3,576 research outputs found

    Deadline Constrained Cloud Computing Resources Scheduling through an Ant Colony System Approach

    Get PDF
    Cloud computing resources scheduling is essential for executing workflows in the cloud platform because it relates to both execution time and execution cost. In this paper, we adopt a model that optimizes the execution cost while meeting deadline constraints. In solving this problem, we propose an Improved Ant Colony System (IACS) approach featuring two novel strategies. Firstly, a dynamic heuristic strategy is used to calculate a heuristic value during an evolutionary process by taking the workflow topological structure into consideration. Secondly, a double search strategy is used to initialize the pheromone and calculate the heuristic value according to the execution time at the beginning and to initialize the pheromone and calculate heuristic value according to the execution cost after a feasible solution is found. Therefore, the proposed IACS is adaptive to the search environment and to different objectives. We have conducted extensive experiments based on workflows with different scales and different cloud resources. We compare the result with a particle swarm optimization (PSO) approach and a dynamic objective genetic algorithm (DOGA) approach. Experimental results show that IACS is able to find better solutions with a lower cost than both PSO and DOGA do on various scheduling scales and deadline conditions

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Multi-objective scheduling of Scientific Workflows in multisite clouds

    Get PDF
    Clouds appear as appropriate infrastructures for executing Scientific Workflows (SWfs). A cloud is typically made of several sites (or data centers), each with its own resources and data. Thus, it becomes important to be able to execute some SWfs at more than one cloud site because of the geographical distribution of data or available resources among different cloud sites. Therefore, a major problem is how to execute a SWf in a multisite cloud, while reducing execution time and monetary costs. In this paper, we propose a general solution based on multi-objective scheduling in order to execute SWfs in a multisite cloud. The solution consists of a multi-objective cost model including execution time and monetary costs, a Single Site Virtual Machine (VM) Provisioning approach (SSVP) and ActGreedy, a multisite scheduling approach. We present an experimental evaluation, based on the execution of the SciEvol SWf in Microsoft Azure cloud. The results reveal that our scheduling approach significantly outperforms two adapted baseline algorithms (which we propose by adapting two existing algorithms) and the scheduling time is reasonable compared with genetic and brute-force algorithms. The results also show that our cost model is accurate and that SSVP can generate better VM provisioning plans compared with an existing approach.Work partially funded by EU H2020 Programme and MCTI/RNP-Brazil (HPC4E grant agreement number 689772), CNPq, FAPERJ, and INRIA (MUSIC project), Microsoft (ZcloudFlow project) and performed in the context of the Computational Biology Institute (www.ibc-montpellier.fr). We would like to thank Kary Ocaña for her help in modeling and executing the SciEvol SWf.Peer ReviewedPostprint (author's final draft

    Autonomic Cloud Computing: Open Challenges and Architectural Elements

    Full text link
    As Clouds are complex, large-scale, and heterogeneous distributed systems, management of their resources is a challenging task. They need automated and integrated intelligent strategies for provisioning of resources to offer services that are secure, reliable, and cost-efficient. Hence, effective management of services becomes fundamental in software platforms that constitute the fabric of computing Clouds. In this direction, this paper identifies open issues in autonomic resource provisioning and presents innovative management techniques for supporting SaaS applications hosted on Clouds. We present a conceptual architecture and early results evidencing the benefits of autonomic management of Clouds.Comment: 8 pages, 6 figures, conference keynote pape

    Parallel Differential Evolution approach for Cloud workflow placements under simultaneous optimization of multiple objectives

    Get PDF
    International audienceThe recent rapid expansion of Cloud computing facilities triggers an attendant challenge to facility providers and users for methods for optimal placement of workflows on distributed resources, under the often-contradictory impulses of minimizing makespan, energy consumption, and other metrics. Evolutionary Optimization techniques that from theoretical principles are guaranteed to provide globally optimum solutions, are among the most powerful tools to achieve such optimal placements. Multi-Objective Evolutionary algorithms by design work upon contradictory objectives, gradually evolving across generations towards a converged Pareto front representing optimal decision variables – in this case the mapping of tasks to resources on clusters. However the computation time taken by such algorithms for convergence makes them prohibitive for real time placements because of the adverse impact on makespan. This work describes parallelization, on the same cluster, of a Multi-Objective Differential Evolution method (NSDE-2) for optimization of workflow placement, and the attendant speedups that bring the implicit accuracy of the method into the realm of practical utility. Experimental validation is performed on a real-life testbed using diverse Cloud traces. The solutions under different scheduling policies demonstrate significant reduction in energy consumption with some improvement in makespan

    Hybrid scheduling algorithms in cloud computing: a review

    Get PDF
    Cloud computing is one of the emerging fields in computer science due to its several advancements like on-demand processing, resource sharing, and pay per use. There are several cloud computing issues like security, quality of service (QoS) management, data center energy consumption, and scaling. Scheduling is one of the several challenging problems in cloud computing, where several tasks need to be assigned to resources to optimize the quality of service parameters. Scheduling is a well-known NP-hard problem in cloud computing. This will require a suitable scheduling algorithm. Several heuristics and meta-heuristics algorithms were proposed for scheduling the user's task to the resources available in cloud computing in an optimal way. Hybrid scheduling algorithms have become popular in cloud computing. In this paper, we reviewed the hybrid algorithms, which are the combinations of two or more algorithms, used for scheduling in cloud computing. The basic idea behind the hybridization of the algorithm is to take useful features of the used algorithms. This article also classifies the hybrid algorithms and analyzes their objectives, quality of service (QoS) parameters, and future directions for hybrid scheduling algorithms

    Multi-Objective Scientific-Workflow Scheduling With Data Movement Awareness in Cloud.

    Get PDF
    Due to serving several purposes simultaneously, running scientific workflows on dynamic environments such as cloud computing, has become multi-objective scheduling. Among these purposes, Cost and Makespan are probably the most two primitive objectives. Another critical factor in a large-scale scientific workflow is tremendous amount of data during execution. Therefore, this work also includes Data Movement as an additional objective as it has a major impact on network utilization and energy consumption in network equipment in cloud data center. In considering these three objectives, this work proposes a framework for scheduling solutions which combines a new nodes clustering technique in Directed Acyclic Graph (DAG) model known as Multilevel Dependent Node Clustering (MDNC) and the multiobjective optimization, Extreme Nondominated Sorting Genetic Algorithm-III (E-NSGA-III). E-NSGAIII is the recent extension of Nondominated Sorting Genetic Algorithm (NSGA-III). Five well-known scientific workflows, CyberShake, Epigenomics, LIGO, Montage, and SIPHT are selected as testbeds, while the commonly known Hypervolume is chosen as the performance metric. In this work, MDNC is also experimented with both NSGA-III. Comparison among three approaches, E-NAGA-III alone, E-NAGA-III with Peer-to-Peer clustering and E-NAGA-III with MDNC are carried out. The superiority of the proposed framework among them and its limitation are discussed
    • …
    corecore