2,016 research outputs found

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Network Topology Mutation as Moving Target Defense for Corporate Networks

    Get PDF
    The paper introduces a topology mutation – the novel concept in Moving Target Defense (MTD). MTD is a new technique that represents a significant shift in cyber defense. Traditional cybersecurity techniques have primarily focused on the passive defense of static networks only. In MTD approach cyber attackers are confused by making the attack surface dynamic, and thus harder to probe and infiltrate. The emergence of Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technology has opened up new possibilities in network architecture management. The application of combined NFV and SDN technologies provides a unique platform for implementing MTD techniques for securing the network infrastructure by morphing the logical view of the network topology

    Network Topology Mutation as Moving Target Defense for Corporate Networks

    Get PDF
    The paper introduces a topology mutation – the novel concept in Moving Target Defense (MTD). MTD is a new technique that represents a significant shift in cyber defense. Traditional cybersecurity techniques have primarily focused on the passive defense of static networks only. In MTD approach cyber attackers are confused by making the attack surface dynamic, and thus harder to probe and infiltrate. The emergence of Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) technology has opened up new possibilities in network architecture management. The application of combined NFV and SDN technologies provides a unique platform for implementing MTD techniques for securing the network infrastructure by morphing the logical view of the network topology

    Application-Centric Provisioning of Virtual Security Network Functions

    Get PDF
    Network Function Virtualization (NFV) enables flexible implementation and provisioning of network functions as virtual machines running on commodity servers. Due to the availability of multiple hosting servers, such network functions (also called Virtual Network Functions (VNFs)) can be placed where they are actually needed, dynamically migrated, duplicated, or deleted according to the current network requirements. However, the placement of VNFs within the physical network is one of the main challenges in the NFV domain as it has a critical impact on the performance of the network. In this work we focus on efficient placement of Virtual Security Network Functions (VSNFs), i.e. the placement of virtual network functions whose purpose is to prevent or mitigate network security threats. In this regard, we tackle the placement problem not only considering performance optimization aspects, but also trying to find solutions that are consistent from the security viewpoint. Specifically, the main contribution of this paper is the formulation of the placement problem by taking into account both Security and Quality of Service (QoS) requirements of user applications
    corecore