9 research outputs found

    Dynamic Base Station Repositioning to Improve Spectral Efficiency of Drone Small Cells

    Full text link
    With recent advancements in drone technology, researchers are now considering the possibility of deploying small cells served by base stations mounted on flying drones. A major advantage of such drone small cells is that the operators can quickly provide cellular services in areas of urgent demand without having to pre-install any infrastructure. Since the base station is attached to the drone, technically it is feasible for the base station to dynamic reposition itself in response to the changing locations of users for reducing the communication distance, decreasing the probability of signal blocking, and ultimately increasing the spectral efficiency. In this paper, we first propose distributed algorithms for autonomous control of drone movements, and then model and analyse the spectral efficiency performance of a drone small cell to shed new light on the fundamental benefits of dynamic repositioning. We show that, with dynamic repositioning, the spectral efficiency of drone small cells can be increased by nearly 100\% for realistic drone speed, height, and user traffic model and without incurring any major increase in drone energy consumption.Comment: Accepted at IEEE WoWMoM 2017 - 9 pages, 2 tables, 4 figure

    Two-Dimensional Drone Base Station Placement in Cellular Networks Using MINLP Model

    Get PDF
    Utilization of drones is going to become predominated in cellular networks as aerial base stations in order to temporary cover areas where stationary base stations cannot serve the users. Detecting optimal location and efficient number of drone-Base Stations (DBSs) are the targets we tackle in this paper. Toward this goal, we first model the problem using mixed integer non-linear programming. The output of the proposed method is the number and the optimal location of DBSs in a two-dimension area, and the object is to maximize the number of covered users. In the second step, since the proposed method is not solvable using conventional methods, we use a proposed method to solve the optimization problem. Simulation results illustrate that the proposed method has achieved its goals

    Two-Dimensional Drone Base Station Placement in Cellular Networks Using MINLP Model

    Get PDF
    Utilization of drones is going to become predominated in cellular networks as aerial base stations in order to temporary cover areas where stationary base stations cannot serve the users. Detecting optimal location and efficient number of drone-Base Stations (DBSs) are the targets we tackle in this paper. Toward this goal, we first model the problem using mixed integer non-linear programming. The output of the proposed method is the number and the optimal location of DBSs in a two-dimension area, and the object is to maximize the number of covered users. In the second step, since the proposed method is not solvable using conventional methods, we use a proposed method to solve the optimization problem. Simulation results illustrate that the proposed method has achieved its goals

    A Multi-tier Communication Schemefor Drone-assisted Disaster Recovery Scenarios

    Get PDF
    International audienceDisaster scenarios are particularly devastating in urban environments, which are generally very densely populated. Disasters not only endanger the life of people, but also affect the existing communication infrastructure. In fact, such an infrastructure could be completely destroyed or damaged; even when it continues working, it suffers from high access demand to its resources within a short period of time, thereby compromising the efficiency of rescue operations. This work leverages the ubiquitous presence of wireless devices (e.g., smartphones) in urban scenarios to assist search and rescue activities following a disaster. It considers multi-interface wireless devices and drones to collect emergency messages in areas affected by natural disasters. Specifically, it proposes a collaborative data collection protocol that organizes wireless devices in multiple tiers by targeting a fair energy consumption in the whole network, thereby extending the network lifetime. Moreover, it introduces a scheme to control the path of drones so as to collect data in a short time. Simulation results in realistic settings show that the proposed solution balances the energy consumption in the network by means of efficient drone routes, thereby effectively assisting search and rescue operations

    Wireless coverage using unmanned aerial vehicles

    Get PDF
    The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civilian application domains including real-time monitoring, search and rescue, and wireless coverage. UAVs can be used to provide wireless coverage during emergency cases where each UAV serves as an aerial wireless base station when the cellular network goes down. They can also be used to supplement the ground base station in order to provide better coverage and higher data rates for the users. During such situations, the UAVs need to return periodically to a charging station for recharging, due to their limited battery capacity. Given the recharging requirements, the problem of minimizing the number of UAVs required for a continuous coverage of a given area is first studied in this dissertation. Due to the intractability of the problem, partitioning the coverage graph into cycles that start at the charging station is proposed and the minimum number of UAVs to cover such a cycle is characterized based on the charging time, the traveling time and the number of subareas to be covered by a cycle. Based on this analysis, an efficient algorithm is proposed to solve the problem. In the second part of this dissertation, the problem of optimal placement of a single UAV is studied, where the objective is to minimize the total transmit power required to provide wireless coverage for indoor users. Three cases of practical interest are considered and efficient solutions to the formulated problem under these cases are presented. Due to the limited transmit power of a UAV, the problem of minimizing the number of UAVs required to provide wireless coverage to indoor users is studied and an efficient algorithm is proposed to solve the problem. In the third part of this dissertation, the problem of maximizing the indoor wireless coverage using UAVs equipped with directional antennas is studied. The case that the UAVs are using one channel is considered, thus in order to maximize the total indoor wireless coverage, the overlapping in their coverage volumes is avoided. Two methods are presented to place the UAVs; providing wireless coverage from one building side and from two building sides. The results show that the upside-down arrangements of UAVs can improve the total coverage by 100% compared to providing wireless coverage from one building side. In the fourth part of this dissertation, the placement problem of UAVs is studied, where the objective is to determine the locations of a set of UAVs that maximize the lifetime of wireless devices. Due to the intractability of the problem, the number of UAVs is restricted to be one. Under this special case, the problem is formulated as a convex optimization problem under a restriction on the coverage angle of the ground users and a gradient projection based algorithm is proposed to find the optimal location of the UAV. Based on this, an efficient algorithm is proposed for the general case of multiple UAVs. The problem of minimizing the number of UAVs required to serve the ground users such that the time duration of uplink transmission of each wireless device is greater than or equal to a threshold value is also studied. Two efficient methods are proposed to determine the minimum number of UAVs required to serve the wireless devices

    Aerial Base Station Deployment for Post-Disaster Public Safety Applications

    Get PDF
    Earthquakes and floods are constant threats to most of the countries in the world. After such catastrophes, a rapid response is needed, which includes communications not only for first responders but also for local civilians. Even though there are technologies and specialized personnel for rapid deployment, it is common that external factors will hinder the arrival of help while communication requirements are urgently required. Such communication technologies would aid tasks regarding organization and information dissemination from authorities to the civilians and vice-versa. This necessity is due to protocols and applications to allocate the number of emergency resources per location and to locate missing people. In this thesis, we investigate the deployment problem of Mobile Aerial Base Stations (MABS). Our main objective is to ensure periodic wireless communication for geographically spread User Equipment (UE) based on LTE technology. First, we establish a precedent of emergency situations where MABS would be useful. We also provide an introduction to the study and work conducted in this thesis. Second, we provide a literature review of existing solutions was made to determine the advantages and disadvantages of certain technologies regarding the described necessity. Third, we determine how MABS, such as gliders or light tactical balloons that are assumed to be moving at an average speed of 50 km/h, will be deployed. These MABS would visit different cluster centroids determined by an Affinity Propagation Clustering algorithm. Additionally, a combination of graph theory and Genetic Algorithm (GA) is implemented through mutators and fitness functions to obtain best flyable paths through an evolution pool of 100. Additionally, Poisson, Normal, and Uniform distributions are utilized to determine the amount of Base Stations and UEs. Then, for every distribution combination, a set of simulations is conducted to obtain the best flyable paths. Serviced UE performance indicators of algorithm efficiency are analyzed to determine whether the applied algorithm is effective in providing a solution to the presented problem. Finally, in Chapter 5, we conclude our work by supporting that the proposed model would suffice the needs of mobile users given the proposed emergency scenario. Adviser: Yi Qia

    5G wireless network support using umanned aerial vehicles for rural and low-Income areas

    Get PDF
    >Magister Scientiae - MScThe fifth-generation mobile network (5G) is a new global wireless standard that enables state-of-the-art mobile networks with enhanced cellular broadband services that support a diversity of devices. Even with the current worldwide advanced state of broadband connectivity, most rural and low-income settings lack minimum Internet connectivity because there are no economic incentives from telecommunication providers to deploy wireless communication systems in these areas. Using a team of Unmanned Aerial Vehicles (UAVs) to extend or solely supply the 5G coverage is a great opportunity for these zones to benefit from the advantages promised by this new communication technology. However, the deployment and applications of innovative technology in rural locations need extensive research
    corecore