HaversineVelocityAnemometer=HaversineVelocityAnemometer*1000; %m/s 
% %velocity=velocity.*1943.84; % knots 
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% HaversineVelocityAnemometer=HaversineVelocityAnemometer'; 
scatter(Longtrans,Lattrans,'.') 
hold on 
scatter(Long4Vince,Lat4Vince,'.') 
figure(2) 
scatter(HaversineVelocityAnemometer,SucessiveVelocity,'.') 
end 

 

Comp2Card 

% Comp2card 
% Austin Weiss 
% Converts X and Y components into 360 degree heading 
  
function dir = Comp2coord(x,y) 
  
for i=1:numel(y) 
        if x(i) >=0 & y(i)>=0 
            %dir(i)=(180/pi*atan(abs(x(i))/abs(y(i)))); 
            dir(i)=180+(180/pi*atan(abs(x(i))/abs(y(i)))); 
        elseif x(i)>0 & y(i)<0 
            %dir(i)=90+(180/pi*atan(abs(y(i))/abs(x(i)))); 
            dir(i)=270+(180/pi*atan(abs(y(i))/abs(x(i)))); 
        elseif x(i)<0 & y(i)<0 
            %dir(i)=270-(180/pi*atan(abs(y(i))/abs(x(i)))); 
            dir(i)=180/pi*atan(abs(x(i))/abs(y(i))); 
        else % x<0, y>0 
            %dir(i)=270+(180/pi*atan(abs(y(i))/abs(x(i)))); 
            dir(i)=90+(180/pi*atan(abs(y(i))/abs(x(i)))); 
        end 
end 
end 
 
 
Haversine Function: 

function [km, bearing,nmi, mi] = haversine(loc1, loc2) 
% HAVERSINE     Compute distance between locations using Haversine 
formula 
%   KM = HAVERSINE(LOC1, LOC2) returns the distance KM in km between 
%   locations LOC1 and LOC2 using the Haversine formula.  LOC1 and LOC2 
are 
%   latitude and longitude coordinates that can be expressed as either 
%   strings representing degrees, minutes, and seconds (suffixed with 
%   N/S/E/W), or numeric arrays representing decimal degrees (where 
%   negative indicates West/South). 
% 
%   [KM, NMI, MI] = HAVERSINE(LOC1, LOC2) returns the computed distance 
in 
%   kilometers (KM), nautical miles (NMI), and miles (MI). 
% 
%   Examples 
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%       haversine('53 08 50N, 001 50 58W', '52 12 16N, 000 08 26E') 
returns 
%           170.2547 
%       haversine([53.1472 -1.8494], '52 12.16N, 000 08.26E') returns 
%           170.2508 
%       haversine([53.1472 -1.8494], [52.2044 0.1406]) returns 170.2563 
% 
%   Inputs 
%       LOC must be either a string specifying the location in degrees, 
%       minutes and seconds, or a 2-valued numeric array specifying the 
%       location in decimal degrees.  If providing a string, the 
latitude 
%       and longitude must be separated by a comma. 
% 
%       The first element indicates the latitude while the second is 
the 
%       longitude. 
% 
%   Notes 
%       The Haversine formula is used to calculate the great-circle 
%       distance between two points, which is the shortest distance 
over 
%       the earth's surface. 
% 
%       This program was created using equations found on the website 
%       http://www.movable-type.co.uk/scripts/latlong.html 
% Created by Josiah Renfree 
% May 27, 2010 
%% MODIFIED by Austin Weiss 
% 12/21/2018 
% Now includes initial and final bearing (set to final) 
% Now takes input as string Latitude,Longitude: 
%"degrees minutes.decimalminutes,degrees minutes.decimal minutes" 
%% Check user inputs 
% If two inputs are given, display error 
if ~isequal(nargin, 2) 
    error('User must supply two location inputs') 
     
% If two inputs are given, handle data 
else 
     
    locs = {loc1 loc2};     % Combine inputs to make checking easier 
     
    % Cycle through to check both inputs 
    for i = 1:length(locs) 
                 
        % Check inputs and convert to decimal if needed 
        if ischar(locs{i}) 
             
            % Parse lat and long info from current input 
            temp = regexp(locs{i}, ',', 'split'); 
            lat = temp{1}; lon = temp{2}; 
            clear temp 
            locs{i} = [];           % Remove string to make room for 
array 
             
            % Obtain degrees, minutes, seconds, and hemisphere 
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            temp = regexp(lat, '(\d+)\D+(\d+)\D+(\d+)(\w?)', 'tokens'); 
            temp = temp{1}; 
            num=numel(num2str(temp{3})); % number of digits in decimal, 
to remake decimal to add back 
            % Calculate latitude in decimal degrees 
            locs{i}(1) = str2double(temp{1}) + 
str2double(temp{2})/60+str2double(temp{3})/(10^num)/60; 
             
            % Make sure hemisphere was given 
            if isempty(temp{4}) 
                error('No hemisphere given') 
            % If latitude is south, make decimal negative 
            elseif strcmpi(temp{4}, 'S') 
                locs{i}(1) = -locs{i}(1); 
            end 
             
            clear temp 
            % Obtain degrees, minutes, seconds, and hemisphere 
            temp = regexp(lon, '(\d+)\D+(\d+)\D+(\d+)(\w?)', 'tokens'); 
            temp = temp{1}; 
            num=numel(num2str(temp{3})); % number of digits in decimal, 
to remake decimal to add back 
            % Calculate longitude in decimal degrees 
            locs{i}(2) = str2double(temp{1}) + 
str2double(temp{2})/60+str2double(temp{3})/(10^num)/60; 
             
            % Make sure hemisphere was given 
            if isempty(temp{4}) 
                error('No hemisphere given') 
                 
            % If longitude is west, make decimal negative 
            elseif strcmpi(temp{4}, 'W') 
                locs{i}(2) = -locs{i}(2); 
            end 
             
            clear temp lat lon 
        end 
    end 
end 
% Check that both cells are a 2-valued array 
if any(cellfun(@(x) ~isequal(length(x),2), locs)) 
    error('Incorrect number of input coordinates') 
end 
% Convert all decimal degrees to radians 
locs = cellfun(@(x) x .* pi./180, locs, 'UniformOutput', 0); 
%% Begin Distance calculation 
R = 6371;                                   % Earth's radius in km 
delta_lat = locs{2}(1) - locs{1}(1);        % difference in latitude 
delta_lon = locs{2}(2) - locs{1}(2);        % difference in longitude 
a = sin(delta_lat/2)^2 + cos(locs{1}(1)) * cos(locs{2}(1)) * ... 
    sin(delta_lon/2)^2; 
c = 2 * atan2(sqrt(a), sqrt(1-a)); 
km = R * c;                                 % distance in km 
%% Convert result to nautical miles and miles 
nmi = km * 0.539956803;                     % nautical miles 
mi = km * 0.621371192;                      % miles 
%% INITIAL Bearing Calculation: 
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b1=sin(delta_lon)*cos(locs{2}(1)); 
b2=(cos(locs{1}(1))*sin(locs{2}(1)))-
(sin(locs{1}(1))*cos(locs{2}(1))*cos(delta_lon)); 
bearing1=atan2(b2,b1); 
bearing1=bearing1*180/pi; % convert to degrees 
% Converting to 360 degree format 
bearing1=bearing1+180; 
    if bearing1>=360 
        bearing1=bearing1-360; 
    else 
    end 
% bearing1=mod(bearing1-90,360); 
%% FINAL Bearing calculation 
final=1; 
if final==1 
bearing2=atan2(b1,b2); 
bearing2=bearing2*180/pi; % Convert to degrees 
bearing2=mod(bearing2,360); 
  
%for n=1:numel(bearing2) 
    %if bearing2>=360 
    %    bearing2=bearing2-360; 
    %else 
    %end 
%end 
bearing=bearing2; 
else 
    bearing=bearing1; 
end 
%bearing=(bearing1+bearing2)/2; 
end 
 

Vincenty Distance Function: 

function [s,a21] = vdist(lat1,lon1,lat2,lon2) 
% VDIST - compute distance between points on the WGS-84 ellipsoidal 
Earth 
%         to within a few millimeters of accuracy using Vincenty's 
algorithm 
% 
% s = vdist(lat1,lon1,lat2,lon2) 
% 
% s = distance in meters 
% lat1 = GEODETIC latitude of first point (degrees) 
% lon1 = longitude of first point (degrees) 
% lat2, lon2 = second point (degrees) 
% 
%  Original algorithm source: 
%  T. Vincenty, "Direct and Inverse Solutions of Geodesics on the 
Ellipsoid 
%  with Application of Nested Equations", Survey Review, vol. 23, no. 
176, 
%  April 1975, pp 88-93 
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% 
% Notes: (1) Error correcting code, convergence failure traps, 
antipodal corrections, 
%            polar error corrections, WGS84 ellipsoid parameters, 
testing, and comments 
%            written by Michael Kleder, 2004. 
%        (2) Vincenty describes his original algorithm as precise to 
within 
%            0.01 millimeters, subject to the ellipsoidal model. 
%        (3) Essentially antipodal points are treated as exactly 
antipodal, 
%            potentially reducing accuracy by a small amount. 
%        (4) Failures for points exactly at the poles are eliminated by 
%            moving the points by 0.6 millimeters. 
%        (5) Vincenty's azimuth formulas are not implemented in this 
%            version, but are available as comments in the code. 
%        (6) The Vincenty procedure was transcribed verbatim by Peter 
Cederholm, 
%            August 12, 2003. It was modified and translated to English 
by Michael Kleder. 
%            Mr. Cederholm's website is http://www.plan.aau.dk/~pce/ 
%        (7) Code to test the disagreement between this algorithm and 
the 
%            Mapping Toolbox spherical earth distance function is 
provided 
%            as comments in the code. The maximum differences are: 
%            Max absolute difference: 38 kilometers 
%            Max fractional difference: 0.56 percent 
  
% Input check: 
if abs(lat1)>90 | abs(lat2)>90 
    error('Input latitudes must be between -90 and 90 degrees, 
inclusive.') 
end 
% Supply WGS84 earth ellipsoid axis lengths in meters: 
a = 6378137; % definitionally 
b = 6356752.31424518; % computed from WGS84 earth flattening 
coefficient definition 
% convert inputs in degrees to radians: 
lat1 = lat1 * 0.0174532925199433; 
lon1 = lon1 * 0.0174532925199433; 
lat2 = lat2 * 0.0174532925199433; 
lon2 = lon2 * 0.0174532925199433; 
% correct for errors at exact poles by adjusting 0.6 millimeters: 
if abs(pi/2-abs(lat1)) < 1e-10; 
    lat1 = sign(lat1)*(pi/2-(1e-10)); 
end 
if abs(pi/2-abs(lat2)) < 1e-10; 
    lat2 = sign(lat2)*(pi/2-(1e-10)); 
end 
f = (a-b)/a; 
U1 = atan((1-f)*tan(lat1)); 
U2 = atan((1-f)*tan(lat2)); 
lon1 = mod(lon1,2*pi); 
lon2 = mod(lon2,2*pi); 
L = (lon2-lon1); 
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%% 
if L > pi 
    L = 2*pi - L; 
end 
lambda = L; 
lambdaold = 0; 
itercount = 0; 
while ~itercount | abs(lambda-lambdaold) > 1e-12  % force at least one 
execution 
    itercount = itercount+1; 
    if itercount > 50 
        warning('Points are essentially antipodal. Precision may be 
reduced slightly.'); 
        lambda = pi; 
        break 
    end 
    lambdaold = lambda; 
    sinsigma = sqrt((cos(U2)*sin(lambda))^2+(cos(U1)*... 
        sin(U2)-sin(U1)*cos(U2)*cos(lambda))^2); 
    cossigma = sin(U1)*sin(U2)+cos(U1)*cos(U2)*cos(lambda); 
    sigma = atan2(sinsigma,cossigma); 
    alpha = asin(cos(U1)*cos(U2)*sin(lambda)/sin(sigma)); 
    cos2sigmam = cos(sigma)-2*sin(U1)*sin(U2)/cos(alpha)^2; 
    C = f/16*cos(alpha)^2*(4+f*(4-3*cos(alpha)^2)); 
    lambda = L+(1-C)*f*sin(alpha)*(sigma+C*sin(sigma)*... 
        (cos2sigmam+C*cos(sigma)*(-1+2*cos2sigmam^2))); 
    % correct for convergence failure in the case of essentially 
antipodal points 
    if lambda > pi 
        warning('Points are essentially antipodal. Precision may be 
reduced slightly.'); 
        lambda = pi; 
        break 
    end 
end 
u2 = cos(alpha)^2*(a^2-b^2)/b^2; 
A = 1+u2/16384*(4096+u2*(-768+u2*(320-175*u2))); 
B = u2/1024*(256+u2*(-128+u2*(74-47*u2))); 
deltasigma = B*sin(sigma)*(cos2sigmam+B/4*(cos(sigma)*(-
1+2*cos2sigmam^2)... 
    -B/6*cos2sigmam*(-3+4*sin(sigma)^2)*(-3+4*cos2sigmam^2))); 
s = b*A*(sigma-deltasigma); 
  
% % 
===================================================================== 
% % Vicenty's azimuth calculation code is left unused: 
% % (results in radians) 
% % From point #1 to point #2 
  
  
  
a12 = atan2(cos(U2)*sin(lambda),cos(U1)*sin(U2)-
sin(U1)*cos(U2)*cos(lambda)); 
if a12 < 0 
    a12 = a12+2*pi; 
end 
% % from point #2 to point #1 
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a21 = atan2(cos(U1)*sin(lambda),-
sin(U1)*cos(U2)+cos(U1)*sin(U2)*cos(lambda)); 
if a21 < 0 
    a21 = a21+pi; 
end 
if (L>0) & (L<pi) 
    a21 = a21 + pi; 
end 
  
% % 
===================================================================== 
% % Code to test the Mapping Toolbox spherical earth distance against 
% % Vincenty's algorithm using random test points: 
% format short g 
% errmax=0; 
% abserrmax=0; 
% for i = 1:10000 
%     llat = rand * 184-92; 
%     tlat = rand * 184-92; 
%     llon = rand * 364 - 2; 
%     tlon = rand * 364 - 2; 
%     llat = max(-90,min(90,llat)); % round to include occasional exact 
poles 
%     tlat = max(-90,min(90,tlat)); 
%     llon = max(0,min(360,llon)); 
%     tlon = max(0,min(360,tlon)); 
%     % randomly test exact equator 
%     if rand < .01 
%         llat = 0; 
%         llon = 0; 
%     else 
%         if rand < .01 
%             llat = 0; 
%         end 
%         if rand < .01 
%             tlat = 0; 
%         end 
%     end 
%     dm = 1000*deg2km(distance(llat,llon,tlat,tlon)); 
%     dv = vdist(llat,llon,tlat,tlon); 
%     abserr = abs(dm-dv); 
%     if abserr < 1e-2 % disagreement less than a centimeter 
%         err = 0; 
%     else 
%         err = abs(dv-dm)/dv; 
%     end 
%     errmax = max(err,errmax); 
%     abserrmax = max(abserr,abserrmax); 
%     %     if i==1 | rand > .99 
%     disp([i dv dm err errmax abserrmax]) 
%     %     end 
%     if err > .01 
%         break 
%     end 
% end 
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Vincenty Coordiante Calculation Function: 

function [lat2,lon2,a21] = vreckon(lat1,lon1,s,a12) 
% RECKON - Using the WGS-84 Earth ellipsoid, travel a given distance 
along 
%          a given azimuth starting at a given initial point, and 
return 
%          the endpoint within a few millimeters of accuracy, using 
%          Vincenty's algorithm. 
% 
% USAGE: 
% [lat2,lon2] = vreckon(lat1, lon1, s, a12) 
% 
% VARIABLES: 
% lat1 = inital latitude (degrees) 
% lon1 = initial longitude (degrees) 
% s    = distance (meters) 
% a12  = intial azimuth (degrees) 
% lat2, lon2 = second point (degrees) 
% a21  = reverse azimuth (degrees), at final point facing back toward 
the 
%        intial point 
% 
% Original algorithm source: 
% T. Vincenty, "Direct and Inverse Solutions of Geodesics on the 
Ellipsoid 
% with Application of Nested Equations", Survey Review, vol. 23, no. 
176, 
% April 1975, pp 88-93. 
% Available at: http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf 
% 
% Notes:  
% (1) The Vincenty reckoning algorithm was transcribed verbatim into 
%     JavaScript by Chris Veness. It was modified and translated to 
Matlab 
%     by Michael Kleder. Mr. Veness's website is: 
%     http://www.movable-type.co.uk/scripts/latlong-vincenty-
direct.html 
% (2) Error correcting code, polar error corrections, WGS84 ellipsoid 
%     parameters, testing, and comments by Michael Kleder. 
% (3) By convention, when starting at a pole, the longitude of the 
initial 
%     point (otherwise meaningless) determines the longitude line along 
%     which to traverse, and hence the longitude of the final point. 
% (4) The convention noted in (3) above creates a discrepancy with 
VDIST 
%     when the the intial or final point is at a pole. In the VDIST 
%     function, when traversing from a pole, the azimuth is  0 when 
%     heading away from the south pole and 180 when heading away from 
the 
%     north pole. In contrast, this VRECKON function uses the azimuth 
as 
%     noted in (3) above when traversing away form a pole. 
% (5) In testing, where the traversal subtends no more than 178 
degrees, 
%     this function correctly inverts the VDIST function to within 0.2 
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%     millimeters of distance, 5e-10 degrees of forward azimuth, 
%     and 5e-10 degrees of reverse azimuth. Precision reduces as test 
%     points approach antipodal because the precision of VDIST is 
reduced 
%     for nearly antipodal points. (A warning is given by VDIST.) 
% (6) Tested but no warranty. Use at your own risk. 
% (7) Ver 1.0, Michael Kleder, November 2007 
  
% Input check: 
if abs(lat1)>90 
    error('Input latitude must be between -90 and 90 degrees, 
inclusive.') 
end 
a = 6378137; % semimajor axis 
%b = 6356752.314140347; 
 b = 6356752.31424518; % semiminor axis ORIGINAL 
f = 1/298.257223563; % flattening coefficient WGS-84 ORIGINAL 
%f=1/298.257222100882711243; 
lat1   = lat1 * .1745329251994329577e-1; % intial latitude in radians 
lon1   = lon1 * .1745329251994329577e-1; % intial longitude in radians 
% correct for errors at exact poles by adjusting 0.6 millimeters: 
kidx = abs(pi/2-abs(lat1)) < 1e-10; 
if any(kidx); 
    lat1(kidx) = sign(lat1(kidx))*(pi/2-(1e-10)); 
end 
alpha1 = a12 * .1745329251994329577e-1; % inital azimuth in radians 
sinAlpha1 = sin(alpha1); 
cosAlpha1 = cos(alpha1); 
tanU1 = (1-f) * tan(lat1); 
cosU1 = 1 / sqrt(1 + tanU1*tanU1); 
sinU1 = tanU1*cosU1; 
sigma1 = atan2(tanU1, cosAlpha1); 
sinAlpha = cosU1 * sinAlpha1; 
cosSqAlpha = 1 - sinAlpha*sinAlpha; 
uSq = cosSqAlpha * (a*a - b*b) / (b*b); 
A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq))); 
%k1=((sqrt(1+uSq)-1)/(sqrt(1+uSq)+1)); 
%A = (1+(.25*k1^2)); 
%B = k1*(1-(3/8)*k1^2); 
B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq))); 
sigma = s / (b*A); 
sigmaP = 2*pi; 
while (abs(sigma-sigmaP) > 1e-12) 
    cos2SigmaM = cos(2*sigma1 + sigma); 
    sinSigma = sin(sigma); 
    cosSigma = cos(sigma); 
    deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+... 
        2*cos2SigmaM*cos2SigmaM)-... 
        B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+... 
        4*cos2SigmaM*cos2SigmaM))); 
    sigmaP = sigma; 
    sigma = s / (b*A) + deltaSigma; 
end 
tmp = sinU1*sinSigma - cosU1*cosSigma*cosAlpha1; 
lat2 = atan2(sinU1*cosSigma + cosU1*sinSigma*cosAlpha1,... 
    (1-f)*sqrt(sinAlpha*sinAlpha + tmp*tmp)); 
lambda = atan2(sinSigma*sinAlpha1, cosU1*cosSigma - ... 
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    sinU1*sinSigma*cosAlpha1); 
C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha)); 
L = lambda - (1-C) * f * sinAlpha * (sigma + C*sinSigma*(cos2SigmaM+... 
    C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM))); 
lon2 = lon1 + L; 
% output degrees 
lat2 = lat2 * 57.295779513082322865; 
lon2 = lon2 * 57.295779513082322865; 
lon2 = mod(lon2,360); % follow [0,360] convention 
if nargout > 2 
    a21 = atan2(sinAlpha, -tmp);  
    a21  = 180 + a21  * 57.295779513082322865; % note direction 
reversal 
    a21=mod(a21,360); 
end 
return
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 R Script 

 

getwd()  

#setwd("C:/Users/Weiss/OneDrive - University of Kentucky/1 Thesis Work/Correlation 
Between Stationary Ultrasonic Anemometers/Feb 13th Test") 

setwd("C:/Users/Weiss/Desktop/Dynamic result") 

require(xlsx) 

require(gstat) 

require(sp) 

require(lattice) 

require(gstat) 

data<-read.xlsx("Dynamic_1_20ft_3mph_NoFilter.xlsx", "Plot") 

a<- summary(data)  

head(data) 

 

# 1st Order Probability (mean) 

mean(data$X86000.Velocities..m.s.) 

# 2nd Order Probability (variance) 

sort(var(data$X86000.Velocities..m.s.)) 

library(moments) 

skewness(data$X86000.Velocities..m.s., na.rm = FALSE) 

kurtosis(data$X86000.Velocities..m.s., na.rm = FALSE) 

# 86000 QQ 

qqnorm(data$X86000.Velocities..m.s., main = "Normal Q-Q Plot - Yield") 

qqline(data$X86000.Velocities..m.s., col='red') 

# 92000 QQ 

qqnorm(data$X92000.Velocity.M1..m.s., main = "Normal Q-Q Plot - Yield") 

qqline(data$X92000.Velocity.M1..m.s., col='red') 

pearcorr <- cor(data) # Calculates Pearson correlation coefficents 

#Spearman not appropriate 
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#spearcorr <- cor(data, method = "spearman") # Calculates Spearman correlation 
coefficients 

# 

## 86000 Autocorr 

lag=50   # Change for lag distance 

acf1 <- acf(data$X86000.Velocities..m.s., lag=lag) # Calc autocorr function for yield at 
lag distance 16 

acf1 

acf1.d<-data.frame(acf1$lag, acf1$acf)  # Reorganize (lag distance, autocorr function) 

acf1.d 

plot(acf1.d, type="p",main="86000 Velocities", xlab="Lag (h)", ylab="Correlation 
Coefficient", ylim=c(0,1), xlim=c(0,lag)) 

#write.csv(acf1.d,"acf1.d.csv") 

# 

## 92000 Autocorr 

lag=50   # Change for lag distance 

#acf1 <- acf(data$X92000.Velocity..m.s., lag=lag) # Calc autocorr function for yield at 
lag distance 16 

acf1 <- acf(data$X92000.Velocity.M1..m.s., lag=lag) # Calc autocorr function for yield 
at lag distance 16 

acf1 

acf1.d<-data.frame(acf1$lag, acf1$acf)  # Reorganize (lag distance, autocorr function) 

acf1.d 

plot(acf1.d, type="p",main="92000 Velocities", xlab="Lag (h)", ylab="Correlation 
Coefficient", ylim=c(0,1), xlim=c(0,lag)) 

 

 

## FAST PROCESS CROSS CORR: CHANGE FILE READ AND SAVE AND RUN 
TO END 

setwd("C:/Users/Weiss/Desktop/Feb 13th Test") 

#setwd("C:/Users/Weiss/Desktop/Dynamic result") 

#data<-read.xlsx("Dynamic_3_40ft_3mph_NoFilter.xlsx", "Plot") 
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data<-read.xlsx("Stationary_20ft_1_NoFilter.xlsx", "Plot") 

### Cross-Corrleation 

lag=50 

ccf1<-ccf(data$X86000.Velocities..m.s.,data$X92000.Velocity.M1..m.s., 
lag=lag,na.action = na.pass) 

#ccf1<-ccf(data$X86000.Velocities..m.s.,data$X92.Velocity.M2..m.s., lag=lag,na.action 
= na.pass) 

#ccf1<-ccf(data$X86000.Velocities..m.s.,data$X92.Velocity.M3.m.s., lag=lag,na.action 
= na.pass) 

 

plot(ccf1, type="b",main="86000 vs 92000 Velocities", xlab="Lag (h)", ylab="Cross 
Correlation Coefficient", ylim=c(0,.7), xlim=c(-lag,lag)) 

 

ccf1line<-data.frame((-lag:lag), ccf1$acf) 

lines(smooth.spline(ccf1line, spar=0.1), col="blue") 

ccf1.print <- data.frame(ccf1$lag,ccf1$acf)  # Reorganize data in columns 

ccf1.print 

 

# Printing Cross Corr 

setwd("C:/Users/Weiss/Desktop/Dynamic result/cross corr") 

write.xlsx(ccf1.print,"CrossCorr_3_20ft_3mph_NoFilter_M2.xlsx")
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 Data Logging Code (VB.NET) 

Form1.vb 
 
Public Class Form1 
    Private WithEvents CommPort As New RS232 
    Private WithEvents CommPort2 As New RS232 
    Private Sample As Integer = 1 
    Private TriggerThread As System.Threading.Thread 
    Private ElapsedTime As New Stopwatch 
    Private LogFileName As String 
 
    Dim myPort As Array 
    Dim DataCollect As Array 
    'Private WithEvents Printer As New Printcsv 
    Public Event ListBuild() 
    Public inputs As String 
    Public PrintList As New List(Of String) 
    Public PrintList2 As New List(Of String) 
    Public WriteTrigger = 1 
 
 
    Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load  
'Form1_Load is the main program!! 
        CheckForIllegalCrossThreadCalls = False 
        BaudRate.Items.Add(38400) 
        For Each PORT In CommPort.GetComPortNames 
            ModelPortName.Items.Add(PORT) 
            ResponseOnePort.Items.Add(PORT) 
        Next 
        ModelPortName.Text = ModelPortName.Items.Item(0) 'Sets Port List to first 
option so text appears on startup 
        ResponseOnePort.Text = ResponseOnePort.Items.Item(0) 'Sets Port List to 
first option so text appears on startup  
        BaudRate.Text = BaudRate.Items.Item(0) 
        CloseButton.Enabled = False 'Disables Close Button since there is no Open 
        'Dim newTread As New System.Threading.Thread(AddressOf MessageReceived) 
        'Dim thread As New Thread(AddressOf MyBackgroundPrinter) 'Starting 
background printer thread 
        'Thread.Start() 
 
 
    End Sub 
 
    'Start CONNECT BUTTON' 
    Private Sub OpenButton_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles OpenButton.Click 
        CommPort.OpenPort(ModelPortName.Text, 38400, 8, "N", 1) 'Opens the Port 
        CommPort2.OpenPort(ResponseOnePort.Text, 38400, 8, "N", 1) 'Opens other 
port 
        OpenButton.Enabled = False 
        CloseButton.Enabled = True 
    End Sub 
 
    Public Sub MessageReceived() Handles CommPort.NewMessage 
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        DataPrint.Text = CommPort.GetMessage    'Grabs Message and Time 
        Dim Message As String = CommPort.GetMessage 
 
        'DataPrint.Text = Message 
        Dim Items As String() = Split(Message, " ") 
        SensorAddress.Text = "86000" 
        'SensorAddress.Text = Message 
        WindSpeed.Text = Items(1) 
        WindDirection.Text = Items(2) 
        StatusCodeCheckSum.Text = Items(3) 
        'OLD METHOD: Write time into text box 
        'Time1.Text = CommPort.Time 
        Time1.Text = Items(4)   ' Grabs timestamp from GPS 
 
        'Writes Data When Log Button is Pressed 
        If (LogData.Text = "Stop Logging") Then 
            ' Grab text box data and create string: 
            'Dim inputs As String = "86000" & "," & WindSpeed.Text & "," & 
WindDirection.Text & "," & "," & "," & "," & StatusCodeCheckSum.Text & "," & 
Time1.Text 
            inputs = "86000" & "," & Items(1) & "," & Items(2) & "," & "," & "," & 
"," & Items(3) & "," & Items(4) 
            ' Call file writer with string to write as input 
            'BackgroundWorker1.RunWorkerAsync(inputs) 
 
            'Dim Printcheck = Printer.List4write(inputs) 
 
            List4write(inputs) 
            'File.AppendAllText(Path.Text, "86000" & "," & WindSpeed.Text & "," & 
WindDirection.Text & "," & "," & "," & "," & StatusCodeCheckSum.Text & "," & 
Time1.Text & vbCrLf) 
        Else 
            LogData.Text = "Log Data" 
            LogData.Enabled = True 
            Filename.Enabled = True 
 
        End If 
 
    End Sub 
 
    Public Sub MessageReceived2() Handles CommPort2.NewMessage 
        DataPrint2.Text = CommPort2.GetMessage  'Grabs Message and Time 
        Dim MessageOne As String = CommPort2.GetMessage 
        Dim ItemsOne As String() = Split(MessageOne, " ") 
        SensorAddress2.Text = "92000" 
        WindSpeed2.Text = ItemsOne(1) 
        WindDirection2.Text = ItemsOne(2) 
        Temperature.Text = ItemsOne(3) 
        RelativeHumidity.Text = ItemsOne(4) 
        BarometricPressure.Text = ItemsOne(5) 
        StatusCodeCheckSum2.Text = ItemsOne(6) 
        'Write time into text box from RS232 class old method of calling computer 
timestamping 
        'Time2.Text = CommPort2.Time 
        Time2.Text = ItemsOne(7)        ' Grabs timestamp from GPS 
 
        'Writes Data When Log Button is Pressed 



 

163 
 

        If (LogData.Text = "Stop Logging") Then 
            ' Grab text box data and create string: 
            'Dim inputs As String = "92000" & "," & WindSpeed2.Text & "," & 
WindDirection2.Text & "," & Temperature.Text & "," & RelativeHumidity.Text & "," & 
BarometricPressure.Text & "," & StatusCodeCheckSum2.Text & "," & Time2.Text 
            inputs = "92000" & "," & ItemsOne(1) & "," & ItemsOne(2) & "," & 
ItemsOne(3) & "," & ItemsOne(4) & "," & ItemsOne(5) & "," & ItemsOne(6) & "," & 
ItemsOne(7) 
 
            List4write(inputs) 
            'BackgroundWorker2.RunWorkerAsync(inputs)  'Raises DoWork Event 
 
            'File.AppendAllText(Path.Text, "92000" & "," & WindSpeed2.Text & "," & 
WindDirection2.Text & "," & Temperature.Text & "," & RelativeHumidity.Text & "," & 
BarometricPressure.Text & "," & StatusCodeCheckSum2.Text & "," & Time2.Text & 
vbCrLf) 
        Else 
            LogData.Text = "Log Data" 
            LogData.Enabled = True 
            Filename.Enabled = True 
        End If 
    End Sub 
 
    'Private Sub Bittester() Handles CommPort2.Bitgot 
    'Dim file2 As System.IO.StreamWriter 
    'File2.WriteAllText(C:\Users\amwe235\Documents\test.txt) 
    'file2.AppendAllText(SerialPort1.ReadExisting + Time1) 
    'file2 = 
My.Computer.FileSystem.OpenTextFileWriter("C:\Users\amwe235\Documents\test.txt", 
True) 
    'file2.WriteLine(SerialPort1.ReadExisting + CommPort2.Time1) 
    'End Sub 
 
    'Start Disconnect Button' 
    Private Sub CloseButton_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles CloseButton.Click 
        SerialPort1.Close() 
        SerialPort2.Close() 
        OpenButton.Enabled = True 
        CloseButton.Enabled = False 
    End Sub 
 
    'Send Button Start' 
    Private Sub SendButton_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles SendButton.Click 
        SerialPort1.Write(SendInput.Text) 
    End Sub 
 
    Private Sub LogData_Click(sender As Object, e As EventArgs) Handles 
LogData.Click 
 
        If LogData.Text = "Log Data" Then 
            LogData.Text = "Stop Logging" 
            Filename.Enabled = False 
            Timer1.Enabled = True 
 
        Else 
            LogData.Text = "Log Data" 
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            Filename.Enabled = True 
            Timer1.Enabled = False 
        End If 
 
    End Sub 
 
    Public Sub Browse_Click(sender As Object, e As EventArgs) Handles Browse.Click 
 
        Dim result As DialogResult = FolderBrowserDialog1.ShowDialog() 
        'FolderBrowserDialog1.ShowDialog() 
        If (result = DialogResult.OK) Then 
            Dim FolderChoice As String = FolderBrowserDialog1.SelectedPath 
            Dim Destination As String = String.Concat(FolderChoice, "\") 
            Dim Filepath = String.Concat(Destination, Filename.Text) 
            Dim FullFilepath = String.Concat(Filepath, ".csv") 
            Path.Text = FullFilepath 
            File.WriteAllText(FullFilepath, "Sensor Address,Wind Speed (m/s),Wind 
Direction (deg),Temperature (deg C),Relative Humidity (%),Barometric Pressure 
(hPa),StatusCode*CheckSum,Time" & vbCrLf) ' Create File and Write Titles 
 
        ElseIf (result = DialogResult.Cancel) Then 
            Return 
        End If 
    End Sub 
 
    Public Function List4write(inputs) 'As Task(Of Integer) 
        Dim done As Integer 
        If WriteTrigger = 1 And PrintList.Count < 20 Then 
            PrintList.Add(inputs) 
            'Return PrintList 
        ElseIf WriteTrigger = 2 And PrintList2.Count < 20 Then 
            PrintList2.Add(inputs) 
            'Return PrintList2 
        ElseIf WriteTrigger = 1 And PrintList.Count >= 20 Then 
            If BackgroundPrinter.IsBusy = False Then 
                PrintList.Add(inputs) 
                BackgroundPrinter.RunWorkerAsync() 
                done = 1 
 
            Else 
            End If 
 
        ElseIf WriteTrigger = 2 And PrintList2.Count >= 20 Then 
            If BackgroundPrinter.IsBusy = False Then 
                PrintList2.Add(inputs) 
                BackgroundPrinter.RunWorkerAsync() 
                done = 1 
            Else 
            End If 
        End If 
 
        Return done 
        'Dim dummy = 1 
 
 
    End Function 
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    Private Sub BackgroundPrinter_DoWork(sender As Object, e As DoWorkEventArgs) 
Handles BackgroundPrinter.DoWork 
        'While PrintList.Count <> 0 
        If WriteTrigger = 1 Then 
            WriteTrigger = 2 
            File.AppendAllLines(Path.Text, PrintList) 
 
            PrintList.Clear() 
        ElseIf WriteTrigger = 2 Then 'And PrintList2.Count > 10 
            WriteTrigger = 1 
            File.AppendAllLines(Path.Text, PrintList2) 
 
            PrintList2.Clear() 
        End If 
        'End While 
        'Return 1 
    End Sub 
 
    Private Sub BackgroundPrinter_RunWorkerCompleted(sender As Object, e As 
RunWorkerCompletedEventArgs) Handles BackgroundPrinter.RunWorkerCompleted 
        'Timer1.Enabled = True 
    End Sub 
End Class 

 

RS232.vb 
'******************************************************************************** 
'*       TITLE: RS232.vb (c)2010                                                * 
'*      AUTHOR: Michael P. Sama / Austin Weiss                                  * 
'*     COMPANY: Biosystems & Agricultural Engineering, Univeristy of Kentucky   * 
'*       DATES: 3/24/09 - Current                                               * 
'* DESCRIPTION: This class provides a method for accessing a RS232 COM Port     * 
'*              using the SerialPort class.  Input characters are buffered      * 
'*              and searched for valid strings starting with "$" and ending     * 
'*              with "\r".  When a valid string is found, it is removed from    * 
'*              the buffer and stored as a separate string.  A public event is  * 
'*              raised to let the parent class know a new message is available. * 
'* Latest Version: 2/15/2018 Modified for timestamping data stream as property  * 
'                   accessable from outside the class                           * 
'******************************************************************************** 
 
Public Class RS232 
 
    Public Event NewMessage() 
    Private Buffer As String = "" 
    Private Message As String 
    Private WithEvents SerialPort1 As New System.IO.Ports.SerialPort 
    Private LastOutgoingMessage As String = "" 
    Public PauseSerialInput As Boolean = False 
    'Public Property Time As String 
    Public Property Time As String  ' Define Time as a property to call 
    Public TimeTrigger As Boolean = False   ' Trigger for timing 
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    Public Sub Write(ByVal BytesToWrite() As Byte, ByVal StartIndex As Integer, 
ByVal Length As Integer) 
        SerialPort1.Write(BytesToWrite, StartIndex, Length) 
    End Sub 
 
    Public Sub SendMessage(ByVal OutgoingMessage As String) 
        LastOutgoingMessage = OutgoingMessage 
        Try 
            SerialPort1.Write(OutgoingMessage) 
        Catch ex As Exception 
            Dim Dummy As Boolean = False 
        End Try 
 
    End Sub 
    Public Sub ResendMessage() 
        Try 
            SerialPort1.Write(LastOutgoingMessage) 
        Catch ex As Exception 
            'error 
        End Try 
 
    End Sub 
 
    Public Function GetMessage() 
        Return Message 
        'Return Time  unnecessary because it's a property of the class 
    End Function 
 
    Public Function ClosePort() 
        If SerialPort1.IsOpen Then 
            Try 
                SerialPort1.Close() 
                Return 1 
            Catch ex As Exception 
                Return 0 
            End Try 
        Else 
            Return 1 
        End If 
    End Function 
 
    Public Function OpenPort(ByVal PortName As String, ByVal BaudRate As Integer, 
ByVal DataBits As Integer, ByVal Parity As Char, ByVal StopBits As Single) 
        If SerialPort1.IsOpen Then 
            Return 0 
        Else 
            Try 
                SerialPort1.PortName = PortName 
                SerialPort1.BaudRate = BaudRate 
                SerialPort1.DataBits = DataBits 
                Select Case Parity 
                    Case "N", "n", "0" 
                        SerialPort1.Parity = IO.Ports.Parity.None 
                    Case "E", "e", "2" 
                        SerialPort1.Parity = IO.Ports.Parity.Even 
                    Case "M", "m", "3" 
                        SerialPort1.Parity = IO.Ports.Parity.Mark 
                    Case "O", "o", "1" 
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                        SerialPort1.Parity = IO.Ports.Parity.Odd 
                    Case " ", "_", "4" 
                        SerialPort1.Parity = IO.Ports.Parity.Space 
                    Case Else 
                        Return 0 
                End Select 
                Select Case StopBits 
                    Case 0 
                        SerialPort1.StopBits = IO.Ports.StopBits.None 
                    Case 1 
                        SerialPort1.StopBits = IO.Ports.StopBits.One 
                    Case 1.5 
                        SerialPort1.StopBits = IO.Ports.StopBits.OnePointFive 
                    Case 2 
                        SerialPort1.StopBits = IO.Ports.StopBits.Two 
                    Case Else 
                        Return 0 
                End Select 
 
                SerialPort1.ReceivedBytesThreshold = 1 
                SerialPort1.Open() 
                SerialPort1.DiscardInBuffer() 
                 
 
                AddHandler SerialPort1.DataReceived, AddressOf 
Me.SerialBytesRecieved 
 
            Catch ex As Exception 
                Return 0 
            End Try 
            Return 1 
        End If 
 
    End Function 
 
    Public Function IsOpen() As Boolean 
        Return SerialPort1.IsOpen() 
    End Function 
 
    Private Sub SerialBytesRecieved(ByVal Sender As Object, ByVal e As 
System.IO.Ports.SerialDataReceivedEventArgs) 
        'If timestamp is here, it will timestamp everytime bits are recieved 
        'Assign the current time to the property "Time"  
hours:minutes:seconds:thousandth of second 
        'Time trigger check and timing 
        If TimeTrigger = True Then 
            'Time = DateTime.Now.ToString(“HH:mm:ss.fff”) 
            'TimeTrigger = False 
        Else 
 
        End If 
 
        If Not PauseSerialInput Then 
            Try 
                'ADD TO BUFFER 
                AddToBuffer(SerialPort1.ReadExisting) 
 
            Catch ex As Exception 
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                Dim dummy As Boolean = False 
            End Try 
        Else 
            SerialPort1.DiscardInBuffer() 
            Buffer = "" 
        End If 
    End Sub 
 
 
 
    Private Sub AddToBuffer(ByVal characters As String) 
        Buffer += characters 
        StringSearch() 
 
    End Sub 
 
    Private Sub StringSearch() 
 
        RemoveHandler SerialPort1.DataReceived, AddressOf Me.SerialBytesRecieved 
 
        Dim First As Integer = -1 
        Dim Last As Integer = -1 
 
        Try 
            'Defining demlimiter of data sentence separation 
            First = Buffer.IndexOf(vbCrLf)                      ' CHANGED vbCr to 
vbCrLf for new GNSS included string 
 
            Last = Buffer.LastIndexOf(vbCrLf) 
 
        Catch ex As Exception 
            Dim dummy As Boolean = False 
        End Try 
 
        Try 
            If (First <> -1 And Last <> -1) And (Last > First) Then 
                Message = Buffer.Substring(First, (Last - First)) 
                Buffer = Buffer.Remove(0, Last - 1) 
                If PauseSerialInput Then 
 
                Else 
 
                    ' A Full message is found, get ready to time the next one! 
                    'TimeTrigger = True 
                    RaiseEvent NewMessage() 
 
                End If 
 
 
            End If 
        Catch ex As Exception 
            Dim dummy As Boolean = False 
        End Try 
 
 
        AddHandler SerialPort1.DataReceived, AddressOf Me.SerialBytesRecieved 
 
    End Sub 
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    Public Function GetComPortNames() 
        Dim PortNames As New List(Of String) 
        For i As Integer = 0 To (My.Computer.Ports.SerialPortNames.Count - 1) 
            PortNames.Add(My.Computer.Ports.SerialPortNames(i)) 
        Next 
        BubbleSort(Of String)(PortNames) 
        Return PortNames 
    End Function 
 
    Private Sub BubbleSort(Of ItemType)(ByRef SortByName As List(Of ItemType)) 
        Dim x As Integer, y As Integer 
        For j As Integer = 0 To (SortByName.Count) 
            For k As Integer = (SortByName.Count - 1) To 1 Step -1 
                x = Mid(SortByName(k).ToString, 4, SortByName(k).ToString.Length - 
3) 
                y = Mid(SortByName(k - 1).ToString, 4, SortByName(k - 
1).ToString.Length - 3) 
                If x < y Then 
                    Swap(Of ItemType)(SortByName(k), SortByName(k - 1)) 
                End If 
            Next 
        Next 
    End Sub 
 
    Private Sub Swap(Of ItemType)(ByRef v1 As ItemType, ByRef v2 As ItemType) 
        Dim temp As ItemType 
        temp = v1 
        v1 = v2 
        v2 = temp 
    End Sub 
 
End Class 
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 Microcontroller Design and Code: 

 

PCB Design Schematics: 

 

Figure A.6.1 Bottom copper layer of microcontroller 
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Figure A.4.2 Bottom solder mask 

 

 

Figure A.6.3 Top copper layer 
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Figure A.6.4 Top paste mask 
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Figure A.6.5 Top silkscreen 

 

 

Figure A.6.6 Top solder mask 
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Figure A.6.7 PCB color drawing 
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Table A.6 PCB Bill of Materials: 

Compon-
ents 

Description Manufactu-
rer Part 
Number 

Manufac-
turer 

Supplier 
Part 
Number 

Suppli-
er 

Unit 
Cost 

Unit 
Quan
-tity 

Unit 
Exten
-ded 

UC1 Digital Signal 
Processor 

DSPIC30F4
013-30I/PT 

Microchip 
Technology 

DSPIC30F4
01330IPT-
ND 

Digi-
Key 
Corpor
ation 

$5.7
3 

1 $5.73 

COM1 Male D-SUB 
9 Connector 

5747840-3 TE 
Connectivity 

A32091-
ND 

Digi-
Key 
Corpor
ation 

$2.5
5 

1 $2.55 

COM2 Female D-
SUB 9 
Connector 

1734354-1 TE 
Connectivity 

A35107-
ND 

Digi-
Key 
Corpor
ation 

$1.5
7 

1 $1.57 

GPS1 Right Angle 
JST 
connector 

SM06B-
SRSS-
TB(LF)(SN) 

JST Sales 
America Inc. 

455-1806-
1-ND 

Digi-
Key 
Corpor
ation 

$0.8
3 

1 $0.83 

ICSP1 6P6C RJ-11 
Jack 

5520470-3 TE 
Connectivity 

A31417-
ND 

Digi-
Key 
Corpor
ation 

$2.3
5 

1 $2.35 

CR1 15 Mhz 
Crystal 
Oscillator 

ECS-150-S-
4X 

ECS Inc. X1070-ND Digi-
Key 
Corpor
ation 

$0.6
9 

1 $0.69 

VR1 5.0V Linear 
Voltage 
Regulator 

LM1084IS-
5.0/NOPB 

Texas 
Instruments 

LM1084IS-
5.0/NOPB-
ND 

Digi-
Key 
Corpor
ation 

$2.8
5 

1 $2.85 

IC1 RS-232 Level 
Shifter 

MAX232D
R 

Texas 
Instruments 

296-14619-
1-ND 

Digi-
Key 
Corpor
ation 

$1.3
7 

1 $1.37 

CAN1 CAN 
Transceiver 

MCP2551T-
I/SN 

Microchip 
Technology 

MCP2551-
I/SN-ND 

Digi-
Key 
Corpor
ation 

$1.0
8 

1 $1.08 

D1 2A 40V 
Shottky 
Diode 

CD1206-
B240 

Bournes Inc. CD1206-
B240CT-
ND 

Digi-
Key 
Corpor
ation 

$0.5
1 

1 $0.51 

J3 2 Position 
Jumper 

382811-8 TE 
Connectivity 

A26228-
ND 

Digi-
Key 
Corpor
ation 

$0.1
3 

1 $0.13 

T1,T3 2 Position 
Terminal 
Block 

284392-2 TE 
Connectivity 

A98166-
ND 

Digi-
Key 
Corpor
ation 

$1.1
2 

2 $2.24 

POWER1 3 Position 
Terminal 
Block 

284392-3 TE 
Connectivity 

A98167-
ND 

Digi-
Key 
Corpor
ation 

$1.6
8 

1 $1.68 

C3 10 uF 
Capacitor 
(Tantalum 
2313) 

F931V106M
CC 

Nichicon  478-8332-
1-ND 

Digi-
Key 
Corpor
ation 

$1.0
1 

1 $1.01 
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C4 10 uF 
Capacitor 
(Tantalum 
1210) 

F931A106M
BA 

Nichicon 478-8194-
1-ND 

Digi-
Key 
Corpor
ation 

$0.5
0 

1 $0.50 

LED5 Red LED 
(1206 2V) 

LTST-
C150KRKT 

Lite-On Inc 160-1405-
1-ND 

Digi-
Key 
Corpor
ation 

$0.3
9 

1 $0.39 

LED1, 
LED2, 
LED3, 
LED 4 

Blue LED 
(1206 3.3V) 

LTST-
C150TBKT 

Lite-On Inc 160-1643-
1-ND 

Digi-
Key 
Corpor
ation 

$0.3
9 

4 $1.56 

R1, R3, R8-
R11, R14-
R17 

10 K Resistor 
(Thick Film 
0603 

CRCW0603
10K0FKEA 

Vishay Dale 541-
10.0KHCT-
ND 

Digi-
Key 
Corpor
ation 

$0.1
0 

10 $1.00 

R6, R12, 
R13, R18, 
R19 

470 Resistor 
(Thick Film 
0603) 

CRCW0603
470RJNEA
HP 

Vishay Dale 541-
470SACT-
ND 

Digi-
Key 
Corpor
ation 

$0.1
7 

5 $0.85 

R7 120 Resistor 
(Thick Film 
0603) 

CRCW0603
120RFKEA 

Vishay Dale 541-
120HCT-
ND 

Digi-
Key 
Corpor
ation 

$0.1
0 

1 $0.10 

R4, R5 4.7 K 
Resistor 
(Thick Film 
0603) 

CRCW0603
4K70FKEA 

Vishay Dale 541-
4.70KHCT-
ND 

Digi-
Key 
Corpor
ation 

$0.0
8 

2 $0.16 

R2 1 K Resistor 
(Thick Film 
0603) 

CRCW0603
1K00FKEC 

Vishay Dale 541-2986-
1-ND 

Digi-
Key 
Corpor
ation 

$0.1
0 

2 $0.20 

C5-C9, 
C17-C20 

1 uF 
Capacitor 
(Ceramic 
0603) 

C0603C105
Z3VAC786
7 

KEMET 399-14943-
6-ND 

Digi-
Key 
Corpor
ation 

$0.2
6 

9 $2.34 

C1, C2, 
C10-C16 

0.1 uF 
Capacitor 
(Ceramic 
0603) 

GRM188R7
2A104KA35
D 

Murata 
Electronics 
North 
America 

490-3285-
1-ND 

Digi-
Key 
Corpor
ation 

$0.2
3 

9 $2.07 

SW1 SPST NO 
Tactile 
Switch 

EVQ-
PJJ04T 

Lite-On Inc P12240SCT
-ND 

Digi-
Key 
Corpor
ation 

$0.4
5 

1 $0.45 

Q1 - Q8 PNP 
Transistor 

MMBT3906
LT3G 

ON 
Semiconducto
r 

MMBT390
6LT3GOSC
T-ND 

Digi-
Key 
Corpor
ation 

$0.1
7 

4 $0.68 

H1 26 Pin 
Header 

PRPC013D
AAN-RC 

Sullins 
Connector 
Solutions 

S2011EC-
13-ND 

Digi-
Key 
Corpor
ation 

$0.6
9 

1 $0.69 

Q9 - Q11 MOSFET N-
CH 30V 6A 
SOT23 

SI2338DS-
T1-GE3 

Vishay 
Siliconix 

SI2338DS-
T1-GE3CT-
ND 

Digi-
Key 
Corpor
ation 

$0.5
2 

3 $1.56 

GPS Garmin GPS 
18 LVC 

 010-00321-
31 

GARMIN  010-00321-
31 

Garmin $84.
99 

1 $84.9
9 
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UTC_Timestamp Code: 

////////////////////////////////////////////////////////////////////////////////////////////// 

// Title: UTC_Timestamp // 

// Author: Michael P. Sama // 

// Date: 3/27/18 // 

// Description: This program configures the dsPIC30F4013 to measure the local times 
when // 

// a Pulse Per Second (PPS) signal is received on IC2 and the leading edge of // 

// a serial data stream into UART1 on IC1. A GPGGA string from a GPS receiver // 

// is also recieved by UART2 for determing the local time in UTC. Serial data // 

// recieved on UART1 is appended with a UTC timestamp (HH:MM:SS:mms) upon
 // 

// reception of a carriage return (0x0D). // 

// Notes: UART1 and and UART2 are configured to 38,400-8-N-1. Data rates on UART2 
in // 

// excess of 1 Hz or streams that include messages other than GPGAA may result in
 // 

// ISR overflows. // 

////////////////////////////////////////////////////////////////////////////////////////////// 

 

//***Definitions*** 

#define SYSCLK 15000000UL //Define the system clock speed as 15 MHz 

#define FCY 3750000UL //Define the instruction clock speed as 3.75 MHz 

 

//***Pin Aliases*** 

#define IC1_OV IC1CONbits.ICOV //Flag indicates IC1 buffer was not read 
before next event 

#define IC2_OV IC2CONbits.ICOV //Flag indicates IC2 buffer was not read 
before next event 

#define UART1_OV U1STAbits.OERR //Flag indicates UART1 RX buffer overflow 

#define UART2_OV U2STAbits.OERR //Flag indicates UART2 RX buffer overflow 
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#define LED PORTFbits.RF6 //Status LED 

 

//***External References*** 

#include <p30fxxxx.h> //Base library for the dsPIC30F 

#include <libpic30.h> //General c30 Functions (delays, etc.) 

#include <uart.h> //Universal Asynchronous Receiver/Transmiter 

#include <string.h> //String Manipulation 

#include <stdio.h> //Standard Input/Output 

#include <InCap.h> //Input Capture 

#include "RS232.h" //Custom RS-232 Message Processing Library 

 

//***Microcontroller  Configuration*** 

_FOSC(HS) //Set the oscillator to external high speed crystal 

_FWDT(WDT_OFF) //Turn off the watch dog timer 

 

//***Global Variables*** 

char TXdata1[128]; //Data transmit string PPS event (disabled by default) 

char TXdata2[128]; //Data transmit string UTC timestamp 

char RXdata[128]; //Data receive string for UART2 

 

unsigned int PPS = 0; //Stores the Timer2 value at a PPS event 

unsigned int SER = 0; //Stores the Timer2 value at a serial data recieved event 

 

unsigned int UTC_H = 0; //UTC Hours unsigned int UTC_M = 0; //UTC 
Minutes unsigned int UTC_S = 0; //UTC Seconds unsigned int UTC_MS = 0; //UTC 
Milliseconds 

 

unsigned int PPS_Flag = 0; //Indicates a new PPS event has occured 

unsigned int SER_Flag = 0; //Indicates a new serial data has been recieved unsigned int 
IC1_Flag = 0; //Indicates the first seral data character leading edge unsigned int PPS_IL 
= 0; //Interlock for PPS signal 
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unsigned int GPS_IL = 0; //Interlock for GPS data 

unsigned int SER_IL = 0; //Interlock for serial data 

 

//***Function Prototypes*** 

void attribute (( interrupt )) _U1RXInterrupt(void); //UART1 receive interrupt handler 
void attribute (( interrupt )) _U2RXInterrupt(void); //UART2 receive interrupt handler 
void  attribute (( interrupt )) _IC1Interrupt(void); //IC1 interrupt handler 

void  attribute (( interrupt )) _IC2Interrupt(void); //IC2 interrupt handler 

 

//***UART1 Receive Interrupt Handler*** 

void  attribute ((interrupt, no_auto_psv)) _U1RXInterrupt(void) 

{ 

unsigned char Character = ReadUART1(); //Read character from UART1 RX buffer 

if (Character == 0x0D) //Carriage Return 

{ 

SER_Flag = 1; //Rase the serial data flag since the string has completed 

 

IC1CONbits.ICM = 2; //Turn on IC1 Module after receiving carrage return 

} 

else if (Character == 0x0A) //New Line 

{ 

//do nothing 

} 

else //Any other serial data character 

{ 

putcUART1(Character); //Echo the character out UART1 TX 

} 

IFS0bits.U1RXIF = 0; //Clear UART1 RX interrupt flag 

} 
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//***UART2 Receive Interrupt Handler*** 

void  attribute ((interrupt, no_auto_psv)) _U2RXInterrupt(void) 

{ 

IFS1bits.U2RXIF = 0; //Clear UART2 RX interrupt flag 

char Character = ReadUART2(); //Read character from UART2 RX buffer 

//putcUART1(Character); //Enable for debugging, passes GPS data through UART1 
CharacterBuffer(Character); //Process character to compile data string 

} 

 

//***IC1 Receive Interrupt Handler*** 

void  attribute ((interrupt, no_auto_psv)) _IC1Interrupt(void) 

{ 

IFS0bits.IC1IF = 0; //Clear IC1 interrupt flag 

IC1CONbits.ICM = 0; //Turn off IC1 module until re-armed by serial character SER = 
IC1BUF; //Store Timer2 value of the first serial character SER_IL += 1;
 //Increment serial data interlock value 

IC1_Flag = 1; //Raise IC1 flag in the main function 

} 

 

//IC2 Receive Interrupt Handler 

void  attribute ((interrupt, no_auto_psv)) _IC2Interrupt(void) 

{ 

IFS0bits.IC2IF = 0; //Clear IC2 interrupt flag UTC_S += 1; //Increment elapsed UTC 
second 

PPS = IC2BUF; //Store Timer2 value of the PPS signal PPS_IL = 1; //Raise PPS 
interlock value 

//PPS_Flag = 1; //Enable for debugging, causes PPS Timer2 value to transmitted 

} 

 

//***Main Function*** 

int main (void) 
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{ 

//***I/O Type and Direction*** 

ADPCFG = 0b000000000111000; //Sets ANx pins to analog (0) or digital (1) TRISF = 
0b10011111; //RF5 and RF6 set to output (LED, UART1) 

 

//***Open UART1 38400-8-N-1*** (uses Microchip C30 library) OpenUART1 ( 
UART_EN & 

UART_IDLE_CON & UART_DIS_WAKE & UART_DIS_LOOPBACK & 
UART_DIS_ABAUD & UART_NO_PAR_8BIT & UART_1STOPBIT, 
UART_INT_TX_BUF_EMPTY & UART_TX_PIN_NORMAL & 
UART_TX_ENABLE & UART_INT_RX_CHAR & UART_ADR_DETECT_DIS & 
UART_RX_OVERRUN_CLEAR, 5); 

U1MODEbits.ALTIO = 1; //Set UART1 to the default pins 

 

///***Open UART2 38400-8-N-1*** (uses Microchip C30 library) OpenUART2 ( 
UART_EN & 

UART_IDLE_CON & UART_DIS_WAKE & UART_DIS_LOOPBACK & 
UART_DIS_ABAUD & 

  

 

UART_NO_PAR_8BIT & UART_1STOPBIT, UART_INT_TX_BUF_EMPTY & 
UART_TX_PIN_NORMAL & UART_TX_ENABLE & UART_INT_RX_CHAR & 
UART_ADR_DETECT_DIS & UART_RX_OVERRUN_CLEAR, 5); 

 

//***Configure Timer 2*** 

T2CONbits.TSIDL = 0; //Timer2 operation in Idle mode  T2CONbits.TGATE = 0;
 //Timer2 gated time accumulation disabled T2CONbits.TCKPS = 2;
 //Timer2 input clock prescale bits set to 1:64 T2CONbits.T32 = 0; //Timer2 and 
Timer3 form seperate 16-bit timers T2CONbits.TCS = 0; //Timer 2 uses internal clock 
source (FOSC/4) T2CONbits.TON = 1; //Start Timer2 

 

//***Configure IC 1*** 

IC1CONbits.ICM = 0; //Turn off IC1 Module while configuring 

IC1CONbits.ICSIDL = 0; //Input capture module will continute to operate in CPU Idle 
Mode IC1CONbits.ICTMR = 1; //TMR 2 contents are captured on capture event 



 

182 
 

IC1CONbits.ICI = 0; //interrupt on every capture event IC1CONbits.ICM = 2;
 //capture every falling edge 

 

//***Configure IC 2*** 

IC2CONbits.ICM = 0; //Turn off IC1 Module while configuring 

IC2CONbits.ICSIDL = 0; //Input capture module will continute to operate in CPU Idle 
Mode IC2CONbits.ICTMR = 1; //TMR 2 contents are captured on capture event 

IC2CONbits.ICI = 0; //interrupt on every capture event IC2CONbits.ICM = 2;
 //capture every falling edge 

 

//***I/O Initialization and Startup Output String*** putsUART1((unsigned int 
*)"\r\n***Ultrasonic Anemomter V 1.1***\r\n"); LED = 1; 

 

//***Interrupt Priorities*** IPC2bits.U1RXIP = 7; //Highest priority IPC6bits.U2RXIP 
= 4; //Lowest priority IPC0bits.IC1IP = 6; 

IPC1bits.IC2IP = 5; 

 

//Enable Interrupts 

IEC0bits.U1RXIE = 1; //Enable UART 1 RX interrupt IEC1bits.U2RXIE = 1;
 //Enable UART 2 RX interrupt IEC0bits.IC1IE = 1; //Enable IC1 interrupt 
IEC0bits.IC2IE = 1; //Enable IC2 interrupt 

 

//***Main loop to handle data processing 

while(1) //Loop indefinitely 

{ 

if (IC1_OV) //IC1 buffer was not read before next IC1 event 

{ 

IC1CONbits.ICM = 0; //Reset module IC1CONbits.ICM = 2; //Capture every falling 
edge 

putsUART1((unsigned int *)"IC1 OVERRUN\r\n"); //Report overrun 

} 

if (IC2_OV) //IC2 buffer was not read before next IC2 event 

{ 
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IC2CONbits.ICM = 0; //Reset module IC2CONbits.ICM = 2; //Capture every rising edge 

putsUART1((unsigned int *)"IC2 OVERRUN\r\n"); //Report overrun 

} 

if (UART1_OV) //UART1 RX buffer overrun 

{ 

UART1_OV = 0; //Clear overrun flag 

putsUART1((unsigned int *)"UART1 RX OVERRUN\r\n"); //Report overrun 

} 

if (UART2_OV) //UART2 RX buffer overrun 

{ 

UART2_OV = 0; //Clear overrun flag 

putsUART1((unsigned int *)"UART2 RX OVERRUN\r\n"); //Report overrun 

} 

if (PPS_Flag) //PPS flag raised by IC2 interrupt 

{ 

PPS_Flag = 0; //Clear PPS flag sprintf(TXdata1,"$PPS,%u\r\n",PPS); //Compile 
output string putsUART1((unsigned int *) TXdata1); //Transmit PPS Timer2 value 

} 

if (SER_Flag) //Serial data flag raised by UART1 RX interrupt 

{ 

SER_Flag = 0; //Clear serial data flag 

if (UTC_S > 59) //UTC seconds overflow 

{ 

UTC_S = 0; //Set UTC seconds to zero UTC_M += 1; //Increment UTC minutes 

if (UTC_M > 59) //UTC minutes overflow 

{ 

UTC_M = 0; //Set UTC minutes to zero UTC_H += 1; //Increment UTC hours 

if (UTC_H > 23) //UTC hours overflow 

{ 

UTC_H = 0; //Set UTC hours to zero 
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} 

} 

} 

sprintf(TXdata2," %02u:%02u:%02u:%03u\r\n",UTC_H,UTC_M,UTC_S,UTC_MS); 
//Compile timestamp putsUART1((unsigned int *) TXdata2); //Transmit timestamp 

} 

if (IC1_Flag && PPS_IL && GPS_IL) //Serial character flag raised by IC1 and 
interlocks passed 

{ 

IC1_Flag = 0; //Clear serial character flag 

if (SER >= PPS) //Timer2 values are in order 

{ 

//Compute the exapsed milliseconds since most recent PPS 

UTC_MS = (unsigned int) ((unsigned long) (SER - PPS) * 1000 / 58594); 

} 

else //Timer2 values wrap around 65535 

{ 

//Unwrap and compute the exapsed milliseconds since most recent PPS UTC_MS = 
(unsigned int) ((unsigned long) (65535-PPS+SER) * 1000 / 58594); 

} 

if ((SER_IL > 6)) //No new GPS data have been received since the last six serial 
messages 

{ 

UTC_H = 0; //Clear UTC hours UTC_M = 0; //Clear UTC minutes UTC_S = 0; //Clear 
UTC seconds 

UTC_MS = 0; //Clear UTC milliseconds 

SER_IL = 7; //Limit the interlock from incrementing indefinitely 

} 

} 

if (NewMessage()) //A new NEMA 0183 message has been detected 

{ 
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strcpy(RXdata,GetMessage()); //Retrieve the data from the message buffer 

if ((RXdata[0] == '$') && //"$GPGGA" has been received (RXdata[1] == 'G') && 

(RXdata[2] == 'P') && 

(RXdata[3] == 'G') && 

(RXdata[4] == 'G') && 

(RXdata[5] == 'A')) 

 

seconds 

{ 

UTC_H = 10*(RXdata[7] - 48) + (RXdata[8] - 48); //Decode and store the UTC hours 
UTC_M = 10*(RXdata[9] - 48) + (RXdata[10] - 48); //Decode and store the UTC 
minutes UTC_S = 10*(RXdata[11] - 48) + (RXdata[12] - 48); //Decode and store the 
UTC 

 

GPS_IL = 1; //Set the GPS data interlock 

} 

SER_IL = 0; //Reset the serial interlock counter to zero 

} 

} 

return 0; //Program does not reach this line due to infinite while loop 

} 
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