9,545 research outputs found

    Opening of Ancillary Service Markets to Distributed Energy Resources: A Review

    Get PDF
    Electric power systems are moving toward more decentralized models, where energy generation is performed by small and distributed power plants, often from renewables. With the gradual phase out from fossil fuels, however, Distribution Energy Resources (DERs) are expected to take over in the provision of all regulation services required to operate the grid. To this purpose, the opening of national Ancillary Service Markets (ASMs) to DERs is considered an essential passage. In order to allow this transition to happen, current opportunities and barriers to market participation of DERs must be clearly identified. In this work, a comprehensive review is provided of the state-of-the-art of research on DER integration into ASMs. The topic at hand is analyzed from different perspectives. First, the current situation and main trends regarding the reformation processes of national ASMs are analyzed to get a clear picture of the evolutions expected and adjustment required in the future, according to the scientific community. Then, the focus is moved to the strategies to be adopted by aggregators for the effective control and coordination of DERs, exploring the challenges posed by the uncertainties affecting the problem. Coordination schemes between transmission and distribution system operators, and the implications on the grid infrastructure operation and planning, are also investigated. Finally, the review deepens the control capabilities required for DER technologies to perform the needed control actions

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper

    Smart microgrids and virtual power plants in a hierarchical control structure

    Get PDF
    In order to achieve a coordinated integration of distributed energy resources in the electrical network, an aggregation of these resources is required. Microgrids and virtual power plants (VPPs) address this issue. Opposed to VPPs, microgrids have the functionality of islanding, for which specific control strategies have been developed. These control strategies are classified under the primary control strategies. Microgrid secondary control deals with other aspects such as resource allocation, economic optimization and voltage profile improvements. When focussing on the control-aspects of DER, VPP coordination is similar with the microgrid secondary control strategy, and thus, operates at a slower time frame as compared to the primary control and can take full advantage of the available communication provided by the overlaying smart grid. Therefore, the feasibility of the microgrid secondary control for application in VPPs is discussed in this paper. A hierarchical control structure is presented in which, firstly, smart microgrids deal with local issues in a primary and secondary control. Secondly, these microgrids are aggregated in a VPP that enables the tertiary control, forming the link with the electricity markets and dealing with issues on a larger scale

    Control Structures for Smart Grid Balancing

    Get PDF

    Short-term Self-Scheduling of Virtual Energy Hub Plant within Thermal Energy Market

    Get PDF
    Multicarrier energy systems create new challenges as well as opportunities in future energy systems. One of these challenges is the interaction among multiple energy systems and energy hubs in different energy markets. By the advent of the local thermal energy market in many countries, energy hubs' scheduling becomes more prominent. In this article, a new approach to energy hubs' scheduling is offered, called virtual energy hub (VEH). The proposed concept of the energy hub, which is named as the VEH in this article, is referred to as an architecture based on the energy hub concept beside the proposed self-scheduling approach. The VEH is operated based on the different energy carriers and facilities as well as maximizes its revenue by participating in the various local energy markets. The proposed VEH optimizes its revenue from participating in the electrical and thermal energy markets and by examining both local markets. Participation of a player in the energy markets by using the integrated point of view can be reached to a higher benefit and optimal operation of the facilities in comparison with independent energy systems. In a competitive energy market, a VEH optimizes its self-scheduling problem in order to maximize its benefit considering uncertainties related to renewable resources. To handle the problem under uncertainty, a nonprobabilistic information gap method is implemented in this study. The proposed model enables the VEH to pursue two different strategies concerning uncertainties, namely risk-averse strategy and risk-seeker strategy. For effective participation of the renewable-based VEH plant in the local energy market, a compressed air energy storage unit is used as a solution for the volatility of the wind power generation. Finally, the proposed model is applied to a test case, and the numerical results validate the proposed approach

    Online Algorithms for Geographical Load Balancing

    Get PDF
    It has recently been proposed that Internet energy costs, both monetary and environmental, can be reduced by exploiting temporal variations and shifting processing to data centers located in regions where energy currently has low cost. Lightly loaded data centers can then turn off surplus servers. This paper studies online algorithms for determining the number of servers to leave on in each data center, and then uses these algorithms to study the environmental potential of geographical load balancing (GLB). A commonly suggested algorithm for this setting is “receding horizon control” (RHC), which computes the provisioning for the current time by optimizing over a window of predicted future loads. We show that RHC performs well in a homogeneous setting, in which all servers can serve all jobs equally well; however, we also prove that differences in propagation delays, servers, and electricity prices can cause RHC perform badly, So, we introduce variants of RHC that are guaranteed to perform as well in the face of such heterogeneity. These algorithms are then used to study the feasibility of powering a continent-wide set of data centers mostly by renewable sources, and to understand what portfolio of renewable energy is most effective
    • …
    corecore