814 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Multi self-adapting particle swarm optimization algorithm (MSAPSO).

    Get PDF
    The performance and stability of the Particle Swarm Optimization algorithm depends on parameters that are typically tuned manually or adapted based on knowledge from empirical parameter studies. Such parameter selection is ineffectual when faced with a broad range of problem types, which often hinders the adoption of PSO to real world problems. This dissertation develops a dynamic self-optimization approach for the respective parameters (inertia weight, social and cognition). The effects of self-adaption for the optimal balance between superior performance (convergence) and the robustness (divergence) of the algorithm with regard to both simple and complex benchmark functions is investigated. This work creates a swarm variant which is parameter-less, which means that it is virtually independent of the underlying examined problem type. As PSO variants always have the issue, that they can be stuck-in-local-optima, as second main topic the MSAPSO algorithm do have a highly flexible escape-lmin-strategy embedded, which works dimension-less. The MSAPSO algorithm outperforms other PSO variants and also other swarm inspired approaches such as Memetic Firefly algorithm with these two major algorithmic elements (parameter-less approach, dimension-less escape-lmin-strategy). The average performance increase in two dimensions is at least fifteen percent with regard to the compared swarm variants. In higher dimensions (≥ 250) the performance gain accumulates to about fifty percent in average. At the same time the error-proneness of MSAPSO is in average similar or even significant better when converging to the respective global optima’s

    Enhanced Convergence Of Bat Algorithm Based On Dimensional And Inertia Weight Factor

    Get PDF
    Heuristic optimisation method typically hinges on the efficiency in exploitation and global diverse exploration. Previous research has shown that Bat Algorithm could provide a good exploration and exploitation of a solution. However, Bat Algorithm can be get trapped in a local minimum in some multi-dimensional functions. Thus, the phenomenon of slow convergence rate and low accuracy still exits. This paper aims to modify the exploitation of Bat Algorithm in optimising the solution by modifying dimensional size and providing inertia weight. Benchmark test function is then performed for the basic Bat Algorithm and the modified Bat Algorithm (MBA) for comparison. The result is analysed according to the number of iteration needed for a convergence toward the objective. From simulations, it is found that the modified dimension and additional inertia weight factor of Bat Algorithm proves to be more effective than the basic Bat Algorithm in terms of searching for a solution while improving quality of results in all cases or significantly improving convergence speed

    Multi-Robot Learning with Bat Algorithm With Mutation (Bam)

    Get PDF
    The mobile robotics is an active area of research. Several methods are under study to increase and optimize the working capabilities of multi robotic systems. These multi robotic systems or robot swarms have vast applications in industry as a human assistant to carry goods and can-do variety of jobs. Multiple techniques like swarm optimization, cuckoo algorithm and other such algorithms are under study for multi robotic systems. In this research, a biological bat inspired algorithm is implemented to achieve the target. BAT algorithm is implemented to achieve the target. BAT algorithm uses echolocation technique like bats to generate bat population and random data is generated, the robot then traverses and the distance is calculated which is compared to the distance from the obstacle. The loop continues and robot keeps moving. For more than one robot, robots have statistic as well as dynamic obstacles. So, the traversal speed and efficiency of bad algorithm reduces slightly

    Parameter selection and performance comparison of particle swarm optimization in sensor networks localization

    Get PDF
    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors\u27 memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm

    Current Studies and Applications of Krill Herd and Gravitational Search Algorithms in Healthcare

    Full text link
    Nature-Inspired Computing or NIC for short is a relatively young field that tries to discover fresh methods of computing by researching how natural phenomena function to find solutions to complicated issues in many contexts. As a consequence of this, ground-breaking research has been conducted in a variety of domains, including synthetic immune functions, neural networks, the intelligence of swarm, as well as computing of evolutionary. In the domains of biology, physics, engineering, economics, and management, NIC techniques are used. In real-world classification, optimization, forecasting, and clustering, as well as engineering and science issues, meta-heuristics algorithms are successful, efficient, and resilient. There are two active NIC patterns: the gravitational search algorithm and the Krill herd algorithm. The study on using the Krill Herd Algorithm (KH) and the Gravitational Search Algorithm (GSA) in medicine and healthcare is given a worldwide and historical review in this publication. Comprehensive surveys have been conducted on some other nature-inspired algorithms, including KH and GSA. The various versions of the KH and GSA algorithms and their applications in healthcare are thoroughly reviewed in the present article. Nonetheless, no survey research on KH and GSA in the healthcare field has been undertaken. As a result, this work conducts a thorough review of KH and GSA to assist researchers in using them in diverse domains or hybridizing them with other popular algorithms. It also provides an in-depth examination of the KH and GSA in terms of application, modification, and hybridization. It is important to note that the goal of the study is to offer a viewpoint on GSA with KH, particularly for academics interested in investigating the capabilities and performance of the algorithm in the healthcare and medical domains.Comment: 35 page

    CCSA: Conscious Neighborhood-based Crow Search Algorithm for Solving Global Optimization Problems

    Full text link
    © 2019 Elsevier B.V. In this paper, a conscious neighborhood-based crow search algorithm (CCSA) is proposed for solving global optimization and engineering design problems. It is a successful improvement to tackle the imbalance search strategy and premature convergence problems of the crow search algorithm. CCSA introduces three new search strategies called neighborhood-based local search (NLS), non-neighborhood based global search (NGS) and wandering around based search (WAS) in order to improve the movement of crows in different search spaces. Moreover, a neighborhood concept is defined to select the movement strategy between NLS and NGS consciously, which enhances the balance between local and global search. The proposed CCSA is evaluated on several benchmark functions and four applied problems of engineering design. In all experiments, CCSA is compared by other state-of-the-art swarm intelligence algorithms: CSA, BA, CLPSO, GWO, EEGWO, WOA, KH, ABC, GABC, and Best-so-far ABC. The experimental and statistical results show that CCSA is very competitive especially for large-scale optimization problems, and it is significantly superior to the compared algorithms. Furthermore, the proposed algorithm also finds the best optimal solution for the applied problems of engineering design

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms
    corecore