10,359 research outputs found

    A finite strain nonlinear human mitral valve model with fluid structure interaction

    Get PDF
    A simulated human mitral valve under a physiological pressure loading is developed using a hybrid finite element immersed boundary method, which incorporates experimentally based constitutive laws in a three-dimensional fluid-structure interaction framework. A transversely isotropic material constitutive model is used for characterizing the mechanical behaviour of the mitral valve tissue based on recent mechanical tests of healthy human mitral leaflets. Our results show good agreement, in terms of the flow rate and the closing and opening configurations, with the measurements from the magnetic resonance images. The stresses in the anterior leaflet are found to be higher than those in the posterior leaflet, and concentrated around the annulus trigons and free edges of the valve leaflets. Those areas are located where the leaflet has the highest curvature. Effects of the chordae tendineae in the material model are studied and the results show that these chordae play an important role in providing a secondary orifice for the flow when valve opens. Although there are some discrepancies to be overcome in future works, our simulations show that the developed computational model is promising in mimicking the in vivo mitral valve dynamics and providing important information that are not obtainable by in vivo measurements. This article is protected by copyright. All rights reserved

    From 4D medical images (CT, MRI, and Ultrasound) to 4D structured mesh models of the left ventricular endocardium for patient-specific simulations

    Get PDF
    With cardiovascular disease (CVD) remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD) simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time) with 1-to-l vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT) by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume

    Automated segmentation on the entire cardiac cycle using a deep learning work-flow

    Full text link
    The segmentation of the left ventricle (LV) from CINE MRI images is essential to infer important clinical parameters. Typically, machine learning algorithms for automated LV segmentation use annotated contours from only two cardiac phases, diastole, and systole. In this work, we present an analysis work-flow for fully-automated LV segmentation that learns from images acquired through the cardiac cycle. The workflow consists of three components: first, for each image in the sequence, we perform an automated localization and subsequent cropping of the bounding box containing the cardiac silhouette. Second, we identify the LV contours using a Temporal Fully Convolutional Neural Network (T-FCNN), which extends Fully Convolutional Neural Networks (FCNN) through a recurrent mechanism enforcing temporal coherence across consecutive frames. Finally, we further defined the boundaries using either one of two components: fully-connected Conditional Random Fields (CRFs) with Gaussian edge potentials and Semantic Flow. Our initial experiments suggest that significant improvement in performance can potentially be achieved by using a recurrent neural network component that explicitly learns cardiac motion patterns whilst performing LV segmentation.Comment: 6 pages, 2 figures, published on IEEE Xplor
    corecore