283,739 research outputs found
UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?*
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting model as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.Bayesian, state space model, factor model, dynamic model averaging
UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting models as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output growth and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.Bayesian, state space model, factor model, dynamic model averaging
Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting
We develop the methodology and a detailed case study in use of a class of
Bayesian predictive synthesis (BPS) models for multivariate time series
forecasting. This extends the recently introduced foundational framework of BPS
to the multivariate setting, with detailed application in the topical and
challenging context of multi-step macroeconomic forecasting in a monetary
policy setting. BPS evaluates-- sequentially and adaptively over time-- varying
forecast biases and facets of miscalibration of individual forecast densities,
and-- critically-- of time-varying inter-dependencies among them over multiple
series. We develop new BPS methodology for a specific subclass of the dynamic
multivariate latent factor models implied by BPS theory. Structured dynamic
latent factor BPS is here motivated by the application context-- sequential
forecasting of multiple US macroeconomic time series with forecasts generated
from several traditional econometric time series models. The case study
highlights the potential of BPS to improve of forecasts of multiple series at
multiple forecast horizons, and its use in learning dynamic relationships among
forecasting models or agents
Forecasting German GDP using alternative factor models based on large datasets
This paper discusses the forecasting performance of alternative factor models based on a large panel of quarterly time series for the german economy. One model extracts factors by static principals components analysis, the other is based on dynamic principal components obtained using frequency domain methods. The third model is based on subspace algorithm for state space models. Out-of-sample forecasts show that the prediction errors of the factor models are generally smaller than the errors of simple autoregressive benchmark models. Among the factors models, either the dynamic principal component model or the subspace factor model rank highest in terms of forecast accuracy in most cases. However, neither of the dynamic factor models can provide better forecasts than the static model over all forecast horizons and different specifications of the simulation design. Therefore, the application of the dynamic factor models seems to provide only small forecasting improvements over the static factor model for forecasting German GDP. --Factor models,static and dynamic factors,principal components,forecasting accuracy
Forecasting inflation using dynamic model averaging
We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coefficients to change over time, but also allow for the entire forecasting model to change over time. We find that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coefficient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period
Seasonal dynamic factor analysis and bootstrap inference : application to electricity market forecasting
Year-ahead forecasting of electricity prices is an important issue in the current context of
electricity markets. Nevertheless, only one-day-ahead forecasting is commonly tackled up in
previous published works. Moreover, methodology developed for the short-term does not work
properly for long-term forecasting.
In this paper we provide a seasonal extension of the Non-Stationary Dynamic Factor Analysis,
to deal with the interesting problem (both from the economic and engineering point of view) of
long term forecasting of electricity prices. Seasonal Dynamic Factor Analysis (SeaDFA) allows
to deal with dimensionality reduction in vectors of time series, in such a way that extracts
common and specific components. Furthermore, common factors are able to capture not only
regular dynamics (stationary or not) but also seasonal one, by means of common factors
following a multiplicative seasonal VARIMA(p,d,q)Ă(P,D,Q)s model.
Besides, a bootstrap procedure is proposed to be able to make inference on all the parameters
involved in the model. A bootstrap scheme developed for forecasting includes uncertainty due
to parameter estimation, allowing to enhance the coverage of forecast confidence intervals.
Concerning the innovative and challenging application provided, bootstrap procedure developed
allows to calculate not only point forecasts but also forecasting intervals for electricity prices
Forecasting inflation and output: comparing data-rich models with simple rules
There has been a resurgence of interest in dynamic factor models for use by policy advisors. Dynamic factor methods can be used to incorporate a wide range of economic information when forecasting or measuring economic shocks. This article introduces dynamic factor models that underlie the data-rich methods and also tests whether the data-rich models can help a benchmark autoregressive model forecast alternative measures of inflation and real economic activity at horizons of 3, 12, and 24 months ahead. The authors find that, over the past decade, the data-rich models significantly improve the forecasts for a variety of real output and inflation indicators. For all the series that they examine, the authors find that the data-rich models become more useful when forecasting over longer horizons. The exception is the unemployment rate, where the principal components provide significant forecasting information at all horizons.Inflation (Finance) ; Economic forecasting
Forecasting Inflation Using Dynamic Model Averaging*
We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coeĂâĂÂą cients to change over time, but also allow for the entire forecasting model to change over time. We find that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coefficient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period.Bayesian, State space model, Phillips curve
- âŠ