1,202 research outputs found

    Criss-cross methods: A fresh view on pivot algorithms

    Get PDF
    Criss-cross methods are pivot algorithms that solve linear programming problems in one phase starting with any basic solution. The first finite criss-cross method was invented by Chang, Terlaky and Wang independently. Unlike the simplex method that follows a monotonic edge path on the feasible region, the trace of a criss-cross method is neither monotonic (with respect to the objective function) nor feasibility preserving. The main purpose of this paper is to present mathematical ideas and proof techniques behind finite criss-cross pivot methods. A recent result on the existence of a short admissible pivot path to an optimal basis is given, indicating shortest pivot paths from any basis might be indeed short for criss-cross type algorithms. The origins and the history of criss-cross methods are also touched upo

    Acta Cybernetica : Volume 21. Number 2.

    Get PDF

    Universality theorems for inscribed polytopes and Delaunay triangulations

    Full text link
    We prove that every primary basic semialgebraic set is homotopy equivalent to the set of inscribed realizations (up to M\"obius transformation) of a polytope. If the semialgebraic set is moreover open, then, in addition, we prove that (up to homotopy) it is a retract of the realization space of some inscribed neighborly (and simplicial) polytope. We also show that all algebraic extensions of Q\mathbb{Q} are needed to coordinatize inscribed polytopes. These statements show that inscribed polytopes exhibit the Mn\"ev universality phenomenon. Via stereographic projections, these theorems have a direct translation to universality theorems for Delaunay subdivisions. In particular, our results imply that the realizability problem for Delaunay triangulations is polynomially equivalent to the existential theory of the reals.Comment: 15 pages, 2 figure
    corecore