4 research outputs found

    A cuckoo search optimization-based forward consecutive mean excision model for threshold adaptation in cognitive radio

    Get PDF
    The forward consecutive mean excision (FCME) algorithm is one of the most effective adaptive threshold estimation algorithms presently deployed for threshold adaptation in cognitive radio (CR) systems. However, its effectiveness is often limited by the manual parameter tuning process and by the lack of prior knowledge pertaining to the actual noise distribution considered during the parameter modeling process of the algorithm. In this paper, we propose a new model that can automatically and accurately tune the parameters of the FCME algorithm based on a novel integration with the cuckoo search optimization (CSO) algorithm. Our model uses the between-class variance function of the Otsu’s algorithm as the objective function in the CSO algorithm in order to auto-tune the parameters of the FCME algorithm. We compared and selected the CSO algorithm based on its relatively better timing and accuracy performance compared to some other notable metaheuristics such as the particle swarm optimization, artificial bee colony (ABC), genetic algorithm, and the differential evolution (DE) algorithms. Following close performance values, our findings suggest that both the DE and ABC algorithms can be adopted as favorable substitutes for the CSO algorithm in our model. Further simulation results show that our model achieves reasonably lower probability of false alarm and higher probability of detection as compared to the baseline FCME algorithm under different noise-only and signal-plus-noise conditions. In addition, we compared our model with some other known autonomous methods with results demonstrating improved performance. Thus, based on our new model, users are relieved from the cumbersome process involved in manually tuning the parameters of the FCME algorithm; instead, this can be done accurately and automatically for the user by our model. Essentially, our model presents a fully blind signal detection system for use in CR and a generic platform deployable to convert other parameterized adaptive threshold algorithms into fully autonomous algorithms.http://link.springer.com/journal/5002020-11-03hj2020Electrical, Electronic and Computer Engineerin

    A comparative analysis of local and global adaptive threshold estimation techniques for energy detection in cognitive radio

    Get PDF
    In this paper, we compare local and global adaptive threshold estimation techniques for energy detection in Cognitive Radio (CR). By this comparison, a sum-up synopsis is provided regarding the effective performance range and the operating conditions under which both classes best apply in CR. Representative methods from both classes were implemented and trained using synthesized signals to fine tune each algorithm’s parameter values. Further tests were conducted using real-life signals acquired via a spectrum survey exercise and results were analyzed using the probability of detection and the probability of false alarm computed for each algorithm. It is observed that while local based methods may be adept at maintaining a low constant probability of false alarm, they however suffer a grossly low probability of detection over a wide variety of CR spectra. Consequently, we concluded that global adaptive threshold estimation techniques are more suitable for signal detection in CR than their local adaptive thresholding counterparts.Research data for this article is available at https://data.mendeley.com/datasets/nyvcpv4s8k/1http://www.elsevier.com/locate/phycom2019-08-01hj2018Electrical, Electronic and Computer Engineerin

    Amplitude quantization method for autonomous threshold estimation in self-reconfigurable cognitive radio systems

    Get PDF
    Self-adaptive threshold adjustment algorithms (SATAs) are required to reconfigure their parameters autonomously (i.e. to achieve self-parameter adjustment) at runtime and during online use for effective signal detection in cognitive radio (CR) applications. In this regard, a CR system embedded with the functionality of a SATA is termed a self-reconfigurable CR system. However, SATAs are challenging to develop owing to a lack of methods for self-parameter adjustment. Thus, a plausible approach towards realizing a functional SATA may involve developing effective non-parametric methods, which are often pliable to achieve self-parameter adjustment since they are distribution-free methods. In this article, we introduce such a method termed the non-parametric amplitude quantization method (NPAQM) designed to improve primary user signal detection in CR without requiring its parameters to be manually fine-tuned. The NPAQM works by quantizing the amplitude of an input signal and then evaluating each quantized value based on the principle of discriminant analysis. Then, the algorithm searches for an effective threshold value that maximally separates noise from signal elements in the input signal sample. Further, we propose a new heuristic, which is an algorithm designed based on a new corollary derived from the Otsu’s algorithm towards improving the NPAQM’s performance under noise-only regimes. We applied our method to the case of the energy detector and compared the NPAQM with other autonomous methods. We show that the NPAQM provides improved performance as against known methods, particularly in terms of maintaining a low probability of false alarm under different test conditions.http://www.elsevier.com/locate/phycomhj2022Electrical, Electronic and Computer Engineerin

    GSI Scientific Report 2016

    Get PDF
    PLEASE GO TO FILES TO SELECT YOUR DOWNLOAD SECTION. Lience: https://creativecommons.org/licenses/by/4.0
    corecore