7,288 research outputs found

    Dual-Processor Design of Energy Efficient Fault-Tolerant System

    Get PDF
    A popular approach to guarantee fault tolerance in safety-critical applications is to run the application on two processors. A checkpoint is inserted at the comple- tion of the primary copy. If there is no fault, the sec- ondary processor terminates its execution. Otherwise, should the fault occur, the second processor continues and completes the application before its deadline. In this paper, we study the energy efficiency of such dual- processor system. Specifically, we first derive an opti- mal static voltage scaling policy for single periodic task. We then extend it to multiple periodic tasks based on worst case execution time (WCET) analysis. Finally, we discuss how to further reduce system’s energy con- sumption at run time by taking advantage of the actual execution time which is less than the WCET. Simula- tion on real-life benchmark applications shows that our technique can save up to 80% energy while still provid- ing fault tolerance

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Study of fault-tolerant software technology

    Get PDF
    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance

    Low-energy standby-sparing for hard real-time systems

    No full text
    Time-redundancy techniques are commonly used in real-time systems to achieve fault tolerance without incurring high energy overhead. However, reliability requirements of hard real-time systems that are used in safety-critical applications are so stringent that time-redundancy techniques are sometimes unable to achieve them. Standby sparing as a hardwareredundancy technique can be used to meet high reliability requirements of safety-critical applications. However, conventional standby-sparing techniques are not suitable for lowenergy hard real-time systems as they either impose considerable energy overheads or are not proper for hard timing constraints. In this paper we provide a technique to use standby sparing for hard real-time systems with limited energy budgets. The principal contribution of this work is an online energymanagement technique which is specifically developed for standby-sparing systems that are used in hard real-time applications. This technique operates at runtime and exploits dynamic slacks to reduce the energy consumption while guaranteeing hard deadlines. We compared the low-energy standby-sparing (LESS) system with a low-energy timeredundancy system (from a previous work). The results show that for relaxed time constraints, the LESS system is more reliable and provides about 26% energy saving as compared to the time-redundancy system. For tight deadlines when the timeredundancy system is not sufficiently reliable (for safety-critical application), the LESS system preserves its reliability but with about 49% more energy consumptio

    Reliable Linear, Sesquilinear and Bijective Operations On Integer Data Streams Via Numerical Entanglement

    Get PDF
    A new technique is proposed for fault-tolerant linear, sesquilinear and bijective (LSB) operations on MM integer data streams (M≥3M\geq3), such as: scaling, additions/subtractions, inner or outer vector products, permutations and convolutions. In the proposed method, the MM input integer data streams are linearly superimposed to form MM numerically-entangled integer data streams that are stored in-place of the original inputs. A series of LSB operations can then be performed directly using these entangled data streams. The results are extracted from the MM entangled output streams by additions and arithmetic shifts. Any soft errors affecting any single disentangled output stream are guaranteed to be detectable via a specific post-computation reliability check. In addition, when utilizing a separate processor core for each of the MM streams, the proposed approach can recover all outputs after any single fail-stop failure. Importantly, unlike algorithm-based fault tolerance (ABFT) methods, the number of operations required for the entanglement, extraction and validation of the results is linearly related to the number of the inputs and does not depend on the complexity of the performed LSB operations. We have validated our proposal in an Intel processor (Haswell architecture with AVX2 support) via fast Fourier transforms, circular convolutions, and matrix multiplication operations. Our analysis and experiments reveal that the proposed approach incurs between 0.03%0.03\% to 7%7\% reduction in processing throughput for a wide variety of LSB operations. This overhead is 5 to 1000 times smaller than that of the equivalent ABFT method that uses a checksum stream. Thus, our proposal can be used in fault-generating processor hardware or safety-critical applications, where high reliability is required without the cost of ABFT or modular redundancy.Comment: to appear in IEEE Trans. on Signal Processing, 201

    A Survey of Fault-Tolerance Techniques for Embedded Systems from the Perspective of Power, Energy, and Thermal Issues

    Get PDF
    The relentless technology scaling has provided a significant increase in processor performance, but on the other hand, it has led to adverse impacts on system reliability. In particular, technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover, technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance techniques employ some kind of redundancies to satisfy specific reliability requirements. However, the integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time embedded systems. More advanced techniques aim additionally at minimizing power and energy while at the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance techniques. These emerging techniques aim at satisfying temperature constraints besides timing and reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-tolerance real-time embedded systems are reviewed and classified according to their considered goals and constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models are considered as additional dimensions of the presented classification. Lastly, this survey gives deep insights into the main achievements and shortcomings of the existing approaches and highlights the most promising ones
    • …
    corecore