745 research outputs found

    Hy-Tracker: A Novel Framework for Enhancing Efficiency and Accuracy of Object Tracking in Hyperspectral Videos

    Full text link
    Hyperspectral object tracking has recently emerged as a topic of great interest in the remote sensing community. The hyperspectral image, with its many bands, provides a rich source of material information of an object that can be effectively used for object tracking. While most hyperspectral trackers are based on detection-based techniques, no one has yet attempted to employ YOLO for detecting and tracking the object. This is due to the presence of multiple spectral bands, the scarcity of annotated hyperspectral videos, and YOLO's performance limitation in managing occlusions, and distinguishing object in cluttered backgrounds. Therefore, in this paper, we propose a novel framework called Hy-Tracker, which aims to bridge the gap between hyperspectral data and state-of-the-art object detection methods to leverage the strengths of YOLOv7 for object tracking in hyperspectral videos. Hy-Tracker not only introduces YOLOv7 but also innovatively incorporates a refined tracking module on top of YOLOv7. The tracker refines the initial detections produced by YOLOv7, leading to improved object-tracking performance. Furthermore, we incorporate Kalman-Filter into the tracker, which addresses the challenges posed by scale variation and occlusion. The experimental results on hyperspectral benchmark datasets demonstrate the effectiveness of Hy-Tracker in accurately tracking objects across frames

    Pattern Recognition in High-Dimensional Data

    Get PDF
    Vast amounts of data are produced all the time. Yet this data does not easily equate to useful information: extracting information from large amounts of high dimensional data is nontrivial. People are simply drowning in data. A recent and growing source of high-dimensional data is hyperspectral imaging. Hyperspectral images allow for massive amounts of spectral information to be contained in a single image. In this thesis, a robust supervised machine learning algorithm is developed to efficiently perform binary object classification on hyperspectral image data by making use of the geometry of Grassmann manifolds. This algorithm can consistently distinguish between a large range of even very similar materials, returning very accurate classification results with very little training data. When distinguishing between dissimilar locations like crop fields and forests, this algorithm consistently classifies more than 95 percent of points correctly. On more similar materials, more than 80 percent of points are classified correctly. This algorithm will allow for very accurate information to be extracted from these large and complicated hyperspectral images

    Learning representations in the hyperspectral domain in aerial imagery

    Get PDF
    We establish two new datasets with baselines and network architectures for the task of hyperspectral image analysis. The first dataset, AeroRIT, is a moving camera static scene captured from a flight and contains per pixel labeling across five categories for the task of semantic segmentation. The second dataset, RooftopHSI, helps design and interpret learnt features on hyperspectral object detection on scenes captured from an university rooftop. This dataset accounts for static camera, moving scene hyperspectral imagery. We further broaden the scope of our understanding of neural networks with the development of two novel algorithms - S4AL and S4AL+. We develop these frameworks on natural (color) imagery, by combining semi-supervised learning and active learning, and display promising results for learning with limited amount of labeled data, which can be extended to hyperspectral imagery. In this dissertation, we curated two new datasets for hyperspectral image analysis, significantly larger than existing datasets and broader in terms of categories for classification. We then adapt existing neural network architectures to function on the increased channel information, in a smart manner, to leverage all hyperspectral information. We also develop novel active learning algorithms on natural (color) imagery, and discuss the hope for expanding their functionality to hyperspectral imagery

    Road conditions monitoring using semantic segmentation of smartphone motion sensor data

    Get PDF
    Many studies and publications have been written about the use of moving object analysis to locate a specific item or replace a lost object in video sequences. Using semantic analysis, it could be challenging to pinpoint each meaning and follow the movement of moving objects. Some machine learning algorithms have turned to the right interpretation of photos or video recordings to communicate coherently. The technique converts visual patterns and features into visual language using dense and sparse optical flow algorithms. To semantically partition smartphone motion sensor data for any video categorization, using integrated bidirectional Long Short-Term Memory layers, this paper proposes a redesigned U-Net architecture. Experiments show that the proposed technique outperforms several existing semantic segmentation algorithms using z-axis accelerometer and z-axis gyroscope properties. The video sequence's numerous moving elements are synchronised with one another to follow the scenario. Also, the objective of this work is to assess the proposed model on roadways and other moving objects using five datasets (self-made dataset and the pothole600 dataset). After looking at the map or tracking an object, the results should be given together with the diagnosis of the moving object and its synchronization with video clips. The suggested model's goals were developed using a machine learning method that combines the validity of the results with the precision of finding the necessary moving parts. Python 3.7 platforms were used to complete the project since they are user-friendly and highly efficient platforms

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports
    • …
    corecore