
A cuckoo search optimization-based forward consecutive mean excision model for 
threshold adaptation in cognitive radio

H. Abdullahi1, A. J. Onumanyi2,1,∗, S. Zubair1, A. M. Abu-Mahfouz3,2, G. P. Hancke4,2

1 Department of Telecommunication Engineering, Federal University of Technology, Minna, Nigeria
e-mail: mabdullahihassan@yahoo.com, zubairman@futminna.edu.ng

2 Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa
e-mail: adeiza1@futminna.edu.ng

3 Council for Scientific and Industrial Research, Pretoria, South Africa, South Africa
e-mail: a.abumahfouz@ieee.org

4 Department of Computer Science, City University of Hong Kong, Hong Kong, China
e-mail: gp.hancke@cityu.edu.hk

∗Corresponding author

Abstract: The forward consecutive mean excision (FCME)
algorithm is one of the most effective adaptive threshold
estimation algorithms presently deployed for threshold
adaptation in cognitive radio (CR) systems. However,
its effectiveness is often limited by the manual parameter
tuning process and by the lack of prior knowledge per-
taining to the actual noise distribution considered dur-
ing the parameter modelling process of the algorithm. In
this paper, we propose a new model that can automati-
cally and accurately tune the parameters of the FCME
algorithm based on a novel integration with the cuckoo
search optimization (CSO) algorithm. Our model uses
the between-class variance function of the Otsu’s algo-
rithm as the objective function in the CSO algorithm
in order to auto-tune the parameters of the FCME al-
gorithm. We compared and selected the CSO algorithm
based on its relatively better timing and accuracy perfor-
mance compared to some other notable metaheuristics
such as the particle swarm optimization (PSO), artifi-
cial bee colony (ABC), genetic algorithm (GA), and the
differential evolution (DE) algorithms. Following close
performance values, our findings suggest that both the
DE and ABC algorithms can be adopted as favourable
substitutes for the CSO algorithm in our model. Further
simulation results show that our model achieves reason-
ably lower probability of false alarm and higher proba-
bility of detection as compared to the baseline FCME al-
gorithm under different noise-only and signal-plus-noise
conditions. In addition, we compared our model with
some other known autonomous methods with results 
demonstrating improved performance. Thus, based on 
our new model, users are relieved from the cumbersome 
process involved in manually tuning the parameters of 
the FCME algorithm; instead, this can be done 
accurately and 

automatically for the user by our model. Essentially, 
our model presents a fully blind signal detection system 
for use in CR and a generic platform deployable to 
convert other parameterized adaptive threshold 
algorithms into fully autonomous algorithms.

Key words Adaptive Threshold – Autonomous – Cog-
nitive Radio – FCME – Metaheuristic Algorithm – Pa-
rameter tuning

1 Introduction

Cognitive radio (CR) refers to an intelligent radio that
automatically detects whether a channel is occupied or
not and then adjusts its transceiver parameters in order
to improve utilization and reliability of the communica-
tion channel [1, 2]. CR is currently being developed un-
der the specifications of the IEEE 802.22 draft standard,
which emphasizes that spectrum sensing (SS) remains a
requirement for effective spectrum identification in CR
systems [3–5]. Typically, SS involves routinely sensing
the radio spectra to determine whether primary user
(PU) signals are present or not in a specified channel.
SS can be realized using different detectors/techniques
such as the energy detector (ED), the cyclostationary de-
tection (CD) technique, the Eigen-value, the covariance,
the prediction-based methods [6], and the evolutionary-
based methods [7–10]. However, the ED is widely consid-
ered because it is simple, fast, and does not need to know
the waveform/type of the incumbent PU signal [11,12].

To sense, the ED simply measures the received sig-
nal energy in a channel and estimates a threshold value,



2

which it uses to decide whether PU signals are present
or not in a given channel [13]. The ED declares a chan-
nel as occupied if the received signal energy exceeds
the estimated threshold value and declares the channel
as unoccupied (free/whitespace) if the received signal
energy is equal to or below the threshold value. The-
oretically, the ED estimates its threshold value using
some prior knowledge of its average noise level. However,
this static approach introduces severe decision errors be-
cause noise levels are typically random and are largely
affected by unknown ambient conditions. Furthermore,
this randomness makes it difficult to estimate accurate
threshold values particularly under dynamic spectra con-
ditions [14,15].

Consequently, most modern EDs resort to the use of
adaptive thresholds in order to react quickly to fluctuat-
ing channel conditions [16,17]. Thus, adapting the ED’s
threshold value has led to the design of different adaptive
threshold estimation techniques (ATT) in the literature
with the forward consecutive mean excision (FCME) al-
gorithm being one of the most attractive options [18].
The FCME algorithm is well known for its blind sens-
ing capability, simple design, and computational effi-
ciency [18]. However, the FCME algorithm is only as
effective as its highly sensitive parameter values namely,
the threshold factor, Tcme and the percentage of the ini-
tial clean sample set, Q. In most related works, Tcme is
usually computed based on some pre-known or assumed
noise distribution in order to maintain a target probabil-
ity of false alarm, PFA for the FCME algorithm [16,17].
In some other cases, Tcme is determined based on some
pre-determined noise-only sample set [19, pp.1129] [20,
pp.2]. However, these approaches to computing Tcme as
well as Q are not always accurate because radio spectra
conditions are highly dynamic, which makes it difficult
to establish global parameter values. Other problems as-
sociated with setting the parameters of the FCME algo-
rithm include the inability to recompute these parame-
ters manually during online operations and the possibil-
ity of estimating wrong parameter values due to faulty
assumptions about the noise distribution under consid-
eration. These problems may plague the FCME algo-
rithm into computing either too high or too low thresh-
old values causing the ED to render wrong occupancy
decisions. These wrong decisions may thus cause severe
interference to PUs or gross spectra underutilization by
the CR [18].

Thus, in this paper, we have developed a new model
that automatically and accurately determines the opti-
mal parameters of the FCME algorithm based on the
measured dataset considered per time. Interestingly, fol-
lowing our new model, users of the FCME algorithm no
longer need to compute or tune manually the parameters
of the FCME algorithm, instead our model achieves this
automatically and accurately for the user. In addition,
our model still supports a manual configuration module,
particularly for users who may yet desire to enforce a

specific target PFA rate for the algorithm. Essentially,
our model allows the FCME algorithm to be used either
as an adaptive-only algorithm (when manual parameter
tuning is used) or as a fully self-configurable algorithm
(when auto-tuning is used). Our model uses the cuckoo
search optimization (CSO) algorithm to auto-tune the
parameters of the FCME algorithm. In the CSO algo-
rithm, our model adopts the between-class variance func-
tion of the Otsu’s algorithm as the objective function to
determine the optimal parameter values of the FCME
algorithm. Furthermore, in order to keep the FCME al-
gorithm fully autonomous, we have developed a new
heuristic that accurately estimates threshold values par-
ticularly in noise-only conditions without requiring the
need for a predefined target PFA rate by the user. These
ideas have not only improved the FCME algorithm’s per-
formance concerning SS in CR, but they have as well
successfully extended the FCME algorithm into an en-
tirely self-configurable threshold estimation algorithm.
Interestingly, our model can be easily extended to other
highly parameterized threshold estimation algorithms in
the literature to make them fully autonomous.

The rest of the paper is structured as follows: Section
2 provides a brief literature review with regards to the
FCME algorithm. In Section 3, we provide the system
under consideration and the background algorithms re-
quired for our design. A full exposition of our model is
provided in Section 4. The method of analysis used in
our work is described in Section 5. Results are presented
and discussed in Section 6, while conclusions are drawn
in Section 7.

2 Related work

In this section, we discuss related works in order to moti-
vate two major concerns. First, to establish the fact that
till date, there exist no fixed global parameter values for
the FCME algorithm. This lack implies that there is need
to develop standard and automatic methods to optimize
the FCME algorithm’s parameters. Second, we highlight
the main approaches used in the literature to compute
the FCME algorithm’s parameters. We discuss different
versions of the FCME algorithm in order to motivate
the uniqueness of our approach (or model) as proposed
in this paper.

From our analysis of the related works presented in 
Table 1, we found that no global parameter value exists 
that guarantees the highest performance of the FCME 
algorithm in all possible conditions. An obvious reason is 
that the radio spectrum is highly dynamic, which makes 
it impractical to adopt a global value. This implies that 
authors may not always adopt the best method in order 
to configure the FCME algorithm’s parameters, which 
will ultimately undermine the algorithm’s performance 
when spectra conditions suddenly change. Thus, it be-
comes quickly obvious that standard methods with the



3

Table 2.1: Summary of Review of Related Literature

S/N Year/Reference Tcme Q(%) PFA(%)

1 2004 [16] 2.97 10 -
2 2004 [21] 2.97 10 0.1
3 2004 [22] 2.97 10 -
4 2005 [23] - 10 -
5 2005 [20] 2.97 10 0.1
6 2005 [24] 2.8703 25 -
7 2006 [25] 6.91 10 0.1
8 2007 [17] 1.4 25 0.01
9 2007 [26] 2.53 25 0.01
10 2008 [27] 6.9078 20 0.1
11 2009 [28] - 6.25 0.1
12 2010 [29] 2.3,

4.6,
6.9

- -

13 2011 [30] 13.81,
4.61

- 10−6,
0.1

14 2011 [18] 4.6052 10 -
15 2012 [31] 4.6052 - 0.01
16 2012 [32] Multiple

values
- -

17 2015 [33] 2.99 - 0.05
18 2016 [34] - - 0.01
19 2016 [35] - 10 0.01

capacity for automation are required. Such methods are
clearly unavailable in the literature. For example, con-
cerning estimating the Q parameter of the FCME algo-
rithm, so many authors prefer to use Q = 10% as the
de factor value because it was found to be optimal after
several experiments were conducted. However, we found
(see Table 2.1) that some authors used higher values such
as Q = 25% in [24], while lower values were also used
(Q = 6.25%) by the same authors in [28]. The Tcme pa-
rameter has also been computed based on prior assump-
tions concerning the underlying noise distributions. In
many such works (see [16, 17]), Gaussian distributions
were assumed to describe the underlying noise process.
In some other cases, the exponential distribution was
assumed and used to model the noise process [32]. Un-
fortunately, if such assumptions turn out to be incorrect,
then the performance of the FCME algorithm becomes
highly undermined leading to severe implications such
as increased interference to PUs or gross spectra under-
utilization by the CR. We found it highly contemporary
and compelling to develop new models that will not only
standardize the configuration process, but also automate
the process as well.

In addition to auto-tuning the FCME algorithm’s pa-
rameters, some other authors have tried to improve the
accuracy of the algorithm. For example, authors in [36]
proposed the median filtered FCME (MED-FCME) to
enhance the baseline FCME algorithm (that is, the orig-
inal FCME algorithm [19]). The MED-FCME algorithm
performed better than the baseline FCME algorithm in
bands with high noise variability and very high signal

occupancy rates [36]. Unlike the baseline FCME algo-
rithm, the MED-FCME algorithm pre-filters the input
signal using a median filter of a defined length. This
pre-filtering process reduces the noise variance making it
easier to estimate accurate threshold values. The MED-
FCME algorithm also protects against improper esti-
mates of the Tcme parameter of the baseline FCME al-
gorithm based on its pre-filtering action.

The localization algorithm based on double thresh-
olding (LAD) with adjacent cluster combining (ACC),
termed LAD ACC was also developed based on the base-
line FCME algorithm. The LAD ACC FCME algorithm
addresses issues related to signal localization. The LAD
ACC estimates channel occupancy and duty cycle rates
accurately by reducing the probability of miss-detection
[31]. However, the LAD ACC does not modify nor en-
hance the baseline FCME algorithm; instead it simply
uses the baseline FCME algorithm to estimate double
threshold values to improve the probability of signal de-
tection in CR. The m− dB approach is another variant
of the baseline FCME algorithm [31, 37]. The m − dB
model simply adds a tolerance value, m, to the thresh-
old value computed by the FCME algorithm. This added
tolerance value maintains a target PFA rate for the base-
line FCME algorithm.

However, in this paper, we propose a new model
that differs from the MED-FCME, LAD ACC, and the
m− dB models. Our model standardizes and automates
the parameter tuning process of the baseline FCME algo-
rithm. Unlike other models that keep the parameters of
the baseline FCME algorithm fixed, instead, our model
accurately auto-tunes the algorithm’s parameters based
on the particular input dataset under consideration per
time. Apart from providing a new functionality to the
FCME algorithm, our model can be extended to other
parameterized threshold estimation algorithm to make
them fully autonomous. This benefit motivated the ideas
proposed in this paper.

To conclude, since our model concerns adopting meta-
heuristic algorithms to fine-tune the paramters of the
FCME algorithm, it is worthwhile to mention here a few
methods used for meta-optimization. Meta-optimization
describes the use of an optimization method to tune
another optimization method. A few notable methods
among others for this purpose include the Tuning with
chess rating system (CRS-Tuning) [38], the racing al-
gorithm based on Friedman test (F-Race) [39], and the
method for relevance estimation and value calibration
(REVAC) [40]. These methods are considered essential
when it concerns the need to fairly compare different
metaheuristic algorithms [41]. Other attempts have been
considered such as determining the critical values for the
control parameters of Differential Evolution algorithms
[42], and the use of Genetic Algorithm in addressing
some security issues in CR considering cooperative spec-
trum sensing [43–45]. These meta-optimization meth-
ods mentioned above can be used to improve the per-



4

formance of metaheuristic algorithms particularly 
under the deeper context of parameter-tuning in 
adaptive threshold algorithms. Although the use of 
meta-optimization is at the moment outside the scope 
of our model, nevertheless, we consider it worthy of 
mention to-wards the advancement of adaptive 
threshold estimators in CR.

3 System Description and Background
Algorithms

In this section, we describe the energy detector (ED) in
which our proposed model is deployed. Then we describe
the FCME and the CSO algorithms.

3.1 The Energy Detector

The ED is modeled as shown in Fig. 3.1. Here, we de-
scribe the flow process of the ED used in our research. 
Each simulated signal set considered in our test 
experiments (in the result section) were obtained using 
the ED as follows: The transmitted signal samples were 
influenced by the transmission channel and corrupted by 
noise. We modeled the received signal, y(t) as

y(t) = h(t)x(t) + w(t) (3.1)

where t is the time index, h(t) is the channel impulse
response function, x(t) is the PU transmitted signal,
and w(t) is the system noise described as additive white
Gaussian noise (AWGN). For simulation purpose, we
modeled the channel as Rayleigh fading noting that most
wireless communication channels in urban environments
are characterized by the Rayleigh distribution, including
CR networks.

Fig. 3.1: The energy detection system

Essentially, the ED computes the power spectral 
density (PSD) of y(t) as Y (n), where n denotes the 
frequency channel index. To compute the PSD, the fast 
Fourier transformation (FFT) algorithm was used. The 
PSD samples, Y (n), were considered as the test statistic 
in our experiments. Following Fig. 3.1, the PSD samples 
were then passed to the adaptive threshold estimator 
block in order to estimate an appropriate thresh-old 
value, γ. The test statistic, Y (n), was then compared to γ 
to determine the state of the channel in the decision

maker block. For any channel to be declared vacant 
(noise-only samples), H0, it was required that Y (n) ≤ γ, 
and to be declared occupied (signal-plus-noise samples), 
H1, requires that Y (n) > γ. These hypotheses, H0 and H1 
are generally defined considering the frequency domain 
samples as:

H0 : Y (n) = W (n), for n = 1, 2, ..., N (3.2)

H1 : Y (n) = H(n)X(n) +W (n), for n = 1, 2, .., N(3.3)

where N is the total number of frequency channels and
other variables are obtained after applying the FFT to
Eq. (3.1). In this case, we computed N as

N = 2d(log2(T∗fs)−1)e (3.4)

where T is the total sensing period and fs is the
sampling frequency. Summarily, our goal in the entire
detection process is to determine either H0 or H1 using
an accurately estimated γ. Consequently, in subsequent
sections, we will concern ourselves with the approach
used to estimate γ.

3.2 FCME algorithm

The FCME algorithm is described in this section. The 
FCME algorithm is an efficient, effective and simple 
algorithm, no wonder its been used extensively in CR 
[46]. The FCME algorithm consists of the following 
necessary parameters:

1. Tcme is called the threshold factor, which is used to 
control the threshold value γ estimated by the FCME 
algorithm. It is computed based on a PFA (probability 
of false alarm) value usually predefined by the user in 
a typical formula such as Tcme = − ln(PFA)[25]. The 
FCME algorithm then computes γ by multiplying 
Tcme by the estimated mean noise level in the specified 
band. Estimating accurate Tcme values is important 
because using high Tcme values yields a high threshold 
value that may cause high miss detection rates 
(interference to PUs). If the estimated Tcme value is 
too small, then this may yield low threshold values 
causing high false alarm rates (spectra under-
utilization by the CR).

2. Q denotes the percentage of the initial clean sample 
set used in the FCME algorithm. This parameter 
determines the number of noise-only samples 
considered by the FCME algorithm in order to 
compute γ. It is widely defined as Q = 0.1 ∗ N, that is, 
10% of the total number of samples [25]. If large Q 
values are used, the FCME algorithm may use more 
signal samples thus corrupting the set and leading to 
large γ values causing high miss detection rates. On 
the other hand, using small Q values may lead to long 
processing/computational time and divergence of the 
algorithm. Consequently, it is important to choose/
estimate the parameter values of the FCME



5

Fig. 3.2: The flow process of the FCME algorithm

algorithm carefully. Having understood the parame-
ters of the FCME algorithm, we now present how the
FCME algorithm works.

Fig. 3.2 depicts the flow process of the FCME al-
gorithm [25]. According to [25], the algorithm accepts
the estimated energy samples, Y (n) n = 1, 2, ..., N, as
input. In the baseline FCME algorithm, the Tcme and
Q parameters are calculated a priori (manually) at the
start of the process. Usually, since these parameters are
manually computed, they remain unchanged until ei-
ther the system becomes idle again or the user shuts
down the algorithm in order to reconfigure its parame-
ters. Once the algorithm’s parameters are defined, then
Y (n), n = 1, 2, ..., N is rearranged in an ascending or-
der as Y (k), k = 1, 2, ..., N . The algorithm begins with
the first Q samples in Y (k), i.e. Y (k), for k = 1, 2, ..., Q.
The mean of the first Q samples in Y (k) is obtained as

Ne = 1
Q

∑Q
k=1 Y (k). Then an initial threshold value is

computed as γ = Tcme×Ne. The next sample, Y (Q+P )
is compared with γ, where P is a counter initially defined
as P = 1. If Y (Q+P ) is greater than γ, then Y (Q+P ) is
considered as an outlier (signal sample) and the FCME
algorithm terminates returning γ as the final threshold
value. However, if Y (Q + P ) is less than γ, the algo-
rithm updates its counter (P = P + 1) and re-iterates
until an outlier is found or a limiting value is reached
(i.e. if P = N −Q), which terminates the algorithm and
converges to a final γ value.

Algorithm 1: The CSO Algorithm

Data:
1. Number of variables (dimensionality), D
2. Constraints: Lower and upper bounds of each variable
3. Objective function, F

Control parameters:

1. Number of nests (population size), I
2. Number of Iterations, Z
3. Probability of discovering alien egg, Pa
4. Total number of fitness function consumed, ToT Eval

Result:

1. Best Fitness value, Fmax

2. Optimal variables, xi

Process:
// Initialization phase:

1 numeval← 0
2 for i = 1 to I do
3 xi ← rand()
4 evaluate(xi) based on Eq. 4.1 (i.e. the objective

function)
5 numeval + +

6 end
// Obtain current best solution as follows:

7 Fmax ← max(entiresolution)
// Main loop begins here:

8 while z < Z do
// Carry out Lėvy flight phase here:

9 for i = 1 to I do
10 Get a new solution randomly by Lėvy flight

using Mantegna’s algorithm
11 evaluate(xi) based on Eq. 4.1
12 numeval + +

// Obtain the new global best value:

13 Fmax ← max(entiresolution)
14 if Fı > Fmax then

// Update the new global best

15 Fmax = Fı

16 else
// Keep current global best value:

17 Fmax = Fmax

18 end
19 Memorize best value and terminate process if

numeval ≥ ToT Eval
20 end

// Abandon nest phase

21 for i = 1 to I do
22 Empty a fraction of the worst nest based on

Pa using biased/selective random walks
23 Update the new solution using Eq. 3.5
24 evaluate(xi) based on Eq. 4.1
25 numeval + +

// Keep the new best solution

26 if Fı > Fmax then
// Update the new global best

27 Fmax = Fı

28 else
// Keep current global best value

29 Fmax = Fmax

30 end

31 end
32 Memorize best value and terminate process if

numeval ≥ ToT Eval
33 end
34 Post process and visualize the results



6

3.3 Cuckoo search optimization algorithm

We acknowledge that many optimization algorithms ex-
ist in the literature and we do not claim to have evalu-
ated exhaustively in our work all existing metaheuristics.
Nevertheless, we have compared in this paper the CSO
algorithm with some few other notable metaheuristics.
Our findings suggest that the CSO algorithm presents
convincing performance in terms of its convergence to
the best fitness value under different CR working con-
ditions (kindly see the result section in this regard).
Furthermore, since the CSO algorithm depends on a
minimal set of parameters to be fine-tuned, we have
considered the tuning process as simple enough for use
in our model. Thus, convinced by its performance, we
briefly describe its general workings as follows (readers
are kindly referred to [47] for further details concerning
the CSO):

The CSO algorithm based on Lėvy flight works using
the following model [47]:

x
(z+1)
i = x

(z)
i + α⊗ Lėvy(λ) (3.5)

where x
(z+1)
i denotes a new solution for a cuckoo, i,

using Lėvy flight function per iteration, z, with λ being
the Lėvy walk parameter, α is the step size related to
the scale of the problem of interest, and ⊗ symbol means
entry wise multiplication. The Lėvy flight provides a ran-
dom walk, while the random step length is drawn from
a Lėvy distribution Lėvy ∼ u = v−λ, (1 < λ ≤ 3). Ac-
cording to [47], the CSO algorithm mimics the biological
hatching process adopted by Cuckoo birds. Usually, a
Cuckoo bird’s egg is laid in a foreign bird’s nest so that
it may be hatched by the foreign bird. In the technical
sense, each cuckoo egg represents a new solution within
a nest containing other eggs (i.e the population of possi-
ble solutions). The aim is to use the new and potentially
better solutions (cuckoo eggs) to replace the not-so-good
solutions (other eggs) in the nest. Following Algorithm
1, the CSO is popution-based with a population size (I).
Each solution (egg) in the population (nest) is denoted
as xi. The number of times the fitness function is evalu-
ated is denoted as numeval. To begin, an initial popula-
tion is randomly generated in the Initialization phase
(see Algorithm 1) wherein each individual solution xi
represents the real-valued vector with D elements (the
dimensionality of the problem). The algorithm then it-
erates Z times per individual solution in the population
towards determining the maximum fitness value (corre-
sponding to the best solution). We seek the maximum
value because our case concerns a maximization prob-
lem. Through the CSO process, each individual is im-
prove towards better values based on Eq. 3.5. The pro-
cess involves adopting the Lėvy flight function based on
Mantegna’s algorithm (kindly see [47] for details). There-
after, the algorithm empties poorer solutions from the
nest and replaces them with better solutions during the

Abandon nest phase. The algorithm continues to iterate
until a stopping condition is reached, which is considered
to be the maximum number of fitness function consumed
(Kindly see the Result Section).

4 Proposed CSO-FCME model

In this section, we describe our proposed CSO-FCME
model and then we present the overall summary of the
algorithmic flow of the CSO-FCME model. We describe
the choice/justification of the objective function used in
the CSO-FCME model followed by a detailed descrip-
tion of each sub-algorithm that operates the CSO-FCME
model.

4.1 Overview of the CSO-FCME model

Fig. 4.1 presents our proposed CSO-FCME model and it
is briefly described. Our model provides two basic func-
tions for users of the FCME algorithm. It provides a
module, M4, which enables a user to configure man-
ually the parameters of the FCME algorithm in order
to enforce a target PFA. Module M5 provides the other
functionality, which engages the self-configurability (auto-
tuning capability) of our proposed model. The model
obtains the input signal via module M1 and feeds the
input signal to the FCME algorithm in module M2 in
order to compute threshold values and feeds to the out-
put module M6 in order to decide concerning the status
of each channel.

Module M3 uses switch SW2 to engage either mod-
ules M4 or M5. If M4 is selected, then the user manu-
ally assigns the required parameter values of the FCME
algorithm as {Tcme, Q} . The user will normally com-
pute Tcme based on a predefined target PFA, decided by
the user. Both fixed values of Tcme and Q are fed via
SW2 to M2 where a final threshold value (FTV), γ is
computed by the FCME algorithm using {Tcme, Q} and
passed through switch SW1 to module M6. Then, M6
uses γ and the input signal set, Y (n), for n = 1, 2, ..., N
to decide whether the channels are occupied or not.

On the other hand, if the user selects M5 using SW2,
then our model engages its auto-tuning capability. In
this case, random parameter values (PVs) are generated
by the CSO algorithm running in M5 and these PVs
are sent to M2 via SW2. The FCME algorithm in M2
uses the PVs to estimate a corresponding set of esti-
mated threshold values (ETVs). These ETVs are then
fed back to M5 via SW1 to be evaluated by the CSO al-
gorithm using the proposed objective function (discussed
in Section 4.3). Based on the fittest threshold value in
the set of ETVs, the CSO algorithm (in M5) iterates
in order to determine the optimal final parameter val-
ues (PVs), termed

{
T bestcme , Q

best
}

. Module M5 returns{
T bestcme , Q

best
}

to M2 via SW2 to compute FTV, γbest



7

Fig. 4.1: Our proposed self-reconfigurable CSO-FCME model

(we used γbest for the auto-tuning case). Then, γbest is
fed to M6 through SW1 in order to decide on the status
of each channel.

Essentially, we have described two approaches by which
our model enables the FCME algorithm to compute thresh-
old values. One approach is to use a manual process
(baseline FCME algorithm) and the other approach in-
volves using the auto-tuning process (CSO-FCME model).
In the next subsection, we describe the algorithmic pro-
cess that governs the CSO-FCME model.

4.2 Algorithmic process of the CSO-FCME
model

Algorithm 2 presents a summary of the overall process
involved in the CSO-FCME model. In this case, we de-
scribe only the auto-tuning component of our model,
since the manual function is straightforward as in the
baseline FCME algorithm. We relate the different algo-
rithms that animate the modules, which have been de-
scribed in Section 4.1. Kindly note that each algorithm
mentioned here will be fully described in the next sub-
sections.

Typically, our model runs Z different iterations based
on the CSO algorithm (recall Algorithm 1). In each it-
eration, the CSO algorithm generates an initial set of
parameter values (PVs) using the random initial solu-
tion generator (RISG) algorithm, which we shall discuss
in the next subsections. Our model then evaluates these
PVs using the fitness evaluation (FE) algorithm to de-
termine the global best solution in the current iteration
(still in module M5). The process then generates a new
set of parameter values (new solutions) using the new so-
lution generator (NSG) algorithm for the next iteration

(in module M5). After each iteration, the CSO-FCME
model continues to update the global best solution until
no better solution is obtained or after Z iterations are
completed. Then it obtains its final parameter values to
compute the final optimal threshold value (in module
M2). Thereafter, our model runs the noise only detector
(NOD) algorithm to determine whether the input sig-
nal contains only noise samples (in module M5). Once
this is confirmed, the algorithm outputs the final opti-
mal threshold value, γbest (in module M2). Module M2
passes γbest to module M6 to decide on the channel’s
status based on the input signal from module M1. Hav-
ing highlighted the respective algorithms involved in the
CSO-FCME model, we shall now describe the objective
function used and provide details of the individual algo-
rithms in the following subsections.

4.3 Objective function used in the CSO
algorithm

Our model sets up an optimization problem in order to
auto-tune the parameters of the FCME algorithm. Sim-
ilar to every optimization problem, an objective (or fit-
ness) function is required to evaluate the performance
of each solution towards determining the best (optimal)
solution. In our model, we used the between-class vari-
ance (BCV) function (see Eq 4.1) of the Otsu’s algo-
rithm [48] as our objective function. This function is used
widely in image processing to evaluate the goodness of a
threshold value used for image segmentation. However,
different from its use in image processing, we have used
the BCV function in our model to classify radio power
samples into two classes namely, either the noise or the
signal-plus-noise class. We used the BCV function since



8

Algorithm 2: Algorithmic process of the CSO-
FCME model
Data:
1. PSD, Y (n) n = 1, 2, ..., N ; Lower and upper constraints,

Lb and Ub

Result:

1. Final set of optimized parameter values (PV),
Ωbest = [T bestcme , Q

best],
2. The optimized final threshold value (FTV), γbest

Process:
1 for i = 1 to Z do
2 Run the CSO algorithm described in Algorithm

1 based on the initial values obtained using the
RISG algorithm

3 Evaluate the new solutions using the FE
algorithm

4 Obtain new solutions using the NSG algorithm

5 end
6 The NOD algorithm is used at this point in order to

handle the case for the noise-only dataset

it allows us to test an estimated power threshold value
directly and accurately using only the first order statis-
tical parameters of the dataset under consideration per
time. This characteristic of the BCV function makes it
highly suitable for use in our model. We obtained clues
about how viable the BCV function may be based on
the work done in [13]. Authors in [13] showed that a
modified Otsu’s algorithm effectively computes thresh-
old values based on the BCV function. However, differ-
ent from the idea in [13], in this paper, we have used the
BCV function in an innovative manner to find the opti-
mal parameter values of the FCME algorithm. This idea
forms a novel contribution towards the enhancement of
the FCME algorithm. The BCV function is given as

F (γ) = ps(γ)× pn(γ)× [µs(γ)− µn(γ)]
2

, (4.1)

where, F (γ) is the BCV (i.e. the degree of separation)
computed as a function of the threshold value γ, which
is typically estimated by the FCME algorithm. ps is the
probability of the class of estimated signal samples as a
function of the threshold γ, pn is the probability of the
class of estimated noise samples, µs is the mean of the
class of estimated signal samples, and µn is the mean of
the class of estimated noise samples, all computed as a
function of the threshold value estimated by the FCME
algorithm. Readers are kindly referred to [48] for further
details concerning the BCV function. In our model, we
used the BCV function to compute the fitness (degree
of separation) of each threshold value in the ETV set in
order to determine the optimal parameters of the FCME
algorithm. The optimal threshold value computed using
the optimal parameter values of the FCME algorithm is
obtained as:

F (γ∗) = max
γ

F (γ) (4.2)

where γ∗ is the optimal threshold value determined over
the range of γ (ETVs), that is, over the range from
minY (n) to maxY (n) for n = 1, 2, ..., N.

Thus, we maximize Eq. (4.2) subject to the following
parameter constraints:

1. T
(L)
cme ≤ Tcme ≤ T

(H)
cme, where Tcme is the threshold

factor to be optimized, T
(L)
cme and T

(H)
cme are the lower

and upper values of the Tcme factor, respectively.
2. Q(L) ≤ Q ≤ Q(H), where Q is the percentage of the

initial clean sample set (ICSS), Q(L) and Q(H) are
the lower and upper values of Q.

In subsequent subsections, we concisely represent the

above constraints as Lb = [T
(L)
cme, Q(L)] for the lower

set of parameter constraints and Ub = [T
(H)
cme, Q(H)] for

the upper set of parameter constraints. Also, though
the lower and upper constraints can assume any val-
ues configured by the user, however, we used the fol-
lowing bounds in our experiments: 0.1 ≤ Tcme ≤ 5 and
1 ≤ Q ≤ 25. We selected these values based on the
minimum and maximum values that have been used by
authors in the literature (see Table 2.1).

4.4 Description of the algorithms used in the
CSO-FCME model

4.4.1 Data Offset Process The baseline FCME algo-
rithm works best when the input data is positive valued
because it usually multiplies the Tcme by the noise mean
(recall Fig. 3.2). Notice that if the noise mean is negative
valued, the FCME algorithm produces a smaller thresh-
old value (more negative-valued threshold) because of
the multiplicative effect, which undermines its perfor-
mance. However, in most cases, PSD datasets can as well
be negative valued especially when measured in decibel-
milliwatts (dBm) units. In this case, the baseline FCME
algorithm would typically convert the dBm values to
watt before it computes a threshold value (see [16, 17]).
However, this is an expensive process that requires multi-
plicative (O(N2)) and logarithmic (O(G(N) logN)) op-
erations, where O(·) denotes the time complexity, G(N)
is the complexity of the chosen multiplication algorithm,
and N is the variable sample length. Instead of this ex-
pensive process, we propose a simple offset function that
requires only additive (O(N)) and subtractive (O(N))
operations as follows:

S(n) = Y (n)− Ymin, for n = 1, 2, ..., N (4.3)

where Ymin = min(Y (n)), for n = 1, 2, ..., N denotes
the smallest value in the dataset. Our model then pro-
cesses the positive-valued dataset, S(n) instead of the



9

negative-valued input dataset, Y (n). However, the origi-
nal negative-valued dataset can be easily retrieved when
the process ends as follows:

Y (n) = S(n) + Ymin, for n = 1, 2, ..., N. (4.4)

One main advantage of the offset function is that it
allows the FCME algorithm to be used on either positive
or negative valued datasets. Similarly, our model con-
verts the final estimated positive threshold value to its
corresponding negative value using Eq. (4.4) by adding
Ymin to the estimated positive-valued threshold. Conse-
quently, following the offset function, we shall consider
S(n) instead Y (n) in the processes of subsequent algo-
rithms.

4.4.2 Random Initial Solution Generator The next
task in our CSO-FCME model is to obtain the initial
parameter values (PVs) or initial solutions. To achieve
this, we propose the Random Initial Solution Genera-
tor (RISG) adapted to work in the CSO algorithm. The
RISG generates a random set of PVs (recall Fig. 4.1)
that begins the optimization process. The RISG takes
the predefined constraints, Lb and Ub as inputs while it
produces the PVs, denoted as Ω = [Tcme, Q], and the
initial set of fitness values F produced by each set of
parameters [Tcme, Q] in Ω. Typically, Ω is a matrix of
size (I × D), where I is the total number of PVs (or
population of initial solutions) and D is the number of
parameters, (i.e. recall that D = 2). Thus, each row in Ω
contains two values, where the value in the first column
is a randomly generated Tcme value and the value in sec-
ond column is a randomly generated Q value. Then, the
RISG iterates from i = 1 to I and through a nested loop
from d = 1 to D in order to generate the complete set of
ETVs, Ω(I×D). For each iteration i and d, the RISG ap-
plies a Uniform random function, rand(.), based on the
constraints, Lb and Ub to obtain Ω(i×d), which denotes
a single row value in Ω(I×D). The RISG repeats this
process for every iteration, z of the CSO-FCME model,
i.e. from z = 1, 2, ..., Z (recall Algorithm 1). Thus, when

the RISG completes its process, it outputs Ω
(I×D)
z and

F iz = 0, for i = 1, 2, ..., I for a single iteration, z. The

PVs in Ω
(I×D)
z will then be evaluated by the fitness eval-

uator (FE) to be described next. However, a summary
presentation of the RISG is provided in Algorithm 3.

4.4.3 Fitness Evaluation (FE) algorithm The FE

algorithm evaluates each parameter set in Ω
(I×D)
z using

the objective function in Eq. (4.1). To achieve this, first,
the FE algorithm uses each set of parameter values (i.e.

each row) in Ω
(IxD)
z to compute a corresponding thresh-

old value, γiz+1 using the FCME algorithm. Second, the
FE algorithm then evaluates each estimated threshold
value, γiz+1 using Eq. (4.1) to obtain a new set of fitness
values, F iz+1 for i = 1, 2, ..., I. We present a summary of

Algorithm 3: Random Initial Solution Gener-
ator (RISG)

Data:
1. The lower limits, Lb, and upper limits, Ub.

Result:

1. Ω
(i×D)
z , which denotes the individual PVs to be

evaluated in the current iteration, z, of the RISG. Here,
i denotes the index of each pair of parameters (or each
nest in the population of initial solutions). The final set

of all PVs are collated in Ω
(I×D)
z , where I denotes the

total population of nests (initial solutions), and D is the
number of parameters to be optimized. Here, D = 2.
Essentially, the first column in Ω

(I×D)
z contains the

initial sets of Tcme values while the second column
contains the initial sets of Q values.

2. The initial set of evaluated fitness values, F iz for
i = 1, 2, ..., I, corresponding to each parameter in
Ω

(I×D)
z .

Process:
1 for i = 1 to I do
2 for d = 1 to D do

3 Ω
(i,d)
z = Lb+ (Ub− Lb)⊗ rand(D), where D
is the length of the uniform random number
generated between 0 and 1. The function
rand represents the uniform random
number function.

4 end

5 end

the FE algorithm below in which we provide details con-
cerning how the parameters of the objective function in
Eq. (4.1) are computed in steps 6 to 7. The FE algorithm
is detailed in Algorithm 4.

4.4.4 Determination/Update of new solutions The
CSO-FCME model estimates new solutions using the
new solution generator (NSG). The NSG takes the out-
put of the FE algorithm as its input and obtains the
global best fitness value, Fmax corresponding to the global
best parameter values, Ωbest (i.e. the PVs in Fig. 4.1)
and the global best threshold value, γbest (recall Section
4.1). Essentially, the NSG compares the previous fitness

value, F iz of each parameter in Ω
(I×D)
z with their cur-

rent fitness value, F iz+1. If the current F iz+1 is greater
than F iz , then the NSG updates the current value. Fur-
thermore, the NSG checks for the largest current F iz+1

produced in the entire population of parameters, Ω
(I×D)
z+1

and updates this to determine the best (optimal) solu-
tion as Ωbest. Then, it uses Ωbest to compute γbest by the
FCME algorithm. A summary presentation of the NSG
algorithm is provided in Algorithm 5.

4.4.5 Proposed heuristic for threshold estimation
in the noise-only case We propose a heuristic al-
gorithm called the noise-only detector (NOD) in order
to guarantee the performance of the CSO-FCME model



10

Algorithm 4: Fitness Evaluation (FE)

Data:
1. The entire set (population) of PVs,

Ω
(I×D)
z = [Tcme,z, Qz],

2. The offset input PSD samples, S(n), n = 1, 2, ..., N,
3. The initial fitness function values, F iz , for i = 1, 2, ..., I,

obtained using RISG
4. The lower and upper constraints, Lb, Ub.

Result:

1. A new set of fitness values, F iz+1, for i = 1, 2, ..., I,
2. A set of current threshold values, γiz+1, i = 1, 2, ..., I,

(i.e. the ETVs)
3. A new/current set of updated parameter values,

Ω
(I×D)
z+1 = [Tcme,z+1, Qz+1]

Process:
1 Check that the set of parameter values (i.e. PVs) in

Ω
(I×D)
z do not exceed the stipulated constraints. In

this case, constraints that do exceed the limits are
forced to assume the respective values of the limits
of each parameter. for i = 1 to I do

2 for d = 1 to D do
3 Obtain current parameter values as

Ωi,dz = [T i,dcme,z, Q
i,d
z ].

4 Run the FCME algorithm (as in Fig. 3.2) in
order to estimate new threshold values,
γiz+1, (i.e. the ETVs) based on each set of
parameter values T i,dcme,z, and Qi,dz (i.e. the
PVs).

5 Use γiz+1 to classify the input energy
samples, S(n), n = 1, 2, ..., N , into two
classes namely, the noise set, N i

e(k),
k = 1, 2, ...,K, where K is the total number
of noise samples based on γiz+1, and the
signal set, Si(v), v = 1, 2, ..., V, where V is
the total number of signal samples based on
γiz+1. The following holds: N = K + V.

6 Compute the mean of the noise samples as

µin = 1
K

∑K
k=1 N

i
e,k, the mean of the signal

samples as µis = 1
V

∑V
v=1 S

i
v, the probability

of the noise class as pin = K
N
, and the

probability of the signal class as pis = V
N
, all

computed based on the current threshold
value, γiz+1, estimated by the FCME
algorithm.

7 Compute the current fitness value, F iz+1 for

the current threshold value, γiz+1, using

F iz+1 = pis × pin ×
[
µis − µin

]2
, (i.e. using eqn

(4.1) and set the current parameters as
Ωiz+1 = [T icme,z+1, Q

i
z+1].

8 end

9 end

particularly in noise-only sample conditions. The NOD
algorithm typically maintains the auto-tuning capability
of our model in noise-only sample conditions. The NOD
ensures that the CSO-FCME model does not misinter-
pret a noise-only spectrum as a signal-only spectrum,

Algorithm 5: New Solution Generator (NSG)

Data:
1. The new/current set of parameter values (i.e. PVs),

Ω
(I×D)
z+1 = [Tcme,z+1, Qz+1],

2. The previous fitness values of each PV, F iz , i = 1, 2, ..., I,
3. The current set of fitness values, F iz+1, i = 1, 2, ..., I

(computed by the FE function)
4. The lower and upper constraints, Lb, Ub.

Result:

1. The global best fitness value, Fmax, of the optimal PV
2. The global best parameter values (i.e. the PV),

Ωbest = [T bestcme , Q
best],

3. The global best threshold value (i.e. the FTV), γbest.

Process:
1 for i = 1 to I do
2 if F iz ≥ F iz+1 then
3 F iz+1 = F iz Update the previous fitness

value to the current fitness value only if the
condition in step 2 is true

4 Ω
(i×D)
z+1 = Ω

(i×D)
z Update the previous

parameter values to the current pair of
values only if step 2 is true

5 else
6 Proceed to Step 9
7 end

8 end

9 Compute the current fitness value, F iz+1 for the

current threshold value, γiz+1, using

F iz+1 = pis × pin ×
[
µis − µin

]2
, (i.e. using eqn (4.1))

and set the current parameters as
Ωiz+1 = [T icme,z+1, Q

i
z+1].

10 Obtain global best pair of parameter values,

Ωbest = [T bestcme , Q
best], corresponding to Fmax .

11 Obtain best threshold, γbest, corresponding to Fmax .

12 The final threshold value is rescaled as

γbest = γbest + Ymin (recall the offset function in
Eq. 4.4)

as this may lead to higher PFA rates. Furthermore, the
NOD ensures that it is no longer necessary to manu-
ally predefine a target PFA for the FCME algorithm,
instead, our model can automatically and accurately de-
termine an optimal PFA rate only by processing the in-
put dataset, Y (n) measured per time.

The NOD works as follows: It measures the degree of
closeness between the estimated threshold value, γbest,
and the mean of the entire dataset, µT . If the difference
is smaller than 10% of the entire sample range, and the
γbest is less than or equal to µT , then it declares the
sample set as being noise-only samples. The algorithm
then estimates a final threshold value by examining the
edges of the band where it assumes to find noise sam-
ples. The NOD assumes that the presence of signal sam-
ples in the dataset typically causes a bias toward higher
threshold values. Consequently, the smaller the bias, the



11

Algorithm 6: Noise-only detector (NOD)

Data:
1. The optimal threshold value, γbest, estimated by the

NSG algorithm
2. The original input energy samples, Y (n), n = 1, 2, ..., N

Result:

1. The final threshold value, γbest

Process:
1 Compute the mean of the energy samples as

µT = 1
N

∑N
n=1 Yn.

2 if
⌈
γbest

⌉
≤ dµT e then

3 if
∣∣µT − γbest∣∣ ≤ 0.1 ∗ [max(Y (n))−min(Y (n))] ,

for n = 1, 2, ..., N then
4 θ = 0.1×N
5 γbest =

min

[
max

n=1,2...,θ
(Y (n)), max

n=N−θ,N−θ+1,...,N
(Y (n))

]
6 else

7 γbest = γbest % The final threshold value
remains unchanged if the above conditions
are not met

8 end

9 else

10 γbest = γbest % The final threshold value
remains unchanged if the above conditions are
not met

11 end

more likely the sample set contains noise-only samples.
A summary of the NOD is provided in Algorithm 6.

5 Empirical method of analysis

We evaluated our CSO-FCME model and compared it
with existing methods using the probability of detection,
PD, and the false alarm probability, PFA statistically
described as

PD = Pr(Y (n) > γ | H1), n = 1, 2, ..., N (5.1)

PFA = Pr(Y (n) > γ | H0), n = 1, 2, ..., N (5.2)

where Y (n) denotes the signal spectra values for differ-
ent frequency index, n = 1, 2, ..., N, and γ is the thresh-
old value typically estimated by the model, H0 is the
null hypothesis, which states that there exist no signal
samples in the dataset (noise-only spectra), while H1 is
the alternate hypothesis, which states that there exist
both signal and noise samples in the dataset. PD and
PFA were computed following Fawcett’s empirical ap-
proach [49].

Fawcett’s approach relates to our work based on the
illustration in Fig. 5.1 [46]. Based on Fig. 5.1, we la-
beled each test dataset in a binary approach to obtain
the ground truth. The ground truth of each test dataset
was labeled using the true threshold value, γG of the
dataset (see Fig. 5.1). We used the thermal noise floor

of the detector as the true threshold value, γG. Thus,
any sample value greater than γG was labeled as 1 (true
signal), while any sample value less than or equal to γG
was labeled as 0 (true noise). This binary labeling ap-
proach was used to generate the ground truth of each
use-case dataset considered in our experiments. The dif-
ferent datasets used are presented and discussed in Sec-
tion 6.

Likewise, our model and other methods were sub-
jected to each dataset in order to estimate a threshold
value. To analyze their respective performances, we com-
puted the PD and PFA as follows: we declared a missed
detection if the sample in the ground truth was labeled
as 1, and the same sample was labeled by the threshold
estimation algorithm as 0 (see Fig. 5.1a). We declared a
false alarm if the sample in the ground truth was labeled
as 0 and the same sample was labeled by the threshold
algorithm as 1 (false positive (see Fig. 5.1b)). Further-
more, we declared a correct detection when a sample in
the ground truth was labeled as 1 and the same sample
was labeled by the threshold algorithm as 1 (i.e. a true
positive).

Following this analysis, we then computed the PD
per dataset as [49]:

PD =
φ

ρ
, (5.3)

where φ denotes the total number of true positives (truly
detected signal samples) if Y (n) > γ | H1, and ρ is the
total number of actual true signal samples (obtained by
summing the total number of ones in the ground truth).
We calculated the PFA as well using

PFA =
ϕ

η
, (5.4)

where ϕ denotes the total number of false positives (falsely
detected signal samples) if Y (n) > γ | H0, and η is the
total number of noise samples (obtained by summing the
total number of zeroes in the ground truth). Then, based
on the empirically graphed receiver operating character-
istic (ROC) curve (that is, PD vs PFA) (see [49]), we
obtained and tabulated the point performances of each
algorithm as in Section 6.

6 Results and Discussion

First, we present our findings concerning why we used
the CSO algorithm in our model. To achieve this, we
developed and compared our model considering differ-
ent metaheuristic algorithms namely the CSO, artifi-
cial bee colony (ABC) [50], particle swarm optimization
(PSO) [51], genetic algorithm (GA) and the differential
evolution (DE) algorithm [52]. We analyzed the speed
(number of fitness evaluations consumed before conver-
gence) and the accuracy (highest fitness value) of these
algorithms followed by the average processing time of



12

Fig. 5.1: Method of Labeling and Analysis showing different errors: (a) Missed Detection, and (b) False alarms

our CSO-FCME model compared to the baseline FCME
algorithm.

In subsequent subsections, we analyzed our CSO-
FCME model and the baseline FCME algorithm under
two phases namely, the parameter-tuning and testing
phases. In the parameter-tuning phase, we carefully ad-
justed the parameters of the baseline FCME algorithm
to determine its best operating values. In the testing
phase, the parameters were kept fixed and compared
with our model. Usually, this would be the case in real-
life deployments where the baseline FCME algorithm
typically cannot auto-change its parameter values. Fur-
thermore, in the testing phase, each algorithm was tested
with datasets different from the datasets used in the
parameter-tuning phase. We analyzed and discussed the
results obtained considering the IEEE 802.22 standard,
which requires a minimum PD > 90% and a maximum
PFA < 10% [53]. Then, we compared our model with
other state-of-the-art methods such as the MED-FCME
and a fully autonomous method such as the modified
Otsu’s algorithm (MOA). We also tested each algorithm
considering different channel conditions including Raleigh
fading channels. All datasets used in our research are
made freely accessible in [54]. All experiments and re-
sults reported in our paper were encoded and simulated
using MATLAB 2017a.

6.1 Choice of Metaheuristic Algorithm

Table 6.1 provides the parameter values used to run the
different metaheuristic algorithms compared and ana-
lyzed in the present paper. These values were obtained
following several trials that guaranteed the best perfor-
mance of our model. Fig. 6.1 presents the convergence
trend of each algorithm per fitness evaluation consumed.
We used frequency modulated (FM) and orthogonal fre-
quency division multiplexing (OFDM) signals in our ex-
periments since these signals are often encountered by
CR systems within the TV spectra. In each case, we con-
sidered the signal-to-noise ratio (SNR) of each signal un-
der both poor (SNR = 1dB) and good (SNR = 10dB)
signal conditions. The FFT sample length of both the

FM and OFDM signals were kept fixed at 250 samples
each, respectively. The results obtained were based on
a stopping criterion of 1000 fitness functions consumed,
population size = 10, and the values reported were av-
eraged over 100 Monte Carlo trials in order to minimize
statistical uncertainties.

The CPU processing time of each algorithm was mea-
sured based on a PC running an Intel(R) Core i5-7500
CPU processor @ 3.40 GHz with an installed memory
(RAM) of 16GB. Our findings reported in Table 6.2 - 6.5
present the average CPU processing time over 100 differ-
ent Monte Carlo trials and the best fitness value obtained
after 100 fitness functions consumed. To guarantee the
validity of our results, the following experimental con-
ditions were noted: (1) All simulations were conducted
using MATLAB 2017a. (2) All code lines within each
algorithm were suppressed to minimize any extra pro-
cessing time that may be incurred. (3) The population
size and number of fitness function consumed were kept
fixed across all algorithms. (4) We began measuring the
processing time strictly before the Initialization of each
algorithm and we ended measurement strictly after the
algorithm completes its main loop. (5) Only MATLAB
software was kept running in the PC during the experi-
mental process in order to minimize any extra processing
cost that may be incurred. (6) We averaged our results
per algorithm over 100 independent Monte Carlo trials.
Essentially, our aim was to examine the timing and accu-
racy (best fitness value) performance of each algorithm
assuming that the different algorithms were allowed to
consume the same amount of fitness function (=1000).

Closer examination of Figs. 6.1 (a) - (d) indicates
that the ABC and DE algorithms often set out as the
quickest algorithms towards converging to the best fit-
ness value. Nevertheless, further detailed analyses as pre-
sented in Tables 6.2 - 6.5 suggest that the CSO algorithm
often achieved the best fitness value in most cases within
the shortest physical CPU processing time. Apart from
the best accuracy performance achieved by the ABC al-
gorithm in Table 6.3, we note that the CSO algorithm
often achieved the best performance in terms of CPU
processing time and overall best fitness value. The real-



13

Table 6.1: Parameter settings of the different Metaheuristic algorithms used in our experiments (population size =
10, Number of fitness function consumed = 1000, Monte Carlo trials = 100)

Algorithms Parameter Settings

CSO Discovery rate of Alien eggs = 0.2

ABC
Number of Onlooker Bees = 10
Abandoment (Trial) limit = 12

Acceleration Coefficient (upper bound) = 1

PSO

Self adjustment weight = 1.5
Social adjustment weight = 1.5

Inertia weight (adaptive) = (0.1,1.1)
Acceleration coefficients = Uniformly distributed (0,1) random vector

GA

Crossover rate = 0.8
Mutation rate = 0.2
Selection rate = 0.8

Selection operator = Roullette wheel
Crossover type = Single point crossover

Chromosome lenght = 16
Elitism rate = 0.5

DE
Crossover probability = 0.5

Differential weight = 0.8

(a) FM signal condition at SNR = 1 dB (b) FM signal condition at SNR = 10 dB

(c) OFDM signal condition at SNR = 1 dB(d) OFDM signal condition at SNR = 10 dB

Fig. 6.1: Fitness performance of different Metaheuristic algorithms under different signal conditions

Table 6.2: Detailed performance Analysis of the different Metaheuristic algorithms for FM Signal Condition at SNR
= 1dB (population size = 10, Number of fitness function consumed = 1000, Monte Carlo trials = 100)

Algorithms CPU Time (Secs) Best Fitness Value

CSO 0.0389 ± 0.0154 0.6606

ABC 0.0613 ± 0.0227 0.6606

PSO 0.0609 ± 0.0184 0.6606

GA 0.0927 ± 0.0282 0.6547

DE 0.0586 ± 0.0098 0.6606



14

Table 6.3: Detailed performance Analysis of the different Metaheuristic algorithms for FM Signal Condition at SNR
= 10dB (population size = 10, Number of fitness function consumed = 1000, Monte Carlo trials = 100)

Algorithms CPU Time (Secs) Best Fitness Value

CSO 0.0388 ± 0.0105 1.0194

ABC 0.0616 ± 0.0192 1.0213

PSO 0.0598 ± 0.0122 0.9971

GA 0.0971 ± 0.0190 0.9930

DE 0.0571 ± 0.0103 1.0194

Table 6.4: Detailed performance Analysis of the different Metaheuristic algorithms for OFDM Signal Condition at
SNR = 1dB (population size = 10, Number of fitness function consumed = 1000, Monte Carlo trials = 100)

Algorithms CPU Time (Secs) Best Fitness Value

CSO 0.0387 ± 0.0109 0.7615

ABC 0.0573 ± 0.0173 0.7615

PSO 0.0567 ± 0.0129 0.7615

GA 0.0880 ± 0.0191 0.7538

DE 0.0583 ± 0.0119 0.7615

Table 6.5: Detailed performance Analysis of the different Metaheuristic algorithms for OFDM Signal Condition at
SNR = 10dB (population size = 10, Number of fitness function consumed = 1000, Monte Carlo trials = 100)

Algorithms CPU Time (Secs) Best Fitness Value

CSO 0.0397 ± 0.0124 16.2931

ABC 0.0571 ± 0.0158 16.2931

PSO 0.0576 ± 0.0128 16.2677

GA 0.0889 ± 0.0209 16.1643

DE 0.0611 ± 0.0091 16.2931

coded GA algorithm typically fell short in most use-
cases, followed by the PSO algorithm (see Tables 6.2
- 6.5). Summarily, we note that the ABC and DE algo-
rithm suffice as very impressive performers and they are
potential candidates for use in our model. However, for
the purpose of detecting signals autonomously and accu-
rately in Cognitive Radio applications, we examine the
CSO algorithm further in the rest of our experiments.

6.2 Parameter-tuning Phase: The H0 condition

6.2.1 In Uniform Noise-only Condition We used
randomly generated additive white Gaussian noise (AWGN)
sample sets (N = 250) in the noise-only sample condi-
tion to determine whether one of the main control pa-
rameters of the CSO algorithm (i.e. the probability of
discovering alien eggs, Pa) will greatly affect the PFA
performance of our CSO-FCME model or not. To con-
duct this and subsequent experiments, we iterated the
CSO algorithm using I = Z = 5, where Z is the to-
tal number of iterations by the CSO algorithm and I is
the number of nests (i.e. candidate parameter solutions,
which we called PVs in Fig. 4.1).

We also note that the following constraints were used
during the optimization process: 0.1 ≤ Tcme ≤ 5 and
1 ≤ Q ≤ 25 (recall Section 4.3). Using these values in
our experiments made the CSO-FCME model to con-

verge quickly to optimal solutions. We report the result
of our simulations in Fig. 6.2, which shows that a fairly
constant PFA was maintained despite using different Pa
values for the CSO algorithm (i.e. 0 < Pa ≤ 1). Conse-
quently, we used Pa = 0.2 in our subsequent experiments
even though any Pa may still be suitable for the CSO-
FCME model. We used Pa = 0.2 because it produced
the least average PFA. An interesting point to note is
that our CSO-FCME model auto-tuned itself in order
to achieve the low PFA rate (PFA < 0.04) reported in
Fig. 6.2. This automatic and effective capability of our
model contributes mainly to adaptive threshold estima-
tion in CR since it makes it possible to achieve fully
blind spectrum sensing.

Next, we used Monte Carlo simulation (considering
100 different trials) to carefully tune the baseline FCME
algorithm using AWGN noise-only sample sets. We present
the averaged result in Fig. 6.3, which shows the average
threshold value estimated by the carefully tuned base-
line FCME algorithm and our CSO-FCME model. Both
algorithms achieved PFA < 0.01, which can be easily cor-
roborated by the thresholds being above the noise level
in Fig. 6.3. An important note is that while we carefully
tuned the baseline FCME algorithm over 100 different
Monte Carlo trials to improve its accuracy, instead, our
CSO-FCME model automatically converged to a simi-
lar accurate threshold value after Z = 5 iterations. This



15

Table 6.6: Probability of false alarm performance under noise uncertainty conditions

Noise Uncertainty Baseline FCME Algorithm CSO-FCME Model
δ (dB) PFA PFA Threshold

Factor
(Tcme)

Initial
Clean Set,
Q (%)

Threshold
(in dBm)

0 0.0300 1.0000e-3 1.9159 19.5000 -97.4859
1 0.0200 1.0000e-3 2.4697 9.7700 -96.6800
2 0.0240 1.0000e-3 2.7487 5.3500 -96.0310
3 1.0000e-3 1.0000e-3 2.9334 4.0400 -96.0470
4 1.0000e-3 1.0000e-3 2.0297 12.8000 -94.7330
5 0.3200 1.0000e-3 3.5090 9.2500 -93.8376

Fig. 6.2: False alarm Rate of the CSO-FCME model
based on different discovery rate of the alien eggs within
the CSO algorithm

quick, accurate and automatic convergence of our model
is an interesting contribution of our research. Please note
that the result of Fig. 6.3 was obtained using the fol-
lowing carefully tuned parameter values of the baseline
FCME algorithm: Tcme = 4.1 and Q = 10%, in order to
maintain a target P̂FA = 0.05. Since these values of the
baseline FCME algorithm cannot be easily changed in

Fig. 6.3: Average estimated threshold by the CSO-
FCME and baseline FCME algorithm under the uniform
AWGN noise-only case

real-time usage, we then kept them fixed in subsequent
test conditions in order to mimic real-life conditions.

6.2.2 Under noise uncertainty conditions We stud-
ied the important effect of noise uncertainty on the per-
formance of the baseline-FCME algorithm and the CSO-
FCME model. We increased the noise uncertainty level,
δ (dB) in the AWGN noise set by gradually adding ran-
dom numbers drawn from a Uniform distribution of same
length in the range (0, δ) in steps of 1dB. In this case,
we kept the parameters of the baseline FCME algorithm
fixed at Tcme = 4.1 and Q = 10% in order to maintain a
target P̂FA = 0.05. The noise sample length was kept at
N = 250. These values were defined and kept constant
for all noise uncertainty levels. We report our results in
Table 6.6.

From Table 6.6, while we varied the noise uncertainty
level, we observed that the CSO-FCME model automat-
ically varied its Tcme and Q values to estimate accurate
threshold values to maintain a low PFA rate (see Ta-
ble 6.6). The CSO-FCME model performed better than
the baseline FCME algorithm because of the NOD algo-
rithm, which ensured that the noise-only condition was
always identified and threshold values were estimated
above the noise level. We have provided the datasets used
to perform these noise uncertainty experiments in [54]
and the estimated threshold and parameter values are
provided in Table 6.6 for easier verification. Summar-
ily, Table 6.6 shows that the CSO-FCME model outper-
formed the baseline FCME algorithm particularly under
large noise uncertainty levels making our model suitable
for use in CR.

6.3 Test phase: The H1 condition

6.3.1 To determine minimum SNR level The CSO-
FCME and the baseline FCME algorithm were examined
under different SNR levels. These experiments aimed to
determine the minimum SNR level below which the per-
formance of the CSO-FCME and the baseline FCME al-
gorithm may no longer be guaranteed. We used the same
parameter values from the parameter-tuning phase to
configure the baseline FCME algorithm, i.e. the results



16

Fig. 6.4: Threshold Computation for CSO-FCME and Unoptimized FCME in (A) SNR = 10dB, and (B) SNR =
5dB (C) SNR = 3dB (D)SNR = 1dB

of the baseline FCME algorithm in the test phase were
based on Tcme = 4.1, and Q = 10%.

On the other hand, the parameters of the CSO-FCME
were computed automatically and adjusted by the model
per input dataset. The different signals and the corre-
sponding estimated threshold values are shown in Figs.
6.4a - d. The SNR = 10dB use-case is shown in Fig.
6.4a for which the CSO-FCME algorithm produced a
detection rate of PD = 100% and a false alarm rate
of PFA = 0.01%, while the baseline FCME algorithm
achieved PD = 72.73%, PFA = 0%. It is seen in Figs.
6.4b - d that the CSO-FCME model provides a better
detection performance than the baseline FCME. We see
that even though a zero false alarm rate was maintained
by the baseline FCME algorithm for all SNR levels, how-
ever, this was achieved at the expense of a lower proba-
bility of detection. The poorer detection performance of
the baseline FCME algorithm was traced to its inability
to autonomously adapt its parameter values based on
the different use-cases.

Thus, the results of Fig. 6.4a - d typically support the
need for self-configurability as demonstrated by our pro-
posed CSO-FCME model. The CSO-FCME model per-
formed well in conditions as low as SNR = 3dB, below
which its detection performance may no longer be guar-
anteed. The baseline FCME algorithm only performed
well above SNR = 5dB, below which its performance
also degraded.

6.3.2 Effects of different sample lengths The ef-
fect of short and long sample lengths on the performance
of both algorithms was analyzed. This experiment re-
veals the possible effect of fast and slow sensing times
on the performance of both algorithms. In this case, the
high SNR level use-case was considered in order to ensure
that both algorithms were capable of detecting the sig-
nal. Fig. 6.5a shows a band with sample length N = 250.
The same spectrum was maintained as in Fig. 6.5b al-
beit shorter sample lengths of N = 125, and N = 75
as in Fig.6.5c. By considering half of the sample length,
the baseline FCME algorithm is observed to estimate
higher threshold values as compared to the CSO-FCME
model, which estimated more averagely constant thresh-
old values over the different sample lengths. It is be-
lieved that the reduction in sample length may have
caused the baseline FCME algorithm to consider more
signal samples during the estimation process, thus esti-
mating higher threshold values. Different from the base-
line FCME algorithm, our self-configurable model suc-
cessfully adjusted its parameter values in order to es-
timate more accurate threshold values for the different
sample lengths. The different threshold values and their
corresponding parameter values are presented for each
sample length in Table 6.7. The different parameter val-
ues estimated by our model are shown in Table 6.7 to
support the self-configurability capability of our model.



17

Fig. 6.5: Threshold Computation for CSO-FCME and Unoptimized FCME in Sample Lengths of (A) N = 250
samples, (B) N = 125 samples, and (C) N = 75 samples

Table 6.7: Detection Performance in different Sample Length Conditions

Algorithms Sample
Lengths

Threshold
Factor
(Tcme)

Initial
Clean Set
(%)

Threshold
(in dBm)

PD(%)

250 2.332 17.55 -97.2697 94.74
CSO-FCME 125 2.501 4.26 -96.9205 91.89

75 2.338 22.46 -96.2426 80.56

250 4.1 10 –94.4498 63.16
Base-line FCME 125 4.1 10 -93.0902 54.05

75 4.1 10 –91.6484 38.89

6.3.3 Effects of low and high occupancy rates The
effect of different signal occupancy rates on the perfor-
mance of both algorithms was examined. The results ob-
tained in these use-cases are shown in Fig 6.6. Our model
is shown to adjust its parameter values in accordance
with the different occupancy rates considered in our ex-
periment. Nevertheless, it is shown to perform poorly for
the 100% occupancy rate case. This poor detection per-
formance in Fig. 6.6d is attributed to the large number
of signal samples in the initial clean sample set (ICSS)
particularly for the 100% occupancy rate condition.

Nevertheless, the CSO-FCME algorithm is shown in
the results of Table 6.8 to provide better detection per-
formance as compared to the baseline FCME algorithm.
It is worth noting that a PFA ≈ 0% was recorded for
both algorithms as easily seen in the plots of Figs. 6.6a -
d in which the threshold lines are above the noise level.

6.4 Comparison with other state-of-art
techniques

In this section, we compare our model with the median
filtered FCME (MED-FCME) and the modified Otsu’s
algorithm (MOA). We considered the MOA because it
is a notable and fully autonomous algorithm [13]. The
MED-FCME is a notable enhancement to the FCME al-
gorithm, which makes it stable in conditions with high
noise variance. However, the MED-FCME also required
us to fine-tune its median filter length, M, which we
did under Rayleigh fading conditions. We used the same
parameter settings for the baseline FCME and MED-
FCME algorithm as follows: Tcme = 4.1 and Q = 10%.
We tested each algorithm under Raleigh fading condi-
tions at SNR = 5 and 10dB, respectively and discuss
the results obtained in the following subsections:



18

Fig. 6.6: CSO-FCME and Unoptimized FCME under different Occupancy Rates (in Percentage) of (A) 25, (B) 50,
(C) 75, (D) 100

Table 6.8: Detection Performance under different Occupancy Rates

Algorithm Occupancy
(%)

Threshold
Factor
(Tcme)

Initial
Clean Set ,
Q(%)

Threshold
(in dBm)

PD(%)

25 2.253 5.19 -96.6977 78.26
CSO-FCME 50 2.093 7.81 -96.6390 81.33

75 1.9981 10.73 -96.2393 87.93
100 1.7833 13.37 -92.3730 8.88

25 4.1 10 -94.2515 60.87
Base-line FCME 50 4.1 10 -90.1957 0

75 4.1 10 -87.4451 0
100 4.1 10 -88.02 0

Table 6.9: Performance under Rayleigh faded condition at SNR = 5dB

Algorithm Threshold
Factor
(Tcme)

Initial
Clean Set
(%)

Threshold
(in dBm)

PD(%) PFA(%)

CSO-FCME 2.1425 12.18 -74.7040 90.48 0.001
Base-line FCME 4.1 10 -68.2622 4.76 0.001

MED-FCME (M = 5) 4.1 10 -78.3218 100 22.39
MED-FCME (M = 10) 4.1 10 -77.8279 100 19.40
MED-FCME (M = 20) 4.1 10 -80.7516 100 50.25
MED-FCME (M = 50) 4.1 10 -81.5117 100 53.73

MOA - - -81.7667 100 60.20

6.4.1 Under Rayleigh Fading Condition We sim-
ulated Rayleigh fading channels based on a 9600 sample
rate and a maximum Doppler shift of 100 Hz to examine

the performance of each algorithm. We considered two
different channel conditions of SNR = 5 and 15dB to
model both low and high SNR conditions, respectively.



19

Table 6.10: Performance under Rayleigh faded condition at SNR = 15dB

Algorithm Threshold
Factor
(Tcme)

Initial
Clean Set
(%)

Threshold
(in dBm)

PD(%) PFA(%)

CSO-FCME 3.0626 17.60 -71.7164 90.1 0.001
Base-line FCME 4.1 10 -67.2810 80.0 0.001

MED-FCME (M = 5) 4.1 10 -77.3700 100 14.84
MED-FCME (M = 10) 4.1 10 -77.6902 100 19.23
MED-FCME (M = 20) 4.1 10 -80.7516 100 47.80
MED-FCME (M = 50) 4.1 10 -81.5117 100 50.55

MOA - - -71.4000 90.0 0.001

The results obtained for both SNR levels are presented
in Tables 6.9 and 6.10, respectively. In each condition, we
compared our model with the MOA and different param-
eter settings of the MED-FCME algorithm. Following
the results obtained in Table 6.9, we observed the fol-
lowing: our CSO-FCME model successfully auto-tuned
its parameter values in order to estimate a better thresh-
old value that ensured PD = 90.48% and PFA = 0.001%.
The baseline-FCME and MED-FCME algorithms at dif-
ferent median lengths achieved very high PD rates at
the expense of very high PFA rates (see Table 6.9). The
MOA also achieved similar high PD and PFA rates. In
this case, only the CSO-FCME model satisfied the IEEE
802.22 standard (i.e. PD > 90%, PFA < 10%), while the
other algorithms did not. This performance supports the
viability and effectiveness of our proposed model.

Considering the high SNR case in Table 6.10, we ob-
served that our CSO-FCME model and the MOA achieved
PD = 90.1% and PFA = 0.001%, which satisfied the
IEEE 802.22 standard. However, the baseline-FCME al-
gorithm and the MED-FCME at different median lengths
did not satisfy the IEEE 802.22 standard. Though the
MED-FCME and baseline FCME algorithms achieved
very high PD rates, they however suffered from similar
high PFA rates. We also provided the Tcme and Q pa-
rameter values of the CSO-FCME model in Table 6.10
to demonstrate the auto-tuning capability of our model.
It is interesting to note that our model successfully and
automatically fine-tuned the FCME algorithm’s param-
eters quite accurately. The dataset used to conduct these
experiments are again provided in [54].

6.4.2 Under an unseen spectra condition We used
the same settings in Section 6.4.1 to examine each algo-
rithm based on an unknown dataset, which is an impor-
tant case that occurs frequently in real-life conditions.
The distribution of this spectrum was unknown to the
different algorithms, thus making it worthwhile in our
investigation since most distributions will typically be
unknown in real-life situations. We present the spectra in
Fig. 6.7, where the signal lies between the 390th - 590th

frequency sample while all other samples were strictly
noise-only samples. In this case, each algorithm main-
tained PFA < 5%. Following our analysis presented in

Table 6.11, we again show that our model provided a
better PD rate than the other methods. In particular,
the results presented thus far suggest that our model
effectively auto-tunes the parameters of the FCME al-
gorithm, which forms a significant contribution of our
research.

Fig. 6.7: Spectra assumed to be obtained from an un-
known distribution along with the estimated threshold
values by the different algorithms

6.5 Timing Performance of the CSO-FCME
Model

This section reports the timing performance of our CSO-
FCME model compared with the baseline FCME algo-
rithm. This performance evaluation was considered nec-
essary since our model obviously introduces an extra pro-
cessing cost to the baseline FCME algorithm. For this
purpose, our experiments in this regard were conducted
using a PC running an Intel(R) Core i5-7500 CPU pro-
cessor @ 3.40 GHz with an installed memory (RAM) of
16GB. We used the worst case scenario of SNR = 1dB
for the OFDM signal to analyze the timing performance
of both algorithms. Our findings are reported in Table
6.12 showing each processing time obtained over an av-
erage of 100 Monte Carlo simulations considering differ-
ent population sizes (I) and number of iterations (Z).
We note that our model achieves its minimum timing



20

Table 6.11: Performance under an unseen spectra condition (obtainable in the real-world deployments)

Algorithm Threshold
Factor
(Tcme)

Initial
Clean Set
(%)

Threshold
(in dBm)

PD(%) PFA(%)

CSO-FCME 2.2640 12.17 -88.93 92.36 0.01
FCME 4.1 10 -84.12 55.05 0.01
MED-FCME
(M = 20)

4.1 10 -84.75 59.72 0.01

MOA - - -87.06 82.65 0.01

Table 6.12: Timing performance of the CSO-FCME algorithm

Processing Time (Secs)

Algorithms Population Size (I) Iteration (Z) = 5 Iteration (Z) = 50 Iteration (Z) = 100

5 0.0047 0.0292 0.0558
CSO-FCME 10 0.0069 0.0519 0.0973

20 0.0114 0.0932 0.1760

Baseline FCME - 1.0889e-05

performance considering a combination of I = 5 and
Z = 5. Table 6.12 shows that the processing time can
be increased using larger I and Z values with possibili-
ties for better performance albeit longer processing time.
Although our model obviously consumes longer process-
ing time than the baseline FCME alogrithm, neverthe-
less, Table 6.12 confirms that the CSO-FCME model
computes within the timing performance required by
the IEEE 802.22 standard, which stipulates a maximum
sensing period of 2 Secs for CR systems [53].

7 Conclusion

In this paper, we have proposed a new model that ac-
curately auto-tunes the parameters of the forward con-
secutive mean excision (FCME) algorithm based only
on the input dataset under consideration per time. Pre-
viously, users of the FCME algorithm are required to
manually compute and fine-tune the algorithm’s param-
eters in order to maintain a pre-defined PFA rate. How-
ever, this approach can be prone to errors, which may
lead to wrongly estimated threshold values causing ei-
ther increased interference to the primary user (PU)
or decreased spectra utilization by the cognitive radio
(CR) user. Furthermore, this manual parameter tun-
ing approach makes it difficult to automatically adjust
the parameters of the FCME algorithm under dynamic
spectra conditions. Consequently, we have introduced in
the present paper a new model that addresses this lim-
itation. Our goal was achieved by adapting the cuckoo
search optimization (CSO) algorithm and the between-
class variance function used in Otsu’s algorithm to auto-
matically search for the optimal parameter values of the
FCME algorithm per input dataset. We chose the CSO
algorithm based on its relatively better performance over
some other notable metaheuristic algorithms such as the
particle swarm optimization (PSO), artificial bee colony

(ABC), genetic algorithm (GA), and differential evolu-
tion (DE) algorithms. We also developed a new heuris-
tic algorithm to auto-tune the PFA performance of our
model under typical noise-only conditions. This heuris-
tic allows our model to quickly and accurately adjust the
parameters of the FCME algorithm in order to maintain
its PFA performance. Experiments were conducted to
demonstrate that our CSO-FCME model performs bet-
ter than the baseline FCME algorithm under different
possible CR working conditions. Our model maintained
good performance under both fast and slow sensing con-
ditions. It has been shown to be effective at SNR levels
down to SNR = 3dB and under different occupancy
rates (≈ 75% signal occupancy rates). However, since
our model is obviously more complex than the baseline
FCME algorithm, it thus computes threshold values in
a longer period of time (i.e. slower speed) than the base-
line algorithm. Furthermore, it may be limited in terms
of its detection rate under high occupancy conditions
(> 75%), which is an issue to be considered in future
works. However, based on the results presently obtained,
it is sufficient to conclude that our model achieves fully
blind spectrum sensing in CR with an additional po-
tential to convert other highly parameterized adaptive
threshold algorithms into effective and fully autonomous
algorithms.

8 Compliance with Ethical Standards

8.1 Conflict of Interest

H. Abdullahi declares that he has no conflict of interest.
A. J. Onumanyi declares that he has no conflict of inter-
est. S. Zubair declares that he has no conflict of interest.
A. M. Abu-Mahfouz declares that he has no conflict of
interest. G. P. Hancke declares that he has no conflict of
interest.



21

8.2 Ethical approval

This article does not contain any studies with human
participants or animals performed by any of the authors

References

1. L. Arienzo and D. Tarchi, “Statistical modeling of spec-
trum sensing energy in multi-hop cognitive radio net-
works,” IEEE Signal Processing Letters, vol. 22, pp. 356–
360, Mar. 2015.

2. C. Liu, M. Li, and M.-L. Jin, “Blind energy-based detec-
tion for spatial spectrum sensing,” IEEE Wireless Com-
munications Letters, vol. 4, pp. 98–101, feb 2015.

3. G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M.
Abu-Mahfouz, “A Survey on 5G Networks for the Inter-
net of Things: Communication Technologies and Chal-
lenges,” IEEE Access, vol. 3536, no. c, 2017.

4. S. S. Oyewobi and G. P. Hancke, “A survey of cognitive
radio handoff schemes, challenges and issues for indus-
trial wireless sensor networks (CR-IWSN),” Journal of
Network and Computer Applications, vol. 97, pp. 140–
156, Nov. 2017.

5. I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty,
“NeXt generation/dynamic spectrum access/cognitive
radio wireless networks: A survey,” Computer Networks,
vol. 50, pp. 2127–2159, 2006.

6. S. D. Barnes and B. T. Maharaj, “Prediction based chan-
nel allocation performance for cognitive radio,” AEU -
International Journal of Electronics and Communica-
tions, vol. 68, pp. 336–345, Apr. 2014.

7. K. Ntshabele, B. Isong, and A. M. Abu-Mahfouz, “Anal-
ysis of energy inefficiency challenges in cognitive radio
sensor network,” in in the 44th Annual Conference of
the IEEE Industrial Electronic Society, (Washington D.
C., USA), Oct. 2018.

8. F. Wasonga, T. O. Olwal, and A. M. Abu-Mahfouz, “Ef-
ficient two stage spectrum sensing combination for cog-
nitive radio,” in In proceedings of the 27th International
Symposium on Industrial Electronics (ISIE), pp. 1308–
1313, June 2018.

9. X. Wang, H. Cheng, and M. Huang, “QoS multicast rout-
ing protocol oriented to cognitive network using com-
petitive coevolutionary algorithm,” Expert Systems with
Applications, vol. 41, no. 10, pp. 4513–4528, 2014.

10. J. J. Popoola and R. van Olst, “The performance evalu-
ation of a spectrum sensing implementation using an au-
tomatic modulation classification detection method with
a universal software radio peripheral,” Expert Systems
with Applications, vol. 40, no. 6, pp. 2165–2173, 2013.

11. D. Malafaia, J. Vieira, and A. Tomé, “Adaptive thresh-
old spectrum sensing based on expectation maximization
algorithm,” Physical Communication, vol. 21, pp. 60–69,
2016.

12. J. Avila and K. Thenmozhi, “Adaptive double threshold
with multiple energy detection technique in cognitive ra-
dio,” Research Journal of Applied Sciences, Engineering
and Technology, vol. 10, no. 11, pp. 1336–1342, 2015.

13. A. J. Onumanyi, E. N. Onwuka, A. M. Aibinu, O. C. Ug-
weje, and M. J. E. Salami, “A modified Otsu’s algorithm
for improving the performance of the energy detector in

cognitive radio,” AEU-International Journal of Electron-
ics and Communications, vol. 79, pp. 53–63, Sept. 2017.

14. E. U. Ogbodo, D. G. Dorrell, and A. M. Abu-Mahfouz,
“Performance analysis of correlated multi-channels in
cognitive radio sensor network based smart grid,” in
in the 13th IEEE AFRICON conference, (Cape Town,
South Africa), pp. 1653–1658, Sept. 2017.

15. E. U. Ogbodo, D. Dorrell, and A. M. Abu-Mahfouz,
“Cognitive Radio Based Sensor Network in Smart Grid:
Architectures, Applications and Communication Tech-
nologies,” IEEE Access, vol. 5, no. c, pp. 19084–19098,
2017.

16. J. Vartiainen and P. Henttu, “Estimation of Signal De-
tection Threshold by CME Algorithms,” IEEE 59th
Vehicular Technology Conference (VTC 2004-Spring),
vol. 3, no. 4, pp. 1654 – 1658 (Volume 3), 2004.

17. J. J. Lehtomäki, J. Vartiainen, M. Juntti, and H. Saar-
nisaari, “CFAR outlier detection with forward meth-
ods,” IEEE Transactions on Signal Processing, vol. 55,
pp. 4702–4706, sep 2007.

18. J. J. Lehtomäki, J. Vartiainen, and H. Saarnisaari,
“Adaptive FCME-based threshold setting for energy de-
tectors,” No. 33, pp. 1 – 5, Oct. 2011.

19. H. Saamisaari and P. Henttu, “Impulse detection and
rejection methods for radio systems,” In IEEE Military
Communications Conference, 2003. MILCOM’03, vol. 2,
pp. 1126–1131, 2003.

20. J. Vartiainen, J. J. Lehtomäki, and H. Saarnisaari,
“Double-Threshold Based Narrowband Signal Extrac-
tion,” 2005 IEEE 61st Vehicular Technology Conference,
vol. 2, no. 1, pp. 5–9, 2005.

21. J. Vartiainen, S. Aromaa, H. Saarnisaari, and M. Juntti,
“Performance evaluation of transform selective interfer-
ence suppression,” Communications, pp. 1–7, 2004.

22. J. Vartiainen, A. Sami, H. Saarnisaari, and M. Juntti,
“Selection process of a transform selective interference
suppression algorithm,” in Proceedings of the 6th Nordic
Signal Processing Symposium, 2004. NORSIG 2004.,
pp. 220–223, IEEE, 2004.

23. H. Puska, H. Saarnisaari, and J. Iinatti, “Comparison of
antenna array algorithms in DS/SS code acquisition with
jamming,” in Proceedings - IEEE Military Communica-
tions Conference MILCOM, vol. 2005, IEEE, 2005.

24. J. J. Lehtomäki, M. Juntti, and H. Saarnisaari, “CFAR
strategies for channelized radiometer,” IEEE Signal Pro-
cessing Letters, vol. 12, pp. 13–16, Jan. 2005.

25. J. Vartiainen, H. Saarnisaari, J. J. Lehtomäki, and
M. Juntti, “A blind signal localization and SNR estima-
tion method,” Proc. IEEE Mil. Commun. Conf. (MIL-
COM’06), pp. 1–7, 2006.

26. J. J. Lehtomäki, J. Vartiainen, M. Juntti, and H. Saar-
nisaari, “Spectrum sensing with forward methods,” in
Proceedings - IEEE Military Communications Confer-
ence MILCOM, IEEE, oct 2007.

27. B. Shen, C. Zhao, L. Huang, K. Kwak, and Z. Zhou,
“Wideband Primary User Signal Identification Ap-
proaches for Cognitive {MB}-{OFDM} {UWB} Sys-
tems,” in 2008 Third International Conference on Con-
vergence and Hybrid Information Technology, IEEE, nov
2008.

28. J. J. Lehtomäki, S. Salmenkaita, J. Vartiainen, J. P.
Mäkelä, R. Vuohtoniemi, and M. Juntti, “Measurement



22

studies of a spectrum sensing algorithm based on double
thresholding,” in 2009 2nd International Workshop on
Cognitive Radio and Advanced Spectrum Management,
CogART 2009, pp. 69–73, IEEE, may 2009.

29. J. Vartiainen, J. J. Lehtomäki, H. Saarnisaari, and
M. Juntti, “Analysis of the consecutive mean excision
algorithms,” Journal of Electrical and Computer Engi-
neering, vol. 2010, pp. 1–13, 2010.

30. K. X. Jia and Z. S. He, “Narrowband signal localization
based on enhanced LAD method,” Journal of Commu-
nications and Networks, vol. 13, pp. 6–11, feb 2011.

31. J. J. Lehtomäki, R. Vuohtoniemi, and K. Umebayashi,
“Duty Cycle and Channel Occupancy Rate Estimation
with MED-FCME LAD ACC,” in Proceedings of the 7th
International Conference on Cognitive Radio Oriented
Wireless Networks, vol. 248454, pp. 236–241, IEEE, 2012.

32. J. Vartiainen, “Always One/Zero Malicious User De-
tection in Cooperative Sensing Using the {FCME}
Method,” in Proceedings of the 7th International Con-
ference on Cognitive Radio Oriented Wireless Networks,
IEEE, 2012.

33. L. Mucchi, A. Carpini, T. D’Anna, M. H. Virk, R. Vuo-
htoniemi, M. Hämäläinen, and J. Iinatti, “Threshold set-
ting for the evaluation of the aggregate interference in
ISM band in hospital environments,” in International
Symposium on Medical Information and Communication
Technology, ISMICT, vol. 2015-May, pp. 20–24, IEEE,
mar 2015.

34. L. Schlain, G. González, F. Gregorio, and J. Cousseau,
“Adaptive cyclostationary filtering for DGPS interfer-
ence cancellation,” in 2015 16th Workshop on Informa-
tion Processing and Control, RPIC 2015, IEEE, oct 2016.

35. H. Iwata, K. Umebayashi, S. Tiiro, Y. Suzuki, and J. J.
Lehtomäki, “A study on Welch FFT segment size selec-
tion method for spectrum awareness,” 2016 IEEE Wire-
less Communications and Networking Conference Work-
shops, WCNCW 2016, no. 8, pp. 252–257, 2016.

36. J. J. Lehtomäki, R. Vuohtoniemi, K. Umebayashi, and
J. P. Mäkelä, “Energy detection based estimation of
channel occupancy rate with adaptive noise estima-
tion,” IEICE transactions on communications, vol. E95-
B, no. 4, pp. 1076–1084, 2012.

37. R. Vuohtoniemi, J. J. Lehtomäki, and J. P. Mäkelä,
“Adaptive threshold based frequency exclusion algo-
rithm for broadband {PLC},” in 2016 International
Symposium on Power Line Communications and its Ap-
plications ({ISPLC}), IEEE, mar 2016.

38. N. Veček, M. Mernik, B. Filipič, and M. Črepinšek, “Pa-
rameter tuning with chess rating system (crs-tuning)
for meta-heuristic algorithms,” Information Sciences,
vol. 372, pp. 446–469, 2016.

39. M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp,
“A racing algorithm for configuring metaheuristics,” in
Proceedings of the 4th Annual Conference on Genetic
and Evolutionary Computation, pp. 11–18, Morgan Kauf-
mann Publishers Inc., 2002.

40. V. Nannen and A. E. Eiben, “Efficient relevance esti-
mation and value calibration of evolutionary algorithm
parameters,” in 2007 IEEE Congress on Evolutionary
Computation, pp. 103–110, IEEE, 2007.

41. M. Črepinšek, S.-H. Liu, L. Mernik, and M. Mernik, “Is a
comparison of results meaningful from the inexact repli-

cations of computational experiments?,” Soft Comput-
ing, vol. 20, no. 1, pp. 223–235, 2016.

42. D. Zaharie, “Critical values for the control parameters of
differential evolution algorithms,” in Proc. of MENDEL
2002, 8th Int. Conf. on Soft Computing, pp. 62–67, 2002.

43. N. Gul, I. M. Qureshi, A. Omar, A. Elahi, and S. Khan,
“History based forward and feedback mechanism in co-
operative spectrum sensing including malicious users in
cognitive radio network,” PloS One, vol. 12, no. 8, pp. 1–
21, 2017.

44. N. Gul, I. M. Qureshi, A. Elahi, and I. Rasool, “Defense
against malicious users in cooperative spectrum sensing
using genetic algorithm,” International Journal of An-
tennas and Propagation, vol. 2018, 2018.

45. N. Gul, I. M. Qureshi, S. Akbar, M. Kamran, and I. Ra-
sool, “One-to-many relationship based kullback leibler
divergence against malicious users in cooperative spec-
trum sensing,” Wireless Communications and Mobile
Computing, vol. 2018, 2018.

46. A. J. Onumanyi, A. M. Abu-Mahfouz, and G. P. Hancke,
“A comparative analysis of local and global adaptive
threshold estimation techniques for energy detection in
cognitive radio,” Physical Communication, vol. 29, pp. 1–
11, Apr. 2018.

47. X. S. Yang and S. Deb, “Cuckoo search via Lėvy flights,”
2009 World Congress on Nature and Biologically Inspired
Computing, NABIC 2009 - Proceedings, pp. 210–214,
2009.

48. N. Otsu, “A threshold selection method from gray-level
histograms,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 9, pp. 62–66, jan 1979.

49. T. Fawcett, “An introduction to ROC analysis,” Pattern
recognition letters, vol. 27, no. 8, pp. 861–874, 2006.

50. D. Karaboga, “An idea based on honey bee swarm for nu-
merical optimization,” tech. rep., Technical report-tr06,
Erciyes university, engineering faculty, computer engi-
neering department, 2005.

51. R. Eberhart and J. Kennedy, “Particle swarm optimiza-
tion,” in Proceedings of the IEEE international confer-
ence on neural networks, vol. 4, pp. 1942–1948, Citeseer,
1995.

52. R. Storn and K. Price, “Differential evolution–a simple
and efficient heuristic for global optimization over con-
tinuous spaces,” Journal of global optimization, vol. 11,
no. 4, pp. 341–359, 1997.

53. IEEE802.22, “Enabling broadband wireless access using
cognitive radio technology and spectrum sharing in white
spaces,” IEEE 802.22 Working Group on Wireless Re-
gional Area Networks, 2011.

54. A. J. Onumanyi, “Dataset for testing the performance of
a cuckoo search optimization based forward consecutive
mean excision model for threshold adaptation in cogni-
tive radio,” Mendeley Data, v1, vol. DOI: 10.17632/jx-
pnhc43xr.1, Oct. 2018.




