2,883 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Optimal scheduling for refueling multiple autonomous aerial vehicles

    Get PDF
    The scheduling, for autonomous refueling, of multiple unmanned aerial vehicles (UAVs) is posed as a combinatorial optimization problem. An efficient dynamic programming (DP) algorithm is introduced for finding the optimal initial refueling sequence. The optimal sequence needs to be recalculated when conditions change, such as when UAVs join or leave the queue unexpectedly. We develop a systematic shuffle scheme to reconfigure the UAV sequence using the least amount of shuffle steps. A similarity metric over UAV sequences is introduced to quantify the reconfiguration effort which is treated as an additional cost and is integrated into the DP algorithm. Feasibility and limitations of this novel approach are also discussed

    Supporting UAVs with Edge Computing: A Review of Opportunities and Challenges

    Full text link
    Over the last years, Unmanned Aerial Vehicles (UAVs) have seen significant advancements in sensor capabilities and computational abilities, allowing for efficient autonomous navigation and visual tracking applications. However, the demand for computationally complex tasks has increased faster than advances in battery technology. This opens up possibilities for improvements using edge computing. In edge computing, edge servers can achieve lower latency responses compared to traditional cloud servers through strategic geographic deployments. Furthermore, these servers can maintain superior computational performance compared to UAVs, as they are not limited by battery constraints. Combining these technologies by aiding UAVs with edge servers, research finds measurable improvements in task completion speed, energy efficiency, and reliability across multiple applications and industries. This systematic literature review aims to analyze the current state of research and collect, select, and extract the key areas where UAV activities can be supported and improved through edge computing

    A Novel Airborne Self-organising Architecture for 5G+ Networks

    Full text link
    Network Flying Platforms (NFPs) such as unmanned aerial vehicles, unmanned balloons or drones flying at low/medium/high altitude can be employed to enhance network coverage and capacity by deploying a swarm of flying platforms that implement novel radio resource management techniques. In this paper, we propose a novel layered architecture where NFPs, of various types and flying at low/medium/high layers in a swarm of flying platforms, are considered as an integrated part of the future cellular networks to inject additional capacity and expand the coverage for exceptional scenarios (sports events, concerts, etc.) and hard-to-reach areas (rural or sparsely populated areas). Successful roll-out of the proposed architecture depends on several factors including, but are not limited to: network optimisation for NFP placement and association, safety operations of NFP for network/equipment security, and reliability for NFP transport and control/signaling mechanisms. In this work, we formulate the optimum placement of NFP at a Lower Layer (LL) by exploiting the airborne Self-organising Network (SON) features. Our initial simulations show the NFP-LL can serve more User Equipment (UE)s using this placement technique.Comment: 5 pages, 2 figures, conference paper in IEEE VTC-Fall 2017, in Proceedings IEEE Vehicular Technology Conference (VTC-Fall 2017), Toronto, Canada, Sep. 201

    An Overview of Drone Energy Consumption Factors and Models

    Full text link
    At present, there is a growing demand for drones with diverse capabilities that can be used in both civilian and military applications, and this topic is receiving increasing attention. When it comes to drone operations, the amount of energy they consume is a determining factor in their ability to achieve their full potential. According to this, it appears that it is necessary to identify the factors affecting the energy consumption of the unmanned air vehicle (UAV) during the mission process, as well as examine the general factors that influence the consumption of energy. This chapter aims to provide an overview of the current state of research in the area of UAV energy consumption and provide general categorizations of factors affecting UAV's energy consumption as well as an investigation of different energy models

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out
    • …
    corecore