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Abstract: The production of highly accurate land cover maps is one of the primary challenges
in remote sensing, which depends on the spatial resolution of the input images. Sometimes, high-
resolution imagery is not available or is too expensive to cover large areas or to perform multitemporal
analysis. In this context, we propose a multi-task network to take advantage of the freely available
Sentinel-2 imagery to produce a super-resolution image, with a scaling factor of 5, and the correspond-
ing high-resolution land cover map. Our proposal, named SEG-ESRGAN, consists of two branches:
the super-resolution branch, that produces Sentinel-2 multispectral images at 2 m resolution, and an
encoder–decoder architecture for the semantic segmentation branch, that generates the enhanced land
cover map. From the super-resolution branch, several skip connections are retrieved and concatenated
with features from the different stages of the encoder part of the segmentation branch, promoting the
flow of meaningful information to boost the accuracy in the segmentation task. Our model is trained
with a multi-loss approach using a novel dataset to train and test the super-resolution stage, which
is developed from Sentinel-2 and WorldView-2 image pairs. In addition, we generated a dataset
with ground-truth labels for the segmentation task. To assess the super-resolution improvement,
the PSNR, SSIM, ERGAS, and SAM metrics were considered, while to measure the classification
performance, we used the IoU, confusion matrix and the F1-score. Experimental results demonstrate
that the SEG-ESRGAN model outperforms different full segmentation and dual network models
(U-Net, DeepLabV3+, HRNet and Dual_DeepLab), allowing the generation of high-resolution land
cover maps in challenging scenarios using Sentinel-2 10 m bands.

Keywords: multi-task network; super-resolution; semantic segmentation; Sentinel-2; WorldView-2

1. Introduction

The application of Deep Learning (DL) in Remote Sensing (RS) for Earth Observa-
tion applications has contributed with significant advances in many fields, being Land-
Use/Land-Cover (LULC) and data fusion the most relevant [1]. Moreover, the learning
capacity of DL models have attracted the RS community in generating automated work-
flows, extracting high-level representations from raw data that are transformed to achieve
excellent performance in the production of valuable assets [2].

One fundamental feature of RS images is the spatial resolution, which is defined as
the minimum distance in which two separated objects can be distinguished [3]. Nowadays,
many platforms, managed by public or private agencies, provide data with different spatial
resolutions, where a higher resolution image has better detailed objects that can result in a
more accurate segmentation map. A major problem is that high-resolution (HR) images
are not always available with the specific characteristic requested, or obtaining them may
represent a considerable economic barrier to circumvent.

One of the main characteristics that have driven the blooming in research and ap-
plication in RS is the availability of open-access satellite data, providing free-of-charge
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imagery, such as those produced by the Copernicus Program (https://scihub.copernicus.
eu/dhus/#/home, accessed on 7 October 2022), being the Sentinel-2 the foremost exponent
of the constellation of multispectral medium- and high-resolution satellites available. The
Copernicus Sentinel-2 satellites are two identical platforms, orbiting the Earth with a high
revisit time and capable of providing multiSpectral (MS) images with a considerable surface
coverage and different spatial resolutions (at 10, 20 and 60 m), covering the Visible and
Near-Infrared Spectrum (VIS-NIR).

In computer vision, Semantic Segmentation (SS) assigns semantics labels to the pixels
of an image [4]. In the context of LULC, the labels correspond to a semantic class and
having an HR image for this purpose is essential for achieving good accuracy in the
segmentation [5]. Therefore, to take advantage of the free usability of the Copernicus
program, we propose the use of super-resolution techniques to assist with the segmentation
task by enhancing the details of the 10 m bands provided by the Sentinel-2 satellite.

When a panchromatic channel with higher spatial detail is not available, super-
resolution (SR) methods can provide a suitable alternative to promote the use of enhanced
bands. For this reason, in the last decade, the improvement of the spatial resolution of RS
images has been a very active research area, aiming to reduce cost when addressing studies
requiring imagery with a very high spatial resolution that usually represents a considerable
budget on any project. Most common approaches are based on Convolutional Neural
Networks (CNN) and Generative Adversarial Networks (GAN), achieving outstanding
results on different RS data.

Many authors have also tackled the idea of applying DL semantic segmentation models
to different RS datasets, mainly using hyperspectral or aerial images due the spectral and
spatial characteristics. However, in this work, we extend our analysis to works that have
applied SR as a preprocessing step or even combined with SR to improve performance in
generating land cover maps or other RS applications.

The key point of our work is a multi-task network approach, which is inspired by [6].
This approach consists in predicting an SR image with its corresponding HR land-cover
map from a low-resolution (LR) Sentinel-2 image. Predictions are made simultaneously in
a multi-task fashion by employing two dedicated branches in the network architecture that
collaborate in training to maximize their performance. Our model, named SEG-ESRGAN
(Segmentation Enhanced Super-resolution Generative Adversarial Network), takes our
previous proposal RS-ESRGAN [7] for super-resolution and extends this model coupling
an encoder–decoder architecture to perform the segmentation task, i.e., to produce a
Semantic Segmentation Super-Resolution (SSSR) map. The training was completed in a
supervised manner, using very-high-resolution imagery and its LULC map, which was
obtained from a WorldView-2 satellite. In this manner, we leverage the 10 m bands from
Sentinel-2 to a challenging 2 m of spatial resolution (scaling factor of 5) with a substantial
improvement on the land cover classification task, which, to the best of our knowledge,
was not tackled before.

The organization of this paper is as follows: Section 2 presents the relevant works
related to the application of Deep Learning to SR, SS and multi-tasking methods in RS.
In Section 3, we present the materials and methods, describing the dataset, the model,
training details and quantitative metrics used for evaluation. In Section 4, we present the
experimental results with the discussion in Section 5. Finally, we present our conclusions
in Section 6.

2. Related Works
2.1. Super-Resolution

Considered as an ill-posed problem by many authors [8,9], SR seeks to recover an HR
version of an LR image by learning to infer high-frequency content to the input image after
seeing a set of LR-HR samples. The generation of the training dataset is also a challenge,
mainly because of the lack of real-world LR-HR pairs of samples. Therefore, researchers
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often opt for modeling this image duality by degrading the HR image to form the LR pair
to circumvent this problem [10].

Single-image SR (SISR) uses a single LR image to produce an HR version. In practice,
this approach has much greater interest, as it simplifies the task, than the Multi-image SR,
especially in RS applications when several samples from the same scene are gathered and
the sub-pixel misalignments are not well handled [7].

The seminal work of Dong et al. [11], with their SRCNN model, introduced the use of
fully convolutional approaches to produce an SR image. Nowadays, several works with
distinct architectures and training strategies can be found in the literature [9,10], where
two trends are identified: those whose minimize the error between the SR output and the
ground truth (GT), and those who generate predictions based on a perceptual similarity.

Another important work presented by Kim et al. [12] (VDSR) increased the depth of
the convolutional layers by processing the interpolated LR image to the target scaling factor
and then refining the coarse HR image with high-frequency details. This pre-upsampling
approach was limited by artifacts due the upsampling operation and the lower computa-
tional efficiency for working in a high-dimensional space.

Other models [8,13,14] proposed to work on the lower-dimensional space, making a
model fully learnable, including the upsampling modules by introducing the transpose
convolution [15] or the pixel-shuffle module [16], that scales the feature maps to a desired
scaling factor to produce the final SR image. These post-upsampling approaches outperform
pre-upsampling networks, although limiting the network to work on a fixed scaling factor.

As mentioned by Anwar et al. [9], all previous models assumed uniform importance
in spatial and channel information. However, improvements related to exploiting the
channel interdependence and mutual knowledge between intermediate feature maps have
also been proven suitable in SR. Zhang et al. [17] introduced a novel channel attention
mechanism inspired by the work of [18], focusing on boosting the representation capacity
by scaling the channel-wise features adaptively.

Lately, Generative Adversarial Networks (GANs) [19] have attracted increasing at-
tention from the research community, such as the work of Ledig et al. [8], where authors
proposed SRGAN, a GAN-based network that produced a more photo-realistic output but
with lower quantitative metrics. This seminal work opened a new research path for looking
for more realistic SR images than just reducing the error associated with the LR-HR pair.
Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) [20] is another
improved architecture used for image SR that used a more complex and dense combination
of residual layers.

In the context of Remote Sensing, SR is becoming popular among researchers, es-
pecially since the outstanding results reached in the natural image domain [21]. Pan-
sharpening techniques are often the first attempt for enhancing the LR MS bands when
an additional panchromatic instrument with better spatial resolution is available in the
platform. However, some platforms, as Sentinel-2, do not carry this extra sensor and,
therefore, the application of SR techniques becomes the alternative to improve the details
of the bands [22].

The lack of real-world datasets with LR-HR image pairs in remote sensing is also a
challenge, where some authors propose the use of transfer learning [23] or the downsam-
pling of RS images using the Wald’s protocol [24] to form the LR-HR dataset [25–28]. Other
authors appeal to other satellite sources, with better spatial resolution, to form the dataset,
caring to have the minimum time gap between the acquisition moments of both pairs of
images. Pouliot et al. [29] proposed a CNN to work with Landsat (30 m) and Sentinel-2
(10 m), and Teo and Fu [30] proposed a VDSR for the fusion of Landsat with Formosat
(8 m) bands.

As mentioned before, Sentinel-2 satellites are of great importance for the RS community,
with many authors addressing the SR of the 20 and 60 m bands [31–33] but few authors
tackling the SR of the 10 m bands. For instance, Galar et al. [34] proposed the use of
PlanetScope (2.5 m) in combination with Sentinel-2 bands, Panagiotopoulou et al. [35]
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introduced the use of SPOT-7 imagery (2.5 m), while other authors used WorldView imagery
to work with Sentinel-2 as well [7,36].

2.2. Semantic Segmentation

Semantic Segmentation (SS), also known as classification in RS, is the task that seeks
to assign the most probable class to each pixel from a set of probability scores predicted for
each class [2,37,38]. It is a challenging task where DL models have become the state-of-the-
art for different applications, including RS [1,4].

Long et al. [39] presented a Fully Convolutional Neural Network (FCN) to produce
a segmentation map. Similar to some image classification networks, this model reduces
the feature map sizes after several convolution blocks but replaces the fully connected
layers with a convolution layer and upsampling to recover the spatial size for the final
output map. In addition, FCN incorporates different skip connections to combine low-level
features, essential for determining homogeneous regions, with high-level features [40],
which is helpful for determining fine-grained objects, although there are some limitations
in incorporating the global context and the delimitation of small objects.

The context provides useful information for building semantics of objects, and it is
an important concept that can boost performance in semantic segmentation tasks [41,42].
Local context is important to achieve fine-grained segmentation, whereas the global context
is essential for resolving ambiguities [43].

Chen et al. [44] proposed DeepLab, a combination of CNN and conditional random
fields (CRF) to capture finer details [45]. Later, authors presented DeepLabV2 [46], incorpo-
rating an À trous Spatial Pyramid Pooling (ASPP) [47], increasing the capture of context
by working with different resolutions. DeepLabV3 [48] improved the ASPP module and
removed CRF for a faster inference and DeepLabV3+ [49] added a decoder module to
improve object boundaries.

Network architectures based on an encoder–decoder scheme are frequently used in SS,
where the encoder gradually reduces the spatial dimensions of the input image to encode
rich semantic information, whilst the decoder progressively recovers the spatial content, to
reconstruct HR feature maps with sharp object boundaries.

Badrinarayanan et al. [50] proposed SegNet, which uses the pooling indices of the
max-pool operations on the encoder blocks to perform the upsampling in the decoder coun-
terpart, reducing the computation overhead with high performance in the segmentation.
Ronneberger et al. [51] proposed U-Net, where the low-level features from the different
levels of the encoder are concatenated with high-level features from the decoder at the
same level, using skip connections and achieving excellent performance. Nowadays, many
variants replace the encoder part with backbones from other networks, such as ResNet
blocks [52] or VGG [53], among others.

One of the major drawbacks of encoder–decoder networks is the loss of spatial details
because of the encoding process [4]. Therefore, Wang et al. [54] proposed HRNet, a novel
architecture that combines features of four different parallel branches, each of them working
at reduced scales, combining all distinct features in every stage of transition blocks that
adapts the concatenation of features according to the scale of the parallel branches, enabling
multi-scale fusion on each branch.

Many other models have used attention mechanisms that are popular today, being
applied to many computer vision tasks such as semantic segmentation [55,56] or object
detection [57]. Chen et al. [58] introduced the learning of weights for multi-scale features
trained with images of different sizes. In this way, the attention module learns to appro-
priately weight the final score of each pixel, considering the different training scales. In
addition, the attention module helps to visually diagnose the network’s focus on objects
at different scales and positions, resulting in improvements in segmentation performance
considering this multi-scale approach.

Regarding RS applications, many authors use traditional machine learning models,
such as Random Forest (RF) and Support Vector Machines (SVM) [59–61]; however, by
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the use of contextual pixel neighborhood, DL models are leading the performance in
segmentation tasks [1,62]. The lack of dense annotation often limits the application of
DL models in RS. In the context of aerial ortho-photo images, the 2014 IEEE GRSS Data
Fusion Contest dataset and the ISPRS 2D Semantic Labeling Contest [63] are often used
for researchers to benchmarks their models. For instance, Liu et al. [55] proposed an
improved version of the DeepLabV3+ embedding attention mechanism on the ASSP, or
Zhang et al. [56] combine a more sophisticated CNN architecture based on attention and
the use of Digital Elevation models, which was also released with the data to improve
their results.

Regarding the use of satellite images, recently, researchers combined the use of high-
performance computing with machine learning models to produce LULC maps with great
extension, after a tremendous effort of gathering annotated data for training and promoting
the use of Sentinel-2 imagery. For instance, Malinowski et al. [64] worked to produce a
European Land Cover map with 10 m of spatial resolution using Random Forest. Then,
Karra et al. [65] trained a U-Net to generate a global land cover map with the equal spatial
resolution. Recently, Brown et al. [66] released a Near-Real-Time global land-cover map
with improved accuracy by training an FCN network on Sentinel-2 images.

2.3. Multi-Task Methods: Super-Resolution and Semantic Segmentation

Combining SR in conjunction with other tasks has been explored in many works [6,67,68],
of which Dai et al. [69] was one of the seminal ones, as it has shown the validity of using
SISR to improve the performance on other tasks such as edge detection and object detection
compared to using an LR imagery.

Several works can be found regarding remote sensing applications as well. A usual
strategy is to use SR as a pre-processing step, first enhancing the images and, then, training
a second network for another task. This strategy was applied by Shermeyer and Van
Etten [70], where the authors trained a VDSR [12] and SRRF [71] models for obtaining
the SR images, continuing with the training of object detection models (SSD [72] and
YOLO [73]) with this enhanced dataset. Pereira and dos Santos [74] trained an SR model,
called D-DBPN [75], which was followed by a SegNet model [50], using the super-resolved
images to improve the segmented map compared to the native spatial resolution.

Another strategy is to train the models in an end-to-end manner. In [76], the authors
extended their precedent work by training simultaneously the D-DBPN and SegNet models
with images from the 2014 IEEE GRSS Data Fusion Contest dataset and the ISPRS 2D
Semantic Labeling Contest [63]. Another work [77] proposed a network architecture com-
posed of convolutional layers with residual connections that first super-resolve the input
image and, then, perform a binary segmentation for different targets (planes, boats, etc).

In a recent work, Wang et al. [6] proposed a dual-path network. This architecture
consisted of three branches, a super-resolution branch, a semantic segmentation branch,
and a feature affinity module that helped in training, combining HR features from the
super-resolution branch rich in fine-grained structural information to guide the learning
for the segmentation branch. The model was trained and tested on two public well-known
datasets for urban visual understanding (CityScapes [78] and CamVid[79]).

Following a similar approach as [6], Xie et al. [80] proposed the use of improved
networks, such as HRNet [54] for segmentation and EDSR [13] for SR, with generated LR
images to form the LR-HR pair, which was obtained after training a GAN network for that
purpose. They also used a similar feature affinity module in training and only kept the
segmentation network in inference mode.

Regarding the use of satellite data, Ayala et al. [81] proposed to use multi-modal
data, combining Sentinel-2 and Sentinel-1 imagery to train a U-Net [51] to produce a
super-resolved segmentation map of buildings and roads. Khalel et al. [82] proposed an
encoder–decoder architecture for pansharpening and segmentation, using WorldView-3
images to train the network in a multi-task fashion.
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In [2], the authors propose a dual path network for super-resolution and semantic
segmentation extending a DeepLabV3+ model. This model has a shared encoder and two
dedicated decoders for each task to produce an SR image with a scaling factor of 2 and the
corresponding land-cover map. To deal with the lack of fully annotated maps for training,
the authors proposed the use of land-cover maps from [64], pairing with the 10 m Sentinel-2
bands, caring to match the temporal data as much as possible. The performance in both
tasks was improved despite the noisiness introduced by using land-cover maps as GT.

Another relevant work presents the use of multi-task learning, training a shared
feature extraction module that produces shared information for task-specific branches,
to produce multitask classification, improving the generalization ability from small-scale
datasets [83].

Therefore, not many authors have combined different remote sensing imagery to
produce SR and segmentation maps. Aware of this gap, we propose a model that tackles
key aspects of SR and semantic segmentation, dealing with satellite data from different
sources, to produce a super-resolution image for the 10 m bands of Sentinel-2 with its
corresponding improved land-cover map at 2 m/pixel.

3. Materials and Methods
3.1. Maspalomas Dataset

In a past project, we trained an SR model [7,27] using WorldView imagery as GT.
However, creating a segmentation GT map is time consuming. Therefore, we narrowed
our study to the region of Maspalomas (Gran Canaria, Spain). This touristic area poses a
significant challenge, as it has distinct types of ground covers of varying sizes and colors.
We used a large WorldView-2 image of 10 June 2017 (same date for the Sentinel-2 image)
to serve as the GT for the SR task and, in addition, we manually annotated labels based
on the content of this image to create the GT for the segmentation task. Table 1 shows
the spectral characteristics of the 10 m Sentinel-2 bands along with the corresponding
WorldView2 bands.

Table 1. Sentinel-2 and WorldView-2 band spectral characteristics.

Satellite Spectral Band Central Wavelenght
(nm)

Bandwidth
(nm)

Sentinel-2

B2: Blue 490 65
B3: Green 560 35
B4: Red 665 30
B8: Near-IR 842 115

WorldView-2

B2: Blue 480 54.3
B3: Green 545 63.0
B5: Red 660 57.4
B7: Near-IR 1 833 98.9

WorldView-2 multispectral bands were resampled to 2.0 m of spatial resolution after
applying the preprocessing steps described in [7]. This step is necessary to, first, achieve
the Bottom-of-Atmosphere reflectance of the WorldView image and, then, to perform the
co-registration with the Sentinel-2 image, where the 10 m bands were interpolated to 2 m
for the same purpose.

After co-registration, we cropped both image pairs having different sizes, with the
smallest tile limiting the patch size for training the models. Figure 1 specifies the location of
these regions, where the tiling strategy was mainly defined to facilitate the labeling process.

We generated the fully labeled dataset in two steps. First, we manually annotated
some small portions of the WorldView image. Then, we trained an SVM classifier to achieve
a preliminary segmentation map. We selected SVM, as it has good performance, even with
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few annotations [84]. We considered 6 land cover classes: water, vegetation, built soil, bare
soil, road, and swimming pool as the most representative classes in the region.

1

2
3

4 5

6
7

8
9
10

15
141312

11

0         2km 

Figure 1. ROIs location projected over the WorldView-2 image of Maspalomas.

The preliminary map was noisy, even using a 95% threshold and the appropriate
parameters, and some classes were not properly classified on the resulting map. Thus, we
manually corrected the unclassified and mislabeled classes in the SVM-generated map.
Figure 2 shows a segmentation map after the correction process.

Noisy Segmentation Segmentation Corrected

Legend

Water

Road

Vegetation

Pool

Bare Soil

Built Soil

Legend

Water

Road

Vegetation

Pool

Bare Soil

Built Soil

Figure 2. Manual relabeling and correction of the dataset for semantic segmentation.

In this manner, we managed to reduce the uncertainties in the formation of the Ground-
Truth map. Recall that the labeled map was generated from the WorldView image with 2 m.
Some samples of the dataset can be seen in Figure 3, with the corresponding Sentinel-2 pair
as well.

Legend

Water

Road

Vegetation

Pool

Bare Soil

Built Soil

Sentinel-2 WorldView-2 Ground-Truth map

Legend

Water

Road

Vegetation

Pool

Bare Soil

Built Soil

Figure 3. Examples of the dataset after the manual relabeling process.

In summary, we have created a dataset composed of real-world multisensor imagery
with a scaling factor of 5, where labels obtained from the WorldView image were generated
after manually correcting the SVM map. Some labels are not accurately discerned in the



Remote Sens. 2022, 14, 5862 8 of 28

corresponding Sentinel-2 image, which represents an extra challenge, where the model
needs to gather spatial information to improve the output image and the corresponding
segmentation map.

We selected tiles 5 and 7 to form the test subset, because they have representative
scenes with roads, urban zones, ports, vegetation, swimming pools, etc. All the other
remaining tiles formed the training dataset, obtaining 308 patches with 160× 160 pixels per
patch without overlap, which were organized in 90–10% for the train–validation subsets.

3.2. Proposed Model

RS-ESRGAN [7] has demonstrated to be a good network for recovering rich semantic
features that produce a realistic super-resolution result. Figure 4 shows the architecture of
the generator, with a convolutional layer that produces an initial set of 64 feature maps from
the bicubic interpolated input, which was followed by a sequence of Residual in Residual
Dense Blocks (RRDBs) [7,20] that performs the dense feature extraction. A long skip
connection combines low-level with high-level features maps learned by the RRDBs. Two
final convolutional layers take these combined features to perform the final reconstruction
of the SR image.
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Figure 4. RS-ESRGAN Generator architecture, with a sequence of Residual in Residual Dense Blocks
(RRDBs) producing the dense feature extraction of the network. Source: [7].

Therefore, we propose to reuse the rich semantic features produced in the different
levels of the feature extraction stages of the RS-ESRGAN to also produce segmentation
maps with fine-grained details. Specifically, we propose a network, named SEG-ESRGAN,
whose architecture is shown in Figure 5, which includes a main branch for SISR, produced
by the RS-ESRGAN, and an encoder–decoder architecture implementing the semantic
segmentation branch. A Feature Affinity (FA) module combines the learning from both
branches in a cooperative mode, which is used only for training the network.

LR

Encoder Decoder

FA

RS-ESRGAN SISR

SSSR

Semantic Segmentation

Super-Resolution

Figure 5. High-level scheme architecture of the SEG-ESRGAN.

While RS-ESRGAN produces the SR image, several skip connections are retrieved
from the feature extraction block of the RS-ESRGAN to reuse some of the features. From
the 23 RRDBs in the feature extraction part of RS-ESRGAN, we retrieve output features
from the RRDB-1, RRDB-6, RRDB-11 and RRDB-21 blocks, which were determined after
hyperparameter tuning. These features are concatenated with outputs of the various
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sub-blocks of the encoder part, combining knowledge and reinforcing the synergy from
both tasks.

The detailed architecture of the SEG-ESRGAN is shown in Figure 6. The encoder is
composed of four sub-blocks (Figure 7a), where each encoder sub-block (Enci in the figure)
is a sequence of RRDB, Batch-Normalization (BN) and Spatial and Channel Squeeze and
Excitation (scSE) block [85], which is also known as a dual attention block [55] or simple
Squeeze and Excitation blocks [56]. The architecture of the scSE block is shown in Figure 7b.

RS-ESRGAN

FA

RRDB1 RRDB6 RRDB11 RRDB21

Encoder

Downsampling

Strided Conv2D 

Concatenation

Center

Decoder

Dropout 2D

Logit

[H,W,4]
[5H,5W,4]

[5H,5W]

Figure 6. SEG-ESRGAN model to produce a super-resolution image and enhanced segmentation
maps of remote sensing images.

Enc-i

RRDB

BN

scSE Ch-SE

Sp-SE

Conv2D
k=1

[1,h,w]

GAP

X

Conv2D
k=1

Conv2D
k=1

X

[f/r,1,1]

ws

wc

[f,1,1] [f,1,1]

(a) (b)

Figure 7. (a) Encoder sub-block of the SEG-ESRGAN segmentation branch and (b) Attention blocks
that compose the scSE block.

To increase the receptive field and to promote holistic feature information, the output
of each encoder sub-block is downsampled. Thus, to match spatial sizes, the features
retrieved by the skip connections are processed with a dilated 2D convolution, which is
latter concatenated with the respective encoder output, to mix information from the SR and
segmentation tasks.

The RRDB block in each encoder sub-block produces relevant feature extraction in
a dense manner, concatenating and combining different low-level information to have
richer high-level content. Later, output features from the BN are refined by a scSE block,
which is composed of a dual-path attention block that focuses on retrieving meaningful
characteristics in the spatial and spectral domains. We use the same 2D convolution
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configuration for the RRDB and scSE blocks (a 3× 3 kernel and stride of 1) in the encoder’s
sub-blocks.

Regarding the architecture of the Squeeze and Excitation blocks (see Figure 7b), in
the spatial domain, the input features are multiplied by a weight map ws that recalibrates
the focus on relevant spatial content. This weight map is obtained after a 2D convolution
operation with a 1× 1 kernel that squeezes the input channels to 1 and, then, passes through
a sigmoid, gathering relevant spatial information from the input features.

Several authors [32,86] have already shown that all channels do not contribute equally
to attain the best performance. Therefore, in the channel squeeze and excitation block, a
Global Average Pooling (GAP) operates over the input features to produce a single vector
with the most relevant value per channel. Then, the information given by the vector is
squeezed and expanded by a pair of 1× 1 2D convolutions [18] with a ratio r equal to four,
to reduce the inter-channel correlation and promote the flow of relevant feature content for
the next block. Finally, a sigmoid activation produces the weight vector wc that operates
over the input feature to find the most relevant spectral content from the features maps.

The first encoder sub-block of Figure 6 processes 64 feature maps from the first
convolution of the generator of RS-ESRGAN. The subsequent encoder sub-blocks accept
an additional 64 feature maps from the skip connection that are concatenated with the
previous encoder block output. Thus, each encoder processes more feature maps and
encodes more context in its features.

After passing through the four encoder sub-blocks, the features are downsampled
and concatenated with the final skip connection from the RRDBs of the RS-ESRGAN block.
The final output stride (the spatial ratio of the downsampled features with respect to their
original size) of these high-level features is 16.

The architecture of the central and decoders sub-blocks was inspired by the work
of [87]. The central sub-block is a variant of a Feature Pyramid Attention block [88]. Figure 8
illustrates the architecture that merges information from three different scales, using differ-
ent kernel sizes, promoting context information retrieval from high-level feature maps.

Central

[f,h,w][f,1,1]

Conv2D
k=5,s=2 BN-ELU Conv2D

k=3,s=2 BN-ELU

Conv2D
k=5,s=1 BN-ELU

Conv2D
k=3,s=1 BN-ELU Up

Conv2D
k=1

Global 
Average
Pool2D

Conv2D
k=1 Up

BN-ELU

Up

X

Figure 8. Central block of the SEG-ESRGAN.

As in a U-Net, each decoder sub-block combines low with high-level complexity
feature content. Figure 9 exhibits its architecture, where an upsampling layer rescales
the high-level features that are concatenated with low-level features from the encoder
part. Then, a sequence of BN and scSE reinforces highly relevant content for the next
decoder block.

All decoders outputs are concatenated, matching sizes with interpolation, to produce
a hyper-column [89] of feature maps that enrich the descriptors and information from
all different levels of the decoder, and encourage fine-grained segmentation of objects.
Finally, according to Figure 6, we add a spatial dropout layer [90] to prevent over-fitting
and a logit layer with a 2D convolution to obtain the output channels, which produce one
segmentation map per class.
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Decoder-i

Up Conv2D

Conv2D

C BN-ReLU
X2

(high-level 
feature)

X1
(low-level 
feature)

scSE

Figure 9. Decoder block of the SEG-ESRGAN.

Thus, we present a novel architecture that reuses high-level feature maps from different
feature extraction stages of the generator of RS-ESRGAN, richer in high-frequency content,
to help in the segmentation capacity of the encoder–decoder network. The segmentation
branch is composed of RRDB blocks, which enhance the network capacity and scSE blocks
that focus on meaningful content, in this manner producing an SR image and an accurate
corresponding segmentation map.

3.3. Loss Functions

Similarly to the works of [6] and [2], we use the same multi-loss approach for training
the multi-task network. We use two dedicated losses for each branch and a feature affinity
loss for combining the learning of both branches.

Regarding the super-resolution branch, the L1 norm was computed between the
intensity pixel values of the SR output Ŷ and the target Y, for images with shape H ×W
and C channels:

L1(Ŷ, Y) =
1

CHW

C

∑
k=1

H

∑
j=1

W

∑
i=1
|Ŷijk −Yijk| (1)

For the semantic segmentation branch, we use the weighted Cross-Entropy loss (CE).
For each pixel of the output map, a class vector ŷij is predicted with the corresponding
scores for each class. Each pixel in the target map yij is one-hot encoded, containing a 1 for
the corresponding class and zero for the rest, K being the number of classes. The loss is
averaged over the entire map, with HxW shape, as shown below:

LCE(ŷ, y) = − 1
HW

H

∑
j=1

W

∑
i=1

K

∑
k=1

wky(k)ij log(ŷij
(k)), (2)

The weights for each class wk are computed from the training sub-set of the dataset,
using Equation (3), as in [2] and [91], where βk corresponds to the frequency of occurrence
of the class, and the term 1.02 is added for stability, in case of βk = 0.

wk =
1

ln(1.02 + βk)
(3)

Spatial details are essential for making an accurate segmentation; thus, structural
information in the SISR branch can be contrasted with semantic information from the
segmentation branch, even though not directly. Therefore, to share the learning between
both branches, we use the same implementation of feature affinity loss as explained in [2,6],
in which similarity matrices S are calculated from HR feature maps from both branches,
looking for strong connections between pixels in the feature domain. The feature affinity
loss (Equation (4)) computes the L1 distance between these similarity matrices.

LFA(S(SSSR), S(SISR)) =
1

W2.H2

W.H

∑
i=1

W.H

∑
j=1
‖S(SSSR)

ij − S(SISR)
ij ‖, (4)
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where S(SSSR) and S(SISR) refer to the SSSR and SISR similarity matrices, respectively.
The final loss we use for training the model consists of a linear combination of the

above-mentioned losses, as shown in Equation (5):

L = LCE + w1L1 + w2LFA, (5)

where w1 and w2 are hyper-parameters set to make the loss ranges comparable. In our case,
we obtained the best weighting w1 = 1.0 and w2 = 0.1.

3.4. Quantitative Metrics

To evaluate the super-resolution performance, we use the traditional PSNR and SSIM,
as well as two additional metrics (ERGAS, and SAM) for measuring the spectral quality of
the results [7].

• Peak Signal to Noise Ratio (PSNR) assesses the reconstruction quality of the image,
where higher value implies better quality.

• Structural Similarity (SSIM) [92] compares three features of the image (luminance,
contrast and structure). Values close to 1 indicate high matching between the com-
pared images.

• Erreur relative globale adimensionnelle de systhese (ERGAS) [93] measures the per-channel
error between the images considering the scaling factor M, as well. In this case, a
lower value indicates a better reconstruction.

• Spectral Angle Mapper (SAM) [94] provides an indication of the spectral similarity of
both images, where lower values means lower spectral distortion.

For the segmentation performance, we use standard metrics such as IoU, confusion
matrix, Precision, Recall and F1-score.

• Intersection-Over-Union (IoU) computed as the ratio between the overlap of the
predicted segmentation area and the GT, and the union of these areas. The range of
this metric is between 0 (indicating no overlapping) and 1 (indicating full overlap).

• Confusion matrix is helpful to assess a multi-class classification or segmentation task.
The rows of the confusion matrix indicate the true instances of each class, whilst the
columns correspond to instances predicted for each particular class.
The diagonal samples are the True Positive (TP) values for each class, corresponding
to the number of samples of the class that are correctly classified.
There are two different indicators for mis-classification. In False Positive (FP), the
sample predicted for a class actually belongs to another class. In False Negative (FN),
the sample of a particular class was predicted as belonging to another class. The
Intersection over Union for a particular class i (IoUi) is:

IoUi =
TPi

TPi + FNi + FPi
(6)

• The Precision of class i (Pi) is the rate of TPi over all predictions for that class, and
the Recall (Ri) measures the ratio of TPi over the GT of that class. Considering
the confusion matrix presented above, the metrics for a particular class (Ci) can be
computed as follows:

Pi =
TPi

TPi + FPi

Ri =
TPi

TPi + FNi

(7)

• F1-score is the harmonic mean of the Precision and Recall of a particular class, which
gives an overall measure considering both metrics:

F1i =
2PiRi

Pi + Ri
(8)
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3.5. Training Details

We trained our model using 308 patches of 160 × 160 pixels without overlap, using
horizontal and vertical flips, as well as random crops of 160× 160 pixels for data augmen-
tation, standardizing by channels using the corresponding mean and standard deviation.
The model was trained for 200 epochs with early stopping and saving the best weights
according to the mIoU metric. After hyperparameter tuning, we used a batch size of 4, a
learning rate of 5× 10−4 with AdamW [95], an improved version of Adam, as optimizer
and weight-decay of 5× 10−5. Different learning rate schedulers were tested, obtaining the
best performance using CosineAnnealing.

4. Results

This section presents the results achieved with our model and a comparison made
with other segmentation and multi-task models. Section 4.1 presents the results obtained
by performing an inference on the Maspalomas dataset, to select the best weights of the
RS-ESRGAN model that were used to initialize the SR branch on the multi-task model.
Section 4.2 presents the results of our proposal and in Section 4.3 we provide a comparison
with other models that were trained with the Maspalomas dataset. Finally, in Section 4.4 we
introduce different inference results with different Sentinel-2/WorldView images, that do
not belong to the Maspalomas dataset, to show the generalization ability of our proposal.

4.1. RS-ESRGAN Inference

RS-ESRGAN [7] is a super-resolution network that maximizes its performance by
combining network weights achieved after different training stages. First, it trains only
the generator, calling this network a PSNR-oriented mode, and then, it fine-tunes this
generator with an adversarial training. The best weights for the generator are obtained
by interpolation, using Equation (9). By this means, it minimizes the noise–blur trade-off,
getting results with more texture and finer details.

G(X) = (1− α)GPSNR−oriented(X) + αGadv(X), (9)

where GPSNR−oriented are the best weights achieved after training the generator alone and
Gadv are the best weights of the generator after training in an adversarial mode.

By using the different pre-trained weights of RS-ESRGAN [7], we perform inference
on the test set of the dataset to choose the best weights that initialize the SR branch of the
multi-task model. We used different values of α in Equation (9) that balance the contribution
of a PSNR-oriented model with α = 0 (SR_0), which tends to produce enhanced images but
still a little blurry, and a fully adversarial model (SR_1.0) with α = 1, which tends to refine
texture but introduces noise, as well.

Table 2 shows the mean results according to the PSNR, SSIM, ERGAS and SAM
metrics. We can notice that the best result was achieved using α = 0.1 for the PSNR and
SSIM metrics, that focus on the reconstruction of higher detailed images. On the other
hand, ERGAS and SAM metrics are indicative of the spectral information with respect to
the target image.

Figure 10 shows the SR results of this inference on the test set. We can notice a little
spectral difference but with a considerable winning margin concerning the delineation of
the buildings and the swimming pools in the image. However, if we look carefully at the
images with α > 0.5, we notice some distortion around the edges of objects that hinders
the final result.
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Table 2. RS-ESRGAN inference mean results on the test set of the Maspalomas dataset using different
values of α. Best values in bold.

LR_Bic SR_0 SR_0.1 SR_0.3 SR_0.5 SR_0.70 SR_0.80 SR_1.0

PSNR 29.452 31.007 31.047 30.763 30.196 29.573 29.195 28.203
SSIM 0.792 0.824 0.824 0.819 0.812 0.802 0.794 0.760
ERGAS 4.188 3.592 3.602 3.654 3.809 4.023 4.167 4.632
SAM 0.067 0.049 0.050 0.053 0.056 0.063 0.066 0.079

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Results of a region of Maspalomas-2017 from the Test Set. (a) WorldView-2 GT, (b) Sentinel-
2 bicubic interpolation, (c) SR with α = 0, (d) SR with α = 0.1, (e) SR with α = 0.3, (f) SR with α = 0.5,
(g) SR with α = 0.7, (h) SR with α = 0.8, (i) SR with α = 1. Image size: 200× 200 pixels.

4.2. SEG-ESRGAN Results

The final architecture of SEG-ESRGAN was achieved after several experiments, as
described in Appendix A. We obtained our best results after loading the pre-trained weights
for the SR branch (using α = 0.1) and fine-tuning the branch. The rest of the blocks are
initialized using the Kaiming method [96].

Figure 11 shows the results of our model, with a zoom of some regions in Figure 12.
We notice on the predicted map of Figure 11d that areas of bare ground are discernible
among the vegetation located in the central part of the image near the water. In the same
figure, we can see that the port area could not achieve a continuous segmentation, and the
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neighborhood in the upper right was recognized to some extent, although it is a challenging
area, as it can be seen in the input image in Figure 11a.

Looking at Figure 11i, we can notice that it tends to confuse some areas of vegetation
and bare soil with asphalt. Note the complexity of the classification of the original Sentinel-2
image due to the heterogeneity and size of the existing land covers, with narrow roads,
small constructions, pools, and dark small shrubs and wet sandy areas over the dunes.

However, we highlight the excellent performance on detecting most of the land covers,
specially swimming pools in the residential area. Inspecting the details in the zooming
plots of Figure 12, we notice even more the performance on detecting small pools in the
second and third rows. It is important to highlight the delineation and clear edges in
the SISR results in comparison with the Sentinel-2 input image in the first column at the
same figure.

(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 11. Results obtained on the test set of the Maspalomas dataset: (a,f) Sentinel-2 bicubic input
image; (b,g) WorldView GT; (c,h) SISR results; (d,i) SSSR GT, (e,j) SSSR results. The colormap is the
same as depicted in Figure 2.
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(a) (b) (c) (d) (e)

Figure 12. Zoom results obtained on different locations from the Test Set of the dataset: (a) Sentinel-2
bicubic input image, (b) WorldView-2 GT, (c) SISR result, (d) SSSR GT, (e) SSSR result. The colormap
is the same as depicted in Figure 2. Image size 200× 200 pixels.

Regarding the quantitative SS performance, Table 3 shows the confusion matrix with
extra columns for the precision, F1-score and IoU metrics, as well as the amount of pixels
per class in the test set (Total Pixels). The confusion matrix is normalized per rows (recall
metric on the diagonal) showing outstanding performance for water and bare soil, which
are the majority classes, and around 75% of recall for the other classes, except for the asphalt
class. We can appreciate the confusion between asphalt class with bare soil and vegetation.
The precision rate for that class only reaches 33% with a recall of 64%. This confusion can
be explained because of the high spectral similarity between these classes, especially in the
dunes zone and in other areas where the vegetation can be easily confused with dark bare
soil. Actually, this fact represented a challenge to manually correct the labeled pixels in
the dataset.

Table 4 shows the SR metrics in comparison with the bicubic interpolation. We can see
that our model improves regarding the considered metrics; however, if we compare with
the results obtained with inference using RS-ESRGAN alone (Section 4.1), our model has
lost a little of the SR performance to improve the segmentation results.
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Nevertheless, if we visually inspect the zoom results in Figure 12, we can notice the
improvements regarding the details in the delineation of roads and buildings as well as in
the small vegetation in the dunes zone.

Table 3. Confusion matrix, precision, F1-score and IoU results obtained with the test set of the
Maspalomas dataset.

Classification Data 1 2 3 4 5 6 Prec. F1 IoU Total Pixels

1 Water 0.99 0 0 0 0 0.01 0.97 0.98 0.960 136,030
2 Vegetation 0 0.76 0 0.18 0.03 0.03 0.81 0.79 0.647 202,881
3 Pool 0 0.02 0.74 0 0.09 0.15 0.52 0.61 0.439 3564
4 Bare Soil 0.01 0.04 0 0.90 0.04 0.01 0.94 0.92 0.851 712,037
5 Asphalt 0.01 0.13 0 0.16 0.64 0.06 0.33 0.43 0.274 32,974
6 Built Soil 0 0.10 0.03 0.04 0.10 0.73 0.69 0.71 0.552 59,518

mean 0.71 0.74 0.62

weighted mean 0.89 0.88 0.7947

Table 4. Super-resolution metrics for the best model compared with the bicubic interpolation image.
Best values in bold.

PSNR SSIM ERGAS SAM

Bicubic 29.452 0.792 4.188 0.067
SEG-ESRGAN 30.768 0.816 3.694 0.048

4.3. Comparison with Other Models

To measure the performance achieved by our SEG-ESRGAN, we compared our super-
resolution and segmentation results with other state-of-the-art models, such as:

• U-Net [51] trained with bicubic Sentinel-2 and SR images from RS-ESRGAN as input;
• DeepLabV3+ [49] trained with bicubic Sentinel-2 images as input;
• HRNet [54] trained with bicubic Sentinel-2 images as input;
• Dual_DeepLab [2] trained with bicubic Sentinel-2 images as input,

where the SR images were achieved by using the RS-ESRGAN in inference mode.
We use the F1-score to measure the performance per class, as it better encompasses

the precision and recall, along with the mean IoU, as a global segmentation metric.
Tables 5 and 6 show the segmentation and super-resolution metrics, respectively, while
Figures 13 and 14 show several samples of the segmentation and super-resolution results.

Our proposed model outperforms modern fully segmentation methods (U-Net, Deep-
LabV3+ and HRNet) that do not produce an SR image. We also trained a U-Net with
ResNet-101 as an encoder, with super-resolved images that were previously inferred using
RS-ESRGAN; see Section 4.1. We named this model U-Net+SR, and, in this opportunity, the
results improved in comparison with the U-Net that was trained using bicubic interpolated
Sentinel-2 images, although still, our proposal has a better performance in almost all
the classes.

For the comparison with the Dual_DeepLab model [2], we also trained the model
using the same training strategy, but adjusting the architecture to be suitable for the dataset,
i.e., we removed the extra-upsampling module from both decoder blocks, as the input
is already interpolated to the target spatial resolution. We proposed modifications to
the Dual_DeepLab model by adding RRDB blocks with separated convolutions to the
decoders sub-block, calling this model Dual_DeepLab_RRDB. This modification increases
the generation capacity of the decoder by making more feature maps and boosting the
performance on the segmentation part. However, our SEG-ESRGAN proposal still produces
better segmentation results in almost all the classes except in the asphalt class.

We also show the results obtained by training a U-Net with ResNet-101 as the encoder,
using only WorldView images with the same training strategy. By this mean, we provide
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an upper bound that can be achieved when training a pure segmentation model with
very-high resolution images as input to the network.

Table 5. Segmentation metrics obtained with the test set of the dataset. Best values in bold. mF1
refers to the mean F1 value, wF1 refers to the weighted mean F1 value and mIoU is the mean IoU.

F1 mF1 wF1 mIoU

Water Vegetation Pool Bare Soil Asphalt Built Soil

U-Net - WorldView (Upper Bound) 0.97 0.82 0.70 0.93 0.57 0.74 0.7883 0.8944 0.6723
U-Net (bicubic) 0.98 0.75 0.55 0.92 0.44 0.64 0.7133 0.8677 0.5904
DeepLabV3+ (bicubic) 0.97 0.74 0.46 0.92 0.46 0.68 0.7050 0.8671 0.5826
Dual_DeepLab (bicubic) 0.98 0.78 0.44 0.92 0.38 0.63 0.7064 0.8637 0.5870
HRNet (bicubic) 0.98 0.75 0.53 0.89 0.42 0.67 0.7067 0.8500 0.581
Dual_DeepLab_RRDB (bicubic) 0.98 0.78 0.53 0.92 0.41 0.68 0.7133 0.8717 0.5951
U-Net+SR* 0.98 0.76 0.57 0.91 0.45 0.67 0.7233 0.8651 0.6003
SEG-ESRGAN (bicubic) 0.98 0.79 0.61 0.92 0.43 0.71 0.7400 0.8783 0.6278

* U-NET+SR is trained and inferred with SR images of the dataset (α = 10%).

Analyzing Table 6, although our model performs a bit worse than RS-ESRGAN with
α = 0.1 (U-Net+SR) in terms of some super-resolution metrics (PSNR, SSIM, ERGAS),
if we better inspect the samples corresponding to the RS-ESRGAN inference and our
SEG-ESRGAN model, in Figure 14, we barely notice the difference between both results.

Table 6. Super-resolution metrics obtained with the test set of the dataset. Best values in bold.

PSNR SSIM ERGAS SAM

Bicubic 29.452 0.792 4.188 0.067
U-Net+SR * 31.047 0.824 3.602 0.050
Dual_DeepLab 30.372 0.807 3.779 0.050
Dual_DeepLab_RRDB 30.563 0.811 3.750 0.048
SEG-ESRGAN 30.768 0.816 3.694 0.048

* U-NET+SR is trained and inferred with SR dataset (α = 10%).

It is worth analyzing the number of parameters and memory consumption of our
proposed model. Table 7 shows the number of trainable parameters of each model and
the estimated consumption in memory. We can notice that ESRGAN has 16.6 million
parameters and needs 33 MB of memory. Our model, based on RS-ESRGAN, only adds
14.2 million parameters and nearly 28 MB of extra memory to perform the segmentation
task. On the other hand, our best competitor (U-Net+SR) needs to use the ESRGAN model
to perform SR first and, then, it uses an extra 103 MB to train the 51.5 million parameters of
a U-Net with a ResNet-101 encoder.

Table 7. Number of parameters and memory consumption of each model.

Segmentation Super-Resolution Trainable Parameters (M) Estimated Memory (MB)

Dual_DeepLab X X 51.4 102.861
Dual_DeepLab_RRDB X X 47.3 94.597
U-Net with ResNet-101 X 51.5 103.034
ESRGAN X 16.6 33.251
SEG-ESRGAN X X 30.8 61.522
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Segmentation results from different models using the test subset. (a) GT image, (b) U-Net,
(c) DeepLabV3+, (d) HRNet, (e) U-Net with SR inputs, (f) Dual_DeepLab, (g) Dual_DeepLab_RRDB,
(h) SEG-ESRGAN. Image size: 200× 200 pixels.

(a) (b) (c)

(d) (e) (f)

Figure 14. SR comparative performance between: (a) Sentinel-2 bicubic image; (b) WorldView-2 GT;
(c) Dual_DeepLab model; (d) Dual_DeepLab_RRDB model; (e) RS-ESRGAN inference, (f) SEG-
ESRGAN model. Image size 200 × 200.

4.4. Inference on Other Sentinel-2/WorldView Imagery

To explore the generalization performance on different image pairs of WorldView-
Sentinel, we used the two pairs described in Table 8. Both datasets were preprocessed as
described in [7] before any inference and analysis. Figure 15 shows different results in
crops extracted from those pairs. We can notice that our SISR predictions are consistent
with the GT image as well as with the segmentation predicted.
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Table 8. WorldView and Sentinel-2 pairs for Maspalomas (Gran Canaria, Spain).

Year Sentinel-2 WorldView-2 WorldView-3 WV Resolution

2015 29 September 4 June - 2.0 m
2017 31 May - 31 May 1.6 m

(a) (b) (c) (d)

Figure 15. SEG-ESRGAN inference of other WorldView-Sentinel pairs that do not belong to the
dataset. (a) Sentinel-2 bicubic image, (b) WorldView GT, (c) SISR, (d) SSSR.

5. Discussion

One of the main challenges working with deep learning models is to have a suitable
dataset for training. In this work, tackling the SR of Sentinel-2 bands, we paired the 10 m
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bands with the corresponding bands of WorldView-2 at 2 m of spatial resolution, forming a
dataset of LR-HR with a scaling factor of 5. We are not aware of other datasets that have
also their corresponding land-cover annotations for such high spatial resolution, and, as
already shown in [2], the authors also rely on released land-cover maps that may often
represent a class mismatch between the input and the corresponding GT. Therefore, to
work with a high scaling factor, we opted for manually correcting an SVM map, generated
with few annotations, even being time-consuming.

One of the main limitations when producing a multisensor dataset is the difficulty to
guarantee the same information. Specifically, although we are using images from different
sources taken on the same day, there are still spectral differences between them. Even
applying the proper radiometric calibrations, advanced atmospheric correction models and
co-registration to assure the geographic matching of pixels, these differences are mainly due
to different shadows caused by differences in the acquisition time and off-nadir viewing
angles or radiometric variations that are difficult to get rid off.

Concerning our final SEG-ESRGAN model, it was obtained after loading pre-trained
weights on the super-resolution branch and letting the network adjust them. This model
achieved the best performance regarding the segmentation task and without losing details
in the SISR image. The proposed architecture included an encoder with sub-blocks of RRDB-
BN-scSE, achieving excellent segmentation results, even in a class with few annotations
(swimming pools), as it can be seen in Table 3. This can be attributed to the great capacity
and higher performance showed by RRDB blocks in generating richer features, which are
also benefited from the dense connections. After the features were processed by the RRDB
and the BN in the encoder sub-block, scSE takes these features and dynamically determines
the best spatial and spectral characteristic to be transferred to the next encoder sub-block.

We demonstrated that super-resolution and segmentation networks can work together
using skip connections to retrieve high-level features with high resolution that can yield
better segmentation performance. Even in a challenging scenario, having considerable
similarity between classes, our model can produce consistent segmentation as well as
detailed edges in the super-resolved image, as shown in the zoom images in Figure 12.

Regarding the SR performance, our model was compared to a bicubic interpolation
and with the Dual_DeepLab model [2], obtaining better quantitative metrics and qualitative
enhancements, as shown also in Figure 12 and in Table 6. We also proposed a variant to
the Dual_DeepLab architecture to increment the dense connections by adding RRDBs in
both decoders.

Regarding the segmentation performance, we compared our model with other full seg-
mentation networks such as U-Net, DeepLabV3+ and HRNet, as well as with Dual_DeepLab
and its variant, the Dual_DeepLab_RRDB. All these experiments were completed using the
bicubic interpolated Sentinel-2 as input. Table 5 shows that our model achieves 0.74 in mean
F1 and 0.6278 in mean IoU, having a good approximation to the upper bound performance,
which was achieved with a U-Net (ResNet-101 as encoder) with only HR WorldView-2
images (mF1 = 0.7883 and mIoU = 0.6723). In addition, we used the pre-trained weights of
RS-ESRGAN [7] in inference mode to produce an SR version of the Maspalomas dataset.
With these enhanced images, we trained a U-Net model with ResNet-101 as an encoder to
produce an SSSR label map. Our model reduces its performance on the SR task to achieve
a better result in segmentation. Note that we did not make a comparison regarding the
native resolution of Sentinel-2 bands, mainly because we lack the corresponding GT labels
at that resolution and, as it has already been proved in [2] and [76], a multi-task network
tends to perform better with spatial enhanced images.

It is important to highlight that the spatial resolution has been increased by a challeng-
ing factor of 5. That is, the original 100 m2 pixel area has been enhanced to 4 m2. Note that
small objects or covers do not appear in the original Sentinel-2 image and are intended to
be shown in the final segmentation map. Nevertheless, the land cover maps achieved are
quite similar to the ground truth obtained with WorldView-2 data. Specifically, the model
performs well in discriminating small swimming pools in residential areas. This can be
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of interest for city councils, as the possibility of using free medium-resolution images can
reduce the budget and effort of monitoring large areas, but we are aware that this topic
needs further investigation.

Finally, we indicate that our model significantly reduces memory consumption and
the number of parameters to achieve excellent performance regarding segmentation and
super-resolution tasks.

6. Conclusions

The main objective of this work was to use the Sentinel-2 bands in applications that
require high resolution, and by this mean, avoiding the high cost required in the acquisition
of very-high resolution imagery, especially in studies involving great surface coverage of
multitemporal analysis.

In this context, we propose an encoder–decoder network architecture that obtains
high-resolution segmentation maps along with a super-resolved image, with a factor of
5, from a low-resolution multispectral Sentinel-2 imagery. To produce the SR image, we
based our model on an RS-ESRGAN and retrieve skip connections that are used to produce
the final segmentation map.

We develop a novel dataset consisting of registered WorldView/Sentinel-2 pairs for
the region of Maspalomas, Canarias-Spain and the corresponding segmentation map using
the WorldView-2 image. We manually labeled and corrected the land-cover maps produced
using an SVM classifier to reduce the noise and mis-labeling errors.

Our model, named SEG-ESRGAN, achieved a global mean F1 = 0.74 and a weighted
F1 = 0.8783, as well as an mIoU = 0.6278 regarding the segmentation task. If we compare
these values with a baseline U-Net using a bicubic 2 m Sentinel-2 as input (mF1 = 0.7133,
wF1 = 0.8677, and mIoU=0.5904), our model outperforms by a good margin. Even us-
ing the same U-Net model with improved SR images (mF1 = 0.7233, wF1 = 0.8651, and
mIoU=0.6003), our model still performs better and approaches very well to the performance
achieved with a U-Net trained with only WorldView-2 images (mF1 = 0.7883, wF1 = 0.8944
and mIou = 0.6723).

Considering the SR performance, our model provides enhanced images with better spa-
tial detail and minimum spectral distortion. It achieved a PSNR = 30.786 and SSIM = 0.816
that outperforms the baseline bicubic interpolation (PSNR = 29.452 and SSIM = 0.792). In
addition, we tested SEG-ESRGAN on a different set of Sentinel-2 and WorldView imagery
not belonging to the train–test subsets, obtaining excellent results as well.

Furthermore, for generating the extra SSSR map, our model only adds 14.2 M parame-
ters and 28 MB to the already proposed RS-ESRGAN, making these small extra features
reach better segmentation results than other state-of-the-art models.
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Abbreviations
The following abbreviations are used in this manuscript:

ASPP Atrous Spatial Pyramid Pooling
BN Batch Normalization
CE Cross-Entropy
CNN Convolutional Neural Network
DL Deep Learning
ERGAS Erreur relative globale adimensionnelle de systhese
FA Feature Affinity
GAN Generative Adversarial Network
GAP Global Average Pooling
GT Ground-Truth
HR High Resolution
IoU Intersection over Union
LR Low Resolution
LULC Land Use and Land Cover
MS Multispectral
NIR Near Infrared Band
PSNR Peak Signal-to-Noise Ratio
RRDB Residual-in-Residual Dense Block
RS Remote Sensing
SAM Spectral Angle Mapper
scSE Spatial and Channel Squeeze and Excitation
SEG-ESRGAN Segmentation Enhanced Super-Resolution GAN
SISR Single Image Super-Resolution
SR Super-Resolution
SS Semantic Segmentation
SSIM Structural Similarity Index Measure
SSSR Semantic Segmentation Super-Resolution
SVM Support Vector Machine

Appendix A. SEG-ESRGAN Model Architecture

We performed several experiments to define our best model architecture. Table A1
summarizes the different versions tested and Table A2 shows the corresponding perfor-
mance using F1-score metric. Although minor changes were made between each version,
we present the main variations between each architecture besides the training details,
as follows:

• v1: We based our model using the RS-ESRGAN as the trunk for the dual network. From
the feature extraction module of RS-ESRGAN, composed of sequential RRDB blocks,
we retrieved four skip connections at different levels. These features are downsampled
to different scales to emulate the UNet architecture and to extract context. Then, the
features are connected to the decoder to produce the final segmentation map. These
blocks are maintained in almost all the versions, as depicted in our best proposal in
Figure 6.

• v2: We used the blocks of Resnet-101 as encoder. The first feature map is retrieved
with a skip-connection from the shallow feature extraction block of the RS-ESRGAN.
We noticed that using the Resnet blocks increased the memory consumption of the
dual network.

• v3: We used scSE blocks as encoders. These blocks do not consume much memory
and have good performance, obtaining useful features that are concatenated with the
skip connections from the ESRGAN.

• v4: We added RRDB modules and BN along with scSE to form the encoder blocks. We
trained the entire network from scratch without loading any pre-trained weights to
the RS-ESRGAN trunk.
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We achieved our best results initializing the SR branch with the pre-trained weights of
the RS-ESRGAN network and conducting a hyper-parameter sweep over model v4 using
WandB [97]. We searched over the batch size, the learning rate, loss weights in Equation (5),
and different levels for the skip connections from the RS-ESRGAN.

Table A1. Different versions of the SEG-ESRGAN architecture.

Architecture v1 v2 v3 v4

- Skip connections as encoder x x x x
- Encoder ResNet-101 x
- Encoder scSE x x
- Encoder RRDB + scSE x

Analyzing Table A2, we notice that using the combination of RRDB-BN-scSE in each
encoder block produced an increment of the performance in the minority class (the swim-
ming pool) that motivated us to continue with this architecture.

Table A2. Different versions of the SEG-ESRGAN model and the performance on each class using
the F1 metric. Best values in bold.

Water Vegetation Pool Bare Soil Asphalt Built Soil Mean F1

SEG-ESRGAN_v1 0.95 0.74 0.46 0.91 0.50 0.64 0.702
SEG-ESRGAN_v2 0.95 0.78 0.58 0.91 0.32 0.61 0.692
SEG-ESRGAN_v3 0.96 0.77 0.51 0.92 0.44 0.67 0.710
SEG-ESRGAN_v4 0.97 0.73 0.59 0.92 0.42 0.68 0.719
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