69 research outputs found

    Roles Of Euchromatin And Heterochromatin In Hepatocyte Maturation And Liver Fibrosis

    Get PDF
    Liver transplantation is the main treatment for acute liver failure patients; however, there is an insufficient supply of donor livers. Since transplanting hepatocytes, the main liver cell type, provides therapeutic effect and can be a bridge to transplant or recovery, scientists are working on generating replacement hepatocytes from stem cells and other cell types through reprogramming protocols. Currently, replacement hepatocytes recapitulate a subset of natural hepatocyte features, yet are still in an immature state, as they have not silenced all immature hepatocyte genes and activated all mature hepatocyte genes. Consequently, replacement hepatocytes do not perform as well as natural hepatocytes in transplant experiments. Despite these shortcomings, relatively little is known about how natural hepatic maturation is regulated, particularly at the chromatin level. We discovered extensive chromatin dynamics during hepatic postnatal maturation, including changes in H3K9me3-marked and H3K27me3-marked heterochromatin, and transcription. Heterochromatin is of particular interest, as we found that it guards cell identity by repressing lineage-inappropriate or temporally-inappropriate genes. We further classified H3K9me3- and H3K27me3-marked chromatin by compaction state with a novel assay, termed srHC-seq. In postnatal hepatocyte maturation H3K27me3-marked heterochromatin represses early maturation genes, late maturation genes, and alternative lineage genes to both regulate timing of hepatic maturation and repress alternate fates. Significantly, we identify a euchromatic H3K27me3+ promoter signature that predicts which H3K27me3-marked genes will derepress in response ablation of the enzymes that deposit H3K27me3. Disruption of either H3K9me3- or H3K27me3-marked chromatin leads to liver damage, and in the case of H3K27me3 this is likely due to the aberrant derepression of genes associated with fibrosis that normally have a euchromatic H3K27me3+ promoter signature. Our results emphasize the role of heterochromatin in regulating liver development, maturation, and fibrosis, and highlight the need to identify factors controlling heterochromatin formation and breakdown, both for the purposes of enhancing in vitro hepatic maturation and for understanding factors which predispose humans to disease

    Structural investigation on p-glycoprotein 1, bile salt export pump, and sodium/calcium exchanger

    Get PDF
    Transmembrane proteins span biological membranes and provide essential functions to the cell. Here we provide structural insight into three transmembrane proteins involved in substrate transport and signal transduction. Our goal is to understand the mechanism underlying the function of those proteins and to contribute thereby to improvements for future medical treatments. P-glycoprotein 1 (Pgp) is an ABC transporter involved in multidrug transport. It provides protection from potentially toxic substances by exporting them from the cell. However in cancer cells upregulation of Pgp expression can interfere with therapy. Here we provide a near-atomic resolution structure of cross-linked nucleotide free Pgp interacting with UIC2, an inhibitory antibody, and the third generation Pgp inhibitor zosuquidar. Our structure shows binding of two zosuquidar molecules in the transmembrane domain of an occluded conformation. In addition we describe the binding interface of UIC2 binding, providing insight to the mechanism of conformational trapping. Characterized binding interfaces may be exploited for therapeutic purposes. BSEP is the only bile salt transporter at the canalicular membrane of hepatocytes. Despite a very high sequence identity compared to Pgp, BSEP is way more selective. While diseases effected by mutations in BSEP are considerably rare, inhibition of BSEP can be the result of not intended interactions between BSEP and a variety of pharmaceutical compounds. I determined four structures of BSEP including a drug inhibited state using the antidiabetic drug glibenclamide and two structures in presence of the substrate taurocholate. These structures give rise to multiple potential models for the transport mechanism. In addition I could show that glibenclamide binds to the cytosolic facing cavity of BSEP, either repressing the connecting loop between the N- and C-terminal BSEP or locking BSEP in a inside open conformation. In addition mutations of BSEP associated with disease could be explained on structural basis. NCX are a sodium/calcium exchangers widely spread among species, involved in calcium signalling. We have solved two crystal structures of the bacterial NCX from Thermotoga maritima in the outward facing conformation. Both conformations are substrate free, but show differences in the ion binding site. Comparison of our structures the NCX homolog from Methanococcus jannaschii suggest a simple reorientation of N-termianl helix 7 to switch NCX to the occluded state, indicating transition to the inward facing site

    Osteogenetic differentiation: a novel role of Slug protein

    Get PDF
    The regeneration of bone tissue depends on the concerted actions of a plethora of signals that recruit mesenchymal stem cells for lineage-specific differentiation. The signals are conveyed in hormones, growth factors and transcription factors. These molecules are crucial for the osteoblast commitment, differentiation, functions and, consequently, ensure the proper bone modelling and remodelling. Among these factors, Wnt proteins have a critical role in bone development and homeostasis. Accumulated evidences have shown that lymphocyte enhancer binding factor 1/T cell factor (Lef1/Tcf) transcription factors, the nuclear effectors of the Wnt/β-catenin signaling pathway, influence osteoblast proliferation, function, and regeneration. Nevertheless, most downstream bone-specific target genes of this pathway are only partially known. Among these, Slug has been recently implicated in osteosarcoma progression as a Wnt-responsive molecule strongly correlated with a loss of tumor suppressors such as E-cadherin. Slug, also named Snail2, belongs to the Snail family of genes encoding zinc-finger transcription factors. It is expressed at different stages of development in different tissues, mediates epithelial–mesenchymal transition and directs cell motility during embriogenesis. Slug is also expressed in most normal adult human tissues, but little is known about its potential functions. In order to identify new potential osteoblast-specific proteins, in this study we analysed the expression, regulation and role of Slug in human normal primary osteoblasts (hOBs) and in their mesenchymal precursors (hMSCs), in relation to the expression of Wnt/β-catenin signalling mediators and genes which are required in the control of osteochondroprogenitors differentiation. The experiments were performed on hOBs and hMSCs, obtained from bone marrow iliac crest, bone marrow tibial plateau and Wharton’s jelly umbilical cord. Using several molecular analysis including siRNA strategy and Chromatin Immunoprecipitation (ChIP) assay, we demonstrated that: - Slug is expressed in hOBs as well as their mesenchymal precursors; - In hOBs, Slug is regulated by β-catenin and Lef1 that, together with Tcf-1, Tcf-4 and Runx2 are recruited to the Slug gene promoter in vivo; - In hOBs, Slug is positively correlated with osteoblastic markers, such as Runx2, osteopontin, osteocalcin, collagen type I, CXCL12, Wnt/β-catenin signalling and mineral deposition. At the same time, it negatively correlated with Sox9, a factor indispensable for chondrogenic development; - In hMSCs, Slug acts as a negative regulator of Sox9 and Sox5 expression and a positive regulator of Sox6 and STAT1 genes. Regarding Runx2, the role of Slug seems influenced by cell type; - Slug interacts in vivo with Runx2 and Sox9 promoters in hOBs and hMSCs. Our results support the hypothesis that Slug functions as a novel regulator of osteoblast activity, even if with a different role in mature committed osteoblasts and in their undifferentiated progenitors. Furthermore, these findings suggest Slug as a new potential therapeutic target for bone tissue repair and regeneration

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin

    Removal of antagonistic spindle forces can rescue metaphase spindle length and reduce chromosome segregation defects

    Get PDF
    Regular Abstracts - Tuesday Poster Presentations: no. 1925Metaphase describes a phase of mitosis where chromosomes are attached and oriented on the bipolar spindle for subsequent segregation at anaphase. In diverse cell types, the metaphase spindle is maintained at a relatively constant length. Metaphase spindle length is proposed to be regulated by a balance of pushing and pulling forces generated by distinct sets of spindle microtubules and their interactions with motors and microtubule-associated proteins (MAPs). Spindle length appears important for chromosome segregation fidelity, as cells with shorter or longer than normal metaphase spindles, generated through deletion or inhibition of individual mitotic motors or MAPs, showed chromosome segregation defects. To test the force balance model of spindle length control and its effect on chromosome segregation, we applied fast microfluidic temperature-control with live-cell imaging to monitor the effect of switching off different combinations of antagonistic forces in the fission yeast metaphase spindle. We show that spindle midzone proteins kinesin-5 cut7p and microtubule bundler ase1p contribute to outward pushing forces, and spindle kinetochore proteins kinesin-8 klp5/6p and dam1p contribute to inward pulling forces. Removing these proteins individually led to aberrant metaphase spindle length and chromosome segregation defects. Removing these proteins in antagonistic combination rescued the defective spindle length and, in some combinations, also partially rescued chromosome segregation defects. Our results stress the importance of proper chromosome-to-microtubule attachment over spindle length regulation for proper chromosome segregation.postprin

    Molecular Targets of CNS Tumors

    Get PDF
    Molecular Targets of CNS Tumors is a selected review of Central Nervous System (CNS) tumors with particular emphasis on signaling pathway of the most common CNS tumor types. To develop drugs which specifically attack the cancer cells requires an understanding of the distinct characteristics of those cells. Additional detailed information is provided on selected signal pathways in CNS tumors

    Sox10 regulates enteric neural crest cell migration in the developing gut

    Get PDF
    Concurrent Sessions 1: 1.3 - Organs to organisms: Models of Human Diseases: abstract no. 1417th ISDB 2013 cum 72nd Annual Meeting of the Society for Developmental Biology, VII Latin American Society of Developmental Biology Meeting and XI Congreso de la Sociedad Mexicana de Biologia del Desarrollo. The Conference's web site is located at http://www.inb.unam.mx/isdb/Sox10 is a HMG-domain containing transcription factor which plays important roles in neural crest cell survival and differentiation. Mutations of Sox10 have been identified in patients with Waardenburg-Hirschsprung syndrome, who suffer from deafness, pigmentation defects and intestinal aganglionosis. Enteric neural crest cells (ENCCs) with Sox10 mutation undergo premature differentiation and fail to colonize the distal hindgut. It is unclear, however, whether Sox10 plays a role in the migration of ENCCs. To visualize the migration behaviour of mutant ENCCs, we generated a Sox10NGFP mouse model where EGFP is fused to the N-terminal domain of Sox10. Using time-lapse imaging, we found that ENCCs in Sox10NGFP/+ mutants displays lower migration speed and altered trajectories compared to normal controls. This behaviour was cell-autonomous, as shown by organotypic grafting of Sox10NGFP/+ gut segments onto control guts and vice versa. ENCCs encounter different extracellular matrix (ECM) molecules along the developing gut. We performed gut explant culture on various ECM and found that Sox10NGFP/+ ENCCs tend to form aggregates, particularly on fibronectin. Time-lapse imaging of single cells in gut explant culture indicated that the tightly-packed Sox10 mutant cells failed to exhibit contact inhibition of locomotion. We determined the expression of adhesion molecule families by qPCR analysis, and found integrin expression unaffected while L1-cam and selected cadherins were altered, suggesting that Sox10 mutation affects cell adhesion properties of ENCCs. Our findings identify a de novo role of Sox10 in regulating the migration behaviour of ENCCs, which has important implications for the treatment of Hirschsprung disease.postprin

    Analysis of craniofacial defects in Six1/Eya1-associated Branchio-Oto-Renal Syndrome

    Get PDF
    Poster Session I - Morphogenesis: 205/B10117th ISDB 2013 cum 72nd Annual Meeting of the Society for Developmental Biology, 7th Latin American Society of Developmental Biology Meeting and 11th Congreso de la Sociedad Mexicana de Biologia del Desarrollo.Branchio-Oto-Renal (BOR) syndrome patients exhibit craniofacial and renal anomalies as well as deafness. BOR syndrome is caused by mutations in Six1 or Eya1, both of which regulate cell proliferation and differentiation. The molecular mechanism underlying the craniofacial and branchial arch (BA) defects in BOR syndrome is unclear. We have found that Hoxb3 is up-regulated in the second branchial arch (BA2) of Six1-/- mutants. Moreover, Hoxb3 over-expression in transgenic mice leads to BA abnormalities which are similar to the BA defects in Six1-/- or Eya1-/- mutants, suggesting a regulatory relationship among Six1, Eya1 and Hoxb3 genes. The aim of this study is to investigate the molecular mechanism underlying abnormal BA development in BOR syndrome using Six1 and Eya1 mutant mice. Two potential Six1 binding sites were identified on the Hoxb3 gene. In vitro and in vivo Chromatin IP assays showed that Six1 could directly bind to one of the sites specifically. Furthermore, using a chick in ovo luciferase assay we showed that Six1 could suppress gene expression through one of the specific binding sites. On the other hand, in Six1-/- mutants, we found that the Notch ligand Jag1 was up-regulated in BA2. Similarly, in Hoxb3 transgenic mice, ectopic expression of Jag1 could be also detected in BA2. To investigate the activation of Notch signaling pathway, we found that Notch intracellular domain (NICD), a direct indicator of Notch pathway activation, was up-regulated in BAs of Six1-/-; Eya1-/- double mutants. Our results indicate that Hoxb3 and Notch signaling pathway are involved in mediating the craniofacial defects of Six1/Eya1-associated Branchio-Oto-Renal Syndrome.postprin
    • …
    corecore