1,784 research outputs found

    SEG-ESRGAN: A multi-task network for super-resolution and semantic segmentation of remote sensing images

    Get PDF
    The production of highly accurate land cover maps is one of the primary challenges in remote sensing, which depends on the spatial resolution of the input images. Sometimes, high-resolution imagery is not available or is too expensive to cover large areas or to perform multitemporal analysis. In this context, we propose a multi-task network to take advantage of the freely available Sentinel-2 imagery to produce a super-resolution image, with a scaling factor of 5, and the corresponding high-resolution land cover map. Our proposal, named SEG-ESRGAN, consists of two branches: the super-resolution branch, that produces Sentinel-2 multispectral images at 2 m resolution, and an encoder–decoder architecture for the semantic segmentation branch, that generates the enhanced land cover map. From the super-resolution branch, several skip connections are retrieved and concatenated with features from the different stages of the encoder part of the segmentation branch, promoting the flow of meaningful information to boost the accuracy in the segmentation task. Our model is trained with a multi-loss approach using a novel dataset to train and test the super-resolution stage, which is developed from Sentinel-2 and WorldView-2 image pairs. In addition, we generated a dataset with ground-truth labels for the segmentation task. To assess the super-resolution improvement, the PSNR, SSIM, ERGAS, and SAM metrics were considered, while to measure the classification performance, we used the IoU, confusion matrix and the F1-score. Experimental results demonstrate that the SEG-ESRGAN model outperforms different full segmentation and dual network models (U-Net, DeepLabV3+, HRNet and Dual_DeepLab), allowing the generation of high-resolution land cover maps in challenging scenarios using Sentinel-2 10 m bands.This work was funded by the Spanish Agencia Estatal de Investigación (AEI) under projects ARTEMISAT-2 (CTM 2016-77733-R), PID2020-117142GB-I00 and PID2020-116907RB-I00 (MCIN/AEI call 10.13039/501100011033). L.S. would like to acknowledge the BECAL (Becas Carlos Antonio López) scholarship for the financial support.Peer ReviewedPostprint (published version

    Image super-resolution with dense-sampling residual channel-spatial attention networks for multi-temporal remote sensing image classification

    Get PDF
    Image super-resolution (SR) techniques can benefit a wide range of applications in the remote sensing (RS) community, including image classification. This issue is particularly relevant for image classification on time series data, considering RS datasets that feature long temporal coverage generally have a limited spatial resolution. Recent advances in deep learning brought new opportunities for enhancing the spatial resolution of historic RS data. Numerous convolutional neural network (CNN)-based methods showed superior performance in terms of developing efficient end-to-end SR models for natural images. However, such models were rarely exploited for promoting image classification based on multispectral RS data. This paper proposes a novel CNNbased framework to enhance the spatial resolution of time series multispectral RS images. Thereby, the proposed SR model employs Residual Channel Attention Networks (RCAN) as a backbone structure, whereas based on this structure the proposed models uniquely integrate tailored channel-spatial attention and dense-sampling mechanisms for performance improvement. Subsequently, state-of-the-art CNN-based classifiers are incorporated to produce classification maps based on the enhanced time series data. The experiments proved that the proposed SR model can enable unambiguously better performance compared to RCAN and other (deep learning-based) SR techniques, especially in a domain adaptation context, i.e., leveraging Sentinel-2 images for generating SR Landsat images. Furthermore, the experimental results confirmed that the enhanced multi-temporal RS images can bring substantial improvement on fine-grained multi-temporal land use classification

    Improved Residual Dense Network for Large Scale Super-Resolution via Generative Adversarial Network

    Get PDF
    Recent single image super resolution (SISR) studies were conducted extensively on small upscaling factors such as x2 and x4 on remote sensing images, while less work was conducted on large factors such as the factor x8 and x16. Owing to the high performance of the generative adversarial networks (GANs), in this paper, two GAN’s frameworks are implemented to study the SISR on the residual remote sensing image with large magnification under x8 scale factor, which is still lacking acceptable results. This work proposes a modified version of the residual dense network (RDN) and then it been implemented within GAN framework which named RDGAN. The second GAN framework has been built based on the densely sampled super resolution network (DSSR) and we named DSGAN. The used loss function for the training employs the adversarial, mean squared error (MSE) and the perceptual loss derived from the VGG19 model. We optimize the training by using Adam for number of epochs then switching to the SGD optimizer. We validate the frameworks on the proposed dataset of this work and other three remote sensing datasets: the UC Merced, WHU-RS19 and RSSCN7. To validate the frameworks, we use the following image quality assessment metrics: the PSNR and the SSIM on the RGB and the Y channel and the MSE. The RDGAN evaluation values on the proposed dataset were 26.02, 0.704, and 257.70 for PSNR, SSIM and the MSE, respectively, and the DSGAN evaluation on the same dataset yielded 26.13, 0.708 and 251.89 for the PSNR, the SSIM, and the MSE

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    A dual network for super-resolution and semantic segmentation of sentinel-2 imagery

    Get PDF
    There is a growing interest in the development of automated data processing workflows that provide reliable, high spatial resolution land cover maps. However, high-resolution remote sensing images are not always affordable. Taking into account the free availability of Sentinel-2 satellite data, in this work we propose a deep learning model to generate high-resolution segmentation maps from low-resolution inputs in a multi-task approach. Our proposal is a dual-network model with two branches: the Single Image Super-Resolution branch, that reconstructs a high-resolution version of the input image, and the Semantic Segmentation Super-Resolution branch, that predicts a high-resolution segmentation map with a scaling factor of 2. We performed several experiments to find the best architecture, training and testing on a subset of the S2GLC 2017 dataset. We based our model on the DeepLabV3+ architecture, enhancing the model and achieving an improvement of 5% on IoU and almost 10% on the recall score. Furthermore, our qualitative results demonstrate the effectiveness and usefulness of the proposed approach.This work has been supported by the Spanish Research Agency (AEI) under project PID2020-117142GB-I00 of the call MCIN/AEI/10.13039/501100011033. L.S. would like to acknowledge the BECAL (Becas Carlos Antonio López) scholarship for the financial support.Peer ReviewedPostprint (published version

    DRL-GAN: dual-stream representation learning GAN for low-resolution image classification in UAV applications.

    Get PDF
    Identifying tiny objects from extremely low resolution (LR) UAV-based remote sensing images is generally considered as a very challenging task, because of very limited information in the object areas. In recent years, there have been very limited attempts to approach this problem. These attempts intend to deal with LR image classification by enhancing either the poor image quality or image representations. In this paper, we argue that the performance improvement in LR image classification is affected by the inconsistency of the information loss and learning priority on Low-Frequency (LF) components and High-Frequency (HF) components. To address this LF-HF inconsistency problem, we propose a Dual-Stream Representation Learning Generative Adversarial Network (DRL-GAN).The core idea is to produce super image representations optimal for LR recognition by simultaneously recovering the missing information in LF and HF components, respectively, under the guidance of high-resolution (HR) images. We evaluate the performance of DRL-GAN on the challenging task of LR image classification. A comparison of the experimental results on the LR benchmark, namely HRSC and CIFAR-10, and our newly collected “WIDER-SHIP” dataset demonstrates the effectiveness of our DRL-GAN, which significantly improves the classification performance, with up to 10% gain on average

    Hyperspectral Image Super-Resolution via Dual-domain Network Based on Hybrid Convolution

    Full text link
    Since the number of incident energies is limited, it is difficult to directly acquire hyperspectral images (HSI) with high spatial resolution. Considering the high dimensionality and correlation of HSI, super-resolution (SR) of HSI remains a challenge in the absence of auxiliary high-resolution images. Furthermore, it is very important to extract the spatial features effectively and make full use of the spectral information. This paper proposes a novel HSI super-resolution algorithm, termed dual-domain network based on hybrid convolution (SRDNet). Specifically, a dual-domain network is designed to fully exploit the spatial-spectral and frequency information among the hyper-spectral data. To capture inter-spectral self-similarity, a self-attention learning mechanism (HSL) is devised in the spatial domain. Meanwhile the pyramid structure is applied to increase the acceptance field of attention, which further reinforces the feature representation ability of the network. Moreover, to further improve the perceptual quality of HSI, a frequency loss(HFL) is introduced to optimize the model in the frequency domain. The dynamic weighting mechanism drives the network to gradually refine the generated frequency and excessive smoothing caused by spatial loss. Finally, In order to better fully obtain the mapping relationship between high-resolution space and low-resolution space, a hybrid module of 2D and 3D units with progressive upsampling strategy is utilized in our method. Experiments on a widely used benchmark dataset illustrate that the proposed SRDNet method enhances the texture information of HSI and is superior to state-of-the-art methods
    corecore