15 research outputs found

    SDDs are Exponentially More Succinct than OBDDs

    Full text link
    Introduced by Darwiche (2011), sentential decision diagrams (SDDs) are essentially as tractable as ordered binary decision diagrams (OBDDs), but tend to be more succinct in practice. This makes SDDs a prominent representation language, with many applications in artificial intelligence and knowledge compilation. We prove that SDDs are more succinct than OBDDs also in theory, by constructing a family of boolean functions where each member has polynomial SDD size but exponential OBDD size. This exponential separation improves a quasipolynomial separation recently established by Razgon (2013), and settles an open problem in knowledge compilation

    On the Role of Canonicity in Bottom-up Knowledge Compilation

    Get PDF
    We consider the problem of bottom-up compilation of knowledge bases, which is usually predicated on the existence of a polytime function for combining compilations using Boolean operators (usually called an Apply function). While such a polytime Apply function is known to exist for certain languages (e.g., OBDDs) and not exist for others (e.g., DNNF), its existence for certain languages remains unknown. Among the latter is the recently introduced language of Sentential Decision Diagrams (SDDs), for which a polytime Apply function exists for unreduced SDDs, but remains unknown for reduced ones (i.e. canonical SDDs). We resolve this open question in this paper and consider some of its theoretical and practical implications. Some of the findings we report question the common wisdom on the relationship between bottom-up compilation, language canonicity and the complexity of the Apply function

    “What if?” in Probabilistic Logic Programming

    Get PDF
    A ProbLog program is a logic program with facts that only hold with a specified probability. In this contribution, we extend this ProbLog language by the ability to answer “What if” queries. Intuitively, a ProbLog program defines a distribution by solving a system of equations in terms of mutually independent predefined Boolean random variables. In the theory of causality, Judea Pearl proposes a counterfactual reasoning for such systems of equations. Based on Pearl’s calculus, we provide a procedure for processing these counterfactual queries on ProbLog programs, together with a proof of correctness and a full implementation. Using the latter, we provide insights into the influence of different parameters on the scalability of inference. Finally, we also show that our approach is consistent with CP-logic, that is with the causal semantics for logic programs with annotated with disjunctions

    Distribution-Aware Sampling and Weighted Model Counting for SAT

    Full text link
    Given a CNF formula and a weight for each assignment of values to variables, two natural problems are weighted model counting and distribution-aware sampling of satisfying assignments. Both problems have a wide variety of important applications. Due to the inherent complexity of the exact versions of the problems, interest has focused on solving them approximately. Prior work in this area scaled only to small problems in practice, or failed to provide strong theoretical guarantees, or employed a computationally-expensive maximum a posteriori probability (MAP) oracle that assumes prior knowledge of a factored representation of the weight distribution. We present a novel approach that works with a black-box oracle for weights of assignments and requires only an {\NP}-oracle (in practice, a SAT-solver) to solve both the counting and sampling problems. Our approach works under mild assumptions on the distribution of weights of satisfying assignments, provides strong theoretical guarantees, and scales to problems involving several thousand variables. We also show that the assumptions can be significantly relaxed while improving computational efficiency if a factored representation of the weights is known.Comment: This is a full version of AAAI 2014 pape

    Efficient Computation of Shap Explanation Scores for Neural Network Classifiers via Knowledge Compilation

    Full text link
    The use of Shap scores has become widespread in Explainable AI. However, their computation is in general intractable, in particular when done with a black-box classifier, such as neural network. Recent research has unveiled classes of open-box Boolean Circuit classifiers for which Shap can be computed efficiently. We show how to transform binary neural networks into those circuits for efficient Shap computation. We use logic-based knowledge compilation techniques. The performance gain is huge, as we show in the light of our experiments.Comment: Conference submission. It replaces the previously uploaded paper "Opening Up the Neural Network Classifier for Shap Score Computation", by the same authors. This version considerably revised the previous on

    "What if?" in Probabilistic Logic Programming

    Full text link
    A ProbLog program is a logic program with facts that only hold with a specified probability. In this contribution we extend this ProbLog language by the ability to answer "What if" queries. Intuitively, a ProbLog program defines a distribution by solving a system of equations in terms of mutually independent predefined Boolean random variables. In the theory of causality, Judea Pearl proposes a counterfactual reasoning for such systems of equations. Based on Pearl's calculus, we provide a procedure for processing these counterfactual queries on ProbLog programs, together with a proof of correctness and a full implementation. Using the latter, we provide insights into the influence of different parameters on the scalability of inference. Finally, we also show that our approach is consistent with CP-logic, i.e. with the causal semantics for logic programs with annotated with disjunctions
    corecore