9 research outputs found

    Mixed-source charger-supply CMOS IC

    Get PDF
    The proposed research objective is to develop, test, and evaluate a mixer and charger-supply CMOS IC that derives and mixes energy and power from mixed sources to accurately supply a miniaturized system. Since the energy-dense source stores more energy than the power-dense source while the latter supplies more power than the former, the proposed research aims to develop an IC that automatically selects how much and from which source to draw power to maximize lifetime per unit volume. Today, the state of the art lacks the intelligence and capability to select the most appropriate source from which to extract power to supply the time-varying needs of a small system. As such, the underlying objective and benefit of this research is to reduce the size of a complete electronic system so that wireless sensors and biomedical implants, for example, as a whole, perform well, operate for extended periods, and integrate into tiny spaces.Ph.D

    Miniaturization of high frequency power converters

    Get PDF

    Battery-sourced switched-inductor multiple-output CMOS power-supply systems

    Get PDF
    Wireless microsystems add intelligence to larger systems by sensing, processing and transmitting information which can ultimately save energy and resources. Each function has their own power profile and supply level to maximize performance and save energy since they are powered by a small battery. Also, due to its small size, the battery has limited energy and therefore the power-supply system cannot consume much power. Switched-inductor converters are efficient across wide operating conditions but one fundamental challenge is integration because miniaturized dc-dc converters cannot afford to accommodate more than one off-chip power inductor. The objective of this research is to explore, develop, analyze, prototype, test, and evaluate how one switched inductor can derive power from a small battery to supply, regulate, and respond to several independent outputs reliably and accurately. Managing and stabilizing the feedback loops that supply several outputs at different voltages under diverse and dynamic loading conditions with one CMOS chip and one inductor is also challenging. Plus, since a single inductor cannot supply all outputs at once, steady-state ripples and load dumps produce cross-regulation effects that are difficult to manage and suppress. Additionally, as the battery depletes the power-supply system must be able to regulate both buck and boost voltages. The presented system can efficiently generate buck and boost voltages with the fastest response time while having a low silicon area consumption per output in a low-cost technology which can reduce the overall size and cost of the system.Ph.D

    An Implantable Microsystem for Autonomous Intraocular Pressure Monitoring .

    Full text link
    Glaucoma, a leading cause of blindness worldwide, is a disease in which the pressure within the eye is too high for the eye to tolerate and must be reduced in order to slow or prevent damage to the optic nerve. Conventional methods for monitoring eye pressure are normally only used in the physician’s office and rely on indirect measurement methods, leading to inaccuracies. Furthermore, intraocular pressure can vary throughout the day and also depends on activity. An autonomous implantable microsystem capable of monitoring intraocular pressure with minimal patient intervention would provide useful information to the clinician in the management of glaucoma. This dissertation studies the feasibility of an integrated microsystem for autonomously measuring intraocular pressure. Small size ensures minimal impact on the patient, preventing the device from entering the field of view and simplifying implantation. Integrated haptics aid surgical implantation and minimize trauma while allowing the implant to be removed if needed. A touch-mode capacitive pressure sensor, fabricated using the dissolved wafer process, transduces intraocular pressure into capacitance with a linear response and a sensitivity of 26 fF/mmHg. A new fabrication technique has been developed to embed vertical interconnects within a glass package containing the pressure sensor, a microbattery, readout circuitry, and an antenna. This enables the vertical stacking of these components and very efficient use of limited volume. The 1.5 mm x 2 mm x 0.5 mm transparent parylene-coated glass package enables solar cells to be placed on the circuit chip for power generation, trickle charging an on-board microbattery formed using standard cleanroom materials and a non-toxic electrolyte. Flooded-cell tests verified the electrochemistry and achieved a current capacity of 8 ”Ah/mm2. A simple integrated readout circuit consuming 35 pW in the idle mode implemented a finite-state machine and used an optical wakeup trigger to further reduce power. The microsystem has also been demonstrated with a microprocessor to autonomously gather and store data, reading it out on demand. Finally, a pulse-based ultrawideband wireless transmission technique is proposed using non-resonant antennas. The all-digital transmitter is expected to consume much less power than conventional encoded wireless transmitters and eliminates complex circuitry.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89809/1/rhaque_1.pd

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    2009 Annual Progress Report: DOE Hydrogen Program

    Full text link
    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis

    HASTECS: Hybrid Aircraft: reSearch on Thermal and Electric Components and Systems

    Get PDF
    In 2019, transportation was the fastest growing sector, contributing to environmental degradation. Finding sustainable solutions that pollute less is a key element in solving this problem, particularly for the aviation sector, which accounts for around 2-3% of global CO2 emissions. With the advent of Covid-19, air traffic seems to have come to a fairly permanent halt, but this pandemic reinforces the need to move towards a "cleaner sky" and respect for the environment, which is the objective of the Clean Sky2 program (H2020 EU), the context in which the HASTECS project has been launched in September 2016

    Teacher roles during amusement park visits – insights from observations, interviews and questionnaires

    Get PDF
    Amusement parks offer rich possibilities for physics learning, through observations and experiments that illustrate important physical principles and often involve the whole body. Amusement parks are also among the most popular school excursions, but very often the learning possibilities are underused. In this work we have studied different teacher roles and discuss how universities, parks or event managers can encourage and support teachers and schools in their efforts to make amusement park visits true learning experiences for their students
    corecore