20,561 research outputs found

    Pricing Policy for Selling Perishable Products under Demand Uncertainty and Substitution

    Get PDF

    Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach

    Get PDF
    Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution

    An integrated decision making model for dynamic pricing and inventory control of substitutable products based on demand learning

    Get PDF
    Purpose: This paper focuses on the PC industry, analyzing a PC supply chain system composed of onelarge retailer and two manufacturers. The retailer informs the suppliers of the total order quantity, namelyQ, based on demand forecast ahead of the selling season. The suppliers manufacture products accordingto the predicted quantity. When the actual demand has been observed, the retailer conducts demandlearning and determines the actual order quantity. Under the assumption that the products of the twosuppliers are one-way substitutable, an integrated decision-making model for dynamic pricing andinventory control is established.Design/methodology/approach: This paper proposes a mathematical model where a large domestichousehold appliance retailer decides the optimal original ordering quantity before the selling season and theoptimal actual ordering quantity, and two manufacturers decide the optimal wholesale price.Findings:By applying this model to a large domestic household appliance retail terminal, the authors canconclude that the model is quite feasible and effective. Meanwhile, the results of simulation analysis showthat when the product prices of two manufacturers both reduce gradually, one manufacturer will often waittill the other manufacturer reduces their price to a crucial inflection point, then their profit will show aqualitative change instead of a real-time profit-price change.Practical implications: This model can be adopted to a supply chain system composed of one largeretailer and two manufacturers, helping manufacturers better make a pricing and inventory controldecision.Originality/value: Previous research focuses on the ordering quantity directly be decided. Limited workhas considered the actual ordering quantity based on demand learning. However, this paper considers boththe optimal original ordering quantity before the selling season and the optimal actual ordering quantityfrom the perspective of the retailerPeer Reviewe
    • 

    corecore