3 research outputs found

    Crowd evacuation navigation for evasive maneuver of brownian based dynamic obstacles using reciprocal velocity obstacles

    Get PDF
    This paper presents an approach for evasive maneuver against dynamic obstacles in multi-agent navigation in a crowd evacuation scenario. Our proposed approach is based on reciprocal velocity obstacles (RVO) with a different manner to treat the obstacles. We treat all possible hindrances in velocity space reciprocally thus all collision cones generated by other agents and obstacles are treated in the same RVO manner with the key difference in the effort of avoidance. Our approach assumes that dynamic obstacles bear no awareness of navigation space unlike agents thus the avoidance effort lies on behalf of the mobile agents, creating unmutual effort in an evasive maneuver. We display our approach in an evacuation scenario where a crowd of agents must navigate through an evacuation area trespassing zone filled with dynamic obstacles. These dynamic obstacles consist of random motion built based on Brownian motion thus posses an immense challenge for the mobile agent in order to overcome this hindrance and safely navigate to their evacuation area. Our experimentation shows that 51.1% fewer collisions occurred which is denote safer navigation for agents in approaching their evacuation point

    Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based on an Improved Velocity Obstacle Method

    No full text
    In view of a dynamic obstacle environment with motion uncertainty, we present a dynamic collision avoidance method based on the collision risk assessment and improved velocity obstacle method. First, through the fusion optimization of forward-looking sonar data, the redundancy of the data is reduced and the position, size and velocity information of the obstacles are obtained, which can provide an accurate decision-making basis for next-step collision avoidance. Second, according to minimum meeting time and the minimum distance between the obstacle and unmanned underwater vehicle (UUV), this paper establishes the collision risk assessment model, and screens key obstacles to avoid collision. Finally, the optimization objective function is established based on the improved velocity obstacle method, and a UUV motion characteristic is used to calculate the reachable velocity sets. The optimal collision speed of UUV is searched in velocity space. The corresponding heading and speed commands are calculated, and outputted to the motion control module. The above is the complete dynamic obstacle avoidance process. The simulation results show that the proposed method can obtain a better collision avoidance effect in the dynamic environment, and has good adaptability to the unknown dynamic environment
    corecore